DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.
2014-12-10
Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix
NASA Technical Reports Server (NTRS)
Shroff, Gautam
1989-01-01
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures.
Linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1988-01-01
A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1980-01-01
Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Radha, R.; Kumar, V. Ramesh
2007-11-01
In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.
Solution of the symmetric eigenproblem AX=lambda BX by delayed division
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Bains, N. J. C.
1986-01-01
Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.
NASA Astrophysics Data System (ADS)
Han, Rui-Qi; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
The correlation structure of a stock market contains important financial contents, which may change remarkably due to the occurrence of financial crisis. We perform a comparative analysis of the Chinese stock market around the occurrence of the 2008 crisis based on the random matrix analysis of high-frequency stock returns of 1228 Chinese stocks. Both raw correlation matrix and partial correlation matrix with respect to the market index in two time periods of one year are investigated. We find that the Chinese stocks have stronger average correlation and partial correlation in 2008 than in 2007 and the average partial correlation is significantly weaker than the average correlation in each period. Accordingly, the largest eigenvalue of the correlation matrix is remarkably greater than that of the partial correlation matrix in each period. Moreover, each largest eigenvalue and its eigenvector reflect an evident market effect, while other deviating eigenvalues do not. We find no evidence that deviating eigenvalues contain industrial sectorial information. Surprisingly, the eigenvectors of the second largest eigenvalues in 2007 and of the third largest eigenvalues in 2008 are able to distinguish the stocks from the two exchanges. We also find that the component magnitudes of the some largest eigenvectors are proportional to the stocks’ capitalizations.
NASA Astrophysics Data System (ADS)
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
Solving the transport equation with quadratic finite elements: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, J.M.
1997-12-31
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.
The Modern Origin of Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Generalised quasiprobability distribution for Hermite polynomial squeezed states
NASA Astrophysics Data System (ADS)
Datta, Sunil; D'Souza, Richard
1996-02-01
Generalized quasiprobability distributions (QPD) for Hermite polynomial states are presented. These states are solutions of an eigenvalue equation which is quadratic in creation and annihilation operators. Analytical expressions for the QPD are presented for some special cases of the eigenvalues. For large squeezing these analytical expressions for the QPD take the form of a finite series in even Hermite functions. These expressions very transparently exhibit the transition between, P, Q and W functions corresponding to the change of the s-parameter of the QPD. Further, they clearly show the two-photon nature of the processes involved in the generation of these states.
Expendable launch vehicle studies
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reiss, Robert
1995-01-01
Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1994-10-01
A variational method, based on some results due to T. Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], and previously discussed is here applied to the hydrogen atom in uniform magnetic fields of tesla in order to calculate, with a rigorous error estimate, energy eigenvalues, energy eigenfunctions, and oscillator strengths relative to Rydberg states up to just below the field-free ionization threshold. Making use of a basis (parabolic Sturmian basis) with a size varying from 990 up to 5050, we obtain, over the energy range of [minus]190 to [minus]24 cm[sup [minus]1], all of the eigenvalues and a good part ofmore » the oscillator strengths with a remarkable accuracy. This, however, decreases with increasing excitation energy and, thus, above [similar to][minus]24 cm[sup [minus]1], we obtain results of good accuracy only for eigenvalues ranging up to [similar to][minus]12 cm[sup [minus]1].« less
Some Results on Proper Eigenvalues and Eigenvectors with Applications to Scaling.
ERIC Educational Resources Information Center
McDonald, Roderick P.; And Others
1979-01-01
Problems in avoiding the singularity problem in analyzing matrices for optimal scaling are addressed. Conditions are given under which the stationary points and values of a ratio of quadratic forms in two singular matrices can be obtained by a series of simple matrix operations. (Author/JKS)
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
Optimization of cascade blade mistuning. I - Equations of motion and basic inherent properties
NASA Technical Reports Server (NTRS)
Nissim, E.
1985-01-01
Attention is given to the derivation of the equations of motion of mistuned compressor blades, interpolating aerodynamic coefficients by means of quadratic expressions in the reduced frequency. If the coefficients of the quadratic expressions are permitted to assume complex values, excellent accuracy is obtained and Pade rational expressions are obviated. On the basis of the resulting equations, it is shown analytically that the sum of all the real parts of the eigenvalues is independent of the mistuning introduced into the system. Blade mistuning is further treated through the aerodynamic energy approach, and the limiting vibration modes associated with alternative mistunings are identified.
An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1989-01-01
An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.
Sensitivity analysis and approximation methods for general eigenvalue problems
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1986-01-01
Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…
A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.
NASA Technical Reports Server (NTRS)
Harris, J. D.
1971-01-01
The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
Convergence Theory for Partial Images and Revision of the Definition of Total Images.
ERIC Educational Resources Information Center
Findeisen, Peter
1979-01-01
Guttman's assumption underlying his definition of "total images" is rejected. Partial images are not generally convergent everywhere. Even divergence everywhere is shown to be possible. The convergence type always found on partial images is convergence in quadratic mean; hence, total images are redefined as quadratic mean-limits.…
Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.
2018-05-01
We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.
Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonte, G.; Falsaperla, P.; Schiffrer, G.
1990-06-01
We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible tomore » apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.« less
A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1993-01-01
A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Swimming of a sphere in a viscous incompressible fluid with inertia
NASA Astrophysics Data System (ADS)
Felderhof, B. U.; Jones, R. B.
2017-08-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.
Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons
NASA Technical Reports Server (NTRS)
Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.
1988-01-01
Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.
NASA Astrophysics Data System (ADS)
Adhikari, Satyabrata
2018-04-01
Structural physical approximation (SPA) has been exploited to approximate nonphysical operation such as partial transpose. It has already been studied in the context of detection of entanglement and found that if the minimum eigenvalue of SPA to partial transpose is less than 2/9 then the two-qubit state is entangled. We find application of SPA to partial transpose in the estimation of the optimal singlet fraction. We show that the optimal singlet fraction can be expressed in terms of the minimum eigenvalue of SPA to partial transpose. We also show that the optimal singlet fraction can be realized using Hong-Ou-Mandel interferometry with only two detectors. Further we have shown that the generated hybrid entangled state between a qubit and a binary coherent state can be used as a resource state in quantum teleportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1993-05-01
Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] andmore » confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.« less
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.
Identification of spatially-localized initial conditions via sparse PCA
NASA Astrophysics Data System (ADS)
Dwivedi, Anubhav; Jovanovic, Mihailo
2017-11-01
Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.
Conjugate gradient heat bath for ill-conditioned actions.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2007-08-01
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
General Criterion for Harmonicity
NASA Astrophysics Data System (ADS)
Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian
2017-10-01
Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli
2016-07-15
Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Partial transpose of random quantum states: Exact formulas and meanders
NASA Astrophysics Data System (ADS)
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Boundary crisis for degenerate singular cycles
NASA Astrophysics Data System (ADS)
Lohse, Alexander; Rodrigues, Alexandre
2017-06-01
The term boundary crisis refers to the destruction or creation of a chaotic attractor when parameters vary. The locus of a boundary crisis may contain regions of positive Lebesgue measure marking the transition from regular dynamics to the chaotic regime. This article investigates the dynamics occurring near a heteroclinic cycle involving a hyperbolic equilibrium point E and a hyperbolic periodic solution P, such that the connection from E to P is of codimension one and the connection from P to E occurs at a quadratic tangency (also of codimension one). We study these cycles as organizing centers of two-parameter bifurcation scenarios and, depending on properties of the transition maps, we find different types of shift dynamics that appear near the cycle. Breaking one or both of the connections we further explore the bifurcation diagrams previously begun by other authors. In particular, we identify the region of crisis near the cycle, by giving information on multipulse homoclinic solutions to E and P as well as multipulse heteroclinic tangencies from P to E, and bifurcating periodic solutions, giving partial answers to the problems (Q1)-(Q3) of Knobloch (2008 Nonlinearity 21 45-60). Throughout our analysis, we focus on the case where E has real eigenvalues and P has positive Floquet multipliers.
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.
An Alternative Method to the Classical Partial Fraction Decomposition
ERIC Educational Resources Information Center
Cherif, Chokri
2007-01-01
PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…
On Partial Fraction Decompositions by Repeated Polynomial Divisions
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2017-01-01
We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…
NASA Astrophysics Data System (ADS)
Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2018-06-01
In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.
NASA Technical Reports Server (NTRS)
Udwadia, F. E.; Garba, J. A.
1983-01-01
This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
The damped wave equation with unbounded damping
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Siegl, Petr; Tretter, Christiane
2018-06-01
We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.
Sensitivity analysis of eigenvalues for an electro-hydraulic servomechanism
NASA Astrophysics Data System (ADS)
Stoia-Djeska, M.; Safta, C. A.; Halanay, A.; Petrescu, C.
2012-11-01
Electro-hydraulic servomechanisms (EHSM) are important components of flight control systems and their role is to control the movement of the flying control surfaces in response to the movement of the cockpit controls. As flight-control systems, the EHSMs have a fast dynamic response, a high power to inertia ratio and high control accuracy. The paper is devoted to the study of the sensitivity for an electro-hydraulic servomechanism used for an aircraft aileron action. The mathematical model of the EHSM used in this paper includes a large number of parameters whose actual values may vary within some ranges of uncertainty. It consists in a nonlinear ordinary differential equation system composed by the mass and energy conservation equations, the actuator movement equations and the controller equation. In this work the focus is on the sensitivities of the eigenvalues of the linearized homogeneous system, which are the partial derivatives of the eigenvalues of the state-space system with respect the parameters. These are obtained using a modal approach based on the eigenvectors of the state-space direct and adjoint systems. To calculate the eigenvalues and their sensitivity the system's Jacobian and its partial derivatives with respect the parameters are determined. The calculation of the derivative of the Jacobian matrix with respect to the parameters is not a simple task and for many situations it must be done numerically. The system stability is studied in relation with three parameters: m, the equivalent inertial load of primary control surface reduced to the actuator rod; B, the bulk modulus of oil and p a pressure supply proportionality coefficient. All the sensitivities calculated in this work are in good agreement with those obtained through recalculations.
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; Haddar, Houssem
2013-10-01
In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission eigenvalue problem. The need to answer these questions became important after a series of papers by Cakoni et al [5], and Cakoni et al [6] suggesting that these transmission eigenvalues could be used to obtain qualitative information about the material properties of the scattering object from far-field data. The first answer to the existence of transmission eigenvalues in the general case was given in 2008 when Päivärinta and Sylvester showed the existence of transmission eigenvalues for the index of refraction sufficiently large [7] followed in 2010 by the paper of Cakoni et al who removed the size restriction on the index of refraction [8]. More importantly, in the latter it was shown that transmission eigenvalues yielded qualitative information on the material properties of the scattering object and Cakoni et al established in [9] that transmission eigenvalues could be determined from the Tikhonov regularized solution of the far-field equation. Since the appearance of these papers there has been an explosion of interest in the transmission eigenvalue problem (we refer the reader to our recent survey paper [10] for a detailed account of the developments in this field up to 2012) and the papers in this special issue are representative of the myriad directions that this research has taken. Indeed, we are happy to see that many open theoretical and numerical questions raised in [10] have been answered (totally or partially) in the contributions of this special issue: the existence of transmission eigenvalues with minimal assumptions on the contrast, the numerical evaluation of transmission eigenvalues, the inverse spectral problem, applications to non-destructive testing, etc. In addition to these topics, many other new investigations and research directions have been proposed as we shall see in the brief content summary below. A number of papers in this special issue are concerned with the question of existence of transmission eigenvalues and the structure of the associated transmission eigenfunctions. The three papers by respectively Robbiano [11], Blasten and Päivärinta [12], and Lakshtanov and Vainberg [13] provide new complementary results on the existence of transmission eigenvalues for the scalar problem under weak assumptions on the (possibly complex valued) refractive index that mainly stipulates that the contrast does not change sign on the boundary. It is interesting here to see three different new methods to obtain these results. On the other hand, the paper by Bonnet-Ben Dhia and Chesnel [14] addresses the Fredholm properties of the interior transmission problem when the contrast changes sign on the boundary, exhibiting cases where this property fails. Using more standard approaches, the existence and structure of transmission eigenvalues are analyzed in the paper by Delbary [15] for the case of frequency dependent materials in the context of Maxwell's equations, whereas the paper by Vesalainen [16] initiates the study of the transmission eigenvalue problem in unbounded domains by considering the transmission eigenvalues for Schrödinger equation with non-compactly supported potential. The paper by Monk and Selgas [17] addresses the case where the dielectric is mounted on a perfect conductor and provides some numerical examples of the localization of associated eigenvalues using the linear sampling method. A series of papers then addresses the question of localization of transmission eigenvalues and the associated inverse spectral problem for spherically stratified media. More specifically, the paper by Colton and Leung [18] provides new results on complex transmission eigenvalues and a new proof for uniqueness of a solution to the inverse spectral problem, whereas the paper by Sylvester [19] provides sharp results on how to locate all the transmission eigenvalues associated with angular independent eigenfunctions when the index of refraction is constant. The paper by Gintides and Pallikarakis [20] investigates an iterative least square method to identify the spherically stratified index of refraction from transmission eigenvalues. On the characterization of transmission eigenvalues in terms of far-field measurements, a promising new result is obtained by Kirsch and Lechleiter [21] showing how one can identify the transmission eigenvalues using the eigenvalues of the scattering operator which are available in terms of measured scattering data. In the paper by Kleefeld [22], an accurate method for computing transmission eigenvalues based on a surface integral formulation of the interior transmission problem and numerical methods for nonlinear eigenvalue problems is proposed and numerically validated for the scalar problem in three dimensions. On the other hand, the paper by Sun and Xu [23] investigates the computation of transmission eigenvalues for Maxwell's equations using a standard iterative method associated with a variational formulation of the interior transmission problem with an emphasis on the effect of anisotropy on transmission eigenvalues. From the perspective of using transmission eigenvalues in non-destructive testing, the paper by Cakoni and Moskow [24] investigates the asymptotic behavior of transmission eigenvalues with respect to small inhomogeneities. The paper by Nakamura and Wang [25] investigates the linear sampling method for the time dependent heat equation and analyses the interior transmission problem associated with this equation. Finally, in the paper by Finch and Hickmann [26], the spectrum of the interior transmission problem is related to the unique determination of the acoustic properties of a body in thermoacoustic imaging. We hope that this collection of papers will stimulate further research in the rapidly growing area of transmission eigenvalues and inverse scattering theory.
Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.
Tanaka, Takashi
2017-04-15
A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.
Numerical methods for the unsymmetric tridiagonal eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-12-31
This report summarizes the results of our project {open_quotes}Numerical Methods for the Unsymmetric Tridiagonal Eigenvalue Problem{close_quotes}. It was funded by both by a DOE grant (No. DE-FG02-92ER25122, 6/1/92-5/31/94, $100,000) and by an NSF Research Initiation Award (No. CCR-9109785, 7/1/91-6/30/93, $46,564.) The publications resulting from that project during the DOE funding period are listed below. Two other journal papers and two other conference papers were produced during the NSF funding period. Most of the listed conference papers are early or partial versions of the listed journal papers.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1986-01-01
New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
Volatility and correlation-based systemic risk measures in the US market
NASA Astrophysics Data System (ADS)
Civitarese, Jamil
2016-10-01
This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.
The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices
NASA Technical Reports Server (NTRS)
Beam, Richard M.; Warming, Robert F.
1991-01-01
Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.
Zheng, Wendong; Zeng, Pingping
2016-01-01
ABSTRACT Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability of the 3/2 SVM by proposing a closed-form formula for the partial transform of the triple joint transition density which stand for the log asset price, the quadratic variation (continuous realized variance) and the instantaneous variance, respectively. Two distinct formulations are provided for deriving the main result. The closed-form partial transform enables us to deduce a variety of marginal partial transforms and characteristic functions and plays a crucial role in pricing discretely sampled variance derivatives and exotic options that depend on both the asset price and quadratic variation. Various applications and numerical examples on pricing moment swaps and timer options with discrete monitoring feature are given to demonstrate the versatility of the partial transform under the 3/2 model. PMID:28706460
Extremal entanglement witnesses
NASA Astrophysics Data System (ADS)
Hansen, Leif Ove; Hauge, Andreas; Myrheim, Jan; Sollid, Per Øyvind
2015-02-01
We present a study of extremal entanglement witnesses on a bipartite composite quantum system. We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ≥0 when Ω is a witness and ρ is a pure product state, ρ=ψψ† with ψ=ϕ⊗χ. The set of witnesses of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation value f(ϕ,χ)=TrΩρ as a function of vectors ϕ and χ is a positive semidefinite biquadratic form. Every zero of f(ϕ,χ) imposes strong real-linear constraints on f and Ω. The real and symmetric Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue, if such exist, we call Hessian zeros. A zero of f(ϕ,χ) is quadratic if it has no Hessian zeros, otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it has at least one quartic zero. A main result we prove is that a witness is extremal if and only if no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal witness has a minimum number of isolated zeros depending on dimensions. If a witness is not extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated searches in random directions, by numerical methods, leads to an extremal witness which is nearly always quadratic and has the minimum number of zeros. We discuss briefly some topics related to extremal witnesses, in particular the relation between the facial structures of the dual sets of witnesses and separable states. We discuss the relation between extremality and optimality of witnesses, and a conjecture of separability of the so-called structural physical approximation (SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a complex Hilbert space as a subset of the witnesses on a real Hilbert space.
Zhang, Zhongheng; Ji, Xuqing
2016-10-13
Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO 2 ) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO 2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO 2 and its interaction with other covariates were explored. A total of 199,125 PaO 2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO 2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO 2 on mortality risk was in quadratic form. There was significant interaction between PaO 2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO 2 on SOFA score was nonlinear. The study shows that the effect of PaO 2 on mortality risk is in quadratic function form, and there is significant interaction between PaO 2 and severity of illness.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
Simple graph models of information spread in finite populations
Voorhees, Burton; Ryder, Bergerud
2015-01-01
We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661
Kinjo, Ken; Uchibe, Eiji; Doya, Kenji
2013-01-01
Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.
The tunneling effect for a class of difference operators
NASA Astrophysics Data System (ADS)
Klein, Markus; Rosenberger, Elke
We analyze a general class of self-adjoint difference operators H𝜀 = T𝜀 + V𝜀 on ℓ2((𝜀ℤ)d), where V𝜀 is a multi-well potential and 𝜀 is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]).Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H𝜀 is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H𝜀, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H𝜀 converge to the first n eigenvalues of the direct sum of harmonic oscillators on ℝd located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H𝜀. These are obtained from eigenfunctions or quasimodes for the operator H𝜀, acting on L2(ℝd), via restriction to the lattice (𝜀ℤ)d. Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrödinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted ℓ2-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two “wells” (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrödinger operator in [22].
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
Doebeli, Michael; Ispolatov, Iaroslav
2010-04-23
The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1987-01-01
Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.
2018-06-01
We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated `non-orthogonality overlap factor' (also known as the `eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size {N× N} . First we derive the general finite N expression for the JPD of a real eigenvalue {λ} and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its `bulk' and `edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue z and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its `bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (Phys Rev Lett 81(16):3367-3370, 1998), and we provide the `edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach (The distribution of overlaps between eigenvectors of Ginibre matrices, 2018. arXiv:1801.01219).
NASA Astrophysics Data System (ADS)
Bai, Yan-Kui; Li, Shu-Shen; Zheng, Hou-Zhi
2005-11-01
We present a method for checking the Peres separability criterion in an arbitrary bipartite quantum state ρAB within local operations and classical communication scenario. The method does not require noise operation which is needed in making the partial transposition map physically implementable. The main task for the two observers, Alice and Bob, is to measure some specific functions of the partial transposed matrix. With these functions, they can determine the eigenvalues of ρABTB , among which the minimum serves as an entanglement witness.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
NASA Astrophysics Data System (ADS)
Singh, Pushpinder; Mishra, Nitin Kumar; Singh, Vikramjeet; Saxena, Seema
2017-07-01
In this paper a single buyer, single supplier inventory model with time quadratic and stock dependent demand for a finite planning horizon has been studied. Single deteriorating item which suffers shortage, with partial backlogging and some lost sales is considered. Model is divided into two scenarios, one with non permissible delay in payment and other with permissible delay in payment. Latter is called, centralized system, where supplier offers trade credit to retailer. In the centralized system cost saving is shared amongst the two. The objective is to study the difference in minimum costs borne by retailer and supplier, under two scenarios including the above mentioned parameters. To obtain optimal solution of the problem the model is solved analytically. Numerical example and a comparative study are then discussed supported by sensitivity analysis of each parameter.
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
Properties of networks with partially structured and partially random connectivity
NASA Astrophysics Data System (ADS)
Ahmadian, Yashar; Fumarola, Francesco; Miller, Kenneth D.
2015-01-01
Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore, the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean structure and correlations arises in many settings. We address this by characterizing large random N ×N matrices of the form A =M +L J R , where M ,L , and R are arbitrary deterministic matrices and J is a random matrix of zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence on row and column indices. We first provide a general formula for the eigenvalue density of A . For A non-normal, the eigenvalues do not suffice to specify the dynamics induced by A , so we also provide general formulas for the transient evolution of the magnitude of activity and frequency power spectrum in an N -dimensional linear dynamical system with a coupling matrix given by A . These quantities can also be thought of as characterizing the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed point. We derive these formulas and work them out analytically for some examples of M ,L , and R motivated by neurobiological models. We also argue that the persistence as N →∞ of a finite number of randomly distributed outlying eigenvalues outside the support of the eigenvalue density of A , as previously observed, arises in regions of the complex plane Ω where there are nonzero singular values of L-1(z 1 -M ) R-1 (for z ∈Ω ) that vanish as N →∞ . When such singular values do not exist and L and R are equal to the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum of A for J of norm σ and the σ pseudospectrum of M .
On the Local Maxima of a Constrained Quadratic Form
ERIC Educational Resources Information Center
Bhowmik, Jahar L.
2006-01-01
This note presents a brief and partial review of the work of Broom, Cannings and Vickers [1]. It also presents some simple examples of an extension of the their formalism to non-symmetric matrices. (Contains 1 figure.)
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
NASA Technical Reports Server (NTRS)
Schlaefke, Karlhans
1954-01-01
This paper, which is presented in three parts, is an analytical study of the behavior of landing gear shock struts, with various types of assumptions for the shock-strut characteristics. The effects of tire springing are neglected. The first part compares the behavior of struts with linear and quadratic damping. The second part considers struts with nonlinear spring characteristics and linear or quadratic damping. The third part treats the oleo-pneumatic strut with air-compression springing without damping and with damping proportional to velocity. It is indicated how the damping factor can be determined by experiment.
One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.
2018-04-01
The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
Finite-temperature phase transitions of third and higher order in gauge theories at large N
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
2018-02-15
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Finite-temperature phase transitions of third and higher order in gauge theories at large N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction
Gregor, Jens; Fessler, Jeffrey A.
2015-01-01
Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906
A wide-angle high Mach number modal expansion for infrasound propagation.
Assink, Jelle; Waxler, Roger; Velea, Doru
2017-03-01
The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.
The difference between two random mixed quantum states: exact and asymptotic spectral analysis
NASA Astrophysics Data System (ADS)
Mejía, José; Zapata, Camilo; Botero, Alonso
2017-01-01
We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.
Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method
NASA Astrophysics Data System (ADS)
Jeffers, R. S.; Kópházi, J.; Eaton, M. D.; Févotte, F.; Hülsemann, F.; Ragusa, J.
2017-04-01
The quantity of interest (QoI) associated with a solution of a partial differential equation (PDE) is not, in general, the solution itself, but a functional of the solution. Dual weighted residual (DWR) error estimators are one way of providing an estimate of the error in the QoI resulting from the discretisation of the PDE. This paper aims to provide an estimate of the error in the QoI due to the spatial discretisation, where the discretisation scheme being used is the diamond difference (DD) method in space and discrete ordinate (SN) method in angle. The QoI are reaction rates in detectors and the value of the eigenvalue (Keff) for 1-D fixed source and eigenvalue (Keff criticality) neutron transport problems respectively. Local values of the DWR over individual cells are used as error indicators for goal-based mesh refinement, which aims to give an optimal mesh for a given QoI.
Computation of p -units in ray class fields of real quadratic number fields
NASA Astrophysics Data System (ADS)
Chapdelaine, Hugo
2009-12-01
Let K be a real quadratic field, let p be a prime number which is inert in K and let K_p be the completion of K at p . As part of a Ph.D. thesis, we constructed a certain p -adic invariant uin K_p^{times} , and conjectured that u is, in fact, a p -unit in a suitable narrow ray class field of K . In this paper we give numerical evidence in support of that conjecture. Our method of computation is similar to the one developed by Dasgupta and relies on partial modular symbols attached to Eisenstein series.
Model Order Reduction Algorithm for Estimating the Absorption Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.
The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.« less
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Regions of absolute ultimate boundedness for discrete-time systems.
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.
1972-01-01
This paper considers discrete-time systems of the Lur'e-Postnikov class where the linear part is not asymptotically stable and the nonlinear characteristic satisfies only partially the usual sector condition. Estimates of the resulting finite regions of absolute ultimate boundedness are calculated by means of a quadratic Liapunov function.
NASA Astrophysics Data System (ADS)
Huo, Xiaoming; Elad, Michael; Flesia, Ana G.; Muise, Robert R.; Stanfill, S. Robert; Friedman, Jerome; Popescu, Bogdan; Chen, Jihong; Mahalanobis, Abhijit; Donoho, David L.
2003-09-01
In target recognition applications of discriminant of classification analysis, each 'feature' is a result of a convolution of an imagery with a filter, which may be derived from a feature vector. It is important to use relatively few features. We analyze an optimal reduced-rank classifier under the two-class situation. Assuming each population is Gaussian and has zero mean, and the classes differ through the covariance matrices: ∑1 and ∑2. The following matrix is considered: Λ=(∑1+∑2)-1/2∑1(∑1+∑2)-1/2. We show that the k eigenvectors of this matrix whose eigenvalues are most different from 1/2 offer the best rank k approximation to the maximum likelihood classifier. The matrix Λ and its eigenvectors have been introduced by Fukunaga and Koontz; hence this analysis gives a new interpretation of the well known Fukunaga-Koontz transform. The optimality that is promised in this method hold if the two populations are exactly Guassian with the same means. To check the applicability of this approach to real data, an experiment is performed, in which several 'modern' classifiers were used on an Infrared ATR data. In these experiments, a reduced-rank classifier-Tuned Basis Functions-outperforms others. The competitive performance of the optimal reduced-rank quadratic classifier suggests that, at least for classification purposes, the imagery data behaves in a nearly-Gaussian fashion.
DE and NLP Based QPLS Algorithm
NASA Astrophysics Data System (ADS)
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
NASA Astrophysics Data System (ADS)
Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe
2017-06-01
Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p
On partially massless theory in 3 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Sergei; Laboratoire Charles Coulomb UMR 5221, CNRS, Place Eugène Bataillon, F-34095, Montpellier; Deffayet, Cédric
2015-03-24
We analyze the first-order formulation of the ghost-free bigravity model in three-dimensions known as zwei-dreibein gravity. For a special choice of parameters, it was argued to have an additional gauge symmetry and give rise to a partially massless theory. We provide a thorough canonical analysis and identify that whether the theory becomes partially massless depends on the form of the stability condition of the secondary constraint responsible for the absence of the ghost. Generically, it is found to be an equation for a Lagrange multiplier implying that partially massless zwei-dreibein gravity does not exist. However, for special backgrounds this conditionmore » is identically satisfied leading to the presence of additional symmetries, which however disappear at quadratic order in perturbations.« less
On partially massless theory in 3 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Sergei; Deffayet, Cédric, E-mail: salexand@univ-montp2.fr, E-mail: deffayet@iap.fr
2015-03-01
We analyze the first-order formulation of the ghost-free bigravity model in three-dimensions known as zwei-dreibein gravity. For a special choice of parameters, it was argued to have an additional gauge symmetry and give rise to a partially massless theory. We provide a thorough canonical analysis and identify that whether the theory becomes partially massless depends on the form of the stability condition of the secondary constraint responsible for the absence of the ghost. Generically, it is found to be an equation for a Lagrange multiplier implying that partially massless zwei-dreibein gravity does not exist. However, for special backgrounds this conditionmore » is identically satisfied leading to the presence of additional symmetries, which however disappear at quadratic order in perturbations.« less
Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics
NASA Astrophysics Data System (ADS)
Fruhnert, Michael
This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.
Applied Computational Electromagnetics Society Journal, volume 9, number 1, March 1994
NASA Astrophysics Data System (ADS)
1994-03-01
The partial contents of this document include the following: On the Use of Bivariate Spline Interpolation of Slot Data in the Design of Slotted Waveguide Arrays; A Technique for Determining Non-Integer Eigenvalues for Solutions of Ordinary Differential Equations; Antenna Modeling and Characterization of a VLF Airborne Dual Trailing Wire Antenna System; Electromagnetic Scattering from Two-Dimensional Composite Objects; and Use of a Stealth Boundary with Finite Difference Frequency Domain Simulations of Simple Antenna Problems.
Entanglement transitions induced by large deviations
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Entanglement transitions induced by large deviations.
Bhosale, Udaysinh T
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer
NASA Astrophysics Data System (ADS)
Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre
2014-07-01
We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.
Systemic risk and spatiotemporal dynamics of the US housing market.
Meng, Hao; Xie, Wen-Jie; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene
2014-01-13
Housing markets play a crucial role in economies and the collapse of a real-estate bubble usually destabilizes the financial system and causes economic recessions. We investigate the systemic risk and spatiotemporal dynamics of the US housing market (1975-2011) at the state level based on the Random Matrix Theory (RMT). We identify richer economic information in the largest eigenvalues deviating from RMT predictions for the housing market than for stock markets and find that the component signs of the eigenvectors contain either geographical information or the extent of differences in house price growth rates or both. By looking at the evolution of different quantities such as eigenvalues and eigenvectors, we find that the US housing market experienced six different regimes, which is consistent with the evolution of state clusters identified by the box clustering algorithm and the consensus clustering algorithm on the partial correlation matrices. We find that dramatic increases in the systemic risk are usually accompanied by regime shifts, which provide a means of early detection of housing bubbles.
Discontinuous Galerkin Methods for NonLinear Differential Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy; Mansour, Nagi (Technical Monitor)
2001-01-01
This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.
Classification of multipartite entanglement via negativity fonts
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2012-04-01
Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
On the modular structure of the genus-one Type II superstring low energy expansion
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Green, Michael B.; Vanhove, Pierre
2015-08-01
The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
Spectral statistics and scattering resonances of complex primes arrays
NASA Astrophysics Data System (ADS)
Wang, Ren; Pinheiro, Felipe A.; Dal Negro, Luca
2018-01-01
We introduce a class of aperiodic arrays of electric dipoles generated from the distribution of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quaternion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances using the vectorial Green's matrix method. In these systems we demonstrate several distinctive spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical statistics of level spacings, and the existence of critical modes, which are extended fractal modes with long lifetimes not supported by either random or periodic systems. Moreover, we show that one can predict important physical properties, such as the existence spectral gaps, by analyzing the eigenvalue distribution of the Green's matrix of the arrays in the complex plane. Our results unveil the importance of aperiodic correlations in prime number arrays for the engineering of gapped photonic media that support far richer mode localization and spectral properties compared to usual periodic and random media.
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.
Effect of atomic spontaneous decay on entanglement in the generalized Jaynes-Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessian, H.A.; Obada, A.-S.F.; Mohamed, A.-B.A.
2010-03-15
Some aspects of the irreversible dynamics of a generalized Jaynes-Cummings model are addressed. By working in the dressed-state representation, it is possible to split the dynamics of the entanglement and coherence. The exact solution of the master equation in the case of a high-Q cavity with atomic decay is found. Effects of the atomic spontaneous decay on the temporal evolution of partial entropies of the atom or the field and the total entropy as a quantitative measure entanglement are elucidated. The degree of entanglement, through the sum of the negative eigenvalues of the partially transposed density matrix and the negativemore » mutual information has been studied and compared with other measures.« less
Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs
2010-05-31
Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by
Asymptotic approximations for pure bending of thin cylindrical shells
NASA Astrophysics Data System (ADS)
Coman, Ciprian D.
2017-08-01
A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel-Mushtari-Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further complemented by an alternative WKB approximation that provides comparable information with significantly less effort.
Introduction to Numerical Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph A.
2016-06-14
These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.
Invariant criteria for bound states, degree of ionization, and plasma phase transition
NASA Technical Reports Server (NTRS)
Girardeau, M. D.
1990-01-01
Basis invariant characterizations of bound states and bound fraction of a partially ionized hydrogen plasma are given in terms of properties of the spectrum of eigenvalues and eigenfunctions of the equilibrium quantum statistical one-proton-one-electron reduced density matrix. It is suggested that these can be used to place theories of a proposed plasma-ionization phase transition on a firm foundation. This general approach may be relevant to cosmological questions such as the quark deconfinement-confinement transition.
Extremal states of positive partial transpose in a system of three qubits
NASA Astrophysics Data System (ADS)
Steensgaard Garberg, Øyvind; Irgens, Børge; Myrheim, Jan
2013-03-01
We have studied mixed states in the system of three qubits with the property that all their partial transposes are positive; these are called PPT states. We classify a PPT state by the ranks of the state itself and its three single partial transposes. In random numerical searches, we find entangled PPT states with a large variety of rank combinations. For ranks equal to five or higher, we find both extremal and nonextremal PPT states of nearly every rank combination, with the restriction that the square sum of the four ranks of an extremal PPT state can be at most 193. We have studied especially the rank-four entangled PPT states, which are found to have rank four for every partial transpose. These states are all extremal because of the previously known result that every PPT state of rank three or less is separable. We find two distinct classes of rank-4444 entangled PPT states, identified by a real valued quadratic expression invariant under local SL(2,C) transformations, mathematically equivalent to Lorentz transformations. This quadratic Lorentz invariant is nonzero for one class of states (type I in our terminology) and zero for the other class (type II). The previously known states based on unextendible product bases are a nongeneric subclass of the type-I states. We present analytical constructions of states of both types, general enough to reproduce all the rank-4444 PPT states we have found numerically. We can not exclude the possibility that there exist nongeneric rank-four PPT states that we do not find in our random numerical searches.
Krein signature for instability of PT-symmetric states
NASA Astrophysics Data System (ADS)
Chernyavsky, Alexander; Pelinovsky, Dmitry E.
2018-05-01
Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrödinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature.
Cooking quality and starch digestibility of gluten free pasta using new bean flour.
Giuberti, Gianluca; Gallo, Antonio; Cerioli, Carla; Fortunati, Paola; Masoero, Francesco
2015-05-15
The use of rice/leguminous blend may be nutritionally convenient in gluten free product manufacturing. Gluten free spaghetti was prepared with rice flour and different concentrations of bean flour (included at levels of 0%, 20% and 40%, w/w) derived from a new developed white-seeded low phytic acid and lectin free (ws+lpa+lf) bean cultivar. Protein, ash and dietary fibre contents increased linearly (P<0.05) while total starch decreased quadratically (P<0.05) with the inclusion of ws+lpa+lf bean flour. The colour of spaghetti was influenced (P<0.05) by ws+lpa+lf bean inclusion. With respect to 0% spaghetti, the inclusion of ws+lpa+lf bean increased linearly (P<0.05) the optimal cooking time and the water absorption capacity, without affecting cooking loss and texture properties. The ws+lpa+lf bean inclusion increases quadratically (P<0.05) the resistant starch content, while decreasing quadratically (P<0.05) the in vitro glycemic index. The partial replacement of rice flour with bean flour can favourably be used in gluten free spaghetti formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Confidence set inference with a prior quadratic bound
NASA Technical Reports Server (NTRS)
Backus, George E.
1989-01-01
In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Recchioni, Maria Cristina
2001-12-01
This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.
Hendrickx, Christophe; Mateus, Octávio; Buffetaut, Eric
2016-01-01
Six quadrate bones, of which two almost certainly come from the Kem Kem beds (Cenomanian, Upper Cretaceous) of south-eastern Morocco, are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, geometric morphometric, and phylogenetic morphometric analyses. Their morphology indicates two morphotypes evidencing the presence of two spinosaurine taxa ascribed to Spinosaurus aegyptiacus and? Sigilmassasaurus brevicollis in the Cenomanian of North Africa, casting doubt on the accuracy of some recent skeletal reconstructions which may be based on elements from several distinct species. Morphofunctional analysis of the mandibular articulation of the quadrate has shown that the jaw mechanics was peculiar in Spinosauridae. In mature spinosaurids, the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a lateromedially oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. Similar jaw mechanics also occur in some pterosaurs and living pelecanids which are both adapted to capture and swallow large prey items. Spinosauridae, which were engaged, at least partially, in a piscivorous lifestyle, were able to consume large fish and may have occasionally fed on other prey such as pterosaurs and juvenile dinosaurs. PMID:26734729
Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.
Levitt, M; Sander, C; Stern, P S
1985-02-05
We have developed a new method for modelling protein dynamics using normal-mode analysis in internal co-ordinates. This method, normal-mode dynamics, is particularly well suited for modelling collective motion, makes possible direct visualization of biologically interesting modes, and is complementary to the more time-consuming simulation of molecular dynamics trajectories. The essential assumption and limitation of normal-mode analysis is that the molecular potential energy varies quadratically. Our study starts with energy minimization of the X-ray co-ordinates with respect to the single-bond torsion angles. The main technical task is the calculation of second derivative matrices of kinetic and potential energy with respect to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem, and the final eigenvalues and eigenvectors provide a complete description of the motion in the basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and correlations can be calculated efficiently using analytical formulae. The general method presented here is applied to four proteins, trypsin inhibitor, crambin, ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer graphics, it is clear that the motion of each protein is collective with all atoms participating in each mode. The slow modes, with frequencies of below 10 cm-1 (a period of 3 ps), are the most interesting in that the motion in these modes is segmental. The root-mean-square atomic fluctuations, which are dominated by a few slow modes, agree well with experimental temperature factors (B values). The normal-mode dynamics of these four proteins have many features in common, although in the larger molecules, lysozyme and ribonuclease, there is low frequency domain motion about the active site.
Lie-Santilli isoapproach to the unification of gravity and electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Animalu, A.O.E.
1996-06-01
The author reviews the problem of Einstein`s original proposal for the unification of gravity and electromagnetism in space-time differential geometry along the lines of the recent contributions by A.A. Logunov, R.M. Santilli, D.F. Lopez and others. The author presents a new method of unification based on the Lie-Santilli isotopic theory whereby the unified field tensor g = (g{sub {mu}{nu}}) is constructed from the symmetric Riemannian gravitational tensor, g = (g{mu}{nu}), and the antisymmetric electromagnetic field tensor F = (F{sub {mu}{nu}}) via an isotopic lifting g {yields} {cflx g} = Fg of the type of Lax pairing, where det F {ne}more » 0, the unified field {cflx g} satisfies Logunov-Santilli equations while g and F are treated as Lax pair. Because of Santilli`s isotopic equivalence between Minkowskian and Riemannian geometries, the author infers that in the Minkowskian limit F = f, g = {eta}, the metric {eta} satisfies Lax`s equation of motion {partial_derivative}{eta}/{partial_derivative}t = f{eta} {minus} {eta}f which insures the conservation of the eigenvalues of g. The invariance of the electromagnetic group of transformations (F) in Minkowski space is determined by the eigenvalue equations, det (F{sub {mu}{nu}}){minus}{lambda}{eta}{sub {mu}{nu}} = 0, from which the author deduces a Lie-isotopic {open_quotes}extended{close_quotes} relativity principle. A wave equation for a spin-2 particle in the unified field is derived, and the experimental consequences of the theory are discussed.« less
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
An efficient method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Liou, M.-S.
1986-01-01
An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Shock and Rarefaction Waves in a Heterogeneous Mantle
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.
Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2018-02-01
In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.
Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem
Shao, Meiyue; da Jornada, Felipe H.; Yang, Chao; ...
2015-10-02
The Bethe–Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe–Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. In this paper, we establish the equivalence between Bethe–Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe–Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm–Dancoff approximation are overestimated. In order to solve large scale problemsmore » of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Finally, several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms.« less
NASA Astrophysics Data System (ADS)
Artés, Joan C.; Rezende, Alex C.; Oliveira, Regilene D. S.
Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure /line{QsnSN(C)} within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of /line{QsnSN(C)} is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle.
Coding of level of ambiguity within neural systems mediating choice.
Lopez-Paniagua, Dan; Seger, Carol A
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).
Coding of level of ambiguity within neural systems mediating choice
Lopez-Paniagua, Dan; Seger, Carol A.
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common “fronto—parietal—striatal” network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum). PMID:24367286
Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.
2014-12-01
Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
A new method of passive modifications for partial frequency assignment of general structures
NASA Astrophysics Data System (ADS)
Belotti, Roberto; Ouyang, Huajiang; Richiedei, Dario
2018-01-01
The assignment of a subset of natural frequencies to vibrating systems can be conveniently achieved by means of suitable structural modifications. It has been observed that such an approach usually leads to the undesired change of the unassigned natural frequencies, which is a phenomenon known as frequency spill-over. Such an issue has been dealt with in the literature only in simple specific cases. In this paper, a new and general method is proposed that aims to assign a subset of natural frequencies with low spill-over. The optimal structural modifications are determined through a three-step procedure that considers both the prescribed eigenvalues and the feasibility constraints, assuring that the obtained solution is physically realizable. The proposed method is therefore applicable to very general vibrating systems, such as those obtained through the finite element method. The numerical difficulties that may occur as a result of employing the method are also carefully addressed. Finally, the capabilities of the method are validated in three test-cases in which both lumped and distributed parameters are modified to obtain the desired eigenvalues.
Systemic risk and spatiotemporal dynamics of the US housing market
Meng, Hao; Xie, Wen-Jie; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene
2014-01-01
Housing markets play a crucial role in economies and the collapse of a real-estate bubble usually destabilizes the financial system and causes economic recessions. We investigate the systemic risk and spatiotemporal dynamics of the US housing market (1975–2011) at the state level based on the Random Matrix Theory (RMT). We identify richer economic information in the largest eigenvalues deviating from RMT predictions for the housing market than for stock markets and find that the component signs of the eigenvectors contain either geographical information or the extent of differences in house price growth rates or both. By looking at the evolution of different quantities such as eigenvalues and eigenvectors, we find that the US housing market experienced six different regimes, which is consistent with the evolution of state clusters identified by the box clustering algorithm and the consensus clustering algorithm on the partial correlation matrices. We find that dramatic increases in the systemic risk are usually accompanied by regime shifts, which provide a means of early detection of housing bubbles. PMID:24413626
Computing the Evans function via solving a linear boundary value ODE
NASA Astrophysics Data System (ADS)
Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn
2015-11-01
Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.
Comparison of scalar measures used in magnetic resonance diffusion tensor imaging.
Bahn, M M
1999-07-01
The tensors derived from diffusion tensor imaging describe complex diffusion in tissues. However, it is difficult to compare tensors directly or to produce images that contain all of the information of the tensor. Therefore, it is convenient to produce scalar measures that extract desired aspects of the tensor. These measures map the three-dimensional eigenvalues of the diffusion tensor into scalar values. The measures impose an order on eigenvalue space. Many invariant scalar measures have been introduced in the literature. In the present manuscript, a general approach for producing invariant scalar measures is introduced. Because it is often difficult to determine in clinical practice which of the many measures is best to apply to a given situation, two formalisms are introduced for the presentation, definition, and comparison of measures applied to eigenvalues: (1) normalized eigenvalue space, and (2) parametric eigenvalue transformation plots. All of the anisotropy information contained in the three eigenvalues can be retained and displayed in a two-dimensional plot, the normalized eigenvalue plot. An example is given of how to determine the best measure to use for a given situation by superimposing isometric contour lines from various anisotropy measures on plots of actual measured eigenvalue data points. Parametric eigenvalue transformation plots allow comparison of how different measures impose order on normalized eigenvalue space to determine whether the measures are equivalent and how the measures differ. These formalisms facilitate the comparison of scalar invariant measures for diffusion tensor imaging. Normalized eigenvalue space allows presentation of eigenvalue anisotropy information. Copyright 1999 Academic Press.
Estimation from incomplete multinomial data. Ph.D. Thesis - Harvard Univ.
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
The vector of multinomial cell probabilities was estimated from incomplete data, incomplete in that it contains partially classified observations. Each such partially classified observation was observed to fall in one of two or more selected categories but was not classified further into a single category. The data were assumed to be incomplete at random. The estimation criterion was minimization of risk for quadratic loss. The estimators were the classical maximum likelihood estimate, the Bayesian posterior mode, and the posterior mean. An approximation was developed for the posterior mean. The Dirichlet, the conjugate prior for the multinomial distribution, was assumed for the prior distribution.
NASA Astrophysics Data System (ADS)
Shy, L. Y.; Eichinger, B. E.
1989-05-01
Computer simulations of the formation of trifunctional and tetrafunctional polydimethyl-siloxane networks that are crosslinked by condensation of telechelic chains with multifunctional crosslinking agents have been carried out on systems containing up to 1.05×106 chains. Eigenvalue spectra of Kirchhoff matrices for these networks have been evaluated at two levels of approximation: (1) inclusion of all midchain modes, and (2) suppression of midchain modes. By use of the recursion method of Haydock and Nex, we have been able to effectively diagonalize matrices with 730 498 rows and columns without actually constructing matrices of this size. The small eigenvalues have been computed by use of the Lanczos algorithm. We demonstrate the following results: (1) The smallest eigenvalues (with chain modes suppressed) vary as μ-2/3 for sufficiently large μ, where μ is the number of junctions in the network; (2) the eigenvalue spectra of the Kirchhoff matrices are well described by McKay's theory for random regular graphs in the range of the larger eigenvalues, but there are significant departures in the region of small eigenvalues where computed spectra have many more small eigenvalues than random regular graphs; (3) the smallest eigenvalues vary as n-1.78 where n is the number of Rouse beads in the chains that comprise the network. Computations are done for both monodisperse and polydisperse chain length distributions. Large eigenvalues associated with localized motion of the junctions are found as predicted by theory. The relationship between the small eigenvalues and the equilibrium modulus of elasticity is discussed, as is the relationship between viscoelasticity and the band edge of the spectrum.
NASA Technical Reports Server (NTRS)
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Conservative-variable average states for equilibrium gas multi-dimensional fluxes
NASA Technical Reports Server (NTRS)
Iannelli, G. S.
1992-01-01
Modern split component evaluations of the flux vector Jacobians are thoroughly analyzed for equilibrium-gas average-state determinations. It is shown that all such derivations satisfy a fundamental eigenvalue consistency theorem. A conservative-variable average state is then developed for arbitrary equilibrium-gas equations of state and curvilinear-coordinate fluxes. Original expressions for eigenvalues, sound speed, Mach number, and eigenvectors are then determined for a general average Jacobian, and it is shown that the average eigenvalues, Mach number, and eigenvectors may not coincide with their classical pointwise counterparts. A general equilibrium-gas equation of state is then discussed for conservative-variable computational fluid dynamics (CFD) Euler formulations. The associated derivations lead to unique compatibility relations that constrain the pressure Jacobian derivatives. Thereafter, alternative forms for the pressure variation and average sound speed are developed in terms of two average pressure Jacobian derivatives. Significantly, no additional degree of freedom exists in the determination of these two average partial derivatives of pressure. Therefore, they are simultaneously computed exactly without any auxiliary relation, hence without any geometric solution projection or arbitrary scale factors. Several alternative formulations are then compared and key differences highlighted with emphasis on the determination of the pressure variation and average sound speed. The relevant underlying assumptions are identified, including some subtle approximations that are inherently employed in published average-state procedures. Finally, a representative test case is discussed for which an intrinsically exact average state is determined. This exact state is then compared with the predictions of recent methods, and their inherent approximations are appropriately quantified.
Modal interaction in linear dynamic systems near degenerate modes
NASA Technical Reports Server (NTRS)
Afolabi, D.
1991-01-01
In various problems in structural dynamics, the eigenvalues of a linear system depend on a characteristic parameter of the system. Under certain conditions, two eigenvalues of the system approach each other as the characteristic parameter is varied, leading to modal interaction. In a system with conservative coupling, the two eigenvalues eventually repel each other, leading to the curve veering effect. In a system with nonconservative coupling, the eigenvalues continue to attract each other, eventually colliding, leading to eigenvalue degeneracy. Modal interaction is studied in linear systems with conservative and nonconservative coupling using singularity theory, sometimes known as catastrophe theory. The main result is this: eigenvalue degeneracy is a cause of instability; in systems with conservative coupling, it induces only geometric instability, whereas in systems with nonconservative coupling, eigenvalue degeneracy induces both geometric and elastic instability. Illustrative examples of mechanical systems are given.
Topology optimization of embedded piezoelectric actuators considering control spillover effects
NASA Astrophysics Data System (ADS)
Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.
2017-02-01
This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.
NASA Astrophysics Data System (ADS)
Frank, Marius S.; Hättig, Christof
2018-04-01
We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.
Dynamics of f(R) gravity models and asymmetry of time
NASA Astrophysics Data System (ADS)
Verma, Murli Manohar; Yadav, Bal Krishna
We solve the field equations of modified gravity for f(R) model in metric formalism. Further, we obtain the fixed points of the dynamical system in phase-space analysis of f(R) models, both with and without the effects of radiation. The stability of these points is studied against the perturbations in a smooth spatial background by applying the conditions on the eigenvalues of the matrix obtained in the linearized first-order differential equations. Following this, these fixed points are used for analyzing the dynamics of the system during the radiation, matter and acceleration-dominated phases of the universe. Certain linear and quadratic forms of f(R) are determined from the geometrical and physical considerations and the behavior of the scale factor is found for those forms. Further, we also determine the Hubble parameter H(t), the Ricci scalar R and the scale factor a(t) for these cosmic phases. We show the emergence of an asymmetry of time from the dynamics of the scalar field exclusively owing to the f(R) gravity in the Einstein frame that may lead to an arrow of time at a classical level.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity
NASA Astrophysics Data System (ADS)
Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.
2018-03-01
Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.
NASA Astrophysics Data System (ADS)
Audibert, Lorenzo; Cakoni, Fioralba; Haddar, Houssem
2017-12-01
In this paper we develop a general mathematical framework to determine interior eigenvalues from a knowledge of the modified far field operator associated with an unknown (anisotropic) inhomogeneity. The modified far field operator is obtained by subtracting from the measured far field operator the computed far field operator corresponding to a well-posed scattering problem depending on one (possibly complex) parameter. Injectivity of this modified far field operator is related to an appropriate eigenvalue problem whose eigenvalues can be determined from the scattering data, and thus can be used to obtain information about material properties of the unknown inhomogeneity. We discuss here two examples of such modification leading to a Steklov eigenvalue problem, and a new type of the transmission eigenvalue problem. We present some numerical examples demonstrating the viability of our method for determining the interior eigenvalues form far field data.
Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less
Covariance expressions for eigenvalue and eigenvector problems
NASA Astrophysics Data System (ADS)
Liounis, Andrew J.
There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.
Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems
NASA Astrophysics Data System (ADS)
Xia, Changyu; Wang, Qiaoling
2018-05-01
We prove a sharp upper bound and a lower bound for the first nonzero eigenvalue of the Wentzell-Laplace operator on compact manifolds with boundary and an isoperimetric inequality for the same eigenvalue in the case where the manifold is a bounded domain in a Euclidean space. We study some fourth order Steklov problems and obtain isoperimetric upper bound for the first eigenvalue of them. We also find all the eigenvalues and eigenfunctions for two kind of fourth order Steklov problems on a Euclidean ball.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
Gauge assisted quadratic gravity: A framework for UV complete quantum gravity
NASA Astrophysics Data System (ADS)
Donoghue, John F.; Menezes, Gabriel
2018-06-01
We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.
Connection dynamics of a gauge theory of gravity coupled with matter
NASA Astrophysics Data System (ADS)
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-10-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.
NASA Astrophysics Data System (ADS)
Johnson, Chris; Kennedy, A. D.
2013-03-01
We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson-Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.
Computing Evans functions numerically via boundary-value problems
NASA Astrophysics Data System (ADS)
Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin
2018-03-01
The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.
2017-09-01
VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY
ERIC Educational Resources Information Center
Green, Samuel B.; Thompson, Marilyn S.; Levy, Roy; Lo, Wen-Juo
2015-01-01
Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the "k"th eigenvalue for sample data to the "k"th eigenvalue for generated data sets, conditioned on"k"-…
EvArnoldi: A New Algorithm for Large-Scale Eigenvalue Problems.
Tal-Ezer, Hillel
2016-05-19
Eigenvalues and eigenvectors are an essential theme in numerical linear algebra. Their study is mainly motivated by their high importance in a wide range of applications. Knowledge of eigenvalues is essential in quantum molecular science. Solutions of the Schrödinger equation for the electrons composing the molecule are the basis of electronic structure theory. Electronic eigenvalues compose the potential energy surfaces for nuclear motion. The eigenvectors allow calculation of diople transition matrix elements, the core of spectroscopy. The vibrational dynamics molecule also requires knowledge of the eigenvalues of the vibrational Hamiltonian. Typically in these problems, the dimension of Hilbert space is huge. Practically, only a small subset of eigenvalues is required. In this paper, we present a highly efficient algorithm, named EvArnoldi, for solving the large-scale eigenvalues problem. The algorithm, in its basic formulation, is mathematically equivalent to ARPACK ( Sorensen , D. C. Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations ; Springer , 1997 ; Lehoucq , R. B. ; Sorensen , D. C. SIAM Journal on Matrix Analysis and Applications 1996 , 17 , 789 ; Calvetti , D. ; Reichel , L. ; Sorensen , D. C. Electronic Transactions on Numerical Analysis 1994 , 2 , 21 ) (or Eigs of Matlab) but significantly simpler.
Eigenvalue density of cross-correlations in Sri Lankan financial market
NASA Astrophysics Data System (ADS)
Nilantha, K. G. D. R.; Ranasinghe; Malmini, P. K. C.
2007-05-01
We apply the universal properties with Gaussian orthogonal ensemble (GOE) of random matrices namely spectral properties, distribution of eigenvalues, eigenvalue spacing predicted by random matrix theory (RMT) to compare cross-correlation matrix estimators from emerging market data. The daily stock prices of the Sri Lankan All share price index and Milanka price index from August 2004 to March 2005 were analyzed. Most eigenvalues in the spectrum of the cross-correlation matrix of stock price changes agree with the universal predictions of RMT. We find that the cross-correlation matrix satisfies the universal properties of the GOE of real symmetric random matrices. The eigen distribution follows the RMT predictions in the bulk but there are some deviations at the large eigenvalues. The nearest-neighbor spacing and the next nearest-neighbor spacing of the eigenvalues were examined and found that they follow the universality of GOE. RMT with deterministic correlations found that each eigenvalue from deterministic correlations is observed at values, which are repelled from the bulk distribution.
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
Some measures of eigenvalue and eigenvector sensitivity applicable to both continuous and discrete linear systems are developed and investigated. An infinite series representation is developed for the eigenvalues and eigenvectors of a system. The coefficients of the series are coupled, but can be obtained recursively using a nonlinear coupled vector difference equation. A new sensitivity measure is developed by considering the effects of unmodeled dynamics. It is shown that the sensitivity is high when any unmodeled eigenvalue is near a modeled eigenvalue. Using a simple example where the sensor dynamics have been neglected, it is shown that high feedback gains produce high eigenvalue/eigenvector sensitivity. The smallest singular value of the return difference is shown not to reflect eigenvalue sensitivity since it increases with the feedback gains. Using an upper bound obtained from the infinite series, a procedure to evaluate whether the sensitivity to parameter variations is within given acceptable bounds is developed and demonstrated by an example.
Calculation of transmission probability by solving an eigenvalue problem
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Varga, Kálmán
2010-11-01
The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.
Recent advances in computational-analytical integral transforms for convection-diffusion problems
NASA Astrophysics Data System (ADS)
Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.
2017-10-01
An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.
NASA Astrophysics Data System (ADS)
Mao, W.; Sun, Z.; Felton, A. J.; Zhao, X.; Zhang, T.; Li, Y.; Smith, M. D.
2017-12-01
We used the method of `niche hypervolume' to study how plant communities accommodate extreme environmental changes. Due to the gradual decreases in precipitation, the desert-steppe ecotone in western of Inner Mongolia, an already arid region, has large shifts in species composition within short geographical ranges. Based on precipitation and species composition, we divided this study area into four categories: desert area (D), partial desert area (pD), partial steppe area (pS) and steppe area(S). We sampled along a climatic gradient of precipitation. We selected four transects, in each transect 100-125 quadrats were randomly selected, with 425 quadrats sampled in total. We assessed species composition of each sampling quadrat, and collected leaves of every species that appeared in every quadrat. We also studied the change of plant community weighted means of leaf traits (CWM) along the precipitation gradient. Leaf traits (phenotypic traits, i.e. SLA, LDMC and stoichiometry traits, i.e. LNC, LCC) were used to calculate the changes in `niche hypervolume'. Our results show that: 1) with decreases in precipitation, species richness and functional group types (PFTs) change. Species richness and functional groups were the highest in the pD area, while the species richness and functional groups in the desert area were the lowest. 2), CWM-SLA in the desert area was relatively small, while CWM-SLA in pD area, the pS area, and the steppe area are more similar. CWM-LNC decreases as precipitation decreases, consistent with CWM-LCC trends. While CWM-LDMC of the desert area was the highest, and CWM-LDMC in desert area was the lowest. The dynamics of CWM traits suggests that species in the desert region have slower growth rates, while species in the transitional zone and steppe area have relatively higher growth rates. Finally, the pD area had the highest niche hypervolume, while the steppe area had the lowest hypervolume, which may be closely related to the high level of PFTs. These results suggest that even in drought-prone ecosystems, plants yield multiple life strategies to adapt to stressful environments. While under extreme drought conditions, environmental filters will remove species with unsuitable traits, like perennial species in this study, leaving shrubs and other drought tolerant species to survive.
Optimal partial mass transportation and obstacle Monge-Kantorovich equation
NASA Astrophysics Data System (ADS)
Igbida, Noureddine; Nguyen, Van Thanh
2018-05-01
Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).
Stability investigations of airfoil flow by global analysis
NASA Technical Reports Server (NTRS)
Morzynski, Marek; Thiele, Frank
1992-01-01
As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.
A numerical projection technique for large-scale eigenvalue problems
NASA Astrophysics Data System (ADS)
Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang
2011-10-01
We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1994-01-01
AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
NASA Astrophysics Data System (ADS)
Julaiti, Alafate; Wu, Bin; Zhang, Zhongzhi
2013-05-01
The eigenvalues of the normalized Laplacian matrix of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we study the spectra and their applications of normalized Laplacian matrices of a family of fractal trees and dendrimers modeled by Cayley trees, both of which are built in an iterative way. For the fractal trees, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities, with the eigenvalues provided by a recursive relation governing the eigenvalues of networks at two successive generations. For Cayley trees, we show that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. By using the relation between normalized Laplacian spectra and eigentime identity, we derive the explicit solution to the eigentime identity for random walks on the two treelike networks, the leading scalings of which follow quite different behaviors. In addition, we corroborate the obtained eigenvalues and their degeneracies through the link between them and the number of spanning trees.
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad
2014-01-01
Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.
Multicomponent diffusion in basaltic melts at 1350 °C
NASA Astrophysics Data System (ADS)
Guo, Chenghuan; Zhang, Youxue
2018-05-01
Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.
O'Connor, B P
2000-08-01
Popular statistical software packages do not have the proper procedures for determining the number of components in factor and principal components analyses. Parallel analysis and Velicer's minimum average partial (MAP) test are validated procedures, recommended widely by statisticians. However, many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-greater-than-one rule. Use of the proper procedures might be increased if these procedures could be conducted within familiar software environments. This paper describes brief and efficient programs for using SPSS and SAS to conduct parallel analyses and the MAP test.
S4 solution of the transport equation for eigenvalues using Legendre polynomials
NASA Astrophysics Data System (ADS)
Öztürk, Hakan; Bülbül, Ahmet
2017-09-01
Numerical solution of the transport equation for monoenergetic neutrons scattered isotropically through the medium of a finite homogeneous slab is studied for the determination of the eigenvalues. After obtaining the discrete ordinates form of the transport equation, separated homogeneous and particular solutions are formed and then the eigenvalues are calculated using the Gauss-Legendre quadrature set. Then, the calculated eigenvalues for various values of the c0, the mean number of secondary neutrons per collision, are given in the tables.
Bethe-Salpeter Eigenvalue Solver Package (BSEPACK) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHAO, MEIYEU; YANG, CHAO
2017-04-25
The BSEPACK contains a set of subroutines for solving the Bethe-Salpeter Eigenvalue (BSE) problem. This type of problem arises in this study of optical excitation of nanoscale materials. The BSE problem is a structured non-Hermitian eigenvalue problem. The BSEPACK software can be used to compute all or subset of eigenpairs of a BSE Hamiltonian. It can also be used to compute the optical absorption spectrum without computing BSE eigenvalues and eigenvectors explicitly. The package makes use of the ScaLAPACK, LAPACK and BLAS.
Synchrony-induced modes of oscillation of a neural field model
NASA Astrophysics Data System (ADS)
Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Synchrony-induced modes of oscillation of a neural field model.
Esnaola-Acebes, Jose M; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Quantifying uncertainty in climate change science through empirical information theory.
Majda, Andrew J; Gershgorin, Boris
2010-08-24
Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information metric to quantify AOS model errors in the climate is proposed here which incorporates both coarse-grained mean model errors as well as covariance ratios in a transformation invariant fashion. The subtle behavior of model errors with this information metric is quantified in an instructive statistically exactly solvable test model with direct relevance to climate change science including the prototype behavior of tracer gases such as CO(2). Formulas for identifying the most sensitive climate change directions using statistics of the present climate or an AOS model approximation are developed here; these formulas just involve finding the eigenvector associated with the largest eigenvalue of a quadratic form computed through suitable unperturbed climate statistics. These climate change concepts are illustrated on a statistically exactly solvable one-dimensional stochastic model with relevance for low frequency variability of the atmosphere. Viable algorithms for implementation of these concepts are discussed throughout the paper.
Sturm-Liouville eigenproblems with an interior pole
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
The eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville problems with a simple pole on the interior of an interval are investigated. Three general theorems are proved, and it is shown that as n approaches infinity, the eigenfunctions more and more closely resemble those of an ordinary Sturm-Liouville problem. The low-order modes differ significantly from those of a nonsingular eigenproblem in that both eigenvalues and eigenfunctions are complex, and the eigenvalues for all small n may cluster about a common value in contrast to the widely separated eigenvalues of the corresponding nonsingular problem. In addition, the WKB is shown to be accurate for all n, and all eigenvalues of a normal one-dimensional Sturm-Liouville equation with nonperiodic boundary conditions are well separated.
Evaluation of the eigenvalue method in the solution of transient heat conduction problems
NASA Astrophysics Data System (ADS)
Landry, D. W.
1985-01-01
The eigenvalue method is evaluated to determine the advantages and disadvantages of the method as compared to fully explicit, fully implicit, and Crank-Nicolson methods. Time comparisons and accuracy comparisons are made in an effort to rank the eigenvalue method in relation to the comparison schemes. The eigenvalue method is used to solve the parabolic heat equation in multidimensions with transient temperatures. Extensions into three dimensions are made to determine the method's feasibility in handling large geometry problems requiring great numbers of internal mesh points. The eigenvalue method proves to be slightly better in accuracy than the comparison routines because of an exact treatment, as opposed to a numerical approximation, of the time derivative in the heat equation. It has the potential of being a very powerful routine in solving long transient type problems. The method is not well suited to finely meshed grid arrays or large regions because of the time and memory requirements necessary for calculating large sets of eigenvalues and eigenvectors.
Statistical properties of cross-correlation in the Korean stock market
NASA Astrophysics Data System (ADS)
Oh, G.; Eom, C.; Wang, F.; Jung, W.-S.; Stanley, H. E.; Kim, S.
2011-01-01
We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The β_{473} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function E(σ) with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E( σ) σ^{-γ}, with the exponent γ 2.92 and those for Asian currency crisis decreases significantly.
A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts
NASA Technical Reports Server (NTRS)
Watson, W.; Lansing, D. L.
1976-01-01
Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.
Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio
2011-12-01
This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Laun, Matthew C.
2016-01-01
We present results of thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators. We have used a test setup, measurement, and data processing methodology that we developed in prior work. The tests were conducted with High Density Polyethylene (HDPE) actuators of three thicknesses. The applied voltage driving the actuators was a pure sinusoidal waveform. The test setup was suspended actuators with a partial liquid interface. The tests were conducted at low ambient humidity. The thrust was measured with an analytical balance and the results were corrected for anti-thrust to isolate the plasma generated thrust. Applying this approach resulted in smooth and repeatable data. It also enabled curve fitting that yielded quadratic relations between the plasma thrust and voltage in log-log space at constant frequencies. The results contrast power law relationships developed in literature that appear to be a rough approximation over a limited voltage range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Nunno, Giulia, E-mail: giulian@math.uio.no; Khedher, Asma, E-mail: asma.khedher@tum.de; Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be
We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure withmore » infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.« less
An efficient method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Liou, M. S.
1986-01-01
An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.
On the number of eigenvalues of the discrete one-dimensional Dirac operator with a complex potential
NASA Astrophysics Data System (ADS)
Hulko, Artem
2018-03-01
In this paper we define a one-dimensional discrete Dirac operator on Z . We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity. We also estimate the number of eigenvalues for the discrete Schrödinger operator with complex potential on Z . That is we extend the result obtained by Hulko (Bull Math Sci, to appear) to the whole Z.
An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1989-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.
An eigenvalue localization set for tensors and its applications.
Zhao, Jianxing; Sang, Caili
2017-01-01
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al . (Linear Algebra Appl. 481:36-53, 2015) and Huang et al . (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text]-tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al ., the advantage of our results is that, without considering the selection of nonempty proper subsets S of [Formula: see text], we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of [Formula: see text]-tensors. Finally, numerical examples are given to verify the theoretical results.
SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.
2016-02-25
Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less
Shi, Jiajia; Liu, Yuhai; Guo, Ran; Li, Xiaopei; He, Anqi; Gao, Yunlong; Wei, Yongju; Liu, Cuige; Zhao, Ying; Xu, Yizhuang; Noda, Isao; Wu, Jinguang
2015-11-01
A new concentration series is proposed for the construction of a two-dimensional (2D) synchronous spectrum for orthogonal sample design analysis to probe intermolecular interaction between solutes dissolved in the same solutions. The obtained 2D synchronous spectrum possesses the following two properties: (1) cross peaks in the 2D synchronous spectra can be used to reflect intermolecular interaction reliably, since interference portions that have nothing to do with intermolecular interaction are completely removed, and (2) the two-dimensional synchronous spectrum produced can effectively avoid accidental collinearity. Hence, the correct number of nonzero eigenvalues can be obtained so that the number of chemical reactions can be estimated. In a real chemical system, noise present in one-dimensional spectra may also produce nonzero eigenvalues. To get the correct number of chemical reactions, we classified nonzero eigenvalues into significant nonzero eigenvalues and insignificant nonzero eigenvalues. Significant nonzero eigenvalues can be identified by inspecting the pattern of the corresponding eigenvector with help of the Durbin-Watson statistic. As a result, the correct number of chemical reactions can be obtained from significant nonzero eigenvalues. This approach provides a solid basis to obtain insight into subtle spectral variations caused by intermolecular interaction.
Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas
2017-10-10
An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G 0 W 0 variants.
Cucheb: A GPU implementation of the filtered Lanczos procedure
NASA Astrophysics Data System (ADS)
Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef
2017-11-01
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhaojun; Yang, Chao
What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcasemore » some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.« less
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
Hessian eigenvalue distribution in a random Gaussian landscape
NASA Astrophysics Data System (ADS)
Yamada, Masaki; Vilenkin, Alexander
2018-03-01
The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.
Two-faced property of a market factor in asset pricing and diversification effect
NASA Astrophysics Data System (ADS)
Eom, Cheoljun
2017-04-01
This study empirically investigates the test hypothesis that a market factor acting as a representative common factor in the pricing models has a negative influence on constructing a well-diversified portfolio from the Markowitz mean-variance optimization function (MVOF). We use the comparative correlation matrix (C-CM) method to control a single eigenvalue among all eigenvalues included in the sample correlation matrix (S-CM), through the random matrix theory (RMT). In particular, this study observes the effect of the largest eigenvalue that has the property of the market factor. According to the results, the largest eigenvalue has the highest explanatory power on the stock return changes. The C-CM without the largest eigenvalue in the S-CM constructs a more diversified portfolio capable of improving the practical applicability of the MVOF. Moreover, the more diversified portfolio constructed from this C-CM has better out-of-sample performance in the future period. These results support the test hypothesis for the two-faced property of the market factor, defined by the largest eigenvalue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane
NASA Astrophysics Data System (ADS)
Haddad, Julian; Montenegro, Marcos
2018-03-01
The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.
Terao, Takamichi
2010-08-01
We propose a numerical method to calculate interior eigenvalues and corresponding eigenvectors for nonsymmetric matrices. Based on the subspace projection technique onto expanded Ritz subspace, it becomes possible to obtain eigenvalues and eigenvectors with sufficiently high precision. This method overcomes the difficulties of the traditional nonsymmetric Lanczos algorithm, and improves the accuracy of the obtained interior eigenvalues and eigenvectors. Using this algorithm, we investigate three-dimensional metamaterial composites consisting of positive and negative refractive index materials, and it is demonstrated that the finite-difference frequency-domain algorithm is applicable to analyze these metamaterial composites.
The first eigenvalue of the p-Laplacian on quantum graphs
NASA Astrophysics Data System (ADS)
Del Pezzo, Leandro M.; Rossi, Julio D.
2016-12-01
We study the first eigenvalue of the p-Laplacian (with 1
A new approach to the method of source-sink potentials for molecular conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha
2015-11-21
We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
2011-09-01
state having two equal eigenvalues. For TXC, the axial stress (single eigenvalue) is more compressive than the lateral stresses (dual eigenvalues). For...parameters. These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and...These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and plate impact, which
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
NASA Astrophysics Data System (ADS)
Hus, Jean-Christophe; Bruschweiler, Rafael
2002-07-01
A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.
Finite GUE Distribution with Cut-Off at a Shock
NASA Astrophysics Data System (ADS)
Ferrari, P. L.
2018-03-01
We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unlike in previous papers, we describe the correlation in space-time without employing the mapping to the last passage percolation, which fails to exists already for the partially asymmetric model. We then consider a special case, where the asymptotic distribution is a cut-off of the distribution of the largest eigenvalue of a finite GUE matrix. Finally we discuss the strength of the probabilistic and physically motivated approach and compare it with the mathematical difficulties of a direct computation.
Overview of Krylov subspace methods with applications to control problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
Derivation of an eigenvalue probability density function relating to the Poincaré disk
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Krishnapur, Manjunath
2009-09-01
A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance
Wang, Weichen
2017-01-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726
NASA Astrophysics Data System (ADS)
Suparmi; Cari, C.; Wea, K. N.; Wahyulianti
2018-03-01
The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.
Iterative Methods for Elliptic Problems and the Discovery of ’q’.
1984-07-01
K = M’IlN LN 12 is a nonnegative irreducible matrix. Hence the Perron - Frobenius theory [19] tells us that there is exactly one eigenvalue A with W = p...earlier, the Perron - Frobenius theory implies that p is itself an eigenvalue. However, as we have said, in this instance the eigenvalue problem (l.12a
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Solving complex band structure problems with the FEAST eigenvalue algorithm
NASA Astrophysics Data System (ADS)
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
Comment on ‘Numerical estimates of the spectrum for anharmonic PT symmetric potentials’
NASA Astrophysics Data System (ADS)
Amore, Paolo; Fernández, Francisco M.
2013-04-01
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the authors missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947).
On the computation of steady Hopper flows. II: von Mises materials in various geometries
NASA Astrophysics Data System (ADS)
Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan
2004-11-01
Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Ultrarelativistic bound states in the spherical well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żaba, Mariusz; Garbaczewski, Piotr
2016-07-15
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator (−Δ){sup 1/2}, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral data for lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled E{sub (k,l)} series. For each orbital label l = 0, 1, 2, …, the label k = 1, 2, … enumerates consecutive lth seriesmore » eigenvalues. Each of them is 2l + 1-degenerate. The l = 0 eigenvalues series E{sub (k,0)} are identical with the set of even labeled eigenvalues for the d = 1 Cauchy well: E{sub (k,0)}(d = 3) = E{sub 2k}(d = 1). Likewise, the eigenfunctions ψ{sub (k,0)}(d = 3) and ψ{sub 2k}(d = 1) show affinity. We have identified the generic functional form of eigenfunctions of the spherical well which appear to be composed of a product of a solid harmonic and of a suitable purely radial function. The method to evaluate (approximately) the latter has been found to follow the universal pattern which effectively allows to skip all, sometimes involved, intermediate calculations (those were in usage, while computing the eigenvalues for l ≤ 3).« less
Quadrat Data for Fermilab Prairie Plant Survey
Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems
A divide and conquer approach to the nonsymmetric eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1991-01-01
Serial computation combined with high communication costs on distributed-memory multiprocessors make parallel implementations of the QR method for the nonsymmetric eigenvalue problem inefficient. This paper introduces an alternative algorithm for the nonsymmetric tridiagonal eigenvalue problem based on rank two tearing and updating of the matrix. The parallelism of this divide and conquer approach stems from independent solution of the updating problems. 11 refs.
Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H
2014-05-28
Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem sizes arising in the field of electronic structure theory is demonstrated for current high-performance computer architectures such as Cray or Intel/Infiniband. For a matrix of dimension 260,000, scalability up to 295,000 CPU cores has been shown on BlueGene/P.
The method of fundamental solutions for computing acoustic interior transmission eigenvalues
NASA Astrophysics Data System (ADS)
Kleefeld, Andreas; Pieronek, Lukas
2018-03-01
We analyze the method of fundamental solutions (MFS) in two different versions with focus on the computation of approximate acoustic interior transmission eigenvalues in 2D for homogeneous media. Our approach is mesh- and integration free, but suffers in general from the ill-conditioning effects of the discretized eigenoperator, which we could then successfully balance using an approved stabilization scheme. Our numerical examples cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We finally give an approximation analysis for our framework and provide error estimates, which bound interior transmission eigenvalue deviations in terms of some generalized MFS output.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Income-based projections of water footprint of food consumption in Uzbekistan
NASA Astrophysics Data System (ADS)
Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur
2013-11-01
Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.
Aeroelastic Stability of Idling Wind Turbines
NASA Astrophysics Data System (ADS)
Wang, Kai; Riziotis, Vasilis A.; Voutsinas, Spyros G.
2016-09-01
Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analysis. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic analysis. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. Finally the results of the eigenvalue analysis are evaluated through computations of the work of the aerodynamic forces by imposing harmonic vibrations following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the time domain analysis.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
NASA Astrophysics Data System (ADS)
Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo
2017-12-01
This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
Approximate controllability of a system of parabolic equations with delay
NASA Astrophysics Data System (ADS)
Carrasco, Alexander; Leiva, Hugo
2008-09-01
In this paper we give necessary and sufficient conditions for the approximate controllability of the following system of parabolic equations with delay: where [Omega] is a bounded domain in , D is an n×n nondiagonal matrix whose eigenvalues are semi-simple with nonnegative real part, the control and B[set membership, variant]L(U,Z) with , . The standard notation zt(x) defines a function from [-[tau],0] to (with x fixed) by zt(x)(s)=z(t+s,x), -[tau][less-than-or-equals, slant]s[less-than-or-equals, slant]0. Here [tau][greater-or-equal, slanted]0 is the maximum delay, which is supposed to be finite. We assume that the operator is linear and bounded, and [phi]0[set membership, variant]Z, [phi][set membership, variant]L2([-[tau],0];Z). To this end: First, we reformulate this system into a standard first-order delay equation. Secondly, the semigroup associated with the first-order delay equation on an appropriate product space is expressed as a series of strongly continuous semigroups and orthogonal projections related with the eigenvalues of the Laplacian operator (); this representation allows us to reduce the controllability of this partial differential equation with delay to a family of ordinary delay equations. Finally, we use the well-known result on the rank condition for the approximate controllability of delay system to derive our main result.
Instantaneous Normal Modes and the Protein Glass Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Roland; Krishnan, Marimuthu; Daidone, Isabella
2009-01-01
In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at ~ 220more » K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less
Instantaneous Normal Modes and the Protein Glass Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella
2009-01-01
In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K.more » The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less
Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials
NASA Astrophysics Data System (ADS)
Volkmer, Hans
2008-04-01
Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.
NASA Astrophysics Data System (ADS)
Ernawati; Carnia, E.; Supriatna, A. K.
2018-03-01
Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.
NASA Astrophysics Data System (ADS)
Movassagh, Ramis
2016-02-01
We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.
NASA Astrophysics Data System (ADS)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao
2017-12-01
We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
NASA Astrophysics Data System (ADS)
Willert, Jeffrey; Park, H.; Knoll, D. A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
NASA Astrophysics Data System (ADS)
Lin, Lin
The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.
Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models
NASA Astrophysics Data System (ADS)
Hotta, Masahiro
2013-03-01
Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.
Growth mechanisms of perturbations in boundary layers over a compliant wall
NASA Astrophysics Data System (ADS)
Malik, M.; Skote, Martin; Bouffanais, Roland
2018-01-01
The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.
Okamoto, Yoshikazu; Kemp, Graham J; Isobe, Tomonori; Sato, Eisuke; Hirano, Yuji; Shoda, Junichi; Minami, Manabu
2014-12-01
Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P<0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P<0.05 in λ2 and P<0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P<0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space. Copyright © 2014 Elsevier Inc. All rights reserved.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
2015-03-01
ALGORITHM—EIGENVALUE ESTIMATION OF HYPERSPECTRAL WISHART COVARIANCE MATRICES FROM A LIMITED NUMBER OF SAMPLES ECBC-TN-067 Avishai Ben- David ...NUMBER 6. AUTHOR(S) Ben- David , Avishai (ECBC) and Davidson, Charles E. (STC) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...and published by Avishai Ben- David and Charles E. Davidson (Eigenvalue Estimation of Hyperspectral WishartCovariance Matrices from Limited Number of
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
The nonconforming virtual element method for eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L 2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numericalmore » tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.« less
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
NASA Astrophysics Data System (ADS)
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
The Impact of the Network Topology on the Viral Prevalence: A Node-Based Approach
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2015-01-01
This paper addresses the impact of the structure of the viral propagation network on the viral prevalence. For that purpose, a new epidemic model of computer virus, known as the node-based SLBS model, is proposed. Our analysis shows that the maximum eigenvalue of the underlying network is a key factor determining the viral prevalence. Specifically, the value range of the maximum eigenvalue is partitioned into three subintervals: viruses tend to extinction very quickly or approach extinction or persist depending on into which subinterval the maximum eigenvalue of the propagation network falls. Consequently, computer virus can be contained by adjusting the propagation network so that its maximum eigenvalue falls into the desired subinterval. PMID:26222539
Quasi-Particle Self-Consistent GW for Molecules.
Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J
2016-06-14
We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.
Eigentime identities for on weighted polymer networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Tang, Hualong; Zou, Jiahui; He, Di; Sun, Yu; Su, Weiyi
2018-01-01
In this paper, we first analytically calculate the eigenvalues of the transition matrix of a structure with very complex architecture and their multiplicities. We call this structure polymer network. Based on the eigenvalues obtained in the iterative manner, we then calculate the eigentime identity. We highlight two scaling behaviors (logarithmic and linear) for this quantity, strongly depending on the value of the weight factor. Finally, by making use of the obtained eigenvalues, we determine the weighted counting of spanning trees.
A New Measure of Wireless Network Connectivity
2014-10-31
matrix QG. From Lemma 1, QG is a non-zero nonnegative matrix. Thus from the Perron - Frobenius Theorem, [24], its largest magni- tude eigenvalue, known as...the Perron - Frobenius eigenvalue is real and positive. Further as QG is symmetric, all its eigenval- ues are real, and its largest magnitude...eigenvalue λmax(QG) is also its largest singular value. Also from the Perron - Frobenius Theorem, should the network be connected, i.e. QG is positive as opposed
Asymptotic theory of a slender rotating beam with end masses.
NASA Technical Reports Server (NTRS)
Whitman, A. M.; Abel, J. M.
1972-01-01
The method of matched asymptotic expansions is employed to solve the singular perturbation problem of the vibrations of a rotating beam of small flexural rigidity with concentrated end masses. The problem is complicated by the appearance of the eigenvalue in the boundary conditions. Eigenfunctions and eigenvalues are developed as power series in the perturbation parameter beta to the 1/2 power, and results are given for mode shapes and eigenvalues through terms of the order of beta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2017-11-01
We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-12-01
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-08-24
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Examination of the relationship between obesity and suicidal ideation.
Dutton, G R; Bodell, L P; Smith, A R; Joiner, T E
2013-09-01
The relationship between obesity and suicidal ideation and behavior (suicidality) is not well understood, and conventional suicide risk factors do not adequately explain the associations observed. Thus, the current study aimed to further examine the relationship between body mass index (BMI; kg m(-2)) and suicidal ideation as well as potential mechanisms of this relationship. Two hundred seventy-one adults (n=151 undergraduates; n=120 obesity treatment participants) completed self-report questionnaires assessing relevant variables, including suicidal ideation, perceived burdensomeness, thwarted belongingness and current height/weight used to calculate BMI. There was a significant, quadratic relationship between BMI and suicidal ideation (b=0.001, t=2.21, P=0.03, partial r=0.14) and between BMI and perceived burdensomeness (b=0.003, t=2.50, P=0.013, partial r=0.16), such that as BMI increased, these positive associations became more pronounced. Additionally, perceived burdensomeness partially mediated the relationship between BMI and suicidal ideation. Individuals with a higher BMI demonstrated increased suicidal ideation as well as greater feelings of perceived burdensomeness. These results provide novel information regarding potential mechanisms explaining the obesity-suicidal ideation association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
Consideration of computer limitations in implementing on-line controls. M.S. Thesis
NASA Technical Reports Server (NTRS)
Roberts, G. K.
1976-01-01
A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.
Towards sub-optimal stochastic control of partially observable stochastic systems
NASA Technical Reports Server (NTRS)
Ruzicka, G. J.
1980-01-01
A class of multidimensional stochastic control problems with noisy data and bounded controls encountered in aerospace design is examined. The emphasis is on suboptimal design, the optimality being taken in quadratic mean sense. To that effect the problem is viewed as a stochastic version of the Lurie problem known from nonlinear control theory. The main result is a separation theorem (involving a nonlinear Kalman-like filter) suitable for Lurie-type approximations. The theorem allows for discontinuous characteristics. As a byproduct the existence of strong solutions to a class of non-Lipschitzian stochastic differential equations in dimensions is proven.
Quadratic electroweak corrections for polarized Moller scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov
2012-01-01
The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A multilevel finite element method for Fredholm integral eigenvalue problems
NASA Astrophysics Data System (ADS)
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
Method for computing self-consistent solution in a gun code
Nelson, Eric M
2014-09-23
Complex gun code computations can be made to converge more quickly based on a selection of one or more relaxation parameters. An eigenvalue analysis is applied to error residuals to identify two error eigenvalues that are associated with respective error residuals. Relaxation values can be selected based on these eigenvalues so that error residuals associated with each can be alternately reduced in successive iterations. In some examples, relaxation values that would be unstable if used alone can be used.
PT-symmetric eigenvalues for homogeneous potentials
NASA Astrophysics Data System (ADS)
Eremenko, Alexandre; Gabrielov, Andrei
2018-05-01
We consider one-dimensional Schrödinger equations with potential x2M(ix)ɛ, where M ≥ 1 is an integer and ɛ is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ɛ changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.
Spectral properties of Google matrix of Wikipedia and other networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2013-05-01
We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
The Factorability of Quadratics: Motivation for More Techniques
ERIC Educational Resources Information Center
Bosse, Michael J.; Nandakumar, N. R.
2005-01-01
Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…
A control system design approach for flexible spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, L. M.
1985-01-01
A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.
NASA Astrophysics Data System (ADS)
Livan, Giacomo; Alfarano, Simone; Scalas, Enrico
2011-07-01
We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
The Theory of Quantized Fields. III
DOE R&D Accomplishments Database
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
NASA Astrophysics Data System (ADS)
Li, Zhengguang; Lai, Siu-Kai; Wu, Baisheng
2018-07-01
Determining eigenvector derivatives is a challenging task due to the singularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated eigenvalues. An effective strategy is proposed to construct a non-singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives with distinct and repeated eigenvalues. This approach also has an advantage that only requires eigenvalues and eigenvectors of interest, without solving the particular solutions of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then adopted to solve the governing equations, only the existing factored (shifted) stiffness matrix from an iterative eigensolution such as the subspace iteration method or the Lanczos algorithm is utilized. The present method can deal with both cases of simple and repeated eigenvalues in a unified manner. Three numerical examples are given to illustrate the accuracy and validity of the proposed algorithm. Highly accurate approximations to the eigenvector derivatives are obtained within a few iteration steps, making a significant reduction of the computational effort. This method can be incorporated into a coupled eigensolver/derivative software module. In particular, it is applicable for finite element models with large sparse matrices.
Edge connectivity and the spectral gap of combinatorial and quantum graphs
NASA Astrophysics Data System (ADS)
Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio
2017-09-01
We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.
Rational approximations from power series of vector-valued meromorphic functions
NASA Technical Reports Server (NTRS)
Sidi, Avram
1992-01-01
Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational approximation procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational approximations thus obtained, and showed that they were akin to Pade approximations. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical approximations to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to approximate simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.
A direct potential fitting RKR method: Semiclassical vs. quantal comparisons
NASA Astrophysics Data System (ADS)
Tellinghuisen, Joel
2016-12-01
Quantal and semiclassical (SC) eigenvalues are compared for three diatomic molecular potential curves: the X state of CO, the X state of Rb2, and the A state of I2. The comparisons show higher levels of agreement than generally recognized, when the SC calculations incorporate a quantum defect correction to the vibrational quantum number, in keeping with the Kaiser modification. One particular aspect of this is better agreement between quantal and SC estimates of the zero-point vibrational energy, supporting the need for the Y00 correction in this context. The pursuit of a direct-potential-fitting (DPF) RKR method is motivated by the notion that some of the limitations of RKR potentials may be innate, from their generation by an exact inversion of approximate quantities: the vibrational energy Gυ and rotational constant Bυ from least-squares analysis of spectroscopic data. In contrast, the DPF RKR method resembles the quantal DPF methods now increasingly used to analyze diatomic spectral data, but with the eigenvalues obtained from SC phase integrals. Application of this method to the analysis of 9500 assigned lines in the I2A ← X spectrum fails to alter the quantal-SC disparities found for the A-state RKR curve from a previous analysis. On the other hand, the SC method can be much faster than the quantal method in exploratory work with different potential functions, where it is convenient to use finite-difference methods to evaluate the partial derivatives required in nonlinear fitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, A. T.; Betzler, B. R.; Burke, T. P.
Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less
An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, Carlos; Mahadevan, Rajesh; Sanz, Leon
2009-10-15
The pioneering works of Murat and Tartar (Topics in the mathematical modeling of composite materials. PNLDE 31. Birkhaeuser, Basel, 1997) go a long way in showing, in general, that problems of optimal design may not admit solutions if microstructural designs are excluded from consideration. Therefore, assuming, tactilely, that the problem of minimizing the first eigenvalue of a two-phase conducting material with the conducting phases to be distributed in a fixed proportion in a given domain has no true solution in general domains, Cox and Lipton only study conditions for an optimal microstructural design (Cox and Lipton in Arch. Ration. Mech.more » Anal. 136:101-117, 1996). Although, the problem in one dimension has a solution (cf. Krein in AMS Transl. Ser. 2(1):163-187, 1955) and, in higher dimensions, the problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et al. in Nonlinear Anal. TMA 13(2):185-220, 1989), these existence results have been regarded so far as being exceptional owing to complete symmetry. It is still not clear why the same problem in domains with partial symmetry should fail to have a solution which does not develop microstructure and respecting the symmetry of the domain. We hope to revive interest in this question by giving a new proof of the result in a ball using a simpler symmetrization result from Alvino and Trombetti (J. Math. Anal. Appl. 94:328-337, 1983)« less
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1973-01-01
Two methods for natural mode vibration analysis are discussed. The first consists of a direct approach based on a finite element representation of the complete structure as an entity. The mass and stiffness matrices for the complete structure are assembled by properly combining the mass and stiffness matrices of the individual elements into which the structure has been divided. The second approach is that of component mode synthesis. This method is based on the concept of synthesizing the natural modes of the complete structure from modes of conveniently difined substructures, or components, into which the structure has been partitioned. In this way the expedient of reducing the system degrees of freedom, and thus the size of the eigenvalue problem, can be introduced by partial modal synthesis.
Three-body spectrum in a finite volume: The role of cubic symmetry
Doring, M.; Hammer, H. -W.; Mai, M.; ...
2018-06-15
The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less
Origin and implications of zero degeneracy in networks spectra.
Yadav, Alok; Jalan, Sarika
2015-04-01
The spectra of many real world networks exhibit properties which are different from those of random networks generated using various models. One such property is the existence of a very high degeneracy at the zero eigenvalue. In this work, we provide all the possible reasons behind the occurrence of the zero degeneracy in the network spectra, namely, the complete and partial duplications, as well as their implications. The power-law degree sequence and the preferential attachment are the properties which enhances the occurrence of such duplications and hence leading to the zero degeneracy. A comparison of the zero degeneracy in protein-protein interaction networks of six different species and in their corresponding model networks indicates importance of the degree sequences and the power-law exponent for the occurrence of zero degeneracy.
Three-body spectrum in a finite volume: The role of cubic symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doring, M.; Hammer, H. -W.; Mai, M.
The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.
2007-12-01
Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.
NASA Astrophysics Data System (ADS)
2018-05-01
Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
A new localization set for generalized eigenvalues.
Gao, Jing; Li, Chaoqian
2017-01-01
A new localization set for generalized eigenvalues is obtained. It is shown that the new set is tighter than that in (Numer. Linear Algebra Appl. 16:883-898, 2009). Numerical examples are given to verify the corresponding results.
Rich structure in the correlation matrix spectra in non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.
2017-01-01
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Eigenvalue sensitivity analysis of planar frames with variable joint and support locations
NASA Technical Reports Server (NTRS)
Chuang, Ching H.; Hou, Gene J. W.
1991-01-01
Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.
1980-12-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less
Intrinsic character of Stokes matrices
NASA Astrophysics Data System (ADS)
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method
NASA Technical Reports Server (NTRS)
Tischler, V. A.; Venkayya, Vipperla B.
1993-01-01
The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.
Eigenvalue statistics for the sum of two complex Wishart matrices
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2014-09-01
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
Rich structure in the correlation matrix spectra in non-equilibrium steady states.
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H
2017-01-17
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili
2013-01-01
The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648
Pocrnic, Ivan; Lourenco, Daniela A L; Masuda, Yutaka; Misztal, Ignacy
2016-10-31
A genomic relationship matrix (GRM) can be inverted efficiently with the Algorithm for Proven and Young (APY) through recursion on a small number of core animals. The number of core animals is theoretically linked to effective population size (N e ). In a simulation study, the optimal number of core animals was equal to the number of largest eigenvalues of GRM that explained 98% of its variation. The purpose of this study was to find the optimal number of core animals and estimate N e for different species. Datasets included phenotypes, pedigrees, and genotypes for populations of Holstein, Jersey, and Angus cattle, pigs, and broiler chickens. The number of genotyped animals varied from 15,000 for broiler chickens to 77,000 for Holsteins, and the number of single-nucleotide polymorphisms used for genomic prediction varied from 37,000 to 61,000. Eigenvalue decomposition of the GRM for each population determined numbers of largest eigenvalues corresponding to 90, 95, 98, and 99% of variation. The number of eigenvalues corresponding to 90% (98%) of variation was 4527 (14,026) for Holstein, 3325 (11,500) for Jersey, 3654 (10,605) for Angus, 1239 (4103) for pig, and 1655 (4171) for broiler chicken. Each trait in each species was analyzed using the APY inverse of the GRM with randomly selected core animals, and their number was equal to the number of largest eigenvalues. Realized accuracies peaked with the number of core animals corresponding to 98% of variation for Holstein and Jersey and closer to 99% for other breed/species. N e was estimated based on comparisons of eigenvalue decomposition in a simulation study. Assuming a genome length of 30 Morgan, N e was equal to 149 for Holsteins, 101 for Jerseys, 113 for Angus, 32 for pigs, and 44 for broilers. Eigenvalue profiles of GRM for common species are similar to those in simulation studies although they are affected by number of genotyped animals and genotyping quality. For all investigated species, the APY required less than 15,000 core animals. Realized accuracies were equal or greater with the APY inverse than with regular inversion. Eigenvalue analysis of GRM can provide a realistic estimate of N e .
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
2017-09-01
We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Approximations of thermoelastic and viscoelastic control systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Liu, Z. Y.; Miller, R. E.
1990-01-01
Well-posed models and computational algorithms are developed and analyzed for control of a class of partial differential equations that describe the motions of thermo-viscoelastic structures. An abstract (state space) framework and a general well-posedness result are presented that can be applied to a large class of thermo-elastic and thermo-viscoelastic models. This state space framework is used in the development of a computational scheme to be used in the solution of a linear quadratic regulator (LQR) control problem. A detailed convergence proof is provided for the viscoelastic model and several numerical results are presented to illustrate the theory and to analyze problems for which the theory is incomplete.
Seven Wonders of the Ancient and Modern Quadratic World.
ERIC Educational Resources Information Center
Taylor, Sharon E.; Mittag, Kathleen Cage
2001-01-01
Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)
On the time-weighted quadratic sum of linear discrete systems
NASA Technical Reports Server (NTRS)
Jury, E. I.; Gutman, S.
1975-01-01
A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.
Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan
2015-06-01
Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less
Emergent spectral properties of river network topology: an optimal channel network approach.
Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang
2017-09-13
Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.
Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation
NASA Astrophysics Data System (ADS)
Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.
2012-09-01
The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.
Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method
NASA Astrophysics Data System (ADS)
Bekhoucha, F.; Rechak, S.; Cadou, J. M.
2016-12-01
In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.
NASA Astrophysics Data System (ADS)
Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.
2017-06-01
TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.
THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY
Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...
Araújo, Ricardo; Mateus, Octávio
2015-01-01
The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455
On the Aharonov-Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues
NASA Astrophysics Data System (ADS)
Noris, Benedetta; Nys, Manon; Terracini, Susanna
2015-11-01
We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov-Bohm effect, Phys Rev (2) 115:485-491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.
Random matrix approach to cross correlations in financial data
NASA Astrophysics Data System (ADS)
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices
A robust multilevel simultaneous eigenvalue solver
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1993-01-01
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.
NASA Technical Reports Server (NTRS)
Hannan, Mike R.; Jurenko, Robert J.; Bush, Jason; Ottander, John
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes a hybrid approach for determining physical displacements by augmenting the original quadratically constrained least squares (LSQI) algorithm with Direct Shape Mapping (DSM) and modifying the energy constraints. The approach presented is applicable to simulation of the elastic behavior of launch vehicles and other structures that utilize discrete LTI finite element model (FEM) derived mode sets (eigenvalues and eigenvectors) that are propagated throughout time. The time invariant nature of the elastic data presents a problem of how to properly transition elastic states from the prior to the new model while preserving motion across the transition and ensuring there is no truncation or excitation of the system. A previous approach utilizes a LSQI algorithm with an energy constraint to effect smooth transitions between eigenvector sets with no requirement that the models be of similar dimension or have any correlation. This approach assumes energy is conserved across the transition, which results in significant non-physical transients due to changing quasi-steady state energy between mode sets, a phenomenon seen when utilizing a truncated mode set. The computational burden of simulating a full mode set is significant so a subset of modes is often selected to reduce run time. As a result of this truncation, energy between mode sets may not be constant and solutions across transitions could produce non-physical transients. In an effort to abate these transients an improved methodology was developed based on the aforementioned approach, but this new approach can handle significant changes in energy across mode set transitions. It is proposed that physical velocities due to elastic behavior be solved for using the LSQI algorithm, but solve for displacements using a two-step process that independently addresses the quasi-steady-state and non-steady-state contributions to the elastic displacement. For structures subject to large external forces, such as thrust or atmospheric drag, it is imperative to capture these forces when solving for elastic displacement. To simplify the mathematical formulation, assumptions are made regarding mass matrix normalization, constant external forcing, and constant viscous damping. These simplifications allow for direct solutions to the quasi-steady-state displacements through a process titled Direct Shape Mapping. DSM solves for the displacements using the eigenvalues of the elastic modes and the external forcing and returns a set of elastic displacements dictated by the eigenvectors of the post-transition mode set. For the non-steady-state contributions to displacement we formulate a LSQI problem that is constrained by energy of the non-steady state terms. The contributions from the quasi-steady-state and non-steady state solutions are then combined to obtain the physical displacements associated with the new set of eigenvectors. Results for the LSQI-DSM approach show significant reduction/complete removal of transients across mode set transitions while maintaining elastic motion from the prior state. For time propagation applications employing discrete elastic models that need to be transitioned in time and where running with full a full mode set is not feasible, the method developed offers a practical solution to simulating vehicle elasticity.
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
NASA Astrophysics Data System (ADS)
Kudryashov, Nikolay A.; Volkov, Alexandr K.
2017-01-01
We study a new nonlinear partial differential equation of the fifth order for the description of perturbations in the Fermi-Pasta-Ulam mass chain. This fifth-order equation is an expansion of the Gardner equation for the description of the Fermi-Pasta-Ulam model. We use the potential of interaction between neighbouring masses with both quadratic and cubic terms. The equation is derived using the continuous limit. Unlike the previous works, we take into account higher order terms in the Taylor series expansions. We investigate the equation using the Painlevé approach. We show that the equation does not pass the Painlevé test and can not be integrated by the inverse scattering transform. We use the logistic function method and the Laurent expansion method to find travelling wave solutions of the fifth-order equation. We use the pseudospectral method for the numerical simulation of wave processes, described by the equation.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...
2018-04-30
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Spectral analysis of Chinese language: Co-occurrence networks from four literary genres
NASA Astrophysics Data System (ADS)
Liang, Wei; Chen, Guanrong
2016-05-01
The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.
Multitasking the Davidson algorithm for the large, sparse eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, V.M.; Fischer, C.F.
1989-01-01
The authors report how the Davidson algorithm, developed for handling the eigenvalue problem for large and sparse matrices arising in quantum chemistry, was modified for use in atomic structure calculations. To date these calculations have used traditional eigenvalue methods, which limit the range of feasible calculations because of their excessive memory requirements and unsatisfactory performance attributed to time-consuming and costly processing of zero valued elements. The replacement of a traditional matrix eigenvalue method by the Davidson algorithm reduced these limitations. Significant speedup was found, which varied with the size of the underlying problem and its sparsity. Furthermore, the range ofmore » matrix sizes that can be manipulated efficiently was expended by more than one order or magnitude. On the CRAY X-MP the code was vectorized and the importance of gather/scatter analyzed. A parallelized version of the algorithm obtained an additional 35% reduction in execution time. Speedup due to vectorization and concurrency was also measured on the Alliant FX/8.« less
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.
2000-01-01
We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
On Fluctuations of Eigenvalues of Random Band Matrices
NASA Astrophysics Data System (ADS)
Shcherbina, M.
2015-10-01
We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
Non-perturbative background field calculations
NASA Astrophysics Data System (ADS)
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Estimating population size with correlated sampling unit estimates
David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey
2003-01-01
Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on markârecapture or distance sampling methods occur...
Quadratic soliton self-reflection at a quadratically nonlinear interface
NASA Astrophysics Data System (ADS)
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
ERIC Educational Resources Information Center
Withers, Christopher S.; Nadarajah, Saralees
2012-01-01
We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
On the Time-Dependent Analysis of Gamow Decay
ERIC Educational Resources Information Center
Durr, Detlef; Grummt, Robert; Kolb, Martin
2011-01-01
Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Ichitaro; Wu, Kesheng; Simon, Horst
2008-10-27
The original software package TRLan, [TRLan User Guide], page 24, implements the thick restart Lanczos method, [Wu and Simon 2001], page 24, for computing eigenvalues {lambda} and their corresponding eigenvectors v of a symmetric matrix A: Av = {lambda}v. Its effectiveness in computing the exterior eigenvalues of a large matrix has been demonstrated, [LBNL-42982], page 24. However, its performance strongly depends on the user-specified dimension of a projection subspace. If the dimension is too small, TRLan suffers from slow convergence. If it is too large, the computational and memory costs become expensive. Therefore, to balance the solution convergence and costs,more » users must select an appropriate subspace dimension for each eigenvalue problem at hand. To free users from this difficult task, nu-TRLan, [LNBL-1059E], page 23, adjusts the subspace dimension at every restart such that optimal performance in solving the eigenvalue problem is automatically obtained. This document provides a user guide to the nu-TRLan software package. The original TRLan software package was implemented in Fortran 90 to solve symmetric eigenvalue problems using static projection subspace dimensions. nu-TRLan was developed in C and extended to solve Hermitian eigenvalue problems. It can be invoked using either a static or an adaptive subspace dimension. In order to simplify its use for TRLan users, nu-TRLan has interfaces and features similar to those of TRLan: (1) Solver parameters are stored in a single data structure called trl-info, Chapter 4 [trl-info structure], page 7. (2) Most of the numerical computations are performed by BLAS, [BLAS], page 23, and LAPACK, [LAPACK], page 23, subroutines, which allow nu-TRLan to achieve optimized performance across a wide range of platforms. (3) To solve eigenvalue problems on distributed memory systems, the message passing interface (MPI), [MPI forum], page 23, is used. The rest of this document is organized as follows. In Chapter 2 [Installation], page 2, we provide an installation guide of the nu-TRLan software package. In Chapter 3 [Example], page 3, we present a simple nu-TRLan example program. In Chapter 4 [trl-info structure], page 7, and Chapter 5 [trlan subroutine], page 14, we describe the solver parameters and interfaces in detail. In Chapter 6 [Solver parameters], page 21, we discuss the selection of the user-specified parameters. In Chapter 7 [Contact information], page 22, we give the acknowledgements and contact information of the authors. In Chapter 8 [References], page 23, we list reference to related works.« less
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2013-02-01
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
Orthogonality preserving infinite dimensional quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akın, Hasan; Mukhamedov, Farrukh
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Graphical Solution of the Monic Quadratic Equation with Complex Coefficients
ERIC Educational Resources Information Center
Laine, A. D.
2015-01-01
There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…
Unreliable Retrial Queues in a Random Environment
2007-09-01
equivalent to the stochasticity of the matrix Ĝ. It is generally known from Perron - Frobenius theory that a given square ma- trix M is stochastic if and...only if its maximum positive eigenvalue (i.e., its Perron eigenvalue) sp(M) is equal to unity. A simple analytical condition that guarantees the
NASA Astrophysics Data System (ADS)
Zographopoulos, N. B.
2009-11-01
Motivated by the work (Karachalios N I 2008 Lett. Math. Phys. 83 189-99), we present explicit asymptotic estimates on the eigenvalues of the critical Schrödinger operator, involving inverse-square potential, based on improved Hardy-Sobolev-type inequalities.
Matrix with Prescribed Eigenvectors
ERIC Educational Resources Information Center
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
The Schrodinger Eigenvalue March
ERIC Educational Resources Information Center
Tannous, C.; Langlois, J.
2011-01-01
A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…
Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Brown, W. K.
1990-01-01
A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.
Chaotic coordinates for the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.
The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less
Quadratic Optimisation with One Quadratic Equality Constraint
2010-06-01
This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.
Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra
NASA Astrophysics Data System (ADS)
Yates, L. A.; Jarvis, P. D.
2018-04-01
We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N = 1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N = 1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.
Structural robustness with suboptimal responses for linear state space model
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems
Li, Ruipeng; Xi, Yuanzhe; Vecharynski, Eugene; ...
2016-08-16
Polynomial filtering can provide a highly effective means of computing all eigenvalues of a real symmetric (or complex Hermitian) matrix that are located in a given interval, anywhere in the spectrum. This paper describes a technique for tackling this problem by combining a thick-restart version of the Lanczos algorithm with deflation ("locking'') and a new type of polynomial filter obtained from a least-squares technique. Furthermore, the resulting algorithm can be utilized in a “spectrum-slicing” approach whereby a very large number of eigenvalues and associated eigenvectors of the matrix are computed by extracting eigenpairs located in different subintervals independently from onemore » another.« less
Initial values for the integration scheme to compute the eigenvalues for propagation in ducts
NASA Technical Reports Server (NTRS)
Eversman, W.
1977-01-01
A scheme for the calculation of eigenvalues in the problem of acoustic propagation in a two-dimensional duct is described. The computation method involves changing the coupled transcendental nonlinear algebraic equations into an initial value problem involving a nonlinear ordinary differential equation. The simplest approach is to use as initial values the hardwall eigenvalues and to integrate away from these values as the admittance varies from zero to its actual value with a linear variation. The approach leads to a powerful root finding routine capable of computing the transverse and axial wave numbers for two-dimensional ducts for any frequency, lining, admittance and Mach number without requiring initial guesses or starting points.
Stability of a laminar premixed supersonic free shear layer with chemical reactions
NASA Technical Reports Server (NTRS)
Menon, S.; Anderson, J. D., Jr.; Pai, S. I.
1984-01-01
The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.
Eigensolver for a Sparse, Large Hermitian Matrix
NASA Technical Reports Server (NTRS)
Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris
2003-01-01
A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).
Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Hall, John M.
2002-01-01
A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.
NASA Technical Reports Server (NTRS)
Wunsche, A.
1993-01-01
The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.
Noncanonical harmonic and anharmonic oscillator in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannussis, A.; Vavougios, D.
1986-09-01
We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.
Evaluation of Parallel Analysis Methods for Determining the Number of Factors
ERIC Educational Resources Information Center
Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.
2010-01-01
Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…
Twisting singular solutions of Betheʼs equations
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Wang, Chunguang
2014-12-01
The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.
An Isoperimetric Inequality for Fundamental Tones of Free Plates
ERIC Educational Resources Information Center
Chasman, Laura
2009-01-01
We establish an isoperimetric inequality for the fundamental tone (first nonzero eigenvalue) of the free plate of a given area, proving the ball is maximal. Given tau greater than 0, the free plate eigenvalues omega and eigenfunctions upsilon are determined by the equation Delta Delta upsilon - tau Delta upsilon = omega upsilon together with…
A Teaching Proposal for the Study of Eigenvectors and Eigenvalues
ERIC Educational Resources Information Center
Meneu, María José Beltrán; Murillo Arcila, Marina; Jordá Mora, Enrique
2017-01-01
In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students' difficulties when treating…
Emphasizing Visualization and Physical Applications in the Study of Eigenvectors and Eigenvalues
ERIC Educational Resources Information Center
BeltrÁn-Meneu, María José; Murillo-Arcila, Marina; Albarracín, Lluís
2017-01-01
This article presents a teaching proposal that emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. More concretely, these concepts were introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was designed after observing architecture students…
An Application of the Vandermonde Determinant
ERIC Educational Resources Information Center
Xu, Junqin; Zhao, Likuan
2006-01-01
Eigenvalue is an important concept in Linear Algebra. It is well known that the eigenvectors corresponding to different eigenvalues of a square matrix are linear independent. In most of the existing textbooks, this result is proven using mathematical induction. In this note, a new proof using Vandermonde determinant is given. It is shown that this…
Approximating natural connectivity of scale-free networks based on largest eigenvalue
NASA Astrophysics Data System (ADS)
Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.
2016-06-01
It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.
Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential
NASA Astrophysics Data System (ADS)
Leonenko, N. N.; Ruiz-Medina, M. D.
2006-07-01
The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.
Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1983-01-01
A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.
A Shifted Block Lanczos Algorithm 1: The Block Recurrence
NASA Technical Reports Server (NTRS)
Grimes, Roger G.; Lewis, John G.; Simon, Horst D.
1990-01-01
In this paper we describe a block Lanczos algorithm that is used as the key building block of a software package for the extraction of eigenvalues and eigenvectors of large sparse symmetric generalized eigenproblems. The software package comprises: a version of the block Lanczos algorithm specialized for spectrally transformed eigenproblems; an adaptive strategy for choosing shifts, and efficient codes for factoring large sparse symmetric indefinite matrices. This paper describes the algorithmic details of our block Lanczos recurrence. This uses a novel combination of block generalizations of several features that have only been investigated independently in the past. In particular new forms of partial reorthogonalization, selective reorthogonalization and local reorthogonalization are used, as is a new algorithm for obtaining the M-orthogonal factorization of a matrix. The heuristic shifting strategy, the integration with sparse linear equation solvers and numerical experience with the code are described in a companion paper.
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
NASA Technical Reports Server (NTRS)
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
Holographic conductivity of holographic superconductors with higher-order corrections
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin
2018-02-01
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.
A theoretical stochastic control framework for adapting radiotherapy to hypoxia
NASA Astrophysics Data System (ADS)
Saberian, Fatemeh; Ghate, Archis; Kim, Minsun
2016-10-01
Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course. Through these simulations, we also gain insights into when and why dynamic planning is likely to yield the largest benefits.
ERIC Educational Resources Information Center
Chou, Yeh-Tai; Wang, Wen-Chung
2010-01-01
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
Some Results on Mean Square Error for Factor Score Prediction
ERIC Educational Resources Information Center
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Entropy-driven phase transitions of entanglement
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya
2013-05-01
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.
Inflationary dynamics for matrix eigenvalue problems
Heller, Eric J.; Kaplan, Lev; Pollmann, Frank
2008-01-01
Many fields of science and engineering require finding eigenvalues and eigenvectors of large matrices. The solutions can represent oscillatory modes of a bridge, a violin, the disposition of electrons around an atom or molecule, the acoustic modes of a concert hall, or hundreds of other physical quantities. Often only the few eigenpairs with the lowest or highest frequency (extremal solutions) are needed. Methods that have been developed over the past 60 years to solve such problems include the Lanczos algorithm, Jacobi–Davidson techniques, and the conjugate gradient method. Here, we present a way to solve the extremal eigenvalue/eigenvector problem, turning it into a nonlinear classical mechanical system with a modified Lagrangian constraint. The constraint induces exponential inflationary growth of the desired extremal solutions. PMID:18511564
Geometric Approaches to Quadratic Equations from Other Times and Places.
ERIC Educational Resources Information Center
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
Dentinho, M T P; Moreira, O C; Pereira, M S; Bessa, R J B
2007-06-01
Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).
Tan, Zhengguo; Hohage, Thorsten; Kalentev, Oleksandr; Joseph, Arun A; Wang, Xiaoqing; Voit, Dirk; Merboldt, K Dietmar; Frahm, Jens
2017-12-01
The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios. Copyright © 2017 John Wiley & Sons, Ltd.
Statistical dynamo theory: Mode excitation.
Hoyng, P
2009-04-01
We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .
A few shape optimization results for a biharmonic Steklov problem
NASA Astrophysics Data System (ADS)
Buoso, Davide; Provenzano, Luigi
2015-09-01
We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
2013-10-01
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Periodic orbit spectrum in terms of Ruelle-Pollicott resonances
NASA Astrophysics Data System (ADS)
Leboeuf, P.
2004-02-01
Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.
Recurrence quantity analysis based on matrix eigenvalues
NASA Astrophysics Data System (ADS)
Yang, Pengbo; Shang, Pengjian
2018-06-01
Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
NASA Astrophysics Data System (ADS)
Pato, Mauricio P.; Oshanin, Gleb
2013-03-01
We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.
Evaluation of RAPID for a UNF cask benchmark problem
NASA Astrophysics Data System (ADS)
Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.
2017-09-01
This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Implicity restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations
NASA Technical Reports Server (NTRS)
Sorensen, Danny C.
1996-01-01
Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.
NASA Astrophysics Data System (ADS)
Swain, Ranjita; Bhima Rao, R.
2018-04-01
In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
Control of flexible beams using a free-free active truss
NASA Technical Reports Server (NTRS)
Clark, W. W.; Kimiavi, B.; Robertshaw, H. H.
1989-01-01
An analytical and experimental study involving controlling flexible beams using a free-free active truss is presented. This work extends previous work in controlling flexible continua with active trusses which were configured with fixed-free boundary conditions. The following describes the Lagrangian approach used to derive the equations of motion for the active truss and the beams attached to it. A partial-state feedback control law is derived for this system based on a full-state feedback Linear Quadratic Regulator method. The analytical model is examined via numerical simulations and the results are compared to a similar experimental apparatus described herein. The results show that control of a flexible continua is possible with a free-free active truss.
A numerical algorithm for optimal feedback gains in high dimensional LQR problems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1986-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
On Reductions of the Hirota-Miwa Equation
NASA Astrophysics Data System (ADS)
Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe
2017-07-01
The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.
Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem
NASA Astrophysics Data System (ADS)
Belinschi, Serban; Nowak, Maciej A.; Speicher, Roland; Tarnowski, Wojciech
2017-03-01
We extend the so-called ‘single ring theorem’ (Feinberg and Zee 1997 Nucl. Phys. B 504 579), also known as the Haagerup-Larsen theorem (Haagerup and Larsen 2000 J. Funct. Anal. 176 331). We do this by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix X, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of X. We show that this object allows the calculation of the conditional expectation of the squared eigenvalue condition number. We give examples and provide a cross-check of the analytic prediction by the large scale numerics.
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro
2016-11-01
Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.
Existence and analyticity of eigenvalues of a two-channel molecular resonance model
NASA Astrophysics Data System (ADS)
Lakaev, S. N.; Latipov, Sh. M.
2011-12-01
We consider a family of operators Hγμ(k), k ∈ mathbb{T}^d := (-π,π]d, associated with the Hamiltonian of a system consisting of at most two particles on a d-dimensional lattice ℤd, interacting via both a pair contact potential (μ > 0) and creation and annihilation operators (γ > 0). We prove the existence of a unique eigenvalue of Hγμ(k), k ∈ mathbb{T}^d , or its absence depending on both the interaction parameters γ,μ ≥ 0 and the system quasimomentum k ∈ mathbb{T}^d . We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum k ∈ mathbb{T}^d in the existence domain G ⊂ mathbb{T}^d.
NASA Astrophysics Data System (ADS)
Tarai, Madhumita; Kumar, Keshav; Divya, O.; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-01
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
NASA Astrophysics Data System (ADS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-04-01
The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.
A new S-type eigenvalue inclusion set for tensors and its applications.
Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing
2016-01-01
In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).
NASA Astrophysics Data System (ADS)
LeMesurier, Brenton
2012-01-01
A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.
NASA Astrophysics Data System (ADS)
Xing, Yanyuan; Yan, Yubin
2018-03-01
Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.
Impact of digital impression techniques on the adaption of ceramic partial crowns in vitro.
Schaefer, Oliver; Decker, Mike; Wittstock, Frank; Kuepper, Harald; Guentsch, Arndt
2014-06-01
To investigate the effects, digital impression procedures can have on the three-dimensional fit of ceramic partial crowns in vitro. An acrylic model of a mandibular first molar was prepared to receive a partial coverage all-ceramic crown (mesio-occlusal-distal inlay preparation with reduction of all cusps and rounded shoulder finish line of buccal wall). Digital impressions were taken using iTero (ITE), cara TRIOS (TRI), CEREC AC with Bluecam (CBC), and Lava COS (COS) systems, before restorations were designed and machined from lithium disilicate blanks. Both the preparation and the restorations were digitised using an optical reference-scanner. Data were entered into quality inspection software, which superimposed the records (best-fit-algorithm), calculated fit-discrepancies for every pixel, and colour-coded the results to aid visualisation. Furthermore, mean quadratic deviations (RMS) were computed and analysed statistically with a one-way ANOVA. Scheffé's procedure was applied for multiple comparisons (n=5, α=0.05). Mean marginal (internal) discrepancies were: ITE 90 (92) μm, TRI 128 (106) μm, CBC 146 (84) μm, and COS 109 (93) μm. Differences among impression systems were statistically significant at p<0.001 (p=0.039). Qualitatively, partial crowns were undersized especially around cusp tips or the occluso-approximal isthmus. By contrast, potential high-spots could be detected along the preparation finishline and at central occlusal boxes. Marginal and internal fit of milled lithium disilicate partial crowns depended on the employed digital impression technique. The investigated digital impression procedures demonstrated significant fit discrepancies. However, all fabricated restorations showed acceptable marginal and internal gap sizes, when considering clinically relevant thresholds reported in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
Gravitational lensing by eigenvalue distributions of random matrix models
NASA Astrophysics Data System (ADS)
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
Sur le spectre du laplacien des fibrés en tores qui s'effondrent
NASA Astrophysics Data System (ADS)
Jammes, Pierre
2005-06-01
We study the small eigenvalues of the Hodge Laplacian on collaping torus bundles with bounded curvature. In the first part of this dissertation, we consider examples of bundles on S^1 and T^2 with homogeneous structure. In the second part, we give a lower bound of the first non-zero eigenvalue of the 1-form Laplacian on principal torus bundles.
ERIC Educational Resources Information Center
Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.
2010-01-01
This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
NASA Astrophysics Data System (ADS)
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.
Electrical impedance tomography in anisotropic media with known eigenvectors
NASA Astrophysics Data System (ADS)
Abascal, Juan-Felipe P. J.; Lionheart, William R. B.; Arridge, Simon R.; Schweiger, Martin; Atkinson, David; Holder, David S.
2011-06-01
Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, most implementations have neglected anisotropy even though human tissues like bone, muscle and brain white matter are markedly anisotropic. The recovery of an anisotropic conductivity tensor is uniquely determined by boundary measurements only up to a diffeomorphism that fixes the boundary. Nevertheless, uniqueness can be restored by providing information about the diffeomorphism. There are uniqueness results for two constraints: one eigenvalue and a multiple scalar of a general tensor. A useable constraint for medical applications is when the eigenvectors of the underlying tissue are known, which can be approximated from MRI or estimated from DT-MRI, although the eigenvalues are unknown. However there is no known theoretical result guaranteeing uniqueness for this constraint. In fact, only a few previous inversion studies have attempted to recover one or more eigenvalues assuming certain symmetries while ignoring nonuniqueness. In this work, the aim was to undertake a numerical study of the feasibility of the recovery of a piecewise linear finite element conductivity tensor in anisotropic media with known eigenvectors from the complete boundary data. The work suggests that uniqueness holds for this constraint, in addition to proposing a methodology for the incorporation of this prior for general conductivity tensors. This was carried out by performing an analysis of the Jacobian rank and by reconstructing four conductivity distributions: two diagonal tensors whose eigenvalues were linear and sinusoidal functions, and two general tensors whose eigenvectors resembled physiological tissue, one with eigenvectors spherically orientated like a spherical layered structure, and a sample of DT-MRI data of brain white matter. The Jacobian with respect to three eigenvalues was full-rank and it was possible to recover three eigenvalues for the four simulated distributions. This encourages further theoretical study of the uniqueness for this constraint and supports the use of this as a relevant usable method for medical applications.
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
Visualising the Roots of Quadratic Equations with Complex Coefficients
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2014-01-01
This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…
Ed Home - Data Home PRAIRIE ADVOCATES Project - QUADRAT STUDY Project Answer research questions multi-state quadrat study. Bob Lootens, Fermilab Join us! Check out the Quadrat Study Project. Prairie study a prairie "expert" to facilitate your research student Internet access an e-mail address
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
NASA Astrophysics Data System (ADS)
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Pan, Raj Kumar
The cross-correlations between price fluctuations of 201 frequently traded stocks in the National Stock Exchange (NSE) of India are analyzed in this paper. We use daily closing prices for the period 1996-2006, which coincides with the period of rapid transformation of the market following liberalization. The eigenvalue distribution of the cross-correlation matrix, C, of NSE is found to be similar to that of developed markets, such as the New York Stock Exchange (NYSE): the majority of eigenvalues fall within the bounds expected for a random matrix constructed from mutually uncorrelated time series. Of the few largest eigenvalues that deviate from the bulk, the largest is identified with market-wide movements. The intermediate eigenvalues that occur between the largest and the bulk have been associated in NYSE with specific business sectors with strong intra-group interactions. However, in the Indian market, these deviating eigenvalues are comparatively very few and lie much closer to the bulk. We propose that this is because of the relative lack of distinct sector identity in the market, with the movement of stocks dominantly influenced by the overall market trend. This is shown by explicit construction of the interaction network in the market, first by generating the minimum spanning tree from the unfiltered correlation matrix, and later, using an improved method of generating the graph after filtering out the market mode and random effects from the data. Both methods show, compared to developed markets, the relative absence of clusters of co-moving stocks that belong to the same business sector. This is consistent with the general belief that emerging markets tend to be more correlated than developed markets.
Geometric quadratic stochastic operator on countable infinite set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar
2015-02-03
In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.
An Unexpected Influence on a Quadratic
ERIC Educational Resources Information Center
Davis, Jon D.
2013-01-01
Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…
NASA Astrophysics Data System (ADS)
Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.
2018-01-01
Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.
Roesler, Elizabeth L.; Grabowski, Timothy B.
2018-01-01
Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.
Hydrodynamics of the Polyakov line in SU(N c) Yang-Mills
Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail
2015-12-08
We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N c for Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate between a uniform distribution in the confined phase and a localized distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with those measured on the lattice over a broad range of N c, and are consistent with the string model results at N c = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out ofmore » equilibrium is captured by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N c)bubble using a piece-wise sound wave is suggested.« less
Coherence analysis of a class of weighted networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; He, Jiaojiao; Zong, Yue; Ju, Tingting; Sun, Yu; Su, Weiyi
2018-04-01
This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1/√{d }
On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Freund, Roland W.
1992-01-01
The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
Physics, stability, and dynamics of supply networks
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Lämmer, Stefan; Seidel, Thomas; Šeba, Pétr; Płatkowski, Tadeusz
2004-12-01
We show how to treat supply networks as physical transport problems governed by balance equations and equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks. Supply networks possess interesting features due to their complex topology and directed links. We derive analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the network structure (even without loops). Therefore, their generic behavior is characterized by damped or growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only, but perturbations generate a spectrum of complex eigenvalues.
Tarai, Madhumita; Kumar, Keshav; Divya, O; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-05
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Reliable use of determinants to solve nonlinear structural eigenvalue problems efficiently
NASA Technical Reports Server (NTRS)
Williams, F. W.; Kennedy, D.
1988-01-01
The analytical derivation, numerical implementation, and performance of a multiple-determinant parabolic interpolation method (MDPIM) for use in solving transcendental eigenvalue (critical buckling or undamped free vibration) problems in structural mechanics are presented. The overall bounding, eigenvalue-separation, qualified parabolic interpolation, accuracy-confirmation, and convergence-recovery stages of the MDPIM are described in detail, and the numbers of iterations required to solve sample plane-frame problems using the MDPIM are compared with those for a conventional bisection method and for the Newtonian method of Simpson (1984) in extensive tables. The MDPIM is shown to use 31 percent less computation time than bisection when accuracy of 0.0001 is required, but 62 percent less when accuracy of 10 to the -8th is required; the time savings over the Newtonian method are about 10 percent.
Control of large flexible systems via eigenvalue relocation
NASA Technical Reports Server (NTRS)
Denman, E. D.; Jeon, G. J.
1985-01-01
For the vibration control of large flexible systems, a control scheme by which the eigenvalues of the closed-loop systems are assigned to predetermined locations within the feasible region through velocity-only feedback is presented. Owing to the properties of second-order lambda-matrices and an efficient model decoupling technique, the control scheme makes it possible that selected modes are damped with the rest of the modes unchanged.
Visibility of quantum graph spectrum from the vertices
NASA Astrophysics Data System (ADS)
Kühn, Christian; Rohleder, Jonathan
2018-03-01
We investigate the relation between the eigenvalues of the Laplacian with Kirchhoff vertex conditions on a finite metric graph and a corresponding Titchmarsh-Weyl function (a parameter-dependent Neumann-to-Dirichlet map). We give a complete description of all real resonances, including multiplicities, in terms of the edge lengths and the connectivity of the graph, and apply it to characterize all eigenvalues which are visible for the Titchmarsh-Weyl function.
Efficient, massively parallel eigenvalue computation
NASA Technical Reports Server (NTRS)
Huo, Yan; Schreiber, Robert
1993-01-01
In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
On functional determinants of matrix differential operators with multiple zero modes
NASA Astrophysics Data System (ADS)
Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.
2017-12-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.
Some Paradoxical Results for the Quadratically Weighted Kappa
ERIC Educational Resources Information Center
Warrens, Matthijs J.
2012-01-01
The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
Analysis of Students' Error in Learning of Quadratic Equations
ERIC Educational Resources Information Center
Zakaria, Effandi; Ibrahim; Maat, Siti Mistima
2010-01-01
The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…
Linear and quadratic static response functions and structure functions in Yukawa liquids.
Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I
2014-08-01
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
An Algebraic Approach for Solving Quadratic Inequalities
ERIC Educational Resources Information Center
Mahmood, Munir; Al-Mirbati, Rudaina
2017-01-01
In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…
Effects of Classroom Instruction on Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
Vaiyavutjamai, Pongchawee; Clements, M. A.
2006-01-01
Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…
On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product
ERIC Educational Resources Information Center
Valahas, Theodoros; Boukas, Andreas
2011-01-01
In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…
Sketching the General Quadratic Equation Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
On Distributed Strategies in Defense of a High Value Unit (HVU) Against a Swarm Attack
2012-09-01
function [ lam ,U] = tqr(a,b,U) % [ lam u] = tqr(a,b) or [ lam U] = tqr(a,b,U... lam u] = tqr(a,b): % % The column lam contains the eigenvalues of the Hermitian tridiagonal % matrix T = mxt(a,b) computed by one version of the...computed. The computed eigenvalues are real and are sorted to be % nonincreasing. % % [ lam U] = tqr(a,b,U): % % This replaces the input U
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2015-11-01
We provide a proof to a recent conjecture by Forrester (2014 J. Phys. A: Math. Theor. 47 065202) regarding the algebraic and arithmetic structure of Meijer G-functions which appear in the expression for probability of all eigenvalues real for the product of two real Gaussian matrices. In the process we come across several interesting identities involving Meijer G-functions.
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Yang, Bingjia; Zhang, Zhongzhi; Andrade, Roberto F. S.
2018-07-01
A deterministic network with tree structure is considered, for which the spectrum of its adjacency matrix can be exactly evaluated by a recursive renormalization approach. It amounts to successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The resulting eigenvalues can be related the full energy spectrum of a nearest-neighbor tight-binding model defined on this structure. Given this association, it turns out that further properties of the eigenvectors can be evaluated, like the degree of quantum localization of the tight-binding eigenstates, expressed by the inverse participation ratio (IPR). It happens that, for the current model, the IPR's are also suitable to be analytically expressed in terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.
NASA Astrophysics Data System (ADS)
Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim
2007-03-01
We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.
On curve veering and flutter of rotating blades
NASA Technical Reports Server (NTRS)
Afolabi, Dare; Mehmed, Oral
1993-01-01
The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.
Pellacci, Benedetta; Verzini, Gianmaria
2018-05-01
We study the positive principal eigenvalue of a weighted problem associated with the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the survival threshold in population dynamics. Our main result concerns the optimization of such threshold with respect to the fractional order [Formula: see text], the case [Formula: see text] corresponding to the standard Neumann Laplacian: when the habitat is not too fragmented, the principal positive eigenvalue can not have local minima for [Formula: see text]. As a consequence, the best strategy for survival is either following the diffusion with [Formula: see text] (i.e. Brownian diffusion), or with the lowest possible s (i.e. diffusion allowing long jumps), depending on the size of the domain. In addition, we show that analogous results hold for the standard fractional Laplacian in [Formula: see text], in periodic environments.
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
NASA Astrophysics Data System (ADS)
Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht
1989-11-01
The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].
Asymmetric correlation matrices: an analysis of financial data
NASA Astrophysics Data System (ADS)
Livan, G.; Rebecchi, L.
2012-06-01
We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-01-01
In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Fu, Yibin; Hall, Philip
1992-01-01
The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).
Acoustic modes in fluid networks
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.
1992-01-01
Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.
The eigenvalue spectrum of the Orr-Sommerfeld problem
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical investigation of the temporal eigenvalue spectrum of the ORR-Sommerfeld equation is presented. Two flow profiles are studied, the plane Poiseuille flow profile and the Blasius boundary layer (parallel): flow profile. In both cases a portion of the complex c-plane bounded by 0 less than or equal to CR sub r 1 and -1 less than or equal to ci sub i 0 is searched and the eigenvalues within it are identified. The spectra for the plane Poiseuille flow at alpha = 1.0 and R = 100, 1000, 6000, and 10000 are determined and compared with existing results where possible. The spectrum for the Blasius boundary layer flow at alpha = 0.308 and R = 998 was found to be infinite and discrete. Other spectra for the Blasius boundary layer at various Reynolds numbers seem to confirm this result. The eigenmodes belonging to these spectra were located and discussed.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Determination of eigenvalues of dynamical systems by symbolic computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1982-01-01
A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.
Topology and geometry of the dark matter web: A multi-stream view
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-05-01
Topological connections in the single-streaming voids and multistreaming filaments and walls reveal a cosmic web structure different from traditional mass density fields. A single void structure not only percolates the multistream field in all the directions, but also occupies over 99 per cent of all the single-streaming regions. Sub-grid analyses on scales smaller than simulation resolution reveal tiny pockets of voids that are isolated by membranes of the structure. For the multistreaming excursion sets, the percolating structure is significantly thinner than the filaments in overdensity excursion approach. Hessian eigenvalues of the multistream field are used as local geometrical indicators of dark matter structures. Single-streaming regions have most of the zero eigenvalues. Parameter-free conditions on the eigenvalues in the multistream region may be used to delineate primitive geometries with concavities corresponding to filaments, walls and haloes.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
NASA Astrophysics Data System (ADS)
Mokhtari, Ali; Alidoosti, Mohammad
2014-11-01
In the present work, we have performed first principles calculations to study the structural and electronic properties of the MgFBrxCl1-x quaternary alloys using the pseudo-potential plane wave approach within the framework of density functional theory. By using the optimized initial parameters, we have obtained the physical quantities such as equilibrium lattice constants a and c, cohesive energy and band gap and then fitted the results by a quadratic expression for all x compositions. The results of bulk modulus exhibit nearly linear concentration dependence (LCD) but other quantities show nonlinear dependence. Finally, we have calculated the total and angular momentum decomposed (partial) density of states and determined the contributions of different orbitals of each atoms.
Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Boardley, Ian D; Ring, Christopher
2011-08-01
Although it is well established that performance is influenced by competitive pressure, our understanding of the mechanisms which underlie the pressure-performance relationship is limited. The current experiment examined mediators of the relationship between competitive pressure and motor skill performance of experts. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 50 expert golfers, during a golf putting task. Elevated competitive pressure increased putting accuracy, anxiety, effort, and heart rate, but decreased grip force. Quadratic effects of pressure were noted for self-reported conscious processing and impact velocity. Mediation analyses revealed that effort and heart rate partially mediated improved performance. The findings indicate that competitive pressure elicits effects on expert performance through both psychological and physiological pathways. Copyright © 2011 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.
2015-08-01
We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.
The effect of changing disk parameters on whirling frequency of high speed rotor system
NASA Astrophysics Data System (ADS)
Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor; Yakub, F.
2017-12-01
The requirement for efficiency improvement of machines has caused machine rotor to be designed to rotate at high speeds. It is known that whirling natural frequency of a shaft changes with the change of shaft speed and the design needs to avoid points of resonance where the whirling frequency equals the shaft speed. At high speeds, a shaft may have to carry a huge torque along and this torsional effect has been neglected in past shaft analyses. Whirling behaviour of high speed rotating shaft is investigated in this study with consideration of the torsional effect of the shaft. The shaft system under study consists of a shaft, discs and two bearings, and the focus is on the effect of the disc parameters. A finite element formulation is developed based on Nelson’s 5 degrees of freedom (DOF) per node element that includes the torsional degree of freedom. Bolotin’s method is applied to the derived Mathieu-Hill type of equation to get quadratic eigenvalues problem that gives the forward and backward frequencies of the shaft. Campbell’s diagrams are drawn in studying the effect of discs on the whirling behaviour of the shaft. It is found that the addition of disks on the shaft decreases the whirling frequency of the shaft and the frequency is lower for mass located at the centre of the shaft compared to the one located near to the end. The effect of torsional motion is found to be significant where the difference between critical speed of 4DOF and 5DOF models can be as high as 15%.
New scheme for color confinement and violation of the non-Abelian Bianchi identities
NASA Astrophysics Data System (ADS)
Suzuki, Tsuneo; Ishiguro, Katsuya; Bornyakov, Vitaly
2018-02-01
A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is an adjoint operator satisfying the covariant conservation law DμJμ=0 , it satisfies, at the same time, the Abelian-like conservation law ∂μJμ=0 . The Abelian-like conservation law ∂μJμ=0 is also gauge-covariant. There are N2-1 conserved magnetic charges in the case of color S U (N ). The charge of each component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the Abelian conservation law ∂μλμ=0 and the magnetic charges of the eigenvalues are also quantized à la Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jμa. Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is realized. This confinement picture is completely new in comparison with the previously studied monopole confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are done in the framework of lattice field theory by adopting pure S U (2 ) gauge theory for simplicity. Considering Jμ(x )=kμ(x ) in the continuum formulation, we adopt an Abelian-like definition of a monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the maximal center gauge (MCG), block-spin transformations of Abelian-like monopoles and extraction of physically important infrared long monopole loops are adopted. We also employ the tree-level tadpole improved gauge action of S U (2 ) gluodynamics. With these various improvements, we measure the density of lattice VNABI: ρ (a (β ),n )=∑ μ ,sn √{∑ a (kμa(sn))2 }/(4 √{3 }Vnb3) , where kμa(sn) is an n blocked monopole in the color direction a , n is the number of blocking steps, Vn=V /n4 (b =n a (β )) is the lattice volume (spacing) of the blocked lattice. Beautiful and convincing scaling behaviors are seen when we plot the density ρ (a (β ),n ) versus b =n a (β ). A single universal curve ρ (b ) is found from n =1 to n =12 , which suggests that ρ (a (β ),n ) is a function of b =n a (β ) alone. The universal curve seems independent of a gauge fixing procedure used to smooth the lattice vacuum since the scaling is obtained in all gauges adopted. The scaling, if it exists also for n →∞ , shows that the lattice definition of VNABI has the continuum limit and the new confinement scenario is realized.
Tangent Lines without Derivatives for Quadratic and Cubic Equations
ERIC Educational Resources Information Center
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School
ERIC Educational Resources Information Center
Kenan, Kok Xiao-Feng
2017-01-01
This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…
Geometrical Solutions of Some Quadratic Equations with Non-Real Roots
ERIC Educational Resources Information Center
Pathak, H. K.; Grewal, A. S.
2002-01-01
This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…