Sample records for partial sleep loss

  1. Can a Mathematical Model Predict an Individual’s Trait-like Response to Both Total and Partial Sleep Loss?

    DTIC Science & Technology

    2015-01-01

    Can a mathematical model predict an individual’s trait-like response to both total and partial sleep loss? SR IDHAR RAMAKR I SHNAN 1 , WE I LU 1 , SR...biomathematical model, psychomotor vigilance task, sleep -loss phenotype, trait preservation, two-process model Correspondence Jaques Reifman, PhD...trait-like response to sleep loss. However, it is not known whether this trait-like response can be captured by a mathemat- ical model from only one

  2. Metabolic Effects of Chronic Sleep Restriction in Rats

    PubMed Central

    Vetrivelan, Ramalingam; Fuller, Patrick M.; Yokota, Shigefumi; Lu, Jun; Saper, Clifford B.

    2012-01-01

    Study Objectives: Chronic partial sleep loss is associated with obesity and metabolic syndrome in humans. We used rats with lesions in the ventrolateral preoptic area (VLPO), which spontaneously sleep about 30% less than intact rats, as an animal model to study the consequences of chronic partial sleep loss on energy metabolism. Participants: Adult male Sprague-Dawley rats (300-365 g). Interventions: We ablated the VLPO in rats using orexin-B-saporin and instrumented them with electrodes for sleep recordings. We monitored their food intake and body weight for the next 60 days and assessed their sleep-wake by 24-h EEG/EMG recordings on day 20 and day 50 post-surgery. On day 60, after blood samples were collected for metabolic profiling, the animals were euthanized and the brains were harvested for histological confirmation of the lesion site. Measurements and Results: VLPO-lesioned animals slept up to 40% less than sham-lesioned rats. However, they showed slower weight gain than sham-lesioned controls, despite having normal food intake. An increase in plasma ghrelin and a decrease in leptin levels were observed, whereas plasma insulin levels remained unaffected. As expected from leaner animals, plasma levels of glucose, cholesterol, triglycerides, and C-reactive protein were reduced in VLPO-lesioned animals. Conclusions: Chronic partial sleep loss did not lead to obesity or metabolic syndrome in rats. This finding raises the question whether adverse metabolic outcomes associated with chronic partial sleep loss in humans may be due to factors other than short sleep, such as circadian disruption, inactivity, or diet during the additional waking hours. Citation: Vetrivelan R; Fuller PM; Yokota S; Lu J; Saper CB. Metabolic effects of chronic sleep restriction in rats. SLEEP 2012;35(11):1511-1520. PMID:23115400

  3. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    PubMed

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  4. The effects of sleep restriction and sleep deprivation in producing false memories.

    PubMed

    Chatburn, Alex; Kohler, Mark J; Payne, Jessica D; Drummond, Sean P A

    2017-01-01

    False memory has been claimed to be the result of an associative process of generalisation, as well as to be representative of memory errors. These can occur at any stage of memory encoding, consolidation, or retrieval, albeit through varied mechanisms. The aim of this paper is to experimentally determine: (i) if cognitive dysfunction brought about by sleep loss at the time of stimulus encoding can influence false memory production; and (ii) whether this relationship holds across sensory modalities. Subjects undertook both the Deese-Roedigger-McDermott (DRM) false memory task and a visual task designed to produce false memories. Performance was measured while subjects were well-rested (9h Time in Bed or TIB), and then again when subjects were either sleep restricted (4h TIB for 4 nights) or sleep deprived (30h total SD). Results indicate (1) that partial and total sleep loss produced equivalent effects in terms of false and veridical verbal memory, (2) that subjects performed worse after sleep loss (regardless of whether this was partial or total sleep loss) on cued recognition-based false and veridical verbal memory tasks, and that sleep loss interfered with subjects' ability to recall veridical, but not false memories under free recall conditions, and (3) that there were no effects of sleep loss on a visual false memory task. This is argued to represent the dysfunction and slow repair of an online verbal associative process in the brain following inadequate sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of Partial and Acute Total Sleep Deprivation on Performance across Cognitive Domains, Individuals and Circadian Phase

    PubMed Central

    Lo, June C.; Groeger, John A.; Santhi, Nayantara; Arbon, Emma L.; Lazar, Alpar S.; Hasan, Sibah; von Schantz, Malcolm; Archer, Simon N.; Dijk, Derk-Jan

    2012-01-01

    Background Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate. Methodology/Principal Findings We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load. Conclusions/Significance Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals. PMID:23029352

  6. Metabolic disregulation in obese adolescents with sleep-disordered breathing before and after weight loss.

    PubMed

    Van Hoorenbeeck, K; Franckx, H; Debode, P; Aerts, P; Ramet, J; Van Gaal, L F; Desager, K N; De Backer, W A; Verhulst, S L

    2013-07-01

    Sleep-disordered breathing (SDB) is prevalent in obesity. Weight loss is one of the most effective treatment options. The aim was to assess the association of SDB and metabolic disruption before and after weight loss. Obese adolescents were included when entering an in-patient weight loss program. Fasting blood analysis was performed at baseline and after 4-6 months. Sleep screening was done at baseline and at follow-up in case of baseline SDB. 224 obese adolescents were included. Median age was 15.5 years (10.1-18.0) and mean BMI z-score was 2.74 ± 0.42. About 30% had SDB at baseline (N = 68). High-density lipoprotein (HDL)-cholesterol was associated with mean nocturnal oxygen saturation () (partial r = 0.21; P = 0.002). Aspartate aminotransferase (ASAT) and alanine aminotransferase were related with oxygen desaturation index (partial r = -0.15; P = 0.03 and partial r = -0.15; P = 0.02), but this became insignificant after correction for sex. After weight loss, 24% had residual SDB. Linear regression showed an association between ASAT and (partial r = -0.34; P = 0.002). There were no significant correlations between improvements in laboratory measurements and sleep parameters. HDL-cholesterol improved in relation with the decrease in BMI z-score. SDB at baseline was associated with higher levels of liver enzymes and lower HDL-cholesterol concentration. Improvements in sleep parameters were not associated with improvements in laboratory measurements. Copyright © 2013 The Obesity Society.

  7. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals.

    PubMed

    Benedict, Christian; Vogel, Heike; Jonas, Wenke; Woting, Anni; Blaut, Michael; Schürmann, Annette; Cedernaes, Jonathan

    2016-12-01

    Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance). However, whether sleep loss affects the gut microbiota remains unknown. In a randomized within-subject crossover study utilizing a standardized in-lab protocol (with fixed meal times and exercise schedules), we studied nine normal-weight men at two occasions: after two nights of partial sleep deprivation (PSD; sleep opportunity 02:45-07:00 h), and after two nights of normal sleep (NS; sleep opportunity 22:30-07:00 h). Fecal samples were collected within 24 h before, and after two in-lab nights, of either NS or PSD. In addition, participants underwent an oral glucose tolerance test following each sleep intervention. Microbiota composition analysis (V4 16S rRNA gene sequencing) revealed that after two days of PSD vs. after two days of NS, individuals exhibited an increased Firmicutes:Bacteroidetes ratio, higher abundances of the families Coriobacteriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes (all P < 0.05) - previously all associated with metabolic perturbations in animal or human models. However, no PSD vs. NS effect on beta diversity or on fecal short-chain fatty acid concentrations was found. Fasting and postprandial insulin sensitivity decreased after PSD vs. NS (all P < 0.05). Our findings demonstrate that short-term sleep loss induces subtle effects on human microbiota. To what extent the observed changes to the microbial community contribute to metabolic consequences of sleep loss warrants further investigations in larger and more prolonged sleep studies, to also assess how sleep loss impacts the microbiota in individuals who already are metabolically compromised.

  8. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    PubMed

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans.

    PubMed

    Carroll, Judith E; Cole, Steven W; Seeman, Teresa E; Breen, Elizabeth C; Witarama, Tuff; Arevalo, Jesusa M G; Ma, Jeffrey; Irwin, Michael R

    2016-01-01

    Age-related disease risk has been linked to short sleep duration and sleep disturbances; however, the specific molecular pathways linking sleep loss with diseases of aging are poorly defined. Key cellular events seen with aging, which are thought to contribute to disease, may be particularly sensitive to sleep loss. We tested whether one night of partial sleep deprivation (PSD) would increase leukocyte gene expression indicative of DNA damage responses (DDR), the senescence-associated secretory phenotype (SASP), and senescence indicator p16(INK4a) in older adult humans, who are at increased risk for cellular senescence. Community-dwelling older adults aged 61-86years (n=29; 48% male) underwent an experimental partial sleep deprivation (PSD) protocol over 4 nights, including adaptation, an uninterrupted night of sleep, partial sleep deprivation (sleep restricted 3-7AM), and a subsequent full night of sleep. Blood samples were obtained each morning to assess peripheral blood mononuclear cell (PBMC) gene expression using Illumina HT-12 arrays. Analyses of microarray results revealed that SASP (p<.05) and DDR (p=.08) gene expression were elevated from baseline to PSD nights. Gene expression changes were also observed from baseline to PSD in NFKB2, NBS1 and CHK2 (all p's<.05). The senescence marker p16(INK4a) (CDKN2A) was increased 1day after PSD compared to baseline (p<.01), however confirmatory RT-PCR did not replicate this finding. One night of partial sleep deprivation activates PBMC gene expression patterns consistent with biological aging in this older adult sample. PSD enhanced the SASP and increased the accumulation of damage that initiates cell cycle arrest and promotes cellular senescence. These findings causally link sleep deprivation to the molecular processes associated with biological aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Electroencephalographic studies of sleep

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1975-01-01

    Various experimental studies on sleep are described. The following areas are discussed: (1) effect of altered day length on sleep, (2) effect of a partial loss of sleep on subsequent nocturnal sleep; (3) effect of rigid control over sleep-wake-up times; (4) sleep and wakefulness in a time-free environment; (5) distribution of spindles during a full night of sleep; and (6) effect on sleep and performance of swiftly changing shifts of work.

  11. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. SLEEP 2014;37(12):1929-1940. PMID:25325492

  12. Trait-Like Vulnerability to Total and Partial Sleep Loss

    PubMed Central

    Rupp, Tracy L.; Wesensten, Nancy J.; Balkin, Thomas J.

    2012-01-01

    Objective: To determine the extent to which individual differences in vulnerability to total sleep deprivation also reflect individual differences in vulnerability to multiple nights of sleep restriction. Design: Two sleep loss conditions (order counterbalanced) separated by 2 to 4 weeks: (a) total sleep deprivation (TSD) of 2 nights (63 h continuous wakefulness); (b) sleep restriction (SR) of 7 nights of 3 h nightly time in bed (TIB). Both conditions were preceded by 7 in-laboratory nights with 10 h nightly TIB; and followed by 3 recovery nights with 8 h nightly TIB. Measures of cognitive performance (psychomotor vigilance, working memory [1-Back], and mathematical processing), objective alertness, subjective sleepiness, and mood were obtained at regular intervals under both conditions. Intra-class correlation coefficients (ICC) were computed using outcome metrics averaged over the last day (08:00-20:00) of TSD and SR. Setting: Residential sleep/performance testing facility. Participants: Nineteen healthy adults (ages 18-39; 11 males, 8 females). Interventions: 2 nights of TSD and 7 nights SR (3 h nightly TIB). Results: Volunteers who displayed greater vulnerability to TSD displayed greater vulnerability to SR on cognitive performance tasks (ICC: PVT lapses = 0.89; PVT speed = 0.86; 1-Back = 0.88; mathematical processing = 0.68, Ps < 0.05). In addition, trait-like responsivity to TSD/SR was found for mood variables vigor (ICC = 0.91), fatigue (ICC = 0.73), and happiness (ICC = 0.85) (all Ps < 0.05). Conclusion: Resilience to sleep loss is a trait-like characteristic that reflects an individual's ability to maintain performance during both types of sleep loss (SR and TSD). Whether the findings extend to sleep schedules other than those investigated here (63 h of TSD and 7 nights of 3 h nightly TIB) will be the focus of future studies. Citation: Rupp TL; Wesensten NJ; Balkin TJ. Trait-like vulnerability to total and partial sleep loss. SLEEP 2012;35(8):1163-1172. PMID:22851812

  13. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats.

    PubMed

    Everson, Carol A; Henchen, Christopher J; Szabo, Aniko; Hogg, Neil

    2014-12-01

    Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. © 2014 Associated Professional Sleep Societies, LLC.

  14. Sensitivity of the stanford sleepiness scale to the effects of cumulative partial sleep deprivation and recovery oversleeping.

    PubMed

    Herscovitch, J; Broughton, R

    1981-01-01

    The sensitivity of the Stanford Sleepiness Scale (SSS) to short-term cumulative partial sleep deprivation (PSD) and subsequent recovery oversleeping was examined. A repeated-measures design included 7 paid healthy undergraduate volunteers, who were normal sleepers (mean sleep time 7.6 hr), and consisted of the following schedule: (a) pre-baseline; (b)sleep reduction of 40% of 1 night (mean, 4.6 hr) for 5 nights; (c) recovery oversleeping for night 1 (mean, 10.6 Hr) and night 2 (mean, 9.1 hr); (d) post-baseline. Daytime performance testing utilized a 1 hr auditory vigilance task and four short-duration (10 min) tests, two of which have been shown sensitive to total and partial sleep loss effects. Subjects completed SSS forms every min while awake and 1-9 scales of mood and energy upon awakening. Subjective measures were analyzed across conditions for mean all-day and task-related SSS values and mood and energy ratings. A correlational analysis investigated individual correspondences between ratings and performance. Results indicate that SSS is sensitive to deficits in alertness following PSD. However, it generally does not predict individual performance efficiency and therefore cannot act as a substitute for performance measures in studies involving chronic sleep loss.

  15. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    PubMed

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  16. Effects of Sleep Loss on Subjective Complaints and Objective Neurocognitive Performance as Measured by the Immediate Post-Concussion Assessment and Cognitive Testing.

    PubMed

    Stocker, Ryan P J; Khan, Hassen; Henry, Luke; Germain, Anne

    2017-05-01

    This study examined the effects of total and partial sleep deprivation on subjective symptoms and objective neurocognitive performance, as measured by the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) in a sample of healthy adults. One-hundred and two, right-handed, healthy participants (between ages 18 and 30 years old) completed three consecutive nights in the sleep laboratory with concurrent continuous polysomnography monitoring. Night 1 served as a baseline night. Prior to Night 2, they were randomly assigned to one of three sleep conditions: undisrupted normal sleep (N = 34), sleep restriction (50% of habitual sleep, N = 37), or total sleep deprivation (N = 31). Participants slept undisturbed on Night 3. ImPACT was administered on three separate occasions. Sleep loss was associated with increased severity of subjectively reported affective, cognitive, physical, and sleep symptoms. Although objective neurocognitive task scores derived from the ImPACT battery did not corroborate subjective complaints, sleep loss was associated with significant differences on tasks of visual memory, reaction time, and visual motor speed over time. While self-report measures suggested marked impairments following sleep loss, deficits in neurocognitive performance were observed only on three domains measured with ImPACT. ImPACT may capture subtle changes in neurocognitive performance following sleep loss; however, independent and larger validation studies are needed to determine its sensitivity to acute sleep loss and recovery sleep. Neurocognitive screening batteries may be useful for detecting the effects of more severe or chronic sleep loss under high-stress conditions that mimic high-risk occupations. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The Effects of Sleep Continuity Disruption on Positive Mood and Sleep Architecture in Healthy Adults.

    PubMed

    Finan, Patrick H; Quartana, Phillip J; Smith, Michael T

    2015-11-01

    The purpose of this study was to test an experimental model of the effects of sleep continuity disturbance on sleep architecture and positive mood in order to better understand the mechanisms linking insomnia and depression. Participants were randomized to receive 3 consecutive nights of sleep continuity disruption via forced nocturnal awakenings (FA, n = 21), or one of two control conditions: restricted sleep opportunity (RSO, n = 17) or uninterrupted sleep (US, n = 24). The study was set in an inpatient clinical research suite. Healthy, good-sleeping men and women were included. Polysomnography was used to measure sleep architecture, and mood was assessed via self-report each day. Compared to restricted sleep opportunity controls, forced awakenings subjects had significantly less slow wave sleep (P < 0.05) after the first night of sleep deprivation, and significantly lower positive mood (P < 0.05) after the second night of sleep deprivation. The differential change in slow wave sleep statistically mediated the observed group differences in positive mood (P = 0.002). To our knowledge, this is the first human experimental study to demonstrate that, despite comparable reductions in total sleep time, partial sleep loss from sleep continuity disruption is more detrimental to positive mood than partial sleep loss from delaying bedtime, even when controlling for concomitant increases in negative mood. With these findings, we provide temporal evidence in support of a putative biologic mechanism (slow wave sleep deficit) that could help explain the strong comorbidity between insomnia and depression. © 2015 Associated Professional Sleep Societies, LLC.

  18. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-04-22

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases.

  19. Managing neurobehavioral capability when social expediency trumps biological imperatives

    PubMed Central

    Spaeth, Andrea M.; Goel, Namni; Dinges, David F.

    2013-01-01

    Sleep, which is evolutionarily conserved across species, is a biological imperative that cannot be ignored or replaced. However, the percentage of habitually sleep-restricted adults has increased in recent decades. Extended work hours and commutes, shift work schedules, and television viewing are particularly potent social factors that influence sleep duration. Chronic partial sleep restriction, a product of these social expediencies, leads to the accumulation of sleep debt over time and consequently increases sleep propensity, decreases alertness, and impairs critical aspects of cognitive functioning. Significant interindividual variability in the neurobehavioral responses to sleep restriction exists—this variability is stable and phenotypic—suggesting a genetic basis. Identifying vulnerability to sleep loss is essential as many adults cannot accurately judge their level of impairment in response to sleep restriction. Indeed, the consequences of impaired performance and the lack of insight due to sleep loss can be catastrophic. In order to cope with the effects of social expediencies on biological imperatives, identification of biological (including genetic) and behavioral markers of sleep loss vulnerability as well as development of technological approaches for fatigue management are critical. PMID:22877676

  20. The Effects of Sleep Continuity Disruption on Positive Mood and Sleep Architecture in Healthy Adults

    PubMed Central

    Finan, Patrick H.; Quartana, Phillip J.; Smith, Michael T.

    2015-01-01

    Objective: The purpose of this study was to test an experimental model of the effects of sleep continuity disturbance on sleep architecture and positive mood in order to better understand the mechanisms linking insomnia and depression. Design: Participants were randomized to receive 3 consecutive nights of sleep continuity disruption via forced nocturnal awakenings (FA, n = 21), or one of two control conditions: restricted sleep opportunity (RSO, n = 17) or uninterrupted sleep (US, n = 24). Setting: The study was set in an inpatient clinical research suite. Participants: Healthy, good-sleeping men and women were included. Measurement and Results: Polysomnography was used to measure sleep architecture, and mood was assessed via self-report each day. Compared to restricted sleep opportunity controls, forced awakenings subjects had significantly less slow wave sleep (P < 0.05) after the first night of sleep deprivation, and significantly lower positive mood (P < 0.05) after the second night of sleep deprivation. The differential change in slow wave sleep statistically mediated the observed group differences in positive mood (P = 0.002). Conclusions: To our knowledge, this is the first human experimental study to demonstrate that, despite comparable reductions in total sleep time, partial sleep loss from sleep continuity disruption is more detrimental to positive mood than partial sleep loss from delaying bedtime, even when controlling for concomitant increases in negative mood. With these findings, we provide temporal evidence in support of a putative biologic mechanism (slow wave sleep deficit) that could help explain the strong comorbidity between insomnia and depression. Citation: Finan PH, Quartana PJ, Smith MT. The effects of sleep continuity disruption on positive mood and sleep architecture in healthy adults. SLEEP 2015;38(11):1735–1742. PMID:26085289

  1. Partial sleep deprivation does not alter processes involved in semantic word priming: event-related potential evidence.

    PubMed

    Tavakoli, Paniz; Muller-Gass, Alexandra; Campbell, Kenneth

    2015-03-01

    Sleep deprivation has generally been observed to have a detrimental effect on tasks that require sustained attention for successful performance. It might however be possible to counter these effects by altering cognitive strategies. A recent semantic word priming study indicated that subjects used an effortful predictive-expectancy search of semantic memory following normal sleep, but changed to an automatic, effortless strategy following total sleep deprivation. Partial sleep deprivation occurs much more frequently than total sleep deprivation. The present study therefore employed a similar priming task following either 4h of sleep or following normal sleep. The purpose of the study was to determine whether partial sleep deprivation would also lead to a shift in cognitive strategy to compensate for an inability to sustain attention and effortful processing necessary for using the predicative expectancy strategy. Sixteen subjects were presented with word pairs, a prime and a target that were either strongly semantically associated (cat...dog), weakly associated (cow...barn) or not associated (apple...road). The subject's task was to determine if the target word was semantically associated to the prime. A strong priming effect was observed in both conditions. RTs were slower, accuracy lower, and N400 larger to unassociated targets, independent of the amount of sleep. The overall N400 did not differ as a function of sleep. The scalp distribution of the N400 was also similar following both normal sleep and sleep loss. There was thus little evidence of a difference in the processing of the target stimulus as a function of the amount sleep. Similarly, ERPs in the period between the onset of the prime and the subsequent target also did not differ between the normal sleep and sleep loss conditions. In contrast to total sleep deprivation, subjects therefore appeared to use a common predictive expectancy strategy in both conditions. This strategy does however require an effortful sustaining of attention, and may not have been entirely successful when sleep was restricted. A slight but significant decrease in accuracy was noted. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. The military performance of soldiers in sustained operations.

    PubMed

    Haslam, D R

    1984-03-01

    Two 9-d tactical defensive exercises were carried out. The first assessed and compared the performance of three platoons of infantry scheduled for either 0, 1.5, or 3 h of sleep in every 24 h, and the second determined whether soldiers are likely to remain militarily effective during a period of partial sleep loss following a period with no scheduled sleep at all. To this end, 10 infantry soldiers were scheduled for 4 h of sleep in every 24 for a 6-d period following a 3.75-d period without any scheduled sleep. Performance, physical fitness, and mood were assessed throughout both exercises. Results indicated that the effects of sleep loss are psychological rather than physiological; soldiers are likely to be militarily ineffective after 48-72 h without sleep; and a small amount of recovery sleep relative to the amount lost has very beneficial effects.

  3. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation.

    PubMed

    Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2007-12-01

    The aim of this study was to determine the effects of a post-lunch nap on subjective alertness and performance following partial sleep loss. Ten healthy males (mean age 23.3 years, s = 3.4) either napped or sat quietly from 13:00 to 13:30 h after a night of shortened sleep (sleep 23:00-03:00 h only). Thirty minutes after the afternoon nap or control (no-nap) condition, alertness, short-term memory, intra-aural temperature, heart rate, choice reaction time, grip strength, and times for 2-m and 20-m sprints were recorded. The afternoon nap lowered heart rate and intra-aural temperature. Alertness, sleepiness, short-term memory, and accuracy at the 8-choice reaction time test were improved by napping (P < 0.05), but mean reaction times and grip strength were not affected (P > 0.05). Sprint times were improved. Mean time for the 2-m sprints fell from 1.060 s (s(x) = 0.018) to 1.019 s (s(x) = 0.019) (P = 0.031 paired t-test); mean time for the 20-m sprints fell from 3.971 s (s(x) = 0.054) to 3.878 s (s(x) = 0.047) (P = 0.013). These results indicate that a post-lunch nap improves alertness and aspects of mental and physical performance following partial sleep loss, and have implications for athletes with restricted sleep during training or before competition.

  4. Sleep Loss and the Inflammatory Response in Mice Under Chronic Environmental Circadian Disruption

    PubMed Central

    Castanon-Cervantes, Oscar; Natarajan, Divya; Delisser, Patrick; Davidson, Alec J.; Paul, Ketema N.

    2013-01-01

    Shift work and trans-time zone travel lead to insufficient sleep and numerous pathologies. Here, we examined sleep/wake dynamics during chronic exposure to environmental circadian disruption (ECD), and if chronic partial sleep loss associated with ECD influences the induction of shift-related inflammatory disorder. Sleep and wakefulness were telemetrically recorded across three months of ECD, in which the dark-phase of a light-dark cycle was advanced weekly by 6 h. A three month regimen of ECD caused a temporary reorganization of sleep (NREM and REM) and wake processes across each week, resulting in an approximately 10% net loss of sleep each week relative to baseline levels. A separate group of mice were subjected to ECD or a regimen of imposed wakefulness (IW) aimed to mimic sleep amounts under ECD for one month. Fos-immunoreactivity (IR) was quantified in sleep-wake regulatory areas: the nucleus accumbens (NAc), basal forebrain (BF), and medial preoptic area (MnPO). To assess the inflammatory response, trunk blood was treated with lipopolysaccharide (LPS) and subsequent release of IL-6 was measured. Fos-IR was greatest in the NAc, BF, and MnPO of mice subjected to IW. The inflammatory response to LPS was elevated in mice subjected to ECD, but not mice subjected to IW. Thus, the net sleep loss that occurs under ECD is not associated with a pathological immune response. PMID:23696854

  5. Catechol-O-Methyltransferase Val158Met Polymorphism Associates with Individual Differences in Sleep Physiologic Responses to Chronic Sleep Loss

    PubMed Central

    Goel, Namni; Banks, Siobhan; Lin, Ling; Mignot, Emmanuel; Dinges, David F.

    2011-01-01

    Background The COMT Val158Met polymorphism modulates cortical dopaminergic catabolism, and predicts individual differences in prefrontal executive functioning in healthy adults and schizophrenic patients, and associates with EEG differences during sleep loss. We assessed whether the COMT Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD), a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. Methodology/Principal Findings 20 Met/Met, 64 Val/Met, and 45 Val/Val subjects participated in a protocol of two baseline 10h time in bed (TIB) nights followed by five consecutive 4 h TIB nights. Met/Met subjects showed differentially steeper declines in non-REM EEG slow-wave energy (SWE)—the putative homeostatic marker of sleep drive—during PSD, despite comparable baseline SWE declines. Val/Val subjects showed differentially smaller increases in slow-wave sleep and smaller reductions in stage 2 sleep during PSD, and had more stage 1 sleep across nights and a shorter baseline REM sleep latency. The genotypes, however, did not differ in performance across various executive function and cognitive tasks and showed comparable increases in subjective and physiological sleepiness in response to chronic sleep loss. Met/Met genotypic and Met allelic frequencies were higher in whites than African Americans. Conclusions/Significance The COMT Val158Met polymorphism may be a genetic biomarker for predicting individual differences in sleep physiology—but not in cognitive and executive functioning—resulting from sleep loss in a healthy, racially-diverse adult population of men and women. Beyond healthy sleepers, our results may also provide insight for predicting sleep loss responses in patients with schizophrenia and other psychiatric disorders, since these groups repeatedly experience chronically-curtailed sleep and demonstrate COMT-related treatment responses and risk factors for symptom exacerbation. PMID:22216231

  6. Sleep and Wakefulness Handbook for Flight Medical Officers,

    DTIC Science & Technology

    1982-01-01

    hours, but routine monotonous tasks show a rapid and severe decrement after 24 hours without sleep. Motivation may counteract some of the sequelae of...repeated partial sleep loss will lead to impaired performance. IRREGULARITY OF WORK AND REST Irregularity of work and rest over several days is also...movements, each of several seconds duration, which are usually most prominent during the early part of the stage. Rapid eye movements are absent, and the

  7. A sleep state in Drosophila larvae required for neural stem cell proliferation

    PubMed Central

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  8. The effects of partial sleep restriction and altered sleep timing on olfactory performance.

    PubMed

    McNeil, J; Forest, G; Hintze, L J; Brunet, J-F; Doucet, É

    2017-12-01

    Olfaction can increase the drive to eat and may partially explain the consistent increases in energy intake (EI) following sleep restriction. We investigated the effects of 50% sleep restriction with altered sleep timing on olfactory performance. We also evaluated whether changes (Δ) in olfactory performance were associated with Δ24 h EI. Twelve men and six women (age: 23±4 years; BMI: 23±3 kg/m 2 ) completed three randomized cross-over conditions: habitual sleep duration, 50% sleep restriction with advanced wake-time, and 50% sleep restriction with delayed bedtime. Sleep was measured in-laboratory (polysomnography). Olfactory performance ('sniffin sticks') and 24 h EI (food menu) were evaluated the next day. A trend for a significant condition*sex interaction was noted for threshold-discrimination-identification (TDI) scores (P=0.09); TDI scores were lowest in women and highest in men, following sleep restriction with advanced wake-time. Δolfactory performance were not associated with Δ24 h EI. The impact of sleep restriction on olfactory performance may differ between sexes. Changes in olfactory performance were not associated with changes in 24 h EI. Studies investigating prolonged effects of sleep loss on the relationship between olfactory performance with EI are needed.

  9. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity resistant rats

    PubMed Central

    Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2012-01-01

    Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Methods OR and SD rats (n=12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light-phase for 9 d. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS) and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake and body weight were documented. Results Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery-sleep during active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls Conclusions PSD by less-stressful means increases body weight in rats. Also, PSD during rest phase increases active period sleep. PMID:23666828

  10. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity-resistant rats.

    PubMed

    Mavanji, Vijayakumar; Teske, Jennifer A; Billington, Charles J; Kotz, Catherine M

    2013-07-01

    Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep. Copyright © 2012 The Obesity Society.

  11. Sleep loss does not aggravate the deteriorating effect of hypoglycemia on neurocognitive function in healthy men.

    PubMed

    Jauch-Chara, Kamila; Hallschmid, Manfred; Schmid, Sebastian M; Bandorf, Nadine; Born, Jan; Schultes, Bernd

    2010-05-01

    Sleep deprivation (SD) impairs neurocognitive functions. Assuming that this effect is mediated by reduced cerebral glucose supply due to prolonged wakefulness inducing a progressive depletion of cerebral glycogen stores, we hypothesized that short-term sleep loss amplifies the deteriorating effects of acute hypoglycemia on neurocognitive functions. Seven healthy men were tested in a randomized and balanced order on 3 different conditions spaced 2 weeks apart. After a night of total SD (total SD), 4.5h of sleep (partial SD) and a night with 7h of regular sleep (regular sleep), subjects were exposed to a stepwise hypoglycemic clamp experiment. Reaction time (RT) and auditory evoked brain potentials (AEP) were assessed during a euglycemic baseline period and at the end of the clamp (blood glucose at 2.5mmol/l). During the euglycemic baseline, amplitude of the P3 component of the AEP was lower after total SD than after partial SD (9.2+/-3.2microV vs. 16.6+/-2.9microV; t(6)=3.2, P=0.02) and regular sleep (20.2+/-2.1microV; t(6)=18.8, P<0.01). Reaction time was longer after total SD in comparison to partial SD (367+/-45ms vs. 304+/-36ms; t(6)=2.7, P=0.04) and to regular sleep (322+/-36ms; t(6)=2.41, P=0.06) while there was no difference between partial SD and regular sleep condition (t(6)=0.60, P=0.57). Hypoglycemia decreased P3 amplitude by 11.2+/-4.1microV in the partial SD condition (t(6)=2.72, P=0.04) and by 9.3+/-0.7microV in the regular sleep condition (t(6)=12.51, P<0.01), but did not further reduce P3 amplitude after total SD (1.8+/-3.9microV; t(6)=0.46, P=0.66). Thus, at the end of hypoglycemia P3 amplitudes were similar across the 3 conditions (F(2,10)=0.89, P=0.42). RT generally showed a similar pattern with a significant prolongation due to hypoglycemia after partial SD (+42+/-12ms; t(6)=3.39, P=0.02) and regular sleep (+37+/-10ms; t(6)=3.53, P=0.01), but not after total SD (+15+/-16; t(6)=0.97, P=0.37), resulting in similar values at the end of hypoglycemia (F(1,6)=1.01, P=0.36). One night of total SD deteriorates neurocognitive function as reflected by indicators of attentive stimulus processing, but does not synergistically aggravate the impairing influence of acute hypoglycemia. The findings are not consistent with the view that neurocognitive deteriorations after SD result from challenged cerebral glucose metabolism. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Behavioral and Physiological Consequences of Sleep Restriction

    PubMed Central

    Banks, Siobhan; Dinges, David F.

    2007-01-01

    Adequate sleep is essential for general healthy functioning. This paper reviews recent research on the effects of chronic sleep restriction on neurobehavioral and physiological functioning and discusses implications for health and lifestyle. Restricting sleep below an individual's optimal time in bed (TIB) can cause a range of neurobehavioral deficits, including lapses of attention, slowed working memory, reduced cognitive throughput, depressed mood, and perseveration of thought. Neurobehavioral deficits accumulate across days of partial sleep loss to levels equivalent to those found after 1 to 3 nights of total sleep loss. Recent experiments reveal that following days of chronic restriction of sleep duration below 7 hours per night, significant daytime cognitive dysfunction accumulates to levels comparable to that found after severe acute total sleep deprivation. Additionally, individual variability in neurobehavioral responses to sleep restriction appears to be stable, suggesting a traitlike (possibly genetic) differential vulnerability or compensatory changes in the neurobiological systems involved in cognition. A causal role for reduced sleep duration in adverse health outcomes remains unclear, but laboratory studies of healthy adults subjected to sleep restriction have found adverse effects on endocrine functions, metabolic and inflammatory responses, suggesting that sleep restriction produces physiological consequences that may be unhealthy. Citation: Banks S; Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 2007;3(5):519-528. PMID:17803017

  13. No persisting effect of partial sleep curtailment on cognitive performance and declarative memory recall in adolescents.

    PubMed

    Kopasz, Marta; Loessl, Barbara; Valerius, Gabriele; Koenig, Eva; Matthaeas, Nora; Hornyak, Magdolna; Kloepfer, Corinna; Nissen, Christoph; Riemann, Dieter; Voderholzer, Ulrich

    2010-03-01

    Growing evidence indicates that sleep facilitates learning and memory processing. Sleep curtailment is increasingly common in adolescents. The aim of this study was to examine the effects of short-term sleep curtailment on declarative memory consolidation in adolescents. A randomized, cross-over study design was chosen. Twenty-two healthy subjects, aged 14-16 years, spent three consecutive nights in the sleep laboratory with a bedtime of 9 h during the first night (adaptation), 4 h during the second (partial sleep curtailment) and 9 h during the third night (recovery). The control condition consisted of three consecutive nights with bedtimes of 9 h. Both experimental conditions were separated by at least 3 weeks. The acquisition phase for the declarative tests was between 16:00 and 18:00 hours before the second night. Memory performance was examined in the morning after the recovery night. Executive function, attention and concentration were also assessed to control for any possible effects of tiredness. During the 4-h night, we observed a curtailment of 50% of non-rapid eye movement (non-REM), 5% of slow wave sleep (SWS) and 70% of REM sleep compared with the control night. Partial sleep curtailment of one night did not influence declarative memory retrieval significantly. Recall in the paired-associate word list task was correlated positively with percentage of non-REM sleep in the recovery night. Declarative memory consolidation does not appear to be influenced by short-term sleep curtailment in adolescents. This may be explained by the high ability of adolescents to compensate for acute sleep loss. The correlation between non-REM sleep and declarative memory performance supports earlier findings.

  14. Caffeine dosing strategies to optimize alertness during sleep loss.

    PubMed

    Vital-Lopez, Francisco G; Ramakrishnan, Sridhar; Doty, Tracy J; Balkin, Thomas J; Reifman, Jaques

    2018-05-28

    Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  15. Sleep Loss Exacerbates Fatigue, Depression, and Pain in Rheumatoid Arthritis

    PubMed Central

    Irwin, Michael R.; Olmstead, Richard; Carrillo, Carmen; Sadeghi, Nina; FitzGerald, John D.; Ranganath, Veena K.; Nicassio, Perry M.

    2012-01-01

    Study Objectives: Disturbances of sleep are hypothesized to contribute to pain. However, experimental data are limited to healthy pain-free individuals. This study evaluated the effect of sleep loss during part of the night on daytime mood symptoms and pain perceptions in patients with rheumatoid arthritis in comparison with control subjects. Design: A between-groups laboratory study with assessment of mood symptoms and pain perception before and after partial night sleep deprivation (PSD; awake 23:00 hr to 03:00 hr). Setting: General clinical research center. Participants: Patients with rheumatoid arthritis (n = 27) and volunteer comparison control subjects (n = 27). Measurements: Subjective reports of sleep, mood symptoms and pain, polysomnographic assessment of sleep continuity, and subjective and objective assessment of rheumatoid arthritis-specific joint pain. Results: PSD induced differential increases in self-reported fatigue (P < 0.09), depression (P < 0.04), anxiety (P < 0.04), and pain (P < 0.01) in patients with rheumatoid arthritis compared with responses in control subjects, in whom differential increases of self-reported pain were independent of changes in mood symptoms, subjective sleep quality, and objective measures of sleep fragmentation. In the patients with rheumatoid arthritis, PSD also induced increases in disease-specific activity as indexed by self-reported pain severity (P < 0.01) and number of painful joints (P < 0.02) as well as clinician-rated joint counts (P < 0.03). Conclusion: This study provides the first evidence of an exaggerated increase in symptoms of mood and pain in patients with rheumatoid arthritis after sleep loss, along with an activation of rheumatoid arthritis-related joint pain. Given the reciprocal relationship between sleep disturbances and pain, clinical management of pain in patients with rheumatoid arthritis should include an increased focus on the prevention and treatment of sleep disturbance in this clinical population. Citation: Irwin MR; Olmstead R; Carrillo C; Sadeghi N; FitzGerald JD; Ranganath VK; Nicassio PM. Sleep loss exacerbates fatigue, depression, and pain in rheumatoid arthritis. SLEEP 2012;35(4):537-543. PMID:22467992

  16. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness.

    PubMed

    Philip, Pierre; Sagaspe, Patricia; Prague, Mélanie; Tassi, Patricia; Capelli, Aurore; Bioulac, Bernard; Commenges, Daniel; Taillard, Jacques

    2012-07-01

    To evaluate the effects of acute sleep deprivation and chronic sleep restriction on vigilance, performance, and self-perception of sleepiness. Habitual night followed by 1 night of total sleep loss (acute sleep deprivation) or 5 consecutive nights of 4 hr of sleep (chronic sleep restriction) and recovery night. Eighteen healthy middle-aged male participants (age [(± standard deviation] = 49.7 ± 2.6 yr, range 46-55 yr). Multiple sleep latency test trials, Karolinska Sleepiness Scale scores, simple reaction time test (lapses and 10% fastest reaction times), and nocturnal polysomnography data were recorded. Objective and subjective sleepiness increased immediately in response to sleep restriction. Sleep latencies after the second and third nights of sleep restriction reached levels equivalent to those observed after acute sleep deprivation, whereas Karolinska Sleepiness Scale scores did not reach these levels. Lapse occurrence increased after the second day of sleep restriction and reached levels equivalent to those observed after acute sleep deprivation. A statistical model revealed that sleepiness and lapses did not progressively worsen across days of sleep restriction. Ten percent fastest reaction times (i.e., optimal alertness) were not affected by acute or chronic sleep deprivation. Recovery to baseline levels of alertness and performance occurred after 8-hr recovery night. In middle-aged study participants, sleep restriction induced a high increase in sleep propensity but adaptation to chronic sleep restriction occurred beyond day 3 of restriction. This sleepiness attenuation was underestimated by the participants. One recovery night restores daytime sleepiness and cognitive performance deficits induced by acute or chronic sleep deprivation. Philip P; Sagaspe P; Prague M; Tassi P; Capelli A; Bioulac B; Commenges D; Taillard J. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness. SLEEP 2012;35(7):997-1002.

  17. [Somnambulism: clinical and eletrophysiological aspects].

    PubMed

    Szúcs, Anna; Halász, Péter

    2005-06-05

    The authors review the literature on the epidemiology, the clinical and electrophysiological symptoms of somnambulism. The disorder specified as "nREM parasomnia with awakening disorder" belongs to the nREM sleep (awakening) parasomnias. In most of the cases its occurence is familial with the highest prevalence at age 12 year. Above age 12 year most cases recover whereas 6% of prevalence is reported in adults. It is probable that most patients seek medical help only in severe cases associated with injuries, accidents or violence. Its etiology is unknown; in essence it is a sleep regulation disorder characterised by a dissociated state of partial awakening from nREM sleep: the motor system becomes awake while consciousness remains clouded. There are several medicines inducing somnambulism in patients otherwise free from this disorder. In somnambule patients the most important provoking factors are sleep deprivation as well as pathological states and circumstances evoking sleep loss. Somnambulism should be differentiated from complex partial epileptic seizures and REM behaviour disorder. As there is no specific treatment at the moment it is important to assure safe sleeping circumstances - ground flour, closed windows, and no fragile furniture. Clonazepam and selective serotonin reuptake inhibitors prove sometimes effective, but the most effective methods in decreasing the frequency of somnambule episodes are the regular sleep-wakefulness schedule and the avoidance of sleep deprivation.

  18. Sustained Partial Sleep Deprivation: Effects on Immune Modulation and Growth Factors

    NASA Technical Reports Server (NTRS)

    Mullington, Janet M.

    1999-01-01

    The vulnerability to medical emergencies is greatest in space where there are real limits to the availability or effectiveness of ground based assistance. Moreover, astronaut safety and health maintenance will be of increasing importance as we venture out into space for extended periods of time. It is therefore critical to understand the mechanisms of the regulatory physiology of homeostatic systems (sleep, circadian, neuroendocrine, fluid and nutritional balance) and the key roles played in adaptation. This synergy project has combined aims of the "Human Performance Factors, Sleep and Chronobiology Team"; the "Immunology, Infection and Hematology Team"; and the "Muscle Alterations and Atrophy Team", to broadly address the effects of long term sleep reduction, as is frequently encountered in space exploration, on neuroendocrine, neuroimmune and circulating growth factors. Astronaut sleep is frequently curtailed to averages of between 4- 6.5 hours per night. There is evidence that this amount of sleep is inadequate for maintaining optimal daytime functioning. However, there is a lack of information concerning the effects of chronic sleep restriction, or reduction, on regulatory physiology in general, and there have been no controlled studies of the cumulative effects of chronic sleep reduction on neuroendocrine and neuroimmune parameters. This synergy project represents a pilot study designed to characterize the effects of chronic partial sleep deprivation (PSD) on neuroendocrine, neuroimmune and growth factors. This project draws its subjects from two (of 18) conditions of the larger NSBRI project, "Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight", one of the projects on the "Human Performance Factors, Sleep and Chronobiology Team ". For the purposes of this study, to investigate the effects of chronic sleep loss on neuroendocrine and neuroimmune function, we have focused on the two extreme sleep conditions from this larger study: a 4.2 hour per night condition, and a 8.2 hour per night condition. During space flight, muscle mass and bone density are reduced, apparently due to loss of GH and IGF-I, associated with microgravity. Since >70% of growth hormone (GH) is secreted at night in normal adults, we hypothesized that the chronic sleep restriction to 4 hours per night would reduce GH levels as measured in the periphery. In this synergy project, in collaboration with the "Muscle Alterations and Atrophy Team ", we are measuring insulin-like growth factor-I (IGF-I) in peripheral circulation to test the prediction that it will be reduced by chronic sleep restriction. In addition to stress modulation of immune function, recent research suggests that sleep is also involved. While we all have the common experience of being sleepy when suffering from infection, and being susceptible to infection when not getting enough sleep, the mechanisms involved in this process are not understood and until recently have gone largely overlooked. We believe that the immune function changes seen in spaceflight may also be related to the cumulative effects of sleep loss. Moreover, in space flight, the possibility of compromised immune function or of the reactivation of latent viruses are serious potential hazards for the success of long term missions. Confined living conditions, reduced sleep, altered diet and stress are all factors that may compromise immune function, thereby increasing the risks of developing and transmitting disease. Medical complications, which would not pose serious problems on earth, may be disastrous if they emerged in space.

  19. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight

    NASA Technical Reports Server (NTRS)

    Shearer, W. T.; Reuben, J. M.; Mullington, J. M.; Price, N. J.; Lee, B. N.; Smith, E. O.; Szuba, M. P.; Van Dongen, H. P.; Dinges, D. F.

    2001-01-01

    BACKGROUND: The extent to which sleep loss may predispose astronauts to a state of altered immunity during extended space travel prompts evaluation with ground-based models. OBJECTIVE: We sought to measure plasma levels of selected cytokines and their receptors, including the putative sleep-regulation proteins soluble TNF-alpha receptor (sTNF-alpha R) I and IL-6, in human subjects undergoing 2 types of sleep deprivation during environmental confinement with performance demands. METHODS: Healthy adult men (n = 42) were randomized to schedules that varied in severity of sleep loss: 4 days (88 hours) of partial sleep deprivation (PSD) involving two 2-hour naps per day or 4 days of total sleep deprivation (TSD). Plasma samples were obtained every 6 hours across 5 days and analyzed by using enzyme-linked immunoassays for sTNF-alpha RI, sTNF-alpha RII, IL-6, soluble IL-2 receptor, IL-10, and TNF-alpha. RESULTS: Interactions between the effects of time and sleep deprivation level were detected for sTNF-alpha RI and IL-6 but not for sTNF-alpha RII, soluble IL-2 receptor, IL-10, and TNF-alpha. Relative to the PSD condition, subjects in the TSD condition had elevated plasma levels of sTNF-alpha RI on day 2 (P =.04), day 3 (P =.01), and across days 2 to 4 of sleep loss (P =.01) and elevated levels of IL-6 on day 4 (P =.04). CONCLUSIONS: Total sleep loss produced significant increases in plasma levels of sTNF-alpha RI and IL-6, messengers that connect the nervous, endocrine, and immune systems. These changes appeared to reflect elevations of the homeostatic drive for sleep because they occurred in TSD but not PSD, suggesting that naps may serve as the basis for a countermeasures approach to prolonged spaceflight.

  20. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  1. Recurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes

    PubMed Central

    Szabo, Aniko

    2009-01-01

    Chronic restriction of a basic biological need induces adaptations to help meet requisites for survival. The adaptations to chronic restriction of sleep are unknown. A single episode of 10 days of partial sleep loss in rats previously was shown to be tolerated and to result in increased food intake and loss of body weight as principal signs. The purpose of the present experiment was to investigate the extent to which adaptation to chronic sleep restriction would ameliorate short-term effects and result in a changed internal phenotype. Rats were studied during 10 wk of multiple periods of restricted and unrestricted sleep to allow adaptive changes to develop. Control rats received the same ambulatory requirements only consolidated into periods that lessened interruptions of their sleep. The results indicate a latent period of relatively stable food and water intake without weight gain, followed by a dynamic phase marked by enormous increases in food and water intake and progressive loss of body weight, without malabsorption of calories. Severe consequences ensued, marked especially by changes to the connective tissues, and became fatal for two individuals. The most striking changes to internal organs in sleep-restricted rats included lengthening of the small intestine, decreased size of adipocytes, and increased incidence of multilocular adipocytes. Major organs accounted for an increased proportion of total body mass. These changes to internal tissues appear adaptive in response to high energy production, decomposition of lipids, and increased need to absorb nutrients, but ultimately insufficient to compensate for inadequate sleep. PMID:19692662

  2. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    PubMed

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Acute Versus Chronic Partial Sleep Deprivation in Middle-Aged People: Differential Effect on Performance and Sleepiness

    PubMed Central

    Philip, Pierre; Sagaspe, Patricia; Prague, Mélanie; Tassi, Patricia; Capelli, Aurore; Bioulac, Bernard; Commenges, Daniel; Taillard, Jacques

    2012-01-01

    Study Objective: To evaluate the effects of acute sleep deprivation and chronic sleep restriction on vigilance, performance, and self-perception of sleepiness. Design: Habitual night followed by 1 night of total sleep loss (acute sleep deprivation) or 5 consecutive nights of 4 hr of sleep (chronic sleep restriction) and recovery night. Participants: Eighteen healthy middle-aged male participants (age [(± standard deviation] = 49.7 ± 2.6 yr, range 46-55 yr). Measurements: Multiple sleep latency test trials, Karolinska Sleepiness Scale scores, simple reaction time test (lapses and 10% fastest reaction times), and nocturnal polysomnography data were recorded. Results: Objective and subjective sleepiness increased immediately in response to sleep restriction. Sleep latencies after the second and third nights of sleep restriction reached levels equivalent to those observed after acute sleep deprivation, whereas Karolinska Sleepiness Scale scores did not reach these levels. Lapse occurrence increased after the second day of sleep restriction and reached levels equivalent to those observed after acute sleep deprivation. A statistical model revealed that sleepiness and lapses did not progressively worsen across days of sleep restriction. Ten percent fastest reaction times (i.e., optimal alertness) were not affected by acute or chronic sleep deprivation. Recovery to baseline levels of alertness and performance occurred after 8-hr recovery night. Conclusions: In middle-aged study participants, sleep restriction induced a high increase in sleep propensity but adaptation to chronic sleep restriction occurred beyond day 3 of restriction. This sleepiness attenuation was underestimated by the participants. One recovery night restores daytime sleepiness and cognitive performance deficits induced by acute or chronic sleep deprivation. Citation: Philip P; Sagaspe P; Prague M; Tassi P; Capelli A; Bioulac B; Commenges D; Taillard J. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness. SLEEP 2012;35(7):997–1002. PMID:22754046

  4. Implications of Sleep Restriction and Recovery on Metabolic Outcomes

    PubMed Central

    Killick, Roo; Banks, Siobhan

    2012-01-01

    Context: Alongside the growing epidemics of obesity and diabetes mellitus, chronic partial sleep restriction is also increasingly common in modern society, and the metabolic implications of this have not been fully illustrated as yet. Whether recovery sleep is sufficient to offset these detriments is an area of ongoing research. Objective: This review seeks to summarize the relevant epidemiological and experimental data in the areas of altered metabolic consequences of both shortened sleep and subsequent recovery sleep. Data Acquisition: The medical literature from 1970 to March 2012 was reviewed for key articles. Data Synthesis: Epidemiological studies suggest associations between shortened sleep and future obesity and diabetes. Experimental data thus far show a probable link between shortened sleep and altered glucose metabolism as well as appetite dysregulation. Conclusion: Sleep often seems undervalued in modern society, but this may have widespread metabolic consequences as described in this review. Acute sleep loss is often unavoidable, but chronic sleep restriction ideally should not be. Understanding the implications of both sleep restriction and recovery on metabolic outcomes will guide public health policy and allow clinical recommendations to be prescribed. PMID:22996147

  5. Effects of sleep disturbances on subsequent physical performance.

    PubMed

    Mougin, F; Simon-Rigaud, M L; Davenne, D; Renaud, A; Garnier, A; Kantelip, J P; Magnin, P

    1991-01-01

    The purpose of the study was to compare the cardiovascular, respiratory and metabolic responses to exercise of highly endurance trained subjects after 3 different nights i.e. a baseline night, a partial sleep deprivation of 3 h in the middle of the night and a 0.25-mg triazolam-induced sleep. Sleep-waking chronobiology and endurance performance capacity were taken into account in the choice of the subjects. Seven subjects exercised on a cycle ergometer for a 10-min warm-up, then for 20 min at a steady exercise intensity (equal to the intensity corresponding to 75% of the predetermined maximal oxygen consumption) followed by an increased intensity until exhaustion. The night with 3 h sleep loss was accompanied by a greater number of periods of wakefulness (P less than 0.01) and fewer periods of stage 2 sleep (P less than 0.05) compared with the results recorded during the baseline night. Triazolam-induced sleep led to an increase in stage 2 sleep (P less than 0.05), a decrease in wakefulness (P less than 0.05) and in stage 3 sleep (P less than 0.05). After partial sleep deprivation, there were statistically significant increases in heart rate (P less than 0.05) and ventilation (P less than 0.05) at submaximal exercise compared with results obtained after the baseline night. Both variables were also significantly enhanced at maximal exercise, while the peak oxygen consumption (VO2) dropped (P less than 0.05) even though the maximal sustained exercise intensity was not different.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Role of orexin in respiratory and sleep homeostasis during upper airway obstruction in rats.

    PubMed

    Tarasiuk, Ariel; Levi, Avishag; Berdugo-Boura, Nilly; Yahalom, Ari; Segev, Yael

    2014-05-01

    Chronic upper airway obstruction (UAO) elicits a cascade of complex endocrine derangements that affect growth, sleep, and energy metabolism. We hypothesized that elevated hypothalamic orexin has a role in maintaining ventilation during UAO, while at the same time altering sleep-wake activity and energy metabolism. Here, we sought to explore the UAO-induced changes in hypothalamic orexin and their role in sleep-wake balance, respiratory activity, and energy metabolism. The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed; UAO and sham-operated control animals were monitored for 7 weeks. We measured food intake, body weight, temperature, locomotion, and sleep-wake activity. Magnetic resonance imaging was used to quantify subcutaneous and visceral fat tissue volumes. In week 7, the rats were sacrificed and levels of hypothalamic orexin, serum leptin, and corticosterone were determined. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and respiration was also explored. UAO increased hypothalamic orexin mRNA and protein content by 64% and 65%, respectively. UAO led to 30% chronic sleep loss, excessive active phase sleepiness, decreased body temperature, increased food intake, reduction of abdominal and subcutaneous fat tissue volume, and growth retardation. Administration of almorexant normalized sleep but induced severe breathing difficulties in UAO rats, while it had no effect on sleep or on breathing of control animals. In upper airway obstruction animals, enhanced orexin secretion, while crucially important for respiratory homeostasis maintenance, is also responsible for chronic partial sleep loss, as well as considerable impairment of energy metabolism and growth.

  7. Role of Orexin in Respiratory and Sleep Homeostasis during Upper Airway Obstruction in Rats

    PubMed Central

    Tarasiuk, Ariel; Levi, Avishag; Berdugo-Boura, Nilly; Yahalom, Ari; Segev, Yael

    2014-01-01

    Study Objectives: Chronic upper airway obstruction (UAO) elicits a cascade of complex endocrine derangements that affect growth, sleep, and energy metabolism. We hypothesized that elevated hypothalamic orexin has a role in maintaining ventilation during UAO, while at the same time altering sleep-wake activity and energy metabolism. Here, we sought to explore the UAO-induced changes in hypothalamic orexin and their role in sleep-wake balance, respiratory activity, and energy metabolism. Interventions: The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed; UAO and sham-operated control animals were monitored for 7 weeks. We measured food intake, body weight, temperature, locomotion, and sleep-wake activity. Magnetic resonance imaging was used to quantify subcutaneous and visceral fat tissue volumes. In week 7, the rats were sacrificed and levels of hypothalamic orexin, serum leptin, and corticosterone were determined. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and respiration was also explored. Measurements and Results: UAO increased hypothalamic orexin mRNA and protein content by 64% and 65%, respectively. UAO led to 30% chronic sleep loss, excessive active phase sleepiness, decreased body temperature, increased food intake, reduction of abdominal and subcutaneous fat tissue volume, and growth retardation. Administration of almorexant normalized sleep but induced severe breathing difficulties in UAO rats, while it had no effect on sleep or on breathing of control animals. Conclusions: In upper airway obstruction animals, enhanced orexin secretion, while crucially important for respiratory homeostasis maintenance, is also responsible for chronic partial sleep loss, as well as considerable impairment of energy metabolism and growth. Citation: Tarasiuk A, Levi A, Berdugo-Boura N, Yahalom A, Segev Y. Role of orexin in respiratory and sleep homeostasis during upper airway obstruction in rats. SLEEP 2014;37(5):987-998. PMID:24790278

  8. Low levels of alcohol impair driving simulator performance and reduce perception of crash risk in partially sleep deprived subjects.

    PubMed

    Banks, Siobhan; Catcheside, Peter; Lack, Leon; Grunstein, Ron R; McEvoy, R Doug

    2004-09-15

    Partial sleep deprivation and alcohol consumption are a common combination, particularly among young drivers. We hypothesized that while low blood alcohol concentration (<0.05 g/dL) may not significantly increase crash risk, the combination of partial sleep deprivation and low blood alcohol concentration would cause significant performance impairment. Experimental Sleep Disorders Unit Laboratory 20 healthy volunteers (mean age 22.8 years; 9 men). Subjects underwent driving simulator testing at 1 am on 2 nights a week apart. On the night preceding simulator testing, subjects were partially sleep deprived (5 hours in bed). Alcohol consumption (2-3 standard alcohol drinks over 2 hours) was randomized to 1 of the 2 test nights, and blood alcohol concentrations were estimated using a calibrated Breathalyzer. During the driving task subjects were monitored continuously with electroencephalography for sleep episodes and were prompted every 4.5 minutes for answers to 2 perception scales-performance and crash risk. Mean blood alcohol concentration on the alcohol night was 0.035 +/- 0.015 g/dL. Compared with conditions during partial sleep deprivation alone, subjects had more microsleeps, impaired driving simulator performance, and poorer ability to predict crash risk in the combined partial sleep deprivation and alcohol condition. Women predicted crash risk more accurately than did men in the partial sleep deprivation condition, but neither men nor women predicted the risk accurately in the sleep deprivation plus alcohol condition. Alcohol at legal blood alcohol concentrations appears to increase sleepiness and impair performance and the detection of crash risk following partial sleep deprivation. When partially sleep deprived, women appear to be either more perceptive of increased crash risk or more willing to admit to their driving limitations than are men. Alcohol eliminated this behavioral difference.

  9. Sleep deprivation affects reactivity to positive but not negative stimuli.

    PubMed

    Pilcher, June J; Callan, Christina; Posey, J Laura

    2015-12-01

    The current study examined the effects of partial and total sleep deprivation on emotional reactivity. Twenty-eight partially sleep-deprived participants and 31 totally sleep-deprived participants rated their valence and arousal responses to positive and negative pictures across four testing sessions during the day following partial sleep deprivation or during the night under total sleep deprivation. The results suggest that valence and arousal ratings decreased under both sleep deprivation conditions. In addition, partial and total sleep deprivation had a greater negative effect on positive events than negative events. These results suggest that sleep-deprived persons are more likely to respond less to positive events than negative events. One explanation for the current findings is that negative events could elicit more attentive behavior and thus stable responding under sleep deprivation conditions. As such, sleep deprivation could impact reactivity to emotional stimuli through automated attentional and self-regulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A randomized pilot trial of a full subsidy vs. a partial subsidy for obesity treatment.

    PubMed

    Tsai, Adam G; Felton, Sue; Hill, James O; Atherly, Adam J

    2012-09-01

    Intensive obesity treatment is mandated by federal health care reform but is costly. A partial subsidy for obesity treatment could lower the cost of treatment, without reducing its efficacy. This study sought to test whether a partial subsidy for obesity treatment would be feasible, as compared to a fully subsidized intervention. The study was a pilot randomized trial. Participants (n = 50) were primary care patients with obesity and at least one comorbid condition (diabetes, hypertension, dyslipidemia, or obstructive sleep apnea). Each participant received eight weight loss counseling visits as well as portion-controlled foods for weight loss. Participants were randomized to full subsidy or partial subsidy (2 vs. 1 meal per day provided). The primary outcome was weight change after 4 months. Secondary outcomes included changes in blood pressure, waist circumference, and health-related quality of life. Participants in the full and partial subsidy groups lost 5.9 and 5.3 kg, equivalent to 5.3% and 5.1% of initial weight, respectively (P = 0.71). Changes in secondary outcomes were similar in the two groups. A partial subsidy was feasible and induced a clinically similar amount of weight loss, compared to a full subsidy. Large-scale testing of economic incentives for weight control is merited given the federal mandate to offer weight loss counseling to obese patients.

  11. Maximizing Sensitivity of the Psychomotor Vigilance Test (PVT) to Sleep Loss

    PubMed Central

    Basner, Mathias; Dinges, David F.

    2011-01-01

    Study Objectives: The psychomotor vigilance test (PVT) is among the most widely used measures of behavioral alertness, but there is large variation among published studies in PVT performance outcomes and test durations. To promote standardization of the PVT and increase its sensitivity and specificity to sleep loss, we determined PVT metrics and task durations that optimally discriminated sleep deprived subjects from alert subjects. Design: Repeated-measures experiments involving 10-min PVT assessments every 2 h across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Setting: Controlled laboratory environment. Participants: 74 healthy subjects (34 female), aged 22–45 years. Interventions: TSD experiment involving 33 h awake (N = 31 subjects) and a PSD experiment involving 5 nights of 4 h time in bed (N = 43 subjects). Measurements and Results: In a paired t-test paradigm and for both TSD and PSD, effect sizes of 10 different PVT performance outcomes were calculated. Effect sizes were high for both TSD (1.59–1.94) and PSD (0.88–1.21) for PVT metrics related to lapses and to measures of psychomotor speed, i.e., mean 1/RT (response time) and mean slowest 10% 1/RT. In contrast, PVT mean and median RT outcomes scored low to moderate effect sizes influenced by extreme values. Analyses facilitating only portions of the full 10-min PVT indicated that for some outcomes, high effect sizes could be achieved with PVT durations considerably shorter than 10 min, although metrics involving lapses seemed to profit from longer test durations in TSD. Conclusions: Due to their superior conceptual and statistical properties and high sensitivity to sleep deprivation, metrics involving response speed and lapses should be considered primary outcomes for the 10-min PVT. In contrast, PVT mean and median metrics, which are among the most widely used outcomes, should be avoided as primary measures of alertness. Our analyses also suggest that some shorter-duration PVT versions may be sensitive to sleep loss, depending on the outcome variable selected, although this will need to be confirmed in comparative analyses of separate duration versions of the PVT. Using both sensitive PVT metrics and optimal test durations maximizes the sensitivity of the PVT to sleep loss and therefore potentially decreases the sample size needed to detect the same neurobehavioral deficit. We propose criteria to better standardize the 10-min PVT and facilitate between-study comparisons and meta-analyses. Citation: Basner M; Dinges DF. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. SLEEP 2011;34(5):581-591. PMID:21532951

  12. Sleep restriction undermines cardiovascular adaptation during stress, contingent on emotional stability.

    PubMed

    Lü, Wei; Hughes, Brian M; Howard, Siobhán; James, Jack E

    2018-02-01

    Sleep loss is associated with increased cardiovascular disease, but physiological mechanisms accounting for this relationship are largely unknown. One possible mechanism is that sleep restriction exerts effects on cardiovascular stress responses, and that these effects vary between individuals. Emotional stability (ES) is a personality trait pertinent to sleep restriction and stress responding. However, no study to date has explored how ES and sleep-restriction interactively affect cardiovascular stress responses or processes of adaptation during stress. The present study sought to investigate the association between ES and impact of sleep restriction on cardiovascular function during stress, with particular regard to the trajectory of cardiovascular function change across time. Ninety female university students completed a laboratory vigilance stress task while undergoing continuous cardiovascular (SBP, DBP, HR, SV, CO, TPR) monitoring, after either a night of partial sleep restriction (40% of habitual sleep duration) or a full night's rest. Individuals high in ES showed stable and adaptive cardiovascular (SBP, SV, CO) responses throughout stress exposure, regardless of sleep. In contrast, individuals low in ES exhibited cardiovascular adaptation during stress exposure while rested, but disrupted adaption while sleep-restricted. These findings suggest that sleep-restriction undermines healthful cardiovascular adaptation to stress for individuals low in ES. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impact of sleep duration on seizure frequency in adults with epilepsy: a sleep diary study.

    PubMed

    Cobabe, Maurine M; Sessler, Daniel I; Nowacki, Amy S; O'Rourke, Colin; Andrews, Noah; Foldvary-Schaefer, Nancy

    2015-02-01

    Prolonged sleep deprivation activates epileptiform EEG abnormalities and seizures in people with epilepsy. Few studies have addressed the effect of chronic partial sleep deprivation on seizure occurrence in populations with epilepsy. We tested the primary hypothesis that partial sleep deprivation over 24- and 72-hour periods increases seizure occurrence in adults with epilepsy. Forty-four subjects completed a series of self-reported instruments, as well as 1-month sleep and seizure diaries, to characterize their sleep and quality of life. Diaries were used to determine the relationship between seizure occurrence and total sleep time 24 and 72h before seizure occurrence using random effects models and a logistic regression model fit by generalized estimating equations. A total of 237 seizures were recorded during 1295 diary days, representing 5.5±7.0 (mean±SD) seizures per month. Random effects models for 24- and 72-hour total sleep times showed no clinically or statistically significant differences in the total sleep time between preseizure periods and seizure-free periods. The average 24-hour total sleep time during preseizure 24-hour periods was 8min shorter than that during seizure-free periods (p=0.51). The average 72-hour total sleep time during preseizure periods was 20min longer than that during seizure-free periods (p=0.86). The presence of triggers was a significant predictor of seizure occurrence, with stress/anxiety noted most often as a trigger. Mean total sleep time was 9h, and subjects took an average of 12±10 naps per month, having a mean duration of 1.9±1.2h. Daytime sleepiness, fatigue, and insomnia symptoms were commonly reported. Small degrees of sleep loss were not associated with seizure occurrence in our sample of adults with epilepsy. Our results also include valuable observations of the altered sleep times and frequent napping habits of adults with refractory epilepsy and the potential contribution of these habits to quality of life and seizure control. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Sleep and the epidemic of obesity in children and adults

    PubMed Central

    Van Cauter, Eve; Knutson, Kristen L

    2008-01-01

    Sleep is an important modulator of neuroendocrine function and glucose metabolism in children as well as in adults. In recent years, sleep curtailment has become a hallmark of modern society with both children and adults having shorter bedtimes than a few decades ago. This trend for shorter sleep duration has developed over the same time period as the dramatic increase in the prevalence of obesity. There is rapidly accumulating evidence from both laboratory and epidemiological studies to indicate that chronic partial sleep loss may increase the risk of obesity and weight gain. The present article reviews laboratory evidence indicating that sleep curtailment in young adults results in a constellation of metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, elevated sympathovagal balance, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin, and increased hunger and appetite. We also review cross-sectional epidemiological studies associating short sleep with increased body mass index and prospective epidemiological studies that have shown an increased risk of weight gain and obesity in children and young adults who are short sleepers. Altogether, the evidence points to a possible role of decreased sleep duration in the current epidemic of obesity. PMID:18719052

  15. Chronic sleep deprivation markedly reduces coagulation factor VII expression

    PubMed Central

    Pinotti, Mirko; Bertolucci, Cristiano; Frigato, Elena; Branchini, Alessio; Cavallari, Nicola; Baba, Kenkichi; Contreras-Alcantara, Susana; Ehlen, J. Christopher; Bernardi, Francesco; Paul, Ketema N.; Tosini, Gianluca

    2010-01-01

    Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation significantly decreases (−30.5%) the thrombin generation potential in plasma evaluated upon extrinsic (TF/FVIIa pathway) but not intrinsic activation of coagulation. This variation was consistent with a decrease (−49.8%) in the plasma activity levels of factor VII (FVII), the crucial physiologicalal trigger of coagulation, which was even more pronounced at the liver mRNA level (−85.7%). The recovery in normal sleep conditions for three days completely restored thrombin generation and FVII activity in plasma. For the first time, we demonstrate that chronic sleep deprivation on its own reduces, in a reversible manner, the FVII expression levels, thus influencing the TF/FVIIa activation pathway efficiency. PMID:20418241

  16. Hypocretin-1 deficiency in a girl with ROHHAD syndrome.

    PubMed

    Dhondt, Karlien; Verloo, Patrick; Verhelst, Hélène; Van Coster, Rudy; Overeem, Sebastiaan

    2013-09-01

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare and complex pediatric syndrome, essentially caused by dysfunction of 3 vital systems regulating endocrine, respiratory, and autonomic nervous system functioning. The clinical spectrum of ROHHAD is broad, but sleep/wake disorders have received relatively little attention so far, although the central hypothalamic dysfunction would make the occurrence of sleep symptoms likely. In this case report, we expand the phenotype of ROHHAD with a number of striking sleep symptoms that together can be classified as a secondary form of narcolepsy. We present a 7-year-old girl with ROHHAD who displayed the classic features of narcolepsy with cataplexy: excessive daytime sleepiness with daytime naps, visual hallucinations, and partial cataplexy reflected in intermittent loss of facial muscle tone. Nocturnal polysomnography revealed sleep fragmentation and a sleep-onset REM period characteristic for narcolepsy. The diagnosis was confirmed by showing an absence of hypocretin-1 in the cerebrospinal fluid. We discuss potential pathophysiological implications as well as symptomatic treatment options.

  17. The Association of Perceived Memory Loss with Osteoarthritis and Related Joint Pain in a Large Appalachian Population.

    PubMed

    Innes, Kim E; Sambamoorthi, Usha

    2017-05-19

    Previous studies have documented memory impairment in several chronic pain syndromes. However, the potential link between memory loss and osteoarthritis (OA), the second most common cause of chronic pain, remains little explored. In this cross-sectional study, we examine the association of perceived memory loss to OA and assess the potential mediating influence of sleep and mood disturbance in a large Appalachian population.  Cross-sectional.  US Ohio Valley.  A total of 21,982 Appalachian adults age 40 years or older drawn from the C8 Health Project (N = 19,004 adults without and 2,478 adults with OA). All participants completed a comprehensive health survey between 2005 and 2006. Medical history, including physician diagnosis of OA, lifestyle factors, short- and long-term memory loss, sleep quality, and mood were assessed via self-report.  After adjustment for demographic, lifestyle, health-related, and other factors, participants with OA were almost three times as likely to report frequent memory loss (adjusted odds ratios [ORs] for short- and long-term memory loss, respectively = 2.7, 95% confidence interval [CI] = 2.2-3.3, and 2.6, 95% CI = 2.0-3.3). The magnitude of these associations increased significantly with rising frequency of reported joint pain (adjusted OR for OA with frequent joint pain vs no OA = 3.3, 95% CI = 2.6-4.1, P trend  < 0.00001). Including measures of mood and sleep impairment attenuated but did not eliminate these associations (ORs for any memory loss = 2.0, 95% CI = 1.6-2.4, and 2.1, 95% CI = 1.7-2.8, adjusted for sleep and mood impairment, respectively; OR = 1.8, 95% CI = 1.4-2.2, adjusted for both factors).  In this large cross-sectional study, OA and related joint pain were strongly associated with perceived memory loss; these associations may be partially mediated by sleep and mood disturbance. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans.

    PubMed

    DeBardeleben, Hilary K; Lopes, Lindsey E; Nessel, Mark P; Raizen, David M

    2017-10-01

    Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1 , which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1 , gk138 , had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1 ( gk138 ) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light. Copyright © 2017 by the Genetics Society of America.

  19. Acute Total and Chronic Partial Sleep Deprivation: Effects on Neurobehavioral Functions, Waking EEG and Renin-Angiotensin System

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Total sleep deprivation leads to decrements in neurobehavioral performance and changes in electroencephalographic (EEG) oscillations as well as the incidence of slow eye movements ad detected in the electro-oculogram (EOG) during wakefulness. Although total sleep deprivation is a powerful tool to investigate the association of EEG/EOG and neurobehavioral decrements, sleep loss during space flight is usual only partial. Furthermore exposure to the microgravity environment leads to changes in sodium and volume homeostasis and associated renal and cardio-endocrine responses. Some of these changes can be induced in head down tilt bedrest studies. We integrate research tools and research projects to enhance the fidelity of the simulated conditions of space flight which are characterized by complexity and mutual interactions. The effectiveness of countermeasures and physiologic mechanisms underlying neurobehavioral changes and renal-cardio endocrine changes are investigated in Project 3 of the Human Performance Team and Project 3 of the Cardiovascular Alterations Team respectively. Although the. specific aims of these two projects are very different, they employ very similar research protocols. Thus, both projects investigate the effects of posture/bedrest and sleep deprivation (total or partial) on outcome measures relevant to their specific aims. The main aim of this enhancement grant is to exploit the similarities in research protocols by including the assessment of outcome variables relevant to the Renal-Cardio project in the research protocol of Project 3 of the Human Performance Team and by including the assessment of outcome variables relevant to the Quantitative EEG and Sleep Deprivation Project in the research protocols of Project 3 of the Cardiovascular Alterations team. In particular we will assess Neurobehavioral Function and Waking EEG in the research protocols of the renal-cardio endocrine project and renin-angiotensin and cardiac function in the research protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.

  20. Chronic sleep loss and risk-taking behavior: Does the origin of sleep loss matter?

    PubMed

    Rusnac, Natalia; Spitzenstetter, Florence; Tassi, Patricia

    2018-06-20

    Many adolescents and young adults get insufficient sleep. A link between sleep loss and risk-taking behavior has been consistently found in the literature, but surprisingly, the role played by the origin of sleep loss in this link has never been investigated. Sleep loss can be voluntary (instead of sleeping, a significant amount of time is devoted to other activities) or involuntary (caused by a sleep disorder, for example, insomnia). The aim of this research was to investigate whether both types of sleep loss are associated to the same extent with risky behavior. Five hundred thirty-six university students between 19 and 25 years old participated in this study. Three groups were selected: participants with voluntary sleep loss, participants with insomnia, and normal sleepers. We assessed risk-taking behavior in virtual driving situations, as well as drinking habits in terms of quantity and frequency. To further explore the differences between the groups, we also measured sensation seeking, a personality trait related to risk-taking behavior. Compared to participants with insomnia and normal sleepers, participants with voluntary sleep loss take more risks in dangerous driving situations, drink more alcohol, and have higher disinhibition scores on the Sensation-Seeking Scale. On the other hand, no such differences were found between participants with insomnia and normal sleepers, suggesting that sleep loss is not always associated with risk taking. Whether sleep loss is associated with risk-taking behavior or not could depend on the origin of sleep loss and the underlying personality traits.

  1. Partial Sleep Deprivation Attenuates the Positive Affective System: Effects Across Multiple Measurement Modalities.

    PubMed

    Finan, Patrick H; Quartana, Phillip J; Remeniuk, Bethany; Garland, Eric L; Rhudy, Jamie L; Hand, Matthew; Irwin, Michael R; Smith, Michael T

    2017-01-01

    Ample behavioral and neurobiological evidence links sleep and affective functioning. Recent self-report evidence suggests that the affective problems associated with sleep loss may be stronger for positive versus negative affective state and that those effects may be mediated by changes in electroencepholographically measured slow wave sleep (SWS). In the present study, we extend those preliminary findings using multiple measures of affective functioning. In a within-subject randomized crossover experiment, we tested the effects of one night of sleep continuity disruption via forced awakenings (FA) compared to one night of uninterrupted sleep (US) on three measures of positive and negative affective functioning: self-reported affective state, affective pain modulation, and affect-biased attention. The study was set in an inpatient clinical research suite. Healthy, good sleeping adults (N = 45) were included. Results indicated that a single night of sleep continuity disruption attenuated positive affective state via FA-induced reductions in SWS. Additionally, sleep continuity disruption attenuated the inhibition of pain by positive affect as well as attention bias to positive affective stimuli. Negative affective state, negative affective pain facilitation, nor negative attention bias were altered by sleep continuity disruption. The present findings, observed across multiple measures of affective function, suggest that sleep continuity disruption has a stronger influence on the positive affective system relative to the negative affective affective system. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. The Impact of Partial Sleep Deprivation on Moral Reasoning in Military Officers

    PubMed Central

    Olsen, Olav Kjellevold; Pallesen, Ståle; Eid, Jarle

    2010-01-01

    Study Objectives: The present study explores the impact of long-term partial sleep deprivation on the activation of moral justice schemas, which are suggested to play a prominent role in moral reasoning and the formation of moral judgments and behavior. Design: Participants judged 5 dilemmas in rested and partially sleep deprived condition, in a counterbalanced design. Setting: In classroom and field exercises at the Norwegian Naval Academy and the Norwegian Army Academy. Participants: Seventy-one Norwegian naval and army officer cadets. Measurements and Results: The results showed that the officers' ability to conduct mature and principally oriented moral reasoning was severely impaired during partial sleep deprivation compared to the rested state. At the same time, the officers became substantially more rules-oriented in the sleep deprived condition, while self-oriented moral reasoning did not change. Interaction effects showed that those officers who displayed high levels of mature moral reasoning (n = 24) in the rested condition, lost much of this capacity during sleep deprivation in favor of a strong increase in rules-oriented moral reasoning as well as self-orientation. Conversely, officers at low levels of mature moral reasoning in rested condition (n = 23) were unaffected by sleep deprivation. Conclusions: The present data show that long-term partial sleep deprivation has an impact on the activation of moral justice schemas, and consequently on the ability to make moral justice judgments. Citation: Olsen OK; Pallesen S; Eid J. The impact of partial sleep deprivation on moral reasoning in military officers. SLEEP 2010;33(8):1086-1090. PMID:20815191

  3. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss.

    PubMed

    Basner, Mathias; Dinges, David F

    2011-05-01

    The psychomotor vigilance test (PVT) is among the most widely used measures of behavioral alertness, but there is large variation among published studies in PVT performance outcomes and test durations. To promote standardization of the PVT and increase its sensitivity and specificity to sleep loss, we determined PVT metrics and task durations that optimally discriminated sleep deprived subjects from alert subjects. Repeated-measures experiments involving 10-min PVT assessments every 2 h across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Controlled laboratory environment. 74 healthy subjects (34 female), aged 22-45 years. TSD experiment involving 33 h awake (N = 31 subjects) and a PSD experiment involving 5 nights of 4 h time in bed (N = 43 subjects). In a paired t-test paradigm and for both TSD and PSD, effect sizes of 10 different PVT performance outcomes were calculated. Effect sizes were high for both TSD (1.59-1.94) and PSD (0.88-1.21) for PVT metrics related to lapses and to measures of psychomotor speed, i.e., mean 1/RT (response time) and mean slowest 10% 1/RT. In contrast, PVT mean and median RT outcomes scored low to moderate effect sizes influenced by extreme values. Analyses facilitating only portions of the full 10-min PVT indicated that for some outcomes, high effect sizes could be achieved with PVT durations considerably shorter than 10 min, although metrics involving lapses seemed to profit from longer test durations in TSD. Due to their superior conceptual and statistical properties and high sensitivity to sleep deprivation, metrics involving response speed and lapses should be considered primary outcomes for the 10-min PVT. In contrast, PVT mean and median metrics, which are among the most widely used outcomes, should be avoided as primary measures of alertness. Our analyses also suggest that some shorter-duration PVT versions may be sensitive to sleep loss, depending on the outcome variable selected, although this will need to be confirmed in comparative analyses of separate duration versions of the PVT. Using both sensitive PVT metrics and optimal test durations maximizes the sensitivity of the PVT to sleep loss and therefore potentially decreases the sample size needed to detect the same neurobehavioral deficit. We propose criteria to better standardize the 10-min PVT and facilitate between-study comparisons and meta-analyses.

  4. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise.

    PubMed

    Fullagar, Hugh H K; Skorski, Sabrina; Duffield, Rob; Hammes, Daniel; Coutts, Aaron J; Meyer, Tim

    2015-02-01

    Although its true function remains unclear, sleep is considered critical to human physiological and cognitive function. Equally, since sleep loss is a common occurrence prior to competition in athletes, this could significantly impact upon their athletic performance. Much of the previous research has reported that exercise performance is negatively affected following sleep loss; however, conflicting findings mean that the extent, influence, and mechanisms of sleep loss affecting exercise performance remain uncertain. For instance, research indicates some maximal physical efforts and gross motor performances can be maintained. In comparison, the few published studies investigating the effect of sleep loss on performance in athletes report a reduction in sport-specific performance. The effects of sleep loss on physiological responses to exercise also remain equivocal; however, it appears a reduction in sleep quality and quantity could result in an autonomic nervous system imbalance, simulating symptoms of the overtraining syndrome. Additionally, increases in pro-inflammatory cytokines following sleep loss could promote immune system dysfunction. Of further concern, numerous studies investigating the effects of sleep loss on cognitive function report slower and less accurate cognitive performance. Based on this context, this review aims to evaluate the importance and prevalence of sleep in athletes and summarises the effects of sleep loss (restriction and deprivation) on exercise performance, and physiological and cognitive responses to exercise. Given the equivocal understanding of sleep and athletic performance outcomes, further research and consideration is required to obtain a greater knowledge of the interaction between sleep and performance.

  5. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    PubMed Central

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  6. Involvement of the α1-adrenoceptor in sleep-waking and sleep loss-induced anxiety behavior in zebrafish.

    PubMed

    Singh, A; Subhashini, N; Sharma, S; Mallick, B N

    2013-08-15

    Sleep is a universal phenomenon in vertebrates, and its loss affects various behaviors. Independent studies have reported that sleep loss increases anxiety; however, the detailed mechanism is unknown. Because sleep deprivation increases noradrenalin (NA), which modulates many behaviors and induces patho-physiological changes, this study utilized zebrafish as a model to investigate whether sleep loss-induced increased anxiety is modulated by NA. Continuous behavioral quiescence for at least 6s was considered to represent sleep in zebrafish; although some authors termed it as a sleep-like state, in this study we have termed it as sleep. The activity of fish that signified sleep-waking was recorded in light-dark, during continuous dark and light; the latter induced sleep loss in fish. The latency, number of entries, time spent and distance travelled in the light chamber were assessed in a light-dark box test to estimate the anxiety behavior of normal, sleep-deprived and prazosin (PRZ)-treated fish. Zebrafish showed increased waking during light and complete loss of sleep upon continuous exposure to light for 24h. PRZ significantly increased sleep in normal fish. Sleep-deprived fish showed an increased preference for dark (expression of increased anxiety), and this effect was prevented by PRZ, which increased sleep as well. Our findings suggest that sleep loss-induced anxiety-like behavior in zebrafish is likely to be mediated by NA's action on the α1-adrenoceptor. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Heart Rate Variability for Evaluating Vigilant Attention in Partial Chronic Sleep Restriction

    PubMed Central

    Henelius, Andreas; Sallinen, Mikael; Huotilainen, Minna; Müller, Kiti; Virkkala, Jussi; Puolamäki, Kai

    2014-01-01

    Study Objectives: Examine the use of spectral heart rate variability (HRV) metrics in measuring sleepiness under chronic partial sleep restriction, and identify underlying relationships between HRV, Karolinska Sleepiness Scale ratings (KSS), and performance on the Psychomotor Vigilance Task (PVT). Design: Controlled laboratory study. Setting: Experimental laboratory of the Brain Work Research Centre of the Finnish Institute of Occupational Health, Helsinki, Finland. Participants: Twenty-three healthy young males (mean age ± SD = 23.77 ± 2.29). Interventions: A sleep restriction group (N = 15) was subjected to chronic partial sleep restriction with 4 h sleep for 5 nights. A control group (N = 8) had 8 h sleep on all nights. Measurements and Results: Based on a search over all HRV frequency bands in the range [0.00, 0.40] Hz, the band [0.01, 0.08] Hz showed the highest correlation for HRV–PVT (0.60, 95% confidence interval [0.49, 0.69]) and HRV–KSS (0.33, 95% confidence interval [0.16, 0.46]) for the sleep restriction group; no correlation was found for the control group. We studied the fraction of variance in PVT explained by HRV and a 3-component alertness model, containing circadian and homeostatic processes coupled with sleep inertia, respectively. HRV alone explained 33% of PVT variance. Conclusions: The findings suggest that HRV spectral power reflects vigilant attention in subjects exposed to partial chronic sleep restriction. Citation: Henelius A, Sallinen M, Huotilainen M, Müller K, Virkkala J, Puolamäki K. Heart rate variability for evaluating vigilant attention in partial chronic sleep restriction. SLEEP 2014;37(7):1257-1267. PMID:24987165

  8. Can we still dream when the mind is blank? Sleep and dream mentations in auto-activation deficit.

    PubMed

    Leu-Semenescu, Smaranda; Uguccioni, Ginevra; Golmard, Jean-Louis; Czernecki, Virginie; Yelnik, Jerome; Dubois, Bruno; Forgeot d'Arc, Baudouin; Grabli, David; Levy, Richard; Arnulf, Isabelle

    2013-10-01

    Bilateral damage to the basal ganglia causes auto-activation deficit, a neuropsychological syndrome characterized by striking apathy, with a loss of self-driven behaviour that is partially reversible with external stimulation. Some patients with auto-activation deficit also experience a mental emptiness, which is defined as an absence of any self-reported thoughts. We asked whether this deficit in spontaneous activation of mental processing may be reversed during REM sleep, when dreaming activity is potentially elicited by bottom-up brainstem stimulation on the cortex. Sleep and video monitoring over two nights and cognitive tests were performed on 13 patients with auto-activation deficit secondary to bilateral striato-pallidal lesions and 13 healthy subjects. Dream mentations were collected from home diaries and after forced awakenings in non-REM and REM sleep. The home diaries were blindly analysed for length, complexity and bizarreness. A mental blank during wakefulness was complete in six patients and partial in one patient. Four (31%) patients with auto-activation deficit (versus 92% of control subjects) reported mentations when awakened from REM sleep, even when they demonstrated a mental blank during the daytime (n = 2). However, the patients' dream reports were infrequent, short, devoid of any bizarre or emotional elements and tended to be less complex than the dream mentations of control subjects. The sleep duration, continuity and stages were similar between the groups, except for a striking absence of sleep spindles in 6 of 13 patients with auto-activation deficit, despite an intact thalamus. The presence of spontaneous dreams in REM sleep in the absence of thoughts during wakefulness in patients with auto-activation deficit supports the idea that simple dream imagery is generated by brainstem stimulation and is sent to the sensory cortex. However, the lack of complexity in these dream mentations suggests that the full dreaming process (scenario, emotions, etc.) require these sensations to be interpreted by higher-order cortical areas. The absence of sleep spindles in localized lesions in the basal ganglia highlights the role of the pallidum and striatum in spindling activity during non-REM sleep.

  9. Prolonged partial upper airway obstruction during sleep – an underdiagnosed phenotype of sleep-disordered breathing

    PubMed Central

    Anttalainen, Ulla; Tenhunen, Mirja; Rimpilä, Ville; Polo, Olli; Rauhala, Esa; Himanen, Sari-Leena; Saaresranta, Tarja

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is a well-recognized disorder conventionally diagnosed with an elevated apnea–hypopnea index. Prolonged partial upper airway obstruction is a common phenotype of sleep-disordered breathing (SDB), which however is still largely underreported. The major reasons for this are that cyclic breathing pattern coupled with arousals and arterial oxyhemoglobin saturation are easy to detect and considered more important than prolonged episodes of increased respiratory effort with increased levels of carbon dioxide in the absence of cycling breathing pattern and repetitive arousals. There is also a growing body of evidence that prolonged partial obstruction is a clinically significant form of SDB, which is associated with symptoms and co-morbidities which may partially differ from those associated with OSAS. Partial upper airway obstruction is most prevalent in women, and it is treatable with the nasal continuous positive pressure device with good adherence to therapy. This review describes the characteristics of prolonged partial upper airway obstruction during sleep in terms of diagnostics, pathophysiology, clinical presentation, and comorbidity to improve recognition of this phenotype and its timely and appropriate treatment. PMID:27608271

  10. Frontal Underactivation During Working Memory Processing in Adults With Acute Partial Sleep Deprivation: A Near-Infrared Spectroscopy Study.

    PubMed

    Yeung, Michael K; Lee, Tsz L; Cheung, Winnie K; Chan, Agnes S

    2018-01-01

    Individuals with partial sleep deprivation may have working memory (WM) impairment, but the underlying neural mechanism of this phenomenon is relatively unknown. The present study examined neural processing during WM performance in individuals with and without partial sleep deprivation using near-infrared spectroscopy (NIRS). Forty college students (10 males) were equally split into Sufficient Sleep (SS) and Insufficient Sleep (IS) groups based on self-reports of previous night's sleep duration. Participants in the SS group obtained the recommended amounts of sleep according to various sleep organizations (i.e., >7.0 h), whereas those in the IS group obtained amounts of sleep no greater than the lower limit of the recommendation (i.e., ≤7.0 h). All participants underwent an n -back paradigm with a WM load (i.e., 3-back) and a control condition (i.e., 0-back) while their prefrontal hemodynamics were recorded by NIRS. The IS and SS groups performed the tasks comparably well. However, unlike the SS group, which exhibited bilateral frontal activation indicated by increased oxyhemoglobin concentration and decreased deoxyhemoglobin concentration during WM processing (i.e., 3-back > 0-back), the IS group did not exhibit such activation. In addition, levels of WM-related frontal activation, especially those on the left side, correlated with sleep duration the night before, even when habitual sleep duration was controlled for. The findings suggest the presence of frontal lobe dysfunction in the absence of evident WM difficulties in individuals with acute partial sleep deprivation. They also highlight the importance of a good night's sleep to brain health.

  11. Impact of partial sleep deprivation on immune markers.

    PubMed

    Wilder-Smith, A; Mustafa, F B; Earnest, A; Gen, L; Macary, P A

    2013-10-01

    Sleep quality is considered to be an important predictor of immunity. Lack of sleep therefore may reduce immunity, thereby increasing the susceptibility to respiratory pathogens. A previous study showed that reduced sleep duration was associated with an increased likelihood of the common cold. It is important to understand the role of sleep in altering immune responses to understand how sleep deprivation leads to an increased susceptibility to the common cold or other respiratory infections. We sought to examine the impact of partial sleep deprivation on various immune markers. Fifty-two healthy volunteers were partially sleep deprived for one night. We took blood samples before the sleep deprivation, immediately after, and 4 and 7 days after sleep deprivation. We measured various immune markers and used a generalized estimating equation (GEE) to examine the differences in the repeated measures. CD4, CD8, CD14, and CD16 all showed significant time-dependent changes, but CD3 did not. The most striking time-dependent change was observed for the mitogen proliferation assay and for HLA-DR. There was a significant decrease in the mitogen proliferation values and HLA-DR immediately after the sleep deprivation experiment, which started to rise again on day 4 and normalized by day 7. The transiently impaired mitogen proliferation, the decreased HLA-DR, the upregulated CD14, and the variations in CD4 and CD8 that we observed in temporal relationship with partial sleep deprivation could be one possible explanation for the increased susceptibility to respiratory infections reported after reduced sleep duration. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Sleep loss impairs short and novel language tasks having a prefrontal focus.

    PubMed

    Harrison, Y; Horne, J A

    1998-06-01

    Most cognitive tests administered during sleep loss are well rehearsed to remove practice effects. This can introduce tedium and a loss of novelty, which may be the key to the test's subsequent sensitivity to sleep loss, and why it may need only a few minutes administration before sleep loss effects are apparent. There is little evidence to show that any of these tests are actually affected by sleep loss is given de novo, without practice, but using a non-sleep deprived control group. Although the sleep deprivation literature advocates that short, novel and stimulating tests would not be expected to be sensitive to sleep loss, recent sleep loss findings using neuropsychological tests focussing on the prefrontal cortex, indicate that such tests may challenge this maxim. Twenty healthy young adults were randomly assigned to two groups: nil sleep deprivation (control). and 36h continuous sleep deprivation (SD). Two, novel, interesting and short (6 min) language tests, known (by brain imaging) to have predominantly a PFC focus, were given, once, towards the end of SD: (i) the Haylings test--which measures the capacity to inhibit strong associations in favour of novel responses, and (ii) a variant of the word fluency test--innovation in a verb-to-noun association. Subjects were exhorted to do their best. Compared with control subjects both tasks were significantly impaired by SD. As a check on the effects on the Haylings test, a repeat study was undertaken with 30 more subjects randomly divided as before. The outcome was similar. Linguistically, sleep loss appears to interfere with novel responses and the ability to suppress routine answers.

  13. Sleep deprivation: Impact on cognitive performance

    PubMed Central

    Alhola, Paula; Polo-Kantola, Päivi

    2007-01-01

    Today, prolonged wakefulness is a widespread phenomenon. Nevertheless, in the field of sleep and wakefulness, several unanswered questions remain. Prolonged wakefulness can be due to acute total sleep deprivation (SD) or to chronic partial sleep restriction. Although the latter is more common in everyday life, the effects of total SD have been examined more thoroughly. Both total and partial SD induce adverse changes in cognitive performance. First and foremost, total SD impairs attention and working memory, but it also affects other functions, such as long-term memory and decision-making. Partial SD is found to influence attention, especially vigilance. Studies on its effects on more demanding cognitive functions are lacking. Coping with SD depends on several factors, especially aging and gender. Also interindividual differences in responses are substantial. In addition to coping with SD, recovering from it also deserves attention. Cognitive recovery processes, although insufficiently studied, seem to be more demanding in partial sleep restriction than in total SD. PMID:19300585

  14. A neuron-glia interaction involving GABA Transaminase contributes to sleep loss in sleepless mutants

    PubMed Central

    Chen, Wen-Feng; Maguire, Sarah; Sowcik, Mallory; Luo, Wenyu; Koh, Kyunghee; Sehgal, Amita

    2014-01-01

    Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep. PMID:24637426

  15. Sleep Architecture in Partially Acclimatized Lowlanders and Native Tibetans at 3800 Meter Altitude: What Are the Differences?

    PubMed

    Kong, Fanyi; Liu, Shixiang; Li, Qiong; Wang, Lin

    2015-09-01

    It is not well known whether high altitude acclimatization could help lowlanders improve their sleep architecture as well as Native Tibetans. In order to address this, we investigated the structural differences in sleep between Native Tibetans and partially acclimatized lowlanders and examined the association between sleep architecture and subjective sleep quality. Partially acclimatized soldiers from lowlands and Native Tibetan soldiers stationed at Shangri-La (3800 m) were surveyed using the Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Rating Scale (HAMD). The sleep architecture of those without anxiety (as determined by HAMA>14) and/or depression (HAMD>20) was analyzed using polysomnography and the results were compared between the two groups. One hundred sixty-five male soldiers, including 55 Native Tibetans, were included in the study. After partial acclimatization, lowlanders still exhibited differences in sleep architecture as compared to Native Tibetans, as indicated by a higher PSQI score (8.14±2.37 vs. 3.90±2.85, p<0.001), shorter non-rapid eye movement (non-REM) sleep (458.68±112.63 vs. 501±37.82 min, P=0.03), lower nocturnal arterial oxygen saturation (Spo2; mean 91.39±1.24 vs. 92.71±2.12%, p=0.03), and increased times of Spo2 reduction from 89% to 85% (median 48 vs.17, p=0.04) than Native Tibetans. Sleep onset latency (β=0.08, 95%CI: 0.01 to 0.15), non-REM latency (β=0.011, 95%CI 0.001 to 0.02), mean Spo2 (β=-0.79, 95%CI: -1.35 to -0.23) and time in stage 3+4 sleep (β=-0.014, 95%CI: -0.001 to -0.028) were slightly associated with the PSQI score. Partially acclimatized lowlanders experienced less time in non-REM sleep and had lower arterial oxygen saturation than Native Tibetans at an altitude of 3800 m. The main independent contributors to poor sleep quality are hypoxemia, difficulty in sleep induction, and time in deep sleep.

  16. The effects of Jiao-Tai-Wan on sleep, inflammation and insulin resistance in obesity-resistant rats with chronic partial sleep deprivation.

    PubMed

    Zou, Xin; Huang, Wenya; Lu, Fuer; Fang, Ke; Wang, Dingkun; Zhao, Shuyong; Jia, Jiming; Xu, Lijun; Wang, Kaifu; Wang, Nan; Dong, Hui

    2017-03-23

    Jiao-Tai-Wan (JTW), composed of Rhizome Coptidis and Cortex Cinnamomi, is a classical traditional Chinese prescription for treating insomnia. Several in vivo studies have concluded that JTW could exert its therapeutical effect in insomnia rats. However, the specific mechanism is still unclear. The present study aimed to explore the effect of JTW on sleep in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD) and to clarify its possible mechanism. JTW was prepared and the main components contained in the granules were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The Male Sprague-Dawley (SD) rats underwent 4 h PSD by environmental noise and the treatment with low and high doses of JTW orally for 4 weeks, respectively. Then sleep structure was analyzed by electroencephalographic (EEG). Inflammation markers including high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were examined in the rat plasma. Meanwhile, metabolic parameters as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS) levels and insulin resistance index (HOMA-IR) were measured. The expressions of clock gene cryptochromes (Cry1 and Cry2) and inflammation gene nuclear factor-κB (NF-κB) in peripheral blood monocyte cells (PBMC) were also determined. The result showed that the administration of JTW significantly increased total sleep time and total slow wave sleep (SWS) time in OR rats with PSD. Furthermore, the treatment with JTW reversed the increase in the markers of systemic inflammation and insulin resistance caused by sleep loss. These changes were also associated with the up-regulation of Cry1 mRNA and Cry 2 mRNA and the down-regulation of NF-κB mRNA expression in PBMC. This study suggests that JTW has the beneficial effects of improving sleep, inflammation and insulin sensitivity. The mechanism appears to be related to the modulation of circadian clock and inflammation genes expressions in PBMC.

  17. The Maintenance of Wakefulness Test and driving simulator performance.

    PubMed

    Banks, Siobhan; Catcheside, Peter; Lack, Leon C; Grunstein, Ron R; McEvoy, R Doug

    2005-11-01

    It has been suggested that the Maintenance of Wakefulness Test (MWT) may be clinically useful to assess fitness to drive, yet little is known about the actual relationship between sleep latency and driving performance. This study examined the ability of 2 MWT trials to predict driving-simulator performance in healthy individuals. Experimental. NA. Twenty healthy volunteers (mean age 22.8 years; 9 men). NA. The MWT and driving-simulator performance were examined under 2 conditions-partial sleep deprivation and a combination of partial sleep deprivation and alcohol consumption. Each subject was studied a week apart, with the order randomly assigned. Subjects completed a nighttime 70-minute AusEd driving simulation task and two 40-minute MWT trials, 1 before (MWT1) and 1 after (MWT2) the driving task. In the sleep-deprived condition, the MWT1 sleep latency was inversely correlated with braking reaction time. During the partial sleep deprivation and alcohol condition, the number of microsleeps during the driving task, steering deviation, braking reaction time, and crashes all negatively correlated with the MWT1 sleep latency. Additionally, construction of a receiver-operator characteristic curve revealed that MWT1 sleep latency in the partial sleep deprivation plus alcohol condition significantly discriminated subjects who had a crash from those who did not. These results indicate that sleep latency on the MWT is a reasonable predictor of driving simulator performance in sleepy, alcohol-impaired, normal subjects. Further research is needed to examine the relationship between daytime MWT results and driving simulator performance in sleepy patients (eg, those with obstructive sleep apnea) and in experimentally sleep-deprived normal subjects.

  18. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans.

    PubMed

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J; Dinges, David F; Kuna, Samuel T; Maislin, Greg; Van Dongen, Hans P A; Tufik, Sergio; Hogenesch, John B; Hakonarson, Hakon; Pack, Allan I

    2014-08-01

    Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336.

  19. Public health implications of sleep loss: the community burden.

    PubMed

    Hillman, David R; Lack, Leon C

    2013-10-21

    Poor sleep imparts a significant personal and societal burden. Therefore, it is important to have accurate estimates of its causes, prevalence and costs to inform health policy. A recent evaluation of the sleep habits of Australians demonstrates that frequent (daily or near daily) sleep difficulties (initiating and maintaining sleep, and experiencing inadequate sleep), daytime fatigue, sleepiness and irritability are highly prevalent (20%-35%). These difficulties are generally more prevalent among females, with the exception of snoring and related difficulties. While about half of these problems are likely to be attributable to specific sleep disorders, the balance appears attributable to poor sleep habits or choices to limit sleep opportunity. Study of the economic impact of sleep disorders demonstrates financial costs to Australia of $5.1 billion per year. This comprises $270 million for health care costs for the conditions themselves, $540 million for care of associated medical conditions attributable to sleep disorders, and about $4.3 billion largely attributable to associated productivity losses and non-medical costs resulting from sleep loss-related accidents. Loss of life quality added a substantial further non-financial cost. While large, these costs were for sleep disorders alone. Additional costs relating to inadequate sleep from poor sleep habits in people without sleep disorders were not considered. Based on the high prevalence of such problems and the known impacts of sleep loss in all its forms on health, productivity and safety, it is likely that these poor sleep habits would add substantially to the costs from sleep disorders alone.

  20. Sleep loss and structural plasticity.

    PubMed

    Areal, Cassandra C; Warby, Simon C; Mongrain, Valérie

    2017-06-01

    Wakefulness and sleep are dynamic states during which brain functioning is modified and shaped. Sleep loss is detrimental to many brain functions and results in structural changes localized at synapses in the nervous system. In this review, we present and discuss some of the latest observations of structural changes following sleep loss in some vertebrates and insects. We also emphasize that these changes are region-specific and cell type-specific and that, most importantly, these structural modifications have functional roles in sleep regulation and brain functions. Selected mechanisms driving structural modifications occurring with sleep loss are also discussed. Overall, recent research highlights that extending wakefulness impacts synapse number and shape, which in turn regulate sleep need and sleep-dependent learning/memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness

    PubMed Central

    Branch, Abigail F.; Navidi, William; Tabuchi, Sawako; Terao, Akira; Yamanaka, Akihiro; Scammell, Thomas E.; Diniz Behn, Cecilia

    2016-01-01

    Study Objectives: Narcolepsy is caused by loss of the orexin (also known as hypocretin) neurons. In addition to the orexin peptides, these neurons release additional neurotransmitters, which may produce complex effects on sleep/wake behavior. Currently, it remains unknown whether the orexin neurons promote the initiation as well as the maintenance of wakefulness, and whether the orexin neurons influence initiation or maintenance of sleep. To determine the effects of the orexin neurons on the dynamics of sleep/wake behavior, we analyzed sleep/wake architecture in a novel mouse model of acute orexin neuron loss. Methods: We used survival analysis and other statistical methods to analyze sleep/wake architecture in orexin-tTA ; TetO diphtheria toxin A mice at different stages of orexin neuron degeneration. Results: Progressive loss of the orexin neurons dramatically reduced survival of long wake bouts, but it also improved survival of brief wake bouts. In addition, with loss of the orexin neurons, mice were more likely to wake during the first 30 sec of nonrapid eye movement sleep and then less likely to return to sleep during the first 60 sec of wakefulness. Conclusions: These findings help explain the sleepiness and fragmented sleep that are characteristic of narcolepsy. Orexin neuron loss impairs survival of long wake bouts resulting in poor maintenance of wakefulness, but this neuronal loss also fragments sleep by increasing the risk of awakening at the beginning of sleep and then reducing the likelihood of quickly returning to sleep. Citation: Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive loss of the orexin neurons reveals dual effects on wakefulness. SLEEP 2016;39(2):369–377. PMID:26446125

  2. Sleep and eating in childhood: a potential behavioral mechanism underlying the relationship between poor sleep and obesity.

    PubMed

    Burt, Julia; Dube, Laurette; Thibault, Louise; Gruber, Reut

    2014-01-01

    The goal of our study was to examine the associations between sleep and eating behaviors. Specifically, we examined associations between sleep duration and continuity with behaviors that promote eating regardless of true physiologic hunger state including emotional (food intake in response to emotional distress) external (eating in response to the sight or smell of food), and restrained eating (a paradoxical behavior; food intake is initially reduced to lose or maintain body weight, but followed by increased consumption and binge eating). Fifty-six children (29 boys; 27 girls) ages 5 to 12 years participated in the study. Mean age was 7.7±1.9 years, and average body mass index (BMI) was within the healthy range (17.8±4.3 kg/m(2)). Sleep duration, continuity and schedule were assessed using actigraphy and self-reports. The Child Dutch Eating Behavior Questionnaire-modified version (DEBQ-M) was used to examine levels of emotional, external and restrained eating in the children. Associations between the sleep and eating behaviors were examined using partial correlations and multiple regression analyses. External eating score was negatively associated with sleep duration; emotional eating score was associated with lower levels of sleep continuity; and restrained eating score were associated with a later sleep start and later bedtime. Short sleep duration and poor sleep continuity were associated with higher levels of eating behaviors shown to be associated with increased food intake. Therefore, sleep loss may be associated with diminished self-regulation of appetite in children, increasing the risk for overeating and obesity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sleep interacts with aβ to modulate intrinsic neuronal excitability.

    PubMed

    Tabuchi, Masashi; Lone, Shahnaz R; Liu, Sha; Liu, Qili; Zhang, Julia; Spira, Adam P; Wu, Mark N

    2015-03-16

    Emerging data suggest an important relationship between sleep and Alzheimer's disease (AD), but how poor sleep promotes the development of AD remains unclear. Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ-induced hyperexcitability and suggest that defects in specific K(+) currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sleep Interacts with Aβ to Modulate Intrinsic Neuronal Excitability

    PubMed Central

    Tabuchi, Masashi; Lone, Shahnaz R.; Liu, Sha; Liu, Qili; Zhang, Julia; Spira, Adam P.; Wu, Mark N.

    2015-01-01

    SUMMARY Background Emerging data suggest an important relationship between sleep and Alzheimer’s Disease (AD), but how poor sleep promotes the development of AD remains unclear. Results Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ–induced hyperexcitability and suggest that defects in specific K+ currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. Conclusions Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD. PMID:25754641

  5. Decreased alertness due to sleep loss increases pain sensitivity in mice

    PubMed Central

    Alexandre, Chloe; Latremoliere, Alban; Ferreira, Ashley; Miracca, Giulia; Yamamoto, Mihoko; Scammell, Thomas E; Woolf, Clifford J

    2018-01-01

    Extended daytime and nighttime activities are major contributors to the growing sleep deficiency epidemic1,2, as is the high prevalence of sleep disorders like insomnia. The consequences of chronic insufficient sleep for health remain uncertain3. Sleep quality and duration predict presence of pain the next day in healthy subjects4–7, suggesting that sleep disturbances alone may worsen pain, and experimental sleep deprivation in humans supports this claim8,9. We demonstrate that sleep loss, but not sleep fragmentation, in healthy mice increases sensitivity to noxious stimuli (referred to as ‘pain’) without general sensory hyper-responsiveness. Moderate daily repeated sleep loss leads to a progressive accumulation of sleep debt and also to exaggerated pain responses, both of which are rescued after restoration of normal sleep. Caffeine and modafinil, two wake-promoting agents that have no analgesic activity in rested mice, immediately normalize pain sensitivity in sleep-deprived animals, without affecting sleep debt. The reversibility of mild sleep-loss-induced pain by wake-promoting agents reveals an unsuspected role for alertness in setting pain sensitivity. Clinically, insufficient or poor-quality sleep may worsen pain and this enhanced pain may be reduced not by analgesics, whose effectiveness is reduced, but by increasing alertness or providing better sleep. PMID:28481358

  6. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner.

    PubMed

    Rångtell, Frida H; Karamchedu, Swathy; Andersson, Peter; Liethof, Lisanne; Olaya Búcaro, Marcela; Lampola, Lauri; Schiöth, Helgi B; Cedernaes, Jonathan; Benedict, Christian

    2018-01-31

    Acute sleep deprivation can lead to judgement errors and thereby increases the risk of accidents, possibly due to an impaired working memory. However, whether the adverse effects of acute sleep loss on working memory are modulated by auditory distraction in women and men are not known. Additionally, it is unknown whether sleep loss alters the way in which men and women perceive their working memory performance. Thus, 24 young adults (12 women using oral contraceptives at the time of investigation) participated in two experimental conditions: nocturnal sleep (scheduled between 22:30 and 06:30 hours) versus one night of total sleep loss. Participants were administered a digital working memory test in which eight-digit sequences were learned and retrieved in the morning after each condition. Learning of digital sequences was accompanied by either silence or auditory distraction (equal distribution among trials). After sequence retrieval, each trial ended with a question regarding how certain participants were of the correctness of their response, as a self-estimate of working memory performance. We found that sleep loss impaired objective but not self-estimated working memory performance in women. In contrast, both measures remained unaffected by sleep loss in men. Auditory distraction impaired working memory performance, without modulation by sleep loss or sex. Being unaware of cognitive limitations when sleep-deprived, as seen in our study, could lead to undesirable consequences in, for example, an occupational context. Our findings suggest that sleep-deprived young women are at particular risk for overestimating their working memory performance. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  7. Occurrence of epileptiform discharges and sleep during EEG recordings in children after melatonin intake versus sleep-deprivation.

    PubMed

    Gustafsson, Greta; Broström, Anders; Ulander, Martin; Vrethem, Magnus; Svanborg, Eva

    2015-08-01

    To determine if melatonin is equally efficient as partial sleep deprivation in inducing sleep without interfering with epileptiform discharges in EEG recordings in children 1-16 years old. We retrospectively analysed 129 EEGs recorded after melatonin intake and 113 EEGs recorded after partial sleep deprivation. Comparisons were made concerning occurrence of epileptiform discharges, the number of children who fell asleep and the technical quality of EEG recordings. Comparison between different age groups was also made. No significant differences were found regarding occurrence of epileptiform discharges (33% after melatonin intake, 36% after sleep deprivation), or proportion of unsuccessful EEGs (8% and 10%, respectively). Melatonin and sleep deprivation were equally efficient in inducing sleep (70% in both groups). Significantly more children aged 1-4 years obtained sleep after melatonin intake in comparison to sleep deprivation (82% vs. 58%, p⩽0.01), and in comparison to older children with melatonin induced sleep (58-67%, p⩽0.05). Sleep deprived children 9-12 years old had higher percentage of epileptiform discharges (62%, p⩽0.05) compared to younger sleep deprived children. Melatonin is equally efficient as partial sleep deprivation to induce sleep and does not affect the occurrence of epileptiform discharges in the EEG recording. Sleep deprivation could still be preferable in older children as melatonin probably has less sleep inducing effect. Melatonin induced sleep have advantages, especially in younger children as they fall asleep easier than after sleep deprivation. The procedure is easier for the parents than keeping a young child awake for half the night. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Age, cohort and period effects in the prevalence of sleep disturbances among older people: the impact of economic downturn.

    PubMed

    Dregan, Alex; Armstrong, David

    2009-11-01

    Using two longitudinal and nationally representative datasets, this study employs a cross-cohort analysis to examine age, cohort and period effects in the prevalence of sleep loss through worry for people over the age of 50 in the UK. The likelihood of reporting sleep loss through worry is calculated at two time-points for 7785 respondents from the Health and Activity Survey (HALs) and 21,834 respondents from the English Longitudinal Study of Ageing (ELSA), with baseline information on sleep loss through worry. Descriptive statistical methods were applied to determine the prevalence rates in sleep loss through worry at each survey within both datasets. The results of analysis reveal that sleep loss through worry declined with age, but this pattern was tempered by a temporary increase in the early 1990s. The contemporary economic downturn is suggested as a possible explanation for the significant increase in the prevalence of sleep loss through worry in 1991.

  9. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  10. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.

    PubMed

    McCauley, Peter; Kalachev, Leonid V; Mollicone, Daniel J; Banks, Siobhan; Dinges, David F; Van Dongen, Hans P A

    2013-12-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation--and thereby sensitivity to neurobehavioral impairment from sleep loss--is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation--and thus sensitivity to sleep loss--depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work.

  11. Delta and theta power spectra of night sleep EEG are higher in breast-feeding mothers than in non-pregnant women.

    PubMed

    Nishihara, Kyoko; Horiuchi, Shigeko; Eto, Hiromi; Uchida, Sunao; Honda, Makoto

    2004-09-23

    The power spectra of night sleep EEGs of 12 breast-feeding 9-13 week postpartum mothers were analyzed and compared with those of 12 non-pregnant women. The power spectra in the delta and theta frequency range during NREM sleep for breast-feeding mothers were significantly higher than those for non-pregnant women. In addition, the all-night sleep patterns of the mothers were classified into two groups - interrupted sleep due to taking care of their infants and non-interrupted sleep - in order to observe the influence of partial sleep deprivation. The power spectra in the delta and theta frequency range were not significantly different between them. This result suggests that increased delta and theta power spectra during postpartum sleep do not result from partial sleep deprivation. The role of prolactin in breast-feeding mothers' sleep is also discussed.

  12. Mania triggered by sleep loss and risk of postpartum psychosis in women with bipolar disorder.

    PubMed

    Lewis, Katie J S; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Perry, Amy; Craddock, Nick; Jones, Lisa; Jones, Ian

    2018-01-01

    Women with bipolar disorder are at high risk of affective psychoses following childbirth (i.e. "postpartum psychosis", PP) and there is a need to identify which factors underlie this increased risk. Vulnerability to mood dysregulation following sleep loss may influence risk of PP, as childbirth is typified by sleep disruption. We investigated whether a history of mood episodes triggered by sleep loss was associated with PP in women with bipolar disorder (BD). Participants were 870 parous women with BD recruited to the Bipolar Disorder Research Network. Lifetime diagnoses of BD and perinatal episodes were identified via interview and case notes. Information on whether mood episodes had been triggered by sleep loss was derived at interview. Rates of PP were compared between women who did and did not report mood episodes following sleep loss. Women who reported sleep loss triggering episodes of mania were twice as likely to have experienced an episode of PP (OR = 2.09, 95% CI = 1.47-2.97, p < 0.001) compared to women who did not report this. There was no significant association between depression triggered by sleep loss and PP (p = 0.526). Data were cross-sectional therefore may be subject to recall bias. We also did not have objective data on sleep disruption that had occurred during the postpartum period or prior to mood episodes. In clinical practice, a history of mania following sleep loss could be a marker of increased vulnerability to PP, and should be discussed with BD women who are pregnant or planning to conceive. Copyright © 2017. Published by Elsevier B.V.

  13. Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women.

    PubMed

    LeRoux, Amanda; Wright, Lisa; Perrot, Tara; Rusak, Benjamin

    2014-11-01

    There is extensive evidence that sleep restriction alters endocrine function in healthy young men, increasing afternoon cortisol levels and modifying levels of other hormones that regulate metabolism. Recent studies have confirmed these effects in young women, but have not investigated whether menstrual cycle phase influences these responses. The effects on cortisol levels of limiting sleep to 3h for one night were assessed in two groups of women at different points in their menstrual cycles: mid-follicular and mid-luteal. Eighteen healthy, young women, not taking oral contraceptives (age: 21.8±0.53; BMI: 22.5±0.58 [mean±SEM]), were studied. Baseline sleep durations, eating habits and menstrual cycles were monitored. Salivary samples were collected at six times of day (08:00, 08:30, 11:00, 14:00, 17:00, 20:00) during two consecutive days: first after a 10h overnight sleep opportunity (Baseline) and then after a night with a 3h sleep opportunity (Post-sleep restriction). All were awakened at the same time of day. Women in the follicular phase showed a significant decrease (p=0.004) in their cortisol awakening responses (CAR) after sleep restriction and a sustained elevation in afternoon/evening cortisol levels (p=0.008), as has been reported for men. Women in the luteal phase showed neither a depressed CAR, nor an increase in afternoon/evening cortisol levels. Secondary analyses examined the impact of sleep restriction on self-reported hunger and mood. Menstrual cycle phase dramatically altered the cortisol responses of healthy, young women to a single night of sleep restriction, implicating effects of spontaneous changes in endocrine status on adrenal responses to sleep loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Neurocognitive Consequences of Sleep Deprivation

    PubMed Central

    Goel, Namni; Rao, Hengyi; Durmer, Jeffrey S.; Dinges, David F.

    2012-01-01

    Sleep deprivation is associated with considerable social, financial, and health-related costs, in large measure because it produces impaired cognitive performance due to increasing sleep propensity and instability of waking neurobehavioral functions. Cognitive functions particularly affected by sleep loss include psychomotor and cognitive speed, vigilant and executive attention, working memory, and higher cognitive abilities. Chronic sleep-restriction experiments—which model the kind of sleep loss experienced by many individuals with sleep fragmentation and premature sleep curtailment due to disorders and lifestyle—demonstrate that cognitive deficits accumulate to severe levels over time without full awareness by the affected individual. Functional neuroimaging has revealed that frequent and progressively longer cognitive lapses, which are a hallmark of sleep deprivation, involve distributed changes in brain regions including frontal and parietal control areas, secondary sensory processing areas, and thalamic areas. There are robust differences among individuals in the degree of their cognitive vulnerability to sleep loss that may involve differences in prefrontal and parietal cortices, and that may have a basis in genes regulating sleep homeostasis and circadian rhythms. Thus, cognitive deficits believed to be a function of the severity of clinical sleep disturbance may be a product of genetic alleles associated with differential cognitive vulnerability to sleep loss. PMID:19742409

  15. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: Implications for age‐related loss of slow wave, stage 3 sleep

    PubMed Central

    Bjurstrom, Martin F.; Olmstead, Richard

    2016-01-01

    Abstract Background and aims Sleep disturbance is a prominent complaint in cocaine and alcohol dependence. This controlled study evaluated differences of polysomnographic (PSG) sleep in cocaine‐ and alcohol‐dependent subjects, and examined whether substance dependence interacts with age to alter slow wave sleep and rapid eye movement (REM) sleep. Design Cross‐sectional comparison. Setting Los Angeles and San Diego, CA, USA. Participants Abstinent cocaine‐dependent subjects (n = 32), abstinent alcohol‐dependent subjects (n = 73) and controls (n = 108); mean age 40.3 years recruited 2005–12. Measurements PSG measures of sleep continuity and sleep architecture primary outcomes of Stage 3 sleep and REM sleep. Covariates included age, ethnicity, education, smoking, body mass index and depressive symptoms. Findings Compared with controls, both groups of substance dependent subjects showed loss of Stage 3 sleep (P < 0.001). A substance dependence × age interaction was found in which both cocaine‐ and alcohol‐dependent groups showed loss of Stage 3 sleep at an earlier age than controls (P < 0.05 for all), and cocaine‐dependent subjects showed loss of Stage 3 sleep at an earlier age than alcoholics (P < 0.05). Compared with controls, REM sleep was increased in both substance‐dependent groups (P < 0.001), and cocaine and alcohol dependence were associated with earlier age‐related increase in REM sleep (P < 0.05 for all). Conclusions Cocaine and alcohol dependence appear to be associated with marked disturbances of sleep architecture, including increased rapid eye movement sleep and accelerated age‐related loss of slow wave, Stage 3 sleep. PMID:26749502

  16. Concomitant changes in sleep duration and body weight and body composition during weight loss and 3-mo weight maintenance.

    PubMed

    Verhoef, Sanne P M; Camps, Stefan G J A; Gonnissen, Hanne K J; Westerterp, Klaas R; Westerterp-Plantenga, Margriet S

    2013-07-01

    An inverse relation between sleep duration and body mass index (BMI) has been shown. We assessed the relation between changes in sleep duration and changes in body weight and body composition during weight loss. A total of 98 healthy subjects (25 men), aged 20-50 y and with BMI (in kg/m(2)) from 28 to 35, followed a 2-mo very-low-energy diet that was followed by a 10-mo period of weight maintenance. Body weight, body composition (measured by using deuterium dilution and air-displacement plethysmography), eating behavior (measured by using a 3-factor eating questionnaire), physical activity (measured by using the validated Baecke's questionnaire), and sleep (estimated by using a questionnaire with the Epworth Sleepiness Scale) were assessed before and immediately after weight loss and 3- and 10-mo follow-ups. The average weight loss was 10% after 2 mo of dieting and 9% and 6% after 3- and 10-mo follow-ups, respectively. Daytime sleepiness and time to fall asleep decreased during weight loss. Short (≤7 h) and average (>7 to <9 h) sleepers increased their sleep duration, whereas sleep duration in long sleepers (≥9 h) did not change significantly during weight loss. This change in sleep duration was concomitantly negatively correlated with the change in BMI during weight loss and after the 3-mo follow-up and with the change in fat mass after the 3-mo follow-up. Sleep duration benefits from weight loss or vice versa. Successful weight loss, loss of body fat, and 3-mo weight maintenance in short and average sleepers are underscored by an increase in sleep duration or vice versa. This trial was registered at clinicaltrials.gov as NCT01015508.

  17. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish

    PubMed Central

    Jaggard, James B; Stahl, Bethany A; Lloyd, Evan; Prober, David A; Duboue, Erik R

    2018-01-01

    The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation. PMID:29405117

  18. Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss

    PubMed Central

    Seugnet, Laurent; Dissel, Stephane; Thimgan, Matthew; Cao, Lijuan; Shaw, Paul J.

    2017-01-01

    Although patients with primary insomnia experience sleep disruption, they are able to maintain normal performance on a variety of cognitive tasks. This observation suggests that insomnia may be a condition where predisposing factors simultaneously increase the risk for insomnia and also mitigate against the deleterious consequences of waking. To gain insight into processes that might regulate sleep and buffer neuronal circuits during sleep loss, we manipulated three genes, fat facet (faf), highwire (hiw) and the GABA receptor Resistance to dieldrin (Rdl), that were differentially modulated in a Drosophila model of insomnia. Our results indicate that increasing faf and decreasing hiw or Rdl within wake-promoting large ventral lateral clock neurons (lLNvs) induces sleep loss. As expected, sleep loss induced by decreasing hiw in the lLNvs results in deficits in short-term memory and increases of synaptic growth. However, sleep loss induced by knocking down Rdl in the lLNvs protects flies from sleep-loss induced deficits in short-term memory and increases in synaptic markers. Surprisingly, decreasing hiw and Rdl within the Mushroom Bodies (MBs) protects against the negative effects of sleep deprivation (SD) as indicated by the absence of a subsequent homeostatic response, or deficits in short-term memory. Together these results indicate that specific genes are able to disrupt sleep and protect against the negative consequences of waking in a circuit dependent manner. PMID:29109678

  19. Sleep loss as a trigger of mood episodes in bipolar disorder: individual differences based on diagnostic subtype and gender.

    PubMed

    Lewis, Katie Swaden; Gordon-Smith, Katherine; Forty, Liz; Di Florio, Arianna; Craddock, Nick; Jones, Lisa; Jones, Ian

    2017-09-01

    Background Sleep loss may trigger mood episodes in people with bipolar disorder but individual differences could influence vulnerability to this trigger. Aims To determine whether bipolar subtype (bipolar disorder type I (BP-I) or II (BD-II)) and gender were associated with vulnerability to the sleep loss trigger. Method During a semi-structured interview, 3140 individuals (68% women) with bipolar disorder (66% BD-I) reported whether sleep loss had triggered episodes of high or low mood. DSM-IV diagnosis of bipolar subtype was derived from case notes and interview data. Results Sleep loss triggering episodes of high mood was associated with female gender (odds ratio (OR) = 1.43, 95% CI 1.17-1.75, P < 0.001) and BD-I subtype (OR = 2.81, 95% CI 2.26-3.50, P < 0.001). Analyses on sleep loss triggering low mood were not significant following adjustment for confounders. Conclusions Gender and bipolar subtype may increase vulnerability to high mood following sleep deprivation. This should be considered in situations where patients encounter sleep disruption, such as shift work and international travel. © The Royal College of Psychiatrists 2017.

  20. Sleep loss as a trigger of mood episodes in bipolar disorder: individual differences based on diagnostic subtype and gender

    PubMed Central

    Lewis, Katie Swaden; Gordon-Smith, Katherine; Forty, Liz; Di Florio, Arianna; Craddock, Nick; Jones, Lisa; Jones, Ian

    2017-01-01

    Background Sleep loss may trigger mood episodes in people with bipolar disorder but individual differences could influence vulnerability to this trigger. Aims To determine whether bipolar subtype (bipolar disorder type I (BP-I) or II (BD-II)) and gender were associated with vulnerability to the sleep loss trigger. Method During a semi-structured interview, 3140 individuals (68% women) with bipolar disorder (66% BD-I) reported whether sleep loss had triggered episodes of high or low mood. DSM-IV diagnosis of bipolar subtype was derived from case notes and interview data. Results Sleep loss triggering episodes of high mood was associated with female gender (odds ratio (OR) = 1.43, 95% CI 1.17–1.75, P < 0.001) and BD-I subtype (OR = 2.81, 95% CI 2.26–3.50, P < 0.001). Analyses on sleep loss triggering low mood were not significant following adjustment for confounders. Conclusions Gender and bipolar subtype may increase vulnerability to high mood following sleep deprivation. This should be considered in situations where patients encounter sleep disruption, such as shift work and international travel. PMID:28684405

  1. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption

    PubMed Central

    McEown, Kristopher; Takata, Yohko; Cherasse, Yoan; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael

    2016-01-01

    Rapid eye movement (REM) sleep loss is associated with increased consumption of weight-promoting foods. The prefrontal cortex (PFC) is thought to mediate reward anticipation. However, the precise role of the PFC in mediating reward responses to highly palatable foods (HPF) after REM sleep deprivation is unclear. We selectively reduced REM sleep in mice over a 25–48 hr period and chemogenetically inhibited the medial PFC (mPFC) by using an altered glutamate-gated and ivermectin-gated chloride channel that facilitated neuronal inhibition through hyperpolarizing infected neurons. HPF consumption was measured while the mPFC was inactivated and REM sleep loss was induced. We found that REM sleep loss increased HPF consumption compared to control animals. However, mPFC inactivation reversed the effect of REM sleep loss on sucrose consumption without affecting fat consumption. Our findings provide, for the first time, a causal link between REM sleep, mPFC function and HPF consumption. DOI: http://dx.doi.org/10.7554/eLife.20269.001 PMID:27919319

  2. A Novel BHLHE41 Variant is Associated with Short Sleep and Resistance to Sleep Deprivation in Humans

    PubMed Central

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J.; Dinges, David F.; Kuna, Samuel T.; Maislin, Greg; Van Dongen, Hans P.A.; Tufik, Sergio; Hogenesch, John B.; Hakonarson, Hakon; Pack, Allan I.

    2014-01-01

    Study Objectives: Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Design: Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. Results: We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. Conclusions: There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Citation: Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336. PMID:25083013

  3. Effects of sleep loss on vestibular response during simple and complex vestibular stimulation.

    DOT National Transportation Integrated Search

    1986-07-01

    Few data are available concerning the effects of sleep loss on vestibular responses although those responses are significant products of motion in aviation environments. This study assessed periodically throughout approx. 55 hrs. of sleep loss the oc...

  4. Assessing the benefits of napping and short rest breaks on processing speed in sleep-restricted adolescents.

    PubMed

    Lim, Julian; Lo, June C; Chee, Michael W L

    2017-04-01

    Achievement-oriented adolescents often study long hours under conditions of chronic sleep restriction, adversely affecting cognitive function. Here, we studied how napping and rest breaks (interleaved off-task periods) might ameliorate the negative effects of sleep restriction on processing speed. Fifty-seven healthy adolescents (26 female, age = 15-19 years) participated in a 15-day live-in protocol. All participants underwent sleep restriction (5 h time-in-bed), but were then randomized into two groups: one of these groups received a daily 1-h nap opportunity. Data from seven of the study days (sleep restriction days 1-5, and recovery days 1-2) are reported here. The Blocked Symbol Decoding Test, administered once a day, was used to assess time-on-task effects and the effects of rest breaks on processing speed. Controlling for baseline differences, participants who took a nap demonstrated faster speed of processing and greater benefit across testing sessions from practice. These participants were also affected significantly less by time-on-task effects. In contrast, participants who did not receive a nap benefited more from the rest breaks that were permitted between blocks of the test. Our results indicate that napping partially reverses the detrimental effects of sleep restriction on processing speed. However, rest breaks have a greater effect as a countermeasure against poor performance when sleep pressure is higher. These data add to the growing body of evidence showing the importance of sleep for good cognitive functioning in adolescents, and suggest that more frequent rest breaks might be important in situations where sleep loss is unavoidable. © 2017 European Sleep Research Society.

  5. Toll-Like Receptor 4 Is a Regulator of Monocyte and Electroencephalographic Responses to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Clegern, William C.; Schmidt, Michelle A.

    2011-01-01

    Study Objectives: Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. Design, Measurements and Results: TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. Conclusion: These data demonstrate that innate immune signaling pathways active in the monocyte lineage, including presumably microglia, detect and mediate in part the cerebral reaction to sleep loss. Citation: Wisor JP; Clegern WC; Schmidt MA. Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. SLEEP 2011;34(10):1335–1345. PMID:21966065

  6. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  7. Effects of partial circadian adjustments on sleep and vigilance quality during simulated night work.

    PubMed

    Chapdelaine, Simon; Paquet, Jean; Dumont, Marie

    2012-08-01

    In most situations, complete circadian adjustment is not recommended for night workers. With complete adjustment, workers experience circadian misalignment when returning on a day-active schedule, causing repeated circadian phase shifts and internal desynchrony. For this reason, partial circadian realignment was proposed as a good compromise to stabilize internal circadian rhythms in night shift workers. However, the extent of partial circadian adjustment necessary to improve sleep and vigilance quality is still a matter of debate. In this study, the effects of small but statistically significant partial circadian adjustments on sleep and vigilance quality were assessed in a laboratory simulation of night work to determine whether they were also of clinical significance. Partial adjustments obtained by phase delay or by phase advance were quantified not only by the phase shift of dim light salivary melatonin onset, but also by the overlap of the episode of melatonin production with the sleep-wake cycle adopted during simulated night work. The effects on daytime sleep and night-time vigilance quality were modest. However, they suggest that even small adjustments by phase delay may decrease the accumulation of sleep debt, whereas the advance strategy improves subjective alertness and mood during night work. Furthermore, absolute phase shifts, by advance or by delay, were associated with improved subjective alertness and mood during the night shift. These strategies need to be tested in the field, to determine whether they can be adapted to real-life situations and provide effective support to night workers. © 2012 European Sleep Research Society.

  8. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation

    NASA Astrophysics Data System (ADS)

    Basner, Mathias; Mollicone, Daniel; Dinges, David F.

    2011-12-01

    The Psychomotor Vigilance Test (PVT) objectively assesses fatigue-related changes in alertness associated with sleep loss, extended wakefulness, circadian misalignment, and time on task. The standard 10-min PVT is often considered impractical in applied contexts. To address this limitation, we developed a modified brief 3-min version of the PVT (PVT-B). The PVT-B was validated in controlled laboratory studies with 74 healthy subjects (34 female, aged 22-45 years) that participated either in a total sleep deprivation (TSD) study involving 33 h awake ( N=31 subjects) or in a partial sleep deprivation (PSD) protocol involving 5 consecutive nights of 4 h time in bed ( N=43 subjects). PVT and PVT-B were performed regularly during wakefulness. Effect sizes of 5 key PVT outcomes were larger for TSD than PSD and larger for PVT than for PVT-B for all outcomes. Effect size was largest for response speed (reciprocal response time) for both the PVT-B and the PVT in both TSD and PSD. According to Cohen's criteria, effect sizes for the PVT-B were still large (TSD) or medium to large (PSD, except for fastest 10% RT). Compared to the 70% decrease in test duration the 22.7% (range 6.9-67.8%) average decrease in effect size was deemed an acceptable trade-off between duration and sensitivity. Overall, PVT-B performance had faster response times, more false starts and fewer lapses than PVT performance (all p<0.01). After reducing the lapse threshold from 500 to 355 ms for PVT-B, mixed model ANOVAs indicated no differential sensitivity to sleep loss between PVT-B and PVT for all outcome variables (all P>0.15) but the fastest 10% response times during PSD ( P<0.001), and effect sizes increased from 1.38 to 1.49 (TSD) and 0.65 to 0.76 (PSD), respectively. In conclusion, PVT-B tracked standard 10-min PVT performance throughout both TSD and PSD, and yielded medium to large effect sizes. PVT-B may be a useful tool for assessing behavioral alertness in settings where the duration of the 10-min PVT is considered impractical, although further validation in applied settings is needed.

  9. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila.

    PubMed

    Seugnet, Laurent; Suzuki, Yasuko; Merlin, Gabriel; Gottschalk, Laura; Duntley, Stephen P; Shaw, Paul J

    2011-05-24

    The role of the transmembrane receptor Notch in the adult brain is poorly understood. Here, we provide evidence that bunched, a negative regulator of Notch, is involved in sleep homeostasis. Genetic evidence indicates that interfering with bunched activity in the mushroom bodies (MBs) abolishes sleep homeostasis. Combining bunched and Delta loss-of-function mutations rescues normal homeostasis, suggesting that Notch signaling may be involved in regulating sensitivity to sleep loss. Preventing the downregulation of Delta by overexpressing a wild-type transgene in MBs reduces sleep homeostasis and, importantly, prevents learning impairments induced by sleep deprivation. Similar resistance to sleep loss is observed with Notch(spl-1) gain-of-function mutants. Immunohistochemistry reveals that the Notch receptor is expressed in glia, whereas Delta is localized in neurons. Importantly, the expression in glia of the intracellular domain of Notch, a dominant activated form of the receptor, is sufficient to prevent learning deficits after sleep deprivation. Together, these results identify a novel neuron-glia signaling pathway dependent on Notch and regulated by bunched. These data highlight the emerging role of neuron-glia interactions in regulating both sleep and learning impairments associated with sleep loss. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The effects of sleep loss on young drivers’ performance: A systematic review

    PubMed Central

    Smith, Simon S.

    2017-01-01

    Young drivers (18–24 years) are over-represented in sleep-related crashes (comprising one in five fatal crashes in developed countries) primarily due to decreased sleep opportunity, lower tolerance for sleep loss, and ongoing maturation of brain areas associated with driving-related decision making. Impaired driving performance is the proximal reason for most car crashes. There is still a limited body of evidence examining the effects of sleep loss on young drivers’ performance, with discrepancies in the methodologies used, and in the definition of outcomes. This study aimed to identify the direction and magnitude of the effects of sleep loss on young drivers’ performance, and to appraise the quality of current evidence via a systematic review. Based on the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) approach, 16 eligible studies were selected for review, and their findings summarised. Next, critical elements of these studies were identified, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines augmented to rate those elements. Using those criteria, the quality of individual papers was calculated and the overall body of evidence for each driving outcome were assigned a quality ranking (from ‘very low’ to ‘high-quality’). Two metrics, the standard deviation of lateral position and number of line crossings, were commonly reported outcomes (although in an overall ‘low-quality’ body of evidence), with significant impairments after sleep loss identified in 50% of studies. While speed-related outcomes and crash events (also with very low- quality evidence) both increased under chronic sleep loss, discrepant findings were reported under conditions of acute total sleep deprivation. It is crucial to obtain more reliable data about the effects of sleep loss on young drivers’ performance by using higher quality experimental designs, adopting common protocols, and the use of consistent metrics and reporting of findings based on GRADE criteria and the PRISMA statement. Key words: Young drivers, sleep loss, driving performance, PRISMA, the GRADE, systematic review. PMID:28859144

  11. The effects of sleep loss on young drivers' performance: A systematic review.

    PubMed

    Shekari Soleimanloo, Shamsi; White, Melanie J; Garcia-Hansen, Veronica; Smith, Simon S

    2017-01-01

    Young drivers (18-24 years) are over-represented in sleep-related crashes (comprising one in five fatal crashes in developed countries) primarily due to decreased sleep opportunity, lower tolerance for sleep loss, and ongoing maturation of brain areas associated with driving-related decision making. Impaired driving performance is the proximal reason for most car crashes. There is still a limited body of evidence examining the effects of sleep loss on young drivers' performance, with discrepancies in the methodologies used, and in the definition of outcomes. This study aimed to identify the direction and magnitude of the effects of sleep loss on young drivers' performance, and to appraise the quality of current evidence via a systematic review. Based on the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) approach, 16 eligible studies were selected for review, and their findings summarised. Next, critical elements of these studies were identified, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines augmented to rate those elements. Using those criteria, the quality of individual papers was calculated and the overall body of evidence for each driving outcome were assigned a quality ranking (from 'very low' to 'high-quality'). Two metrics, the standard deviation of lateral position and number of line crossings, were commonly reported outcomes (although in an overall 'low-quality' body of evidence), with significant impairments after sleep loss identified in 50% of studies. While speed-related outcomes and crash events (also with very low- quality evidence) both increased under chronic sleep loss, discrepant findings were reported under conditions of acute total sleep deprivation. It is crucial to obtain more reliable data about the effects of sleep loss on young drivers' performance by using higher quality experimental designs, adopting common protocols, and the use of consistent metrics and reporting of findings based on GRADE criteria and the PRISMA statement. Key words: Young drivers, sleep loss, driving performance, PRISMA, the GRADE, systematic review.

  12. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.

    PubMed

    Deurveilher, Samuel; Bush, Jacquelyn E; Rusak, Benjamin; Eskes, Gail A; Semba, Kazue

    2015-04-01

    Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52-148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR. © 2015 Associated Professional Sleep Societies, LLC.

  13. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation

    PubMed Central

    Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich

    2017-01-01

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep. PMID:28980941

  14. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.

    PubMed

    Holst, Sebastian C; Sousek, Alexandra; Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich; Tafti, Mehdi; Landolt, Hans-Peter

    2017-10-05

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep.

  15. Effects of sleep manipulation on cognitive functioning of adolescents: A systematic review.

    PubMed

    de Bruin, Eduard J; van Run, Chris; Staaks, Janneke; Meijer, Anne Marie

    2017-04-01

    Adolescents are considered to be at risk for deteriorated cognitive functioning due to insufficient sleep. This systematic review examined the effects of experimental sleep manipulation on adolescent cognitive functioning. Sleep manipulations consisted of total or partial sleep restriction, sleep extension, and sleep improvement. Only articles written in English, with participants' mean age between 10 and 19 y, using objective sleep measures and cognitive performance as outcomes were included. Based on these criteria 16 articles were included. The results showed that the sleep manipulations were successful. Partial sleep restriction had small or no effects on adolescent cognitive functioning. Sleep deprivation studies showed decrements in the psychomotor vigilance task as most consistent finding. Sleep extension and sleep improvement contributed to improvement of working memory. Sleep directly after learning improved memory consolidation. Due to the great diversity of tests and lack of coherent results, decisive conclusions could not be drawn about which domains in particular were influenced by sleep manipulation. Small number of participants, not accounting for the role of sleep quality, individual differences in sleep need, compensatory mechanisms in adolescent sleep and cognitive functioning, and the impurity problem of cognitive tests might explain the absence of more distinct results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cross-Translational Studies in Human and Drosophila Identify Markers of Sleep Loss

    PubMed Central

    Thimgan, Matthew S.; Gottschalk, Laura; Toedebusch, Cristina; McLeland, Jennifer; Rechtschaffen, Allan; Gilliland-Roberts, Marcia; Duntley, Stephen P.; Shaw, Paul J.

    2013-01-01

    Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss. PMID:23637783

  17. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice.

    PubMed

    Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul

    2015-09-01

    That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Mouse sleep-recording facility. Per2::Luciferase knock-in mice. N/A. Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. © 2015 Associated Professional Sleep Societies, LLC.

  18. Homer1a is a core brain molecular correlate of sleep loss.

    PubMed

    Maret, Stéphanie; Dorsaz, Stéphane; Gurcel, Laure; Pradervand, Sylvain; Petit, Brice; Pfister, Corinne; Hagenbuchle, Otto; O'Hara, Bruce F; Franken, Paul; Tafti, Mehdi

    2007-12-11

    Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.

  19. SLEEPLESS is a bi-functional regulator of excitability and cholinergic synaptic transmission

    PubMed Central

    Wu, Meilin; Robinson, James E.; Joiner, William J.

    2014-01-01

    Summary Background Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that sss may regulate additional molecules to influence sleep. Results Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs post-transcriptionally since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes fly nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. Conclusions Together, our data point to an evolutionarily conserved, bi-functional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep. PMID:24613312

  20. The Mediating Role of Exercise on Relationships Between Fatigue, Sleep Quality, and Quality of Life for Adolescents With Cancer.

    PubMed

    Wu, Wei-Wen; Jou, Shiann-Tarng; Liang, Shu-Yuan; Tsai, Shao-Yu

    2018-02-27

    Fatigue and poor sleep are two of the most common and most distressing symptoms for adolescents with cancer. These 2 symptoms concurrently heighten distress, further decreasing quality of life (QoL). The aims of this study were to describe the degree of exercise involvement, fatigue, sleep quality, and QoL among adolescents with cancer and to determine whether exercise mediates the relationships between (a) fatigue and QoL and (b) sleep quality and QoL. A cross-sectional study of 100 participants was conducted. Multiple regression was performed to examine the mediation relationship. Participants in the off-treatment group had a significantly higher degree of exercise involvement, as well as less fatigue, greater sleep quality, and less QoL distress. Exercise partially mediated the adverse effect of fatigue on QoL for adolescents undergoing cancer treatment, accounting for 49.80% of the total variation; exercise partially mediated the adverse effect of poor sleep on QoL for adolescents both in treatment and in survivorship, accounting for 42.06% and 28.71% of the total variations, respectively. Exercise partially mediated the relationship between fatigue and QoL for adolescents in cancer treatment and partially mediated the relationship between sleep quality and QoL both for those in cancer treatment and for those in survivorship. Developing tailored exercise programs based on both treatment status and the degree of fatigue and sleep quality is important. In-service education that enhances nurses' awareness of the importance of exercise in improving adolescents' QoL is recommended.

  1. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K+ channels

    PubMed Central

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-01-01

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K+ currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss of function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude. PMID:21813698

  2. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K(+) channels.

    PubMed

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-08-03

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K(+) currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss-of-function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss-null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude.

  3. Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link

    PubMed Central

    Velázquez-Moctezuma, J.

    2016-01-01

    Sleep is a vital phenomenon related to immunomodulation at the central and peripheral level. Sleep deficient in duration and/or quality is a common problem in the modern society and is considered a risk factor to develop neurodegenerative diseases. Sleep loss in rodents induces blood-brain barrier disruption and the underlying mechanism is still unknown. Several reports indicate that sleep loss induces a systemic low-grade inflammation characterized by the release of several molecules, such as cytokines, chemokines, and acute-phase proteins; all of them may promote changes in cellular components of the blood-brain barrier, particularly on brain endothelial cells. In the present review we discuss the role of inflammatory mediators that increase during sleep loss and their association with general disturbances in peripheral endothelium and epithelium and how those inflammatory mediators may alter the blood-brain barrier. Finally, this manuscript proposes a hypothetical mechanism by which sleep loss may induce blood-brain barrier disruption, emphasizing the regulatory effect of inflammatory molecules on tight junction proteins. PMID:27738642

  4. Sleep As A Strategy For Optimizing Performance.

    PubMed

    Yarnell, Angela M; Deuster, Patricia

    2016-01-01

    Recovery is an essential component of maintaining, sustaining, and optimizing cognitive and physical performance during and after demanding training and strenuous missions. Getting sufficient amounts of rest and sleep is key to recovery. This article focuses on sleep and discusses (1) why getting sufficient sleep is important, (2) how to optimize sleep, and (3) tools available to help maximize sleep-related performance. Insufficient sleep negatively impacts safety and readiness through reduced cognitive function, more accidents, and increased military friendly-fire incidents. Sufficient sleep is linked to better cognitive performance outcomes, increased vigor, and better physical and athletic performance as well as improved emotional and social functioning. Because Special Operations missions do not always allow for optimal rest or sleep, the impact of reduced rest and sleep on readiness and mission success should be minimized through appropriate preparation and planning. Preparation includes periods of "banking" or extending sleep opportunities before periods of loss, monitoring sleep by using tools like actigraphy to measure sleep and activity, assessing mental effectiveness, exploiting strategic sleep opportunities, and consuming caffeine at recommended doses to reduce fatigue during periods of loss. Together, these efforts may decrease the impact of sleep loss on mission and performance. 2016.

  5. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study.

    PubMed

    Maric, Angelina; Lustenberger, Caroline; Werth, Esther; Baumann, Christian R; Poryazova, Rositsa; Huber, Reto

    2017-09-01

    To compare intraindividually the effects of acute sleep deprivation (ASD) and chronic sleep restriction (CSR) on the homeostatic increase in slow wave activity (SWA) and to relate it to impairments in basic cognitive functioning, that is, vigilance. The increase in SWA after ASD (40 hours of wakefulness) and after CSR (seven nights with time in bed restricted to 5 hours per night) relative to baseline sleep was assessed in nine healthy, male participants (age = 18-26 years) by high-density electroencephalography. The SWA increase during the initial part of sleep was compared between the two conditions of sleep loss. The increase in SWA was related to the increase in lapses of vigilance in the psychomotor vigilance task (PVT) during the preceding days. While ASD induced a stronger increase in initial SWA than CSR, the increase was globally correlated across the two conditions in most electrodes. The increase in initial SWA was positively associated with the increase in PVT lapses. The individual homeostatic response in SWA is globally preserved across acute and chronic sleep loss, that is, individuals showing a larger increase after ASD also do so after CSR and vice versa. Furthermore, the increase in SWA is globally correlated to vigilance impairments after sleep loss over both conditions. Thus, the increase in SWA might therefore provide a physiological marker for individual differences in performance impairments after sleep loss. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals.

    PubMed

    Challet, E; Turek, F W; Laute, M; Van Reeth, O

    2001-08-03

    The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.

  7. Sleep and Rest Requirements: Physiological Considerations

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    Sleep is a vital physiological need which must be met to insure optimal functioning. A single night of significantly shortened sleep negatively impacts performance, alertness, and mood. Restricted sleep studies have shown that even a relatively small amount of sleep loss over several consecutive days can be additive and result in a cumulative sleep debt with similar detrimental effects. Compounding the problem of sleep loss in the operational environment is the poor correlation between subjective reports of sleepiness and objective measures of physiological sleep need. Some of the factors determining how sleepy an individual is at a given point in time are: (1) individual characteristics (e.g., amount of prior sleep and wakefulness, circadian phase, age), (2) environmental conditions (e.g., noise, temperature, amount of social interaction), and (3) task variables (e.g., signal rate, workload). Although sleep need can be masked with medications, the only way to reduce it is with sleep itself. The timing of the sleep period can affect sleep duration and quality and thus its restorative strength. The data are clear that increasing sleep time results in improved alertness. This paper will briefly review the scientific findings on sleep need, the effects of sleep loss, napping strategies, and the implications of incorporating physiologically sound sleep and rest strategies into the operational aviation environment.

  8. Neural Consequences of Chronic Short Sleep: Reversible or Lasting?

    PubMed Central

    Zhao, Zhengqing; Zhao, Xiangxiang; Veasey, Sigrid C.

    2017-01-01

    Approximately one-third of adolescents and adults in developed countries regularly experience insufficient sleep across the school and/or work week interspersed with weekend catch up sleep. This common practice of weekend recovery sleep reduces subjective sleepiness, yet recent studies demonstrate that one weekend of recovery sleep may not be sufficient in all persons to fully reverse all neurobehavioral impairments observed with chronic sleep loss, particularly vigilance. Moreover, recent studies in animal models demonstrate persistent injury to and loss of specific neuron types in response to chronic short sleep (CSS) with lasting effects on sleep/wake patterns. Here, we provide a comprehensive review of the effects of chronic sleep disruption on neurobehavioral performance and injury to neurons, astrocytes, microglia, and oligodendrocytes and discuss what is known and what is not yet established for reversibility of neural injury. Recent neurobehavioral findings in humans are integrated with animal model research examining long-term consequences of sleep loss on neurobehavioral performance, brain development, neurogenesis, neurodegeneration, and connectivity. While it is now clear that recovery of vigilance following short sleep requires longer than one weekend, less is known of the impact of CSS on cognitive function, mood, and brain health long term. From work performed in animal models, CSS in the young adult and short-term sleep loss in critical developmental windows can have lasting detrimental effects on neurobehavioral performance. PMID:28620347

  9. Neural Consequences of Chronic Short Sleep: Reversible or Lasting?

    PubMed

    Zhao, Zhengqing; Zhao, Xiangxiang; Veasey, Sigrid C

    2017-01-01

    Approximately one-third of adolescents and adults in developed countries regularly experience insufficient sleep across the school and/or work week interspersed with weekend catch up sleep. This common practice of weekend recovery sleep reduces subjective sleepiness, yet recent studies demonstrate that one weekend of recovery sleep may not be sufficient in all persons to fully reverse all neurobehavioral impairments observed with chronic sleep loss, particularly vigilance. Moreover, recent studies in animal models demonstrate persistent injury to and loss of specific neuron types in response to chronic short sleep (CSS) with lasting effects on sleep/wake patterns. Here, we provide a comprehensive review of the effects of chronic sleep disruption on neurobehavioral performance and injury to neurons, astrocytes, microglia, and oligodendrocytes and discuss what is known and what is not yet established for reversibility of neural injury. Recent neurobehavioral findings in humans are integrated with animal model research examining long-term consequences of sleep loss on neurobehavioral performance, brain development, neurogenesis, neurodegeneration, and connectivity. While it is now clear that recovery of vigilance following short sleep requires longer than one weekend, less is known of the impact of CSS on cognitive function, mood, and brain health long term. From work performed in animal models, CSS in the young adult and short-term sleep loss in critical developmental windows can have lasting detrimental effects on neurobehavioral performance.

  10. Relationship between sleep loss and economic worry among farmers: a survery of 94 active saskatchewan noncorporate farms.

    PubMed

    LaBrash, Leanne F; Pahwa, Punam; Pickett, William; Hagel, Louise M; Snodgrass, Phyllis R; Dosman, James A

    2008-01-01

    Farm work involves seasonal peak busy periods with long hours of work and potential sleep loss. Social, technological, and economic changes, and depressed commodity prices, have resulted in financial stress. There may be a relationship between sleep loss and worry about economic conditions. The objective of this study was to examine the association between hours of sleep and worry associated with cash flow shortages and worry associated with debt among a population of farmers and their family members. One hundred and ninety-five persons from 94 active farms in two rural municipalities in west central Saskatchewan were interviewed by questionnaire. Logistic regression analyses were used to quantify associations between sleep patterns and economic concerns during peak seasons and nonpeak seasons. During peak agricultural seasons, 31.6% of owners/operators reported less than 6 hours of sleep per night compared to 6.3% during the nonpeak seasons (p< .01). A significant relationship (odds ration [OR] 3.59, confidence interval [Cl] 1.58-8.13) was observed between daily cash flow worry and impaired sleep during peak busy seasons. A large proportion of farmers surveyed suffered sleep deprivation during peak seasons, and this sleep loss appeared related to worries about cash flow that were not observed during nonpeak seasons. It is possible that sleep loss during peak busy seasons may be related to impared judgment, as shown by differential worry habits, and might also be related to the high injury rates in farmers during peak busy seasons.

  11. General intelligence predicts memory change across sleep.

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2015-06-01

    Psychometric intelligence (g) is often conceptualized as the capability for online information processing but it is also possible that intelligence may be related to offline processing of information. Here, we investigated the relationship between psychometric g and sleep-dependent memory consolidation. Participants studied paired-associates and were tested after a 12-hour retention interval that consisted entirely of wake or included a regular sleep phase. We calculated the number of word-pairs that were gained and lost across the retention interval. In a separate session, participants completed a battery of cognitive ability tests to assess g. In the wake group, g was not correlated with either memory gain or memory loss. In the sleep group, we found that g correlated positively with memory gain and negatively with memory loss. Participants with a higher level of general intelligence showed more memory gain and less memory loss across sleep. Importantly, the correlation between g and memory loss was significantly stronger in the sleep condition than in the wake condition, suggesting that the relationship between g and memory loss across time is specific to time intervals that include sleep. The present research suggests that g not only reflects the capability for online cognitive processing, but also reflects capability for offline processes that operate during sleep.

  12. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  13. Types and Treatment of Pediatric Sleep Disturbances

    ERIC Educational Resources Information Center

    Hamilton, Gloria J.

    2009-01-01

    This article provides an overview of pediatric sleep disturbances with emphases on types and treatments. Relationships between sleep disorders and comorbid conditions function to exacerbate and maintain both disorders. An estimated 20% of teenagers experience chronic partial sleep deprivation, resulting in problems with memory, attention, and…

  14. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NASA Technical Reports Server (NTRS)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under conditions of long total sleep deprivation but also after repeated sleep curtailment.

  15. Enhancing Slow Wave Sleep with Sodium Oxybate Reduces the Behavioral and Physiological Impact of Sleep Loss

    PubMed Central

    Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.

    2010-01-01

    Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869

  16. The metabolic burden of sleep loss.

    PubMed

    Schmid, Sebastian M; Hallschmid, Manfred; Schultes, Bernd

    2015-01-01

    In parallel with the increasing prevalence of obesity and type 2 diabetes, sleep loss has become common in modern societies. An increasing number of epidemiological studies show an association between short sleep duration, sleep disturbances, and circadian desynchronisation of sleep with adverse metabolic traits, in particular obesity and type 2 diabetes. Furthermore, experimental studies point to distinct mechanisms by which insufficient sleep adversely affects metabolic health. Changes in the activity of neuroendocrine systems seem to be major mediators of the detrimental metabolic effects of insufficient sleep, through favouring neurobehavioural outcomes such as increased appetite, enhanced sensitivity to food stimuli, and, ultimately, a surplus in energy intake. The effect of curtailed sleep on physical activity and energy expenditure is less clear, but changes are unlikely to outweigh increases in food intake. Although long-term interventional studies proving a cause and effect association are still scarce, sleep loss seems to be an appealing target for the prevention, and probably treatment, of metabolic disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  18. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio).

    PubMed

    Pinheiro-da-Silva, Jaquelinne; Silva, Priscila Fernandes; Nogueira, Marcelo Borges; Luchiari, Ana Carolina

    2017-03-01

    The zebrafish is an ideal vertebrate model for neurobehavioral studies with translational relevance to humans. Many aspects of sleep have been studied, but we still do not understand how and why sleep deprivation alters behavioral and physiological processes. A number of hypotheses suggest its role in memory consolidation. In this respect, the aim of this study was to analyze the effects of sleep deprivation on memory in zebrafish (Danio rerio), using an object discrimination paradigm. Four treatments were tested: control, partial sleep deprivation, total sleep deprivation by light pulses, and total sleep deprivation by extended light. The control group explored the new object more than the known object, indicating clear discrimination. The partially sleep-deprived group explored the new object more than the other object in the discrimination phase, suggesting a certain degree of discriminative performance. By contrast, both total sleep deprivation groups equally explored all objects, regardless of their novelty. It seems that only one night of sleep deprivation is enough to affect discriminative response in zebrafish, indicating its negative impact on cognitive processes. We suggest that this study could be a useful screening tool for cognitive dysfunction and a better understanding of the effect of sleep-wake cycles on cognition.

  19. Sleep and optimism: A longitudinal study of bidirectional causal relationship and its mediating and moderating variables in a Chinese student sample.

    PubMed

    Lau, Esther Yuet Ying; Hui, C Harry; Lam, Jasmine; Cheung, Shu-Fai

    2017-01-01

    While both sleep and optimism have been found to be predictive of well-being, few studies have examined their relationship with each other. Neither do we know much about the mediators and moderators of the relationship. This study investigated (1) the causal relationship between sleep quality and optimism in a college student sample, (2) the role of symptoms of depression, anxiety, and stress as mediators, and (3) how circadian preference might moderate the relationship. Internet survey data were collected from 1,684 full-time university students (67.6% female, mean age = 20.9 years, SD = 2.66) at three time-points, spanning about 19 months. Measures included the Attributional Style Questionnaire, the Pittsburgh Sleep Quality Index, the Composite Scale of Morningness, and the Depression Anxiety Stress Scale-21. Moderate correlations were found among sleep quality, depressive mood, stress symptoms, anxiety symptoms, and optimism. Cross-lagged analyses showed a bidirectional effect between optimism and sleep quality. Moreover, path analyses demonstrated that anxiety and stress symptoms partially mediated the influence of optimism on sleep quality, while depressive mood partially mediated the influence of sleep quality on optimism. In support of our hypothesis, sleep quality affects mood symptoms and optimism differently for different circadian preferences. Poor sleep results in depressive mood and thus pessimism in non-morning persons only. In contrast, the aggregated (direct and indirect) effects of optimism on sleep quality were invariant of circadian preference. Taken together, people who are pessimistic generally have more anxious mood and stress symptoms, which adversely affect sleep while morningness seems to have a specific protective effect countering the potential damage poor sleep has on optimism. In conclusion, optimism and sleep quality were both cause and effect of each other. Depressive mood partially explained the effect of sleep quality on optimism, whereas anxiety and stress symptoms were mechanisms bridging optimism to sleep quality. This was the first study examining the complex relationships among sleep quality, optimism, and mood symptoms altogether longitudinally in a student sample. Implications on prevention and intervention for sleep problems and mood disorders are discussed.

  20. Poor sleep as a potential causal factor in aggression and violence.

    PubMed

    Kamphuis, Jeanine; Meerlo, Peter; Koolhaas, Jaap M; Lancel, Marike

    2012-04-01

    Clinical observations suggest that sleep problems may be a causal factor in the development of reactive aggression and violence. In this review we give an overview of existing literature on the relation between poor sleep and aggression, irritability, and hostility. Correlational studies are supporting such a relationship. Although limited in number, some studies suggest that treatment of sleep disturbances reduces aggressiveness and problematic behavior. In line with this is the finding that sleep deprivation actually increases aggressive behavior in animals and angriness, short-temperedness, and the outward expression of aggressive impulses in humans. In most people poor sleep will not evoke actual physical aggression, but certain individuals, such as forensic psychiatric patients, may be particularly vulnerable to the emotional dysregulating effects of sleep disturbances. The relation between sleep problems and aggression may be mediated by the negative effect of sleep loss on prefrontal cortical functioning. This most likely contributes to loss of control over emotions, including loss of the regulation of aggressive impulses to context-appropriate behavior. Other potential contributing mechanisms connecting sleep problems to aggression and violence are most likely found within the central serotonergic and the hypothalamic-pituitary-adrenal-axis. Individual variation within these neurobiological systems may be responsible for amplified aggressive responses induced by sleep loss in certain individuals. It is of great importance to identify the individuals at risk, since recognition and adequate treatment of their sleep problems may reduce aggressive and violent incidents. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. SLEEP 2015;38(2):233–240. PMID:25409102

  2. Sleep Deprivation and Neurobehavioral Dynamics

    PubMed Central

    Basner, Mathias; Rao, Hengyi; Goel, Namni; Dinges, David F.

    2013-01-01

    Lifestyles involving sleep deprivation are common, despite mounting evidence that both acute total sleep deprivation and chronically restricted sleep degrade neurobehavioral functions associated with arousal, attention, memory and state stability. Current research suggests dynamic differences in the way the central nervous system responds to acute versus chronic sleep restriction, which is reflected in new models of sleep-wake regulation. Chronic sleep restriction likely induces long-term neuromodulatory changes in brain physiology that could explain why recovery from it may require more time than from acute sleep loss. High intraclass correlations in neurobehavioral responses to sleep loss suggest that these trait-like differences are phenotypic and may include genetic components. Sleep deprivation induces changes in brain metabolism and neural activation that involve distributed networks and connectivity. PMID:23523374

  3. Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study

    PubMed Central

    Lo, June C.; Ong, Ju Lynn; Leong, Ruth L.F.; Gooley, Joshua J.; Chee, Michael W.L.

    2016-01-01

    Study Objectives: To investigate the effects of sleep restriction (7 nights of 5 h time in bed [TIB]) on cognitive performance, subjective sleepiness, and mood in adolescents. Methods: A parallel-group design was adopted in the Need for Sleep Study. Fifty-six healthy adolescents (25 males, age = 15–19 y) who studied in top high schools and were not habitual short sleepers were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-w protocol consisting of 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the control groups), and 3 nights of recovery sleep (TIB = 9 h) at a boarding school. A cognitive test battery was administered three times each day. Results: During the manipulation period, the SR group demonstrated incremental deterioration in sustained attention, working memory and executive function, increase in subjective sleepiness, and decrease in positive mood. Subjective sleepiness and sustained attention did not return to baseline levels even after 2 recovery nights. In contrast, the control group maintained baseline levels of cognitive performance, subjective sleepiness, and mood throughout the study. Incremental improvement in speed of processing, as a result of repeated testing and learning, was observed in the control group but was attenuated in the sleep-restricted participants, who, despite two recovery sleep episodes, continued to perform worse than the control participants. Conclusions: A week of partial sleep deprivation impairs a wide range of cognitive functions, subjective alertness, and mood even in high-performing high school adolescents. Some measures do not recover fully even after 2 nights of recovery sleep. Commentary: A commentary on this article appears in this issue on page 497. Citation: Lo JC, Ong JL, Leong RL, Gooley JJ, Chee MW. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: the need for sleep study. SLEEP 2016;39(3):687–698. PMID:26612392

  4. Sleep loss increases dissociation and affects memory for emotional stimuli.

    PubMed

    van Heugten-van der Kloet, Dalena; Giesbrecht, Timo; Merckelbach, Harald

    2015-06-01

    Because of their dreamlike character, authors have speculated about the role that the sleep-wake cycle plays in dissociative symptoms. We investigated whether sleep loss fuels dissociative symptoms and undermines cognitive efficiency, particularly memory functioning. Fifty-six healthy undergraduate students were randomly assigned to an experimental group (n = 28) and a control group (n = 28). The experimental group was deprived of sleep for 36 h in a sleep laboratory; the control group had a regular night of sleep. Sleepiness, mood, and dissociative symptoms were assessed 6 times in the experimental group (control group: 4 times). Several cognitive tasks were administered. Sleep deprivation led to an increase in dissociative symptoms, which was mediated by levels of general distress. Feelings of sleepiness preceded an increase of dissociative symptoms and deterioration of mood. Finally, sleep loss also undermined memory of emotional material, especially in highly dissociative individuals. Limitations included moderate reliability of the mood scale, limited generalizability due to student sample, and a relatively short period of intensive sleep deprivation rather than lengthy but intermittent sleep loss, representative of a clinical population. We found that sleep deprivation had significant effects on dissociation, sleepiness, and mood. Specifically, sleepiness and dissociation increased during the night, while mood deteriorated. Our findings stress the importance of sleep deficiencies in the development of dissociative symptoms. They support the view that sleep disruptions fuel distress, but also degrade memory and attentional control. It is against this background that dissociative symptoms may arise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    PubMed

    Thimgan, Matthew S; Suzuki, Yasuko; Seugnet, Laurent; Gottschalk, Laura; Shaw, Paul J

    2010-08-31

    Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  6. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.

    PubMed

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Kamimori, Gary H; Moon, James E; Balkin, Thomas J; Reifman, Jaques

    2016-10-01

    Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. © 2016 Associated Professional Sleep Societies, LLC.

  7. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Kamimori, Gary H.; Moon, James E.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. Methods: We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). Results: The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. Conclusions: The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. Citation: Ramakrishnan S, Wesensten NJ, Kamimori GH, Moon JE, Balkin TJ, Reifman J. A unified model of performance for predicting the effects of sleep and caffeine. SLEEP 2016;39(10):1827–1841. PMID:27397562

  8. Sleep Disturbance Partially Mediates the Relationship Between Intimate Partner Violence and Physical/Mental Health in Women and Men.

    PubMed

    Lalley-Chareczko, Linden; Segal, Andrea; Perlis, Michael L; Nowakowski, Sara; Tal, Joshua Z; Grandner, Michael A

    2015-07-05

    Intimate partner violence (IPV) is a worldwide health concern and an important risk factor for poor mental/physical health in both women and men. Little is known about whether IPV leads to sleep disturbance. However, sleep problems may be common in the context of IPV and may mediate relationships with mental/physical health. Data from the 2006 Behavioral Risk Factor Surveillance System (BRFSS) were used (N = 34,975). IPV was assessed in female and male participants for any history of being threatened by, physically hurt by, or forced to have sex with an intimate partner (THREAT, HURT, and SEX, respectively), and, further, as being forced to have sex with or physically injured by an intimate partner within the past year (SEXyr and HURTyr, respectively). These survey items were coded yes/no. Sleep disturbance was assessed as difficulty falling asleep, staying asleep, or sleeping too much at least 6 of the last 14 days. Logistic regression analyses, adjusted for age, sex, race, income, education, and physical/mental health, assessed whether IPV predicted sleep disturbance. Sobel-Goodman tests assessed whether relationships between IPV and physical/mental health were partially mediated by sleep disturbance. All IPV variables were associated with sleep disturbance, even after adjusting for the effects of age, sex, race/ethnicity, income, education, employment, marital status, physical health and mental health. THREAT was associated with sleep disturbance (odds ratio [OR] = 2.798, p < .0001), as was HURT (OR = 2.683, p < .0001), SEX (OR = 3.237, p < .0001), SEXyr (OR = 7.741, p < .0001), and HURTyr (OR = 7.497, p < .0001). In mediation analyses, all IPV variables were associated with mental health (p < .0001), and all were associated with physical health (p < .007) except SEXyr. Sleep disturbance partially mediated all relationships (Sobel p < .0005 for all tests). Mediation was around 30%, ranging from 18% (HURTyr and mental health) to 41% (HURT and physical health). IPV was strongly associated with current sleep disturbance above the effect of demographics and overall mental/physical health, even if the IPV happened in the past. Furthermore, sleep disturbance partially mediates the relationship between IPV and mental/physical health. Sleep interventions may potentially mitigate negative effects of IPV. © The Author(s) 2015.

  9. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice

    PubMed Central

    Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul

    2015-01-01

    Study Objectives: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. Design: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Settings: Mouse sleep-recording facility. Participants: Per2::Luciferase knock-in mice. Interventions: N/A. Measurements and Results: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Conclusions: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. Citation: Curie T, Maret S, Emmenegger Y, Franken P. In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. SLEEP 2015;38(9):1381–1394. PMID:25581923

  10. The effects of early and late night partial sleep deprivation on automatic and selective attention: An ERP study.

    PubMed

    Zerouali, Younes; Jemel, Boutheina; Godbout, Roger

    2010-01-13

    The link between decrease in levels of attention and total sleep deprivation is well known but the respective contributions of slow wave sleep (SWS) and rapid eye movement sleep (REM) is still largely unknown. The aim of this study was to characterize the effects of sleep deprivation during the SWS phase (i.e., early night sleep) and the REM phase (i.e., late night sleep) on tasks that tap automatic and selective attention; these two forms of attention were indexed respectively by "mismatch negativity" (MMN) and "negative difference" (Nd) event-related potential (ERP) difference waves. Ten young adult participants were subjected to a three-night sleep protocol. They were each received one night of full sleep (F), one night of sleep deprivation during the first half of the night (H1), and one night of sleep deprivation during the second half of the night (H2). MMN and Nd were recorded the following morning of each night during two auditory oddball tasks that tapped automatic and selective attention. The effect of sleep deprivation condition was assessed using ERP amplitude measures and standardized low-resolution electromagnetic tomography method (sLORETA). ERP results revealed significant MMN amplitude reduction over frontal and temporal recording areas following the H2 night compared to F and H1, indicating reductions in levels of automatic attention. In addition, Nd amplitude over the parietal recording area was significantly increased following the H2 night compared to F and H1. sLORETA findings show significant changes from F to H2 night in frontal cortex activity, decreasing during the automatic attention task but increasing during the selective attention task. No significant change in brain activity is observed after H1 night. The restoration of attention processes is mainly achieved during REM sleep, which confirms results from previous studies in rat models. The anterior cortex seems to be more sensitive to sleep loss, while the parietal cortex acts as a compensatory resource to restore cognitive performance in a task context.

  11. Partial sleep deprivation impacts impulsive action but not impulsive decision-making.

    PubMed

    Demos, K E; Hart, C N; Sweet, L H; Mailloux, K A; Trautvetter, J; Williams, S E; Wing, R R; McCaffery, J M

    2016-10-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or 'short sleep'. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age=37.0years, SD=10.54) were assigned to four consecutive nights of 6h/night (short sleep) and 9h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep=5.9h, SD=0.3; mean long sleep=8.6h, SD=0.3, p<0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms=19.79%, SD=14.51) versus long sleep (mean=15.97%, SD=9.51, p=0.039). This effect was strongest in participants reporting longer habitual time in bed (p=0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p's>0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive functions, and ways to minimize the occurrence and negative consequences of short sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sleep in athletes and the effects of Ramadan.

    PubMed

    Roky, Rachida; Herrera, Christopher Paul; Ahmed, Qanta

    2012-01-01

    Sleep is now considered as a new frontier in performance enhancement. This article presents background content on sleep function, sleep needs and methods of sleep investigation along with data on the potential effects of Ramadan fasting on sleep in normal individuals and athletes. Accumulated sleep loss has negative impacts on cognitive function, mood, daytime sleepiness and performance. Sleep studies in athletes fasting during Ramadan are very rare. Most of them have demonstrated that during this month, sleep duration decreased and sleep timing shifted. But the direct relation between sleep changes and performance during Ramadan is not yet elucidated. Objective sleep patterns can be investigated using polysomnography, actigraphy, and standardised questionnaires and recorded in daily journals or sleep logs. The available data on sleep indicate that team doctors and coaches should consider planning sleep schedule and napping; implementing educational programmes focusing on the need for healthy sleep; and consider routine screening for sleep loss in athletes of all age groups and genders.

  13. Insufficient sleep in adolescents and young adults: an update on causes and consequences.

    PubMed

    Owens, Judith

    2014-09-01

    Chronic sleep loss and associated sleepiness and daytime impairments in adolescence are a serious threat to the academic success, health, and safety of our nation's youth and an important public health issue. Understanding the extent and potential short- and long-term repercussions of sleep restriction, as well as the unhealthy sleep practices and environmental factors that contribute to sleep loss in adolescents, is key in setting public policies to mitigate these effects and in counseling patients and families in the clinical setting. This report reviews the current literature on sleep patterns in adolescents, factors contributing to chronic sleep loss (ie, electronic media use, caffeine consumption), and health-related consequences, such as depression, increased obesity risk, and higher rates of drowsy driving accidents. The report also discusses the potential role of later school start times as a means of reducing adolescent sleepiness. Copyright © 2014 by the American Academy of Pediatrics.

  14. Burden of impaired sleep quality on work productivity in functional dyspepsia.

    PubMed

    Matsuzaki, Juntaro; Suzuki, Hidekazu; Togawa, Koji; Yamane, Tsuyoshi; Mori, Hideki; Komori, Takahiro; Masaoka, Tatsuhiro; Kanai, Takanori

    2018-04-01

    Impaired sleep quality is common, and can reduce work productivity in patients with functional dyspepsia (FD). The objective of this article is to evaluate whether there is a direct association between the presence of FD and the severity of impaired sleep quality, and to calculate the economic loss due to the decreased work productivity associated with sleep quality. In Study 1, using a web-based survey completed by workers with and without FD, we evaluated impaired sleep quality, work and daily productivity, and the severity of reflux and bowel symptoms. In Study 2, the association between the presence of FD and the severity of impaired sleep quality was validated in a hospital-based cohort. In both Study 1 and 2, although impaired sleep quality was more frequent in participants with FD than in those without FD, the independent association between the presence of FD and the severity of impaired sleep quality was not observed after adjustment for the severity of reflux and bowel symptoms. FD participants with impaired sleep quality reported additional economic loss of 53,500 Japanese yen/month. Although the association between impaired sleep quality and FD was indirect, concomitant impaired sleep quality could worsen economic loss.

  15. Changes in attention to an emotional task after sleep deprivation: neurophysiological and behavioral findings.

    PubMed

    Alfarra, Ramey; Fins, Ana I; Chayo, Isaac; Tartar, Jaime L

    2015-01-01

    While sleep loss is shown to have widespread effects on cognitive processes, little is known about the impact of sleep loss on emotion processes. In order to expand on previous behavioral and physiological findings on how sleep loss influences emotion processing, we administered positive, negative, and neutral affective visual stimuli to individuals after one night of sleep deprivation while simultaneously acquiring EEG event related potential (ERP) data and recording affective behavioral responses. We compared these responses to a baseline testing session. We specifically looked at the late positive potential (LPP) component of the visual ERP as an established sensitive measure of attention to emotionally-charged visual stimuli. Our results show that after sleep deprivation, the LPP no longer discriminates between emotional and non-emotional pictures; after sleep deprivation the LPP amplitude was of similar amplitude for neutral, positive, and negative pictures. This effect was driven by an increase in the LPP to neutral pictures. Our behavioral measures show that, relative to baseline testing, emotional pictures are rated as less emotional following sleep deprivation with a concomitant reduction in emotional picture-induced anxiety. We did not observe any change in cortisol concentrations after sleep deprivation before or after emotional picture exposure, suggesting that the observed changes in emotion processing are independent of potential stress effects of sleep deprivation. Combined, our findings suggest that sleep loss interferes with proper allocation of attention resources during an emotional task. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. What drives sleep-dependent memory consolidation: greater gain or less loss?

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2013-06-01

    When memory is tested after a delay, performance is typically better if the retention interval includes sleep. However, it is unclear what accounts for this well-established effect. It is possible that sleep enhances the retrieval of information, but it is also possible that sleep protects against memory loss that normally occurs during waking activity. We developed a new research approach to investigate these possibilities. Participants learned a list of paired-associate items and were tested on the items after a 12-h interval that included waking or sleep. We analyzed the number of items gained versus the number of items lost across time. The sleep condition showed more items gained and fewer items lost than did the wake condition. Furthermore, the difference between the conditions (favoring sleep) in lost items was greater than the difference in gain, suggesting that loss prevention may primarily account for the effect of sleep on declarative memory consolidation. This finding may serve as an empirical constraint on theories of memory consolidation.

  17. Partial sleep deprivation impacts impulsive action but not impulsive decision-making

    PubMed Central

    Demos, K.E.; Hart, C.N.; Sweet, LH.; Mailloux, K.A.; Trautvetter, J.; Williams, S.E.; Wing, R.R.; McCaffery, J.M.

    2017-01-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or ‘short sleep’. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9 h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age = 37.0 years, SD = 10.54) were assigned to four consecutive nights of 6 h/night (short sleep) and 9 h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep = 5.9 h, SD = 0.3; mean long sleep = 8.6 h, SD = 0.3, p < 0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms = 19.79%, SD = 14.51) versus long sleep (mean = 15.97%, SD = 9.51, p = 0.039). This effect was strongest in participants reporting longer habitual time in bed (p = 0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p’s > 0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive functions, and ways to minimize the occurrence and negative consequences of short sleep. PMID:27267950

  18. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery.

    PubMed

    Faraut, Brice; Boudjeltia, Karim Zouaoui; Vanhamme, Luc; Kerkhofs, Myriam

    2012-04-01

    In addition to its effects on cognitive function, compelling evidence links sleep loss to alterations in the neuroendocrine, immune and inflammatory systems with potential negative public-health ramifications. The evidence to suggest that shorter sleep is associated with detrimental health outcomes comes from both epidemiological and experimental sleep deprivation studies. This review will focus on the post-sleep deprivation and recovery changes in immune and inflammatory functions in well-controlled sleep restriction laboratory studies. The data obtained indicate non-specific activation of leukocyte populations and a state of low-level systemic inflammation after sleep loss. Furthermore, one night of recovery sleep does not allow full recovery of a number of these systemic immune and inflammatory markers. We will speculate on the mechanism(s) that link(s) sleep loss to these responses and to the progression of cardiovascular disease. The immune and inflammatory responses to chronic sleep restriction suggest that chronic exposure to reduced sleep (<6 h/day) and insufficient time for recovery sleep could have gradual deleterious effects, over years, on cardiovascular pathogenesis with a heightened risk in women and in night and shift workers. Finally, we will examine countermeasures, e.g., napping or sleep extension, which could improve the recovery processes, in terms of alertness and immune and inflammatory parameters, after sleep restriction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function.

    PubMed

    Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert

    2018-06-01

    Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex.

    PubMed

    de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-04-01

    The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  1. The effects of one night of partial sleep deprivation on executive functions in individuals reporting chronic insomnia and good sleepers.

    PubMed

    Ballesio, Andrea; Cerolini, Silvia; Ferlazzo, Fabio; Cellini, Nicola; Lombardo, Caterina

    2018-02-15

    The aim of the present study was to investigate the effects of a partial sleep deprivation night on executive functions in participants reporting chronic insomnia and good sleepers using a Task Switching paradigm. Sixteen participants reporting symptoms of chronic insomnia and sixteen good sleepers were tested after a night of habitual sleep and after a night of partial sleep deprivation (5 h of sleep allowed). The Switch Cost (SC) and the Backward Inhibition (BI) were computed as measures of switching attention and response inhibition, respectively. We observed a marginally significant interaction Night × Group on SC (F (1,29)  = 4.06, p = 0.053), η 2  = 0.123. Fisher's least significant difference (LSD) post-hoc revealed a smaller SC after the sleep deprived night relative to the habitual night for the good sleepers (p = 0.027; M = 192.23 ± 201.81 vs M = 98.99 ± 141.16). Differently, participants with insomnia did not show any change after the two nights. Several limitations must be acknowledged including the use of a convenient sample of university students and the use of a single task of cognitive performance. We found that SC was smaller in the good sleepers after a night of partial sleep deprivation compared to a habitual night, indicating a better switching performance. The insomnia group showed no differences in performance after the two experimental nights. Several factors may account for these results, including increased levels of arousal and cognitive effort during task execution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain.

    PubMed

    Vanini, Giancarlo

    2016-01-01

    Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. © 2016 Associated Professional Sleep Societies, LLC.

  3. [Effects of chronic partial sleep deprivation on growth and learning/memory in young rats].

    PubMed

    Jiang, Fan; Shen, Xiao-Ming; Li, Sheng-Hui; Cui, Mao-Long; Zhang, Yin; Wang, Cheng; Yu, Xiao-Gang; Yan, Chong-Huai

    2009-02-01

    The effects of sleep deprivation on the immature brain remain unknown. Based on a computer controlled chronic sleep deprivation animal model, the effects of chronic partial sleep deprivation on growth, learning and memory in young rats were explored. Twelve weaned male Spraque-Dawley rats (3-week-old) were randomly divided into sleep deprivation, test control and blank control groups. Sleep deprivation was performed using computer-controlled "disc-over-water" technique at 8-11 am daily, for 14 days. The temperature and weights were measured every 7 days. Morris water maze was used to test spatial learning and memory abilities before and 7 and 14 days after sleep deprivation. After 14 days of sleep deprivation, the rats were sacrificed for weighting their major organs. After 14 days of sleep deprivation, the rats' temperature increased significantly. During the sleep deprivation, the rate of weight gain in the sleep deprivation group was much slower than that in the test control and blank control groups. The thymus of the rats subjected to sleep deprivation was much lighter than that of the blank control group. After 7 days of sleep deprivation, the rats showed slower acquisition of reference memory, but were capable of successfully performing the task by repeated exposure to the test. Such impairment of reference memory was not seen 14 days after sleep deprivation. Chronic sleep deprivation can affect growth of immature rats, as well as their abilities to acquire spatial reference memory.

  4. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain

    PubMed Central

    Vanini, Giancarlo

    2016-01-01

    Study Objectives: Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Methods: Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Results: Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. Conclusion: The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. Citation: Vanini G. Sleep deprivation and recovery sleep prior to a noxious inflammatory insult influence characteristics and duration of pain. SLEEP 2016;39(1):133–142. PMID:26237772

  5. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    PubMed

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery.

    PubMed

    Phillips, Andrew J K; Klerman, Elizabeth B; Butler, James P

    2017-10-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model's ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules.

  7. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery

    PubMed Central

    Phillips, Andrew J. K.

    2017-01-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model’s ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules. PMID:29073206

  8. Comparison of residual depressive symptoms and functional impairment between fully and partially remitted patients with major depressive disorder: a multicenter study.

    PubMed

    Xiao, Le; Feng, Lei; Zhu, Xue-Quan; Feng, Yuan; Wu, Wen-Yuan; Ungvari, Gabor S; Ng, Chee H; Xiang, Yu-Tao; Wang, Gang

    2018-03-01

    This study compared residual depressive and somatic symptoms and functional impairment between remitted and partially remitted patients with major depressive disorder (MDD), and explored the associations of functioning with demographic and clinical characteristics including residual depressive symptoms. Altogether, 1503 outpatients with MDD formed the study sample. Residual symptoms and psychosocial functioning were measured using standardized instruments. Approximately half (51.2%) of the patients who responded to antidepressant treatment achieved remission ('remitters'), while the rest who responded to treatment achieved only partial remission ('non-remitters'). Residual mood symptoms in remitters included sleep disturbances (66.6%), fatigue (32.3%), decreased concentration (31.3%), appetite/weight disturbances (28.8%), psychomotor changes (23.2%), sad mood (21.9%) and loss of interest (21.1%) measured by the Quick Inventory of Depressive Symptomatology-Self-Report. Residual somatic symptoms included headache (31.9%), intestinal complaints (31.3%), heart pounding/racing (26.3%), gastric complaints (22.3%), dizziness (22.2%) and stomach pain (20.6%) measured by the Patient Health Questionnaire-15. Such residual symptoms were even more frequent in the 'non-remitters' group. Residual symptoms of fatigue, psychomotor changes, sleep disturbance and appetite/weight disturbance contributed to impairment of all functional domains. Given the negative impact of residual symptoms on psychosocial functioning, more attention needs to be paid to the assessment and treatment of residual depressive symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  10. Psychomotor Vigilance Task Performance During and Following Chronic Sleep Restriction in Rats

    PubMed Central

    Deurveilher, Samuel; Bush, Jacquelyn E.; Rusak, Benjamin; Eskes, Gail A.; Semba, Kazue

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). Design: Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). Measurements and Results: After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52–148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. Conclusions: A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR. Citation: Deurveilher S, Bush JE, Rusak B, Eskes GA, Semba K. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. SLEEP 2015;38(4):515–528. PMID:25515100

  11. Acute sleep deprivation increases portion size and affects food choice in young men.

    PubMed

    Hogenkamp, Pleunie S; Nilsson, Emil; Nilsson, Victor C; Chapman, Colin D; Vogel, Heike; Lundberg, Lina S; Zarei, Sanaz; Cedernaes, Jonathan; Rångtell, Frida H; Broman, Jan-Erik; Dickson, Suzanne L; Brunstrom, Jeffrey M; Benedict, Christian; Schiöth, Helgi B

    2013-09-01

    Acute sleep loss increases food intake in adults. However, little is known about the influence of acute sleep loss on portion size choice, and whether this depends on both hunger state and the type of food (snack or meal item) offered to an individual. The aim of the current study was to compare portion size choice after a night of sleep and a period of nocturnal wakefulness (a condition experienced by night-shift workers, e.g. physicians and nurses). Sixteen men (age: 23 ± 0.9 years, BMI: 23.6 ± 0.6 kg/m(2)) participated in a randomized within-subject design with two conditions, 8-h of sleep and total sleep deprivation (TSD). In the morning following sleep interventions, portion size, comprising meal and snack items, was measured using a computer-based task, in both fasted and sated state. In addition, hunger as well as plasma levels of ghrelin were measured. In the morning after TSD, subjects had increased plasma ghrelin levels (13%, p=0.04), and chose larger portions (14%, p=0.02), irrespective of the type of food, as compared to the sleep condition. Self-reported hunger was also enhanced (p<0.01). Following breakfast, sleep-deprived subjects chose larger portions of snacks (16%, p=0.02), whereas the selection of meal items did not differ between the sleep interventions (6%, p=0.13). Our results suggest that overeating in the morning after sleep loss is driven by both homeostatic and hedonic factors. Further, they show that portion size choice after sleep loss depend on both an individual's hunger status, and the type of food offered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Youth Screen Media Habits and Sleep: Sleep-Friendly Screen Behavior Recommendations for Clinicians, Educators, and Parents.

    PubMed

    Hale, Lauren; Kirschen, Gregory W; LeBourgeois, Monique K; Gradisar, Michael; Garrison, Michelle M; Montgomery-Downs, Hawley; Kirschen, Howard; McHale, Susan M; Chang, Anne-Marie; Buxton, Orfeu M

    2018-04-01

    With the widespread use of portable electronic devices and the normalization of screen media devices in the bedroom, insufficient sleep has become commonplace. In a recent literature review, 90% of included studies found an association between screen media use and delayed bedtime and/or decreased total sleep time. This pervasive phenomenon of pediatric sleep loss has widespread implications. There is a need for basic, translational, and clinical research examining the effects of screen media on sleep loss and health consequences in children and adolescents to educate and motivate clinicians, teachers, parents and youth themselves to foster healthy sleep habits. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Countermeasures for sleep loss and deprivation.

    PubMed

    Kushida, Clete A

    2006-09-01

    Sleep deprivation is ubiquitous and carries profound consequences in terms of personal and public health and safety. There is no substitute for a good night's sleep. Sleep that is optimal in quality and quantity for individuals, factoring in their age and personal sleep requirements, will minimize sleep debt and maximize daytime performance. Therefore, setting aside an adequate amount of time for sleep should be a priority; sleep should not be sacrificed at the expense of other activities of daily living. Nevertheless, there are certain therapeutic countermeasures available for individuals who are unable to obtain adequate sleep because of medical or sleep-related conditions (eg, narcolepsy, obstructive sleep apnea) when excessive daytime sleepiness is the main feature of the condition, or residual sleepiness despite treatment for the main conditions is present. These therapeutic countermeasures may also be considered in situations in which occupational constraints (eg, rotating shift work, military duty) dictate that constant or heightened vigilance is important or critical to work performance, crucial decision making, and/or survival. Exploration of the causes of sleep loss or deprivation, whether it is voluntary, or work or family induced, and/or the effects of a medical or sleep disorder, is a necessary first step in the evaluation of a patient who has significant daytime fatigue or sleepiness. Wake-promoting substances and medications such as caffeine, modafinil, methylphenidate, and dextroamphetamine may be considered in situations in which sleep loss is unavoidable or persists despite treatment of an underlying disorder that is characterized by or associated with daytime fatigue or sleepiness.

  14. Externalizing Behaviors and Callous-Unemotional Traits: Different Associations With Sleep Quality.

    PubMed

    Denis, Dan; Akhtar, Reece; Holding, Benjamin C; Murray, Christina; Panatti, Jennifer; Claridge, Gordon; Sadeh, Avi; Barclay, Nicola L; O'Leary, Rachael; Maughan, Barbara; McAdams, Tom A; Rowe, Richard; Eley, Thalia C; Viding, Essi; Gregory, Alice M

    2017-08-01

    Sleep quality is associated with different aspects of psychopathology, but relatively little research has examined links between sleep quality and externalizing behaviors or callous-unemotional traits. We examined: (1) whether an association exists between sleep quality and externalizing behaviors; (2) whether anxiety mediates this association; (3) whether callous-unemotional traits are associated with sleep quality. Data from two studies were used. Study 1 involved 1556 participants of the G1219 study aged 18-27 years (62% female). Questionnaire measures assessed sleep quality, anxiety, externalizing behaviors, and callous-unemotional traits. Study 2 involved 338 participants aged 18-66 years (65% female). Questionnaires measured sleep quality, externalizing behaviors, and callous-unemotional traits. In order to assess objective sleep quality, actigraphic data were also recorded for a week from a subsample of study 2 participants (n = 43). In study 1, poorer sleep quality was associated with greater externalizing behaviors. This association was partially mediated by anxiety and moderated by levels of callous-unemotional traits. There was no significant relationship between sleep quality and callous-unemotional traits. In study 2, poorer sleep quality, as assessed via self-reported but not objective measures, was associated with higher levels of externalizing behaviors. Furthermore, in study 2, better sleep quality (indicated in both questionnaires and actigraphy measures: lower mean activity, and greater sleep efficiency) was associated with higher levels of callous-unemotional traits. Self-reports of poorer sleep quality are associated with externalizing behaviors, and this association is partially mediated by anxiety. Callous-unemotional traits are not associated with poor sleep and may even be related to better sleep quality. This is an exceptional finding given that poor sleep quality appears to be a characteristic of most psychopathology. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  15. Lack of degradation in visuospatial perception of line orientation after one night of sleep loss.

    PubMed

    Killgore, William D S; Kendall, Athena P; Richards, Jessica M; McBride, Sharon A

    2007-08-01

    Sleep deprivation impairs a variety of cognitive abilities including vigilance, attention, and executive function. Although sleep loss has been shown to impair tasks requiring visual attention and spatial perception, it is not clear whether these deficits are exclusively a function of reduced attention and vigilance or if there are also alterations in visuospatial perception. Visuospatial perception and sustained vigilance performance were therefore examined in 54 healthy volunteers at rested baseline and again after one night of sleep deprivation using the Judgment of Line Orientation Test and a computerized test of psychomotor vigilance. Whereas psychomotor vigilance declined significantly from baseline to sleep-deprived testing, scores on the Judgment of Line Orientation did not change significantly. Results suggest that documented performance deficits associated with sleep loss are unlikely to be the result of dysfunction within systems of the brain responsible for simple visuospatial perception and processing of line angles.

  16. Estradiol and Progesterone Modulate Spontaneous Sleep Patterns and Recovery from Sleep Deprivation in Ovariectomized Rats

    PubMed Central

    Deurveilher, Samüel; Rusak, Benjamin; Semba, Kazue

    2009-01-01

    Study Objectives: Women undergo hormonal changes both naturally during their lives and as a result of sex hormone treatments. The objective of this study was to gain more knowledge about how these hormones affect sleep and responses to sleep loss. Design: Rats were ovariectomized and implanted subcutaneously with Silastic capsules containing oil vehicle, 17β-estradiol and/or progesterone. After 2 weeks, sleep/wake states were recorded during a 24-h baseline period, 6 h of total sleep deprivation induced by gentle handling during the light phase, and an 18-h recovery period. Measurements and Results: At baseline and particularly in the dark phase, ovariectomized rats treated with estradiol or estradiol plus progesterone spent more time awake at the expense of non-rapid eye movement sleep (NREMS) and/or REMS, whereas those given progesterone alone spent less time in REMS than ovariectomized rats receiving no hormones. Following sleep deprivation, all rats showed rebound increases in NREMS and REMS, but the relative increase in REMS was larger in females receiving hormones, especially high estradiol. In contrast, the normal increase in NREMS EEG delta power (an index of NREMS intensity) during recovery was attenuated by all hormone treatments. Conclusions: Estradiol promotes arousal in the active phase in sleep-satiated rats, but after sleep loss, both estradiol and progesterone selectively facilitate REMS rebound while reducing NREMS intensity. These results indicate that effects of ovarian hormones on recovery sleep differ from those on spontaneous sleep. The hormonal modulation of recovery sleep architecture may affect recovery of sleep related functions after sleep loss. Citation: Deurveilher S; Rusak B; Semba K. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats. SLEEP 2009;32(7):865-877. PMID:19639749

  17. Sleep duration partially accounts for race differences in diurnal cortisol dynamics.

    PubMed

    Peterson, Laurel M; Miller, Karissa G; Wong, Patricia M; Anderson, Barbara P; Kamarck, Thomas W; Matthews, Karen A; Kirschbaum, Clemens; Manuck, Stephen B

    2017-05-01

    Emerging research demonstrates race differences in diurnal cortisol slope, an indicator of hypothalamic-pituitary-adrenocortical (HPA)-axis functioning associated with morbidity and mortality, with African Americans showing flatter diurnal slopes than their White counterparts. Sleep characteristics are associated with both race and with HPA-axis functioning. The present report examines whether sleep duration may account for race differences in cortisol dynamics. Participants were 424 employed African American and White adults (mean age = 42.8 years, 84.2% White, 53.6% female) with no cardiovascular disease (Adult Health and Behavior Project-Phase 2 [AHAB-II] cohort, University of Pittsburgh). Cortisol slope was calculated using 4 salivary cortisol readings, averaged over each of 4 days. Demographic (age, sex), psychosocial (socioeconomic status [SES], affect, discrimination), and health behaviors (smoking, alcohol use, physical activity) variables were used as covariates, and sleep (self-report and accelerometry) was also assessed. African Americans had flatter slopes than Whites (F(1, 411) = 10.45, B = .02, p = .001) in models adjusting for demographic, psychosocial, and health behavior covariates. Shorter actigraphy-assessed total sleep time was a second significant predictor of flatter cortisol slopes (F(1, 411) = 25.27, B = -.0002, p < .0001). Total sleep time partially accounted for the relationship between race and diurnal slope [confidence interval = .05 (lower = .014, upper .04)]. African Americans have flatter diurnal cortisol slopes than their White counterparts, an effect that may be partially attributable to race differences in nightly sleep duration. Sleep parameters should be considered in further research on race and cortisol. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Deconstructing and Reconstructing Cognitive Performance in Sleep Deprivation

    PubMed Central

    Jackson, Melinda L.; Gunzelmann, Glenn; Whitney, Paul; Hinson, John M.; Belenky, Gregory; Rabat, Arnaud; Van Dongen, Hans P. A.

    2012-01-01

    Summary Mitigation of cognitive impairment due to sleep deprivation in operational settings is critical for safety and productivity. Achievements in this area are hampered by limited knowledge about the effects of sleep loss on actual job tasks. Sleep deprivation has different effects on different cognitive performance tasks, but the mechanisms behind this task-specificity are poorly understood. In this context it is important to recognize that cognitive performance is not a unitary process, but involves a number of component processes. There is emerging evidence that these component processes are differentially affected by sleep loss. Experiments have been conducted to decompose sleep-deprived performance into underlying cognitive processes using cognitive-behavioral, neuroimaging and cognitive modeling techniques. Furthermore, computational modeling in cognitive architectures has been employed to simulate sleep-deprived cognitive performance on the basis of the constituent cognitive processes. These efforts are beginning to enable quantitative prediction of the effects of sleep deprivation across different task contexts. This paper reviews a rapidly evolving area of research, and outlines a theoretical framework in which the effects of sleep loss on cognition may be understood from the deficits in the underlying neurobiology to the applied consequences in real-world job tasks. PMID:22884948

  19. Deconstructing and reconstructing cognitive performance in sleep deprivation.

    PubMed

    Jackson, Melinda L; Gunzelmann, Glenn; Whitney, Paul; Hinson, John M; Belenky, Gregory; Rabat, Arnaud; Van Dongen, Hans P A

    2013-06-01

    Mitigation of cognitive impairment due to sleep deprivation in operational settings is critical for safety and productivity. Achievements in this area are hampered by limited knowledge about the effects of sleep loss on actual job tasks. Sleep deprivation has different effects on different cognitive performance tasks, but the mechanisms behind this task-specificity are poorly understood. In this context it is important to recognize that cognitive performance is not a unitary process, but involves a number of component processes. There is emerging evidence that these component processes are differentially affected by sleep loss. Experiments have been conducted to decompose sleep-deprived performance into underlying cognitive processes using cognitive-behavioral, neuroimaging and cognitive modeling techniques. Furthermore, computational modeling in cognitive architectures has been employed to simulate sleep-deprived cognitive performance on the basis of the constituent cognitive processes. These efforts are beginning to enable quantitative prediction of the effects of sleep deprivation across different task contexts. This paper reviews a rapidly evolving area of research, and outlines a theoretical framework in which the effects of sleep loss on cognition may be understood from the deficits in the underlying neurobiology to the applied consequences in real-world job tasks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload

    NASA Technical Reports Server (NTRS)

    Evans-Flynn, Erin; Gregory, Kevin; Arsintescu, Lucia; Whitmire, Alexandra; Leveton, Lauren B.; Vessey, William

    2015-01-01

    Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk.

  1. Improvement in Obstructive Sleep Apnea With Weight Loss is Dependent on Body Position During Sleep.

    PubMed

    Joosten, Simon A; Khoo, Jun K; Edwards, Bradley A; Landry, Shane A; Naughton, Matthew T; Dixon, John B; Hamilton, Garun S

    2017-05-01

    Weight loss fails to resolve obstructive sleep apnea (OSA) in most patients; however, it is unknown as to whether weight loss differentially affects OSA in the supine compared with nonsupine sleeping positions. We aimed to determine if weight loss in obese patients with OSA results in a greater reduction in the nonsupine apnea/hypopnea index (AHI) compared with the supine AHI, thus converting participants into supine-predominant OSA. Post hoc analysis of data from a randomized controlled trial assessing the effect of weight loss (bariatric surgery vs. medical weight loss) on OSA in 60 participants with obesity (body mass index: >35 and <55) with recently diagnosed (<6 months) OSA and AHI of ≥ 20 events/hour. Patients were randomized to very low calorie diet with regular review (n = 30) or to laproscopic adjustable gastric banding (n = 30) with follow-up sleep study at 2 years. Eight of 37 (22%) patients demonstrated a normal nonsupine AHI (<5 events/hour) on follow-up compared to 0/37 (0%) patients at baseline (p = .003). These patients were younger (40.0 ± 9.6 years vs. 48.4 ± 6.5 years, p = .007) and lost significantly more weight (percentage weight change -23.0 [-21.0 to -31.6]% vs. -6.9 [1.9 to -17.4], p = .001). The percentage change in nonsupine AHI was greater than the percentage change in supine AHI (-54.0 [-15.4 to -87.9]% vs -33.1 [-1.8 to -69.1]%, p = .05). However, the change in absolute nonsupine AHI was not related to change in absolute supine AHI (p = .23). Following weight loss, a significant proportion (22%) of patients with obesity have normalization of the nonsupine AHI. For these patients, supine sleep avoidance may cure their OSA. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin; Gregory, Kevin; Arsintescu, Lucia; Whitmire, Alexandra

    2016-01-01

    Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk as follows: Sleep loss is apparent during spaceflight. Astronauts consistently average less sleep during spaceflight relative to on the ground. The causes of this sleep loss remain unknown, however ground-based evidence suggests that the sleep duration of astronauts is likely to lead to performance impairment and short and long-term health consequences. Further research is needed in this area in order to develop screening tools to assess individual astronaut sleep need in order to quantify the magnitude of sleep loss during spaceflight; current and planned efforts in BHP's research portfolio address this need. In addition, it is still unclear whether the conditions of spaceflight environment lead to sleep loss or whether other factors, such as work overload lead to the reduced sleep duration. Future data mining efforts and continued data collection on the ISS will help to further characterize factors contributing to sleep loss. Sleep inertia has not been evaluated during spaceflight. Ground-based studies confirm that it takes two to four hours to achieve optimal performance after waking from a sleep episode. Sleep inertia has been associated with increased accidents and reduced performance in operational environments. Sleep inertia poses considerable risk during spaceflight when emergency situations necessitate that crewmembers wake from sleep and make quick decisions. A recently completed BHP investigation assesses the effects of sleep inertia upon abrupt awakening, with and without hypnotics currently used in spaceflight; results from this investigation will help to inform strategies relative to sleep inertia effects on performance. Circadian desynchrony has been observed during spaceflight. Circadian desynchrony during spaceflight develops due to schedule constraints requiring non-24 operations or 'slam-shifts' and due to insufficient or mis-timed light exposure. In addition, circadian misalignment has been associated with reduced sleep duration and increased medication use. In ground-based studies, circadian desynchrony has been associated with significant performance impairment and increased risk of accidents when operations coincide with the circadian nadir. There is a great deal of information available on how to manage circadian misalignment, however, there are currently no easily collected biomarkers that can be used during spaceflight to determine circadian phase. Current research efforts are addressing this gap. Work overload has been documented during current spaceflight operations. NASA has established work hour guidelines that limit shift duration, however, schedule creep, where duty requirements necessitate working beyond scheduled work hours, has been reported. This observation warrants the documentation of actual work hours in order to improve planning and in order to ensure that astronauts receive adequate down time. In addition to concerns about work overload, ground based evidence suggests that work underload may be a concern during deep space missions, where torpor may develop and physically demanding workload will be exchanged for monitoring of autonomous systems. Given that increased automation is anticipated for exploration vehicles, fatigue effects in the context of such systems needs to be further understood. Performance metrics are needed to evaluate fitness-for-duty during spaceflight. Although ground-based evidence supports the notion that sleep loss, circadian desynchronization and work overload lead to performance impairment, inconsistency in the measures used to evaluate performance during spaceflight make it difficult to evaluate the magnitude of performance impairment during spaceflight. Work is underway to standardize measures of performance evaluation during spaceflight. Once established, such performance indicators need to be correlated with operational performance. Individual differences in sleep need and circadian preference, phase shifting ability and period have been documented in ground-based studies. Individual differences in response to sleep loss and circadian misalignment have also been documented and are presumed to be associated with genetic polymorphisms. No studies have systematically reported individual differences in sleep or circadian-related outcomes during spaceflight. More work is needed in this area in order to identify genetic or phenotypic biomarkers that predict resilience or vulnerability to sleep loss in order to personalize countermeasure strategies and mitigate performance impairment during spaceflight. Two laboratory and field investigations specific to this topic are currently ongoing; additional efforts, including an effort to mine existing biological data from spaceflight relative to sleep and circadian outcomes, are planned. Sex differences in sleep need and circadian period and phase have been reported in ground-based studies. The impact of these sex differences on performance is unclear. Sex differences in sleep need and circadian rhythms have not been systematically studied during spaceflight, presumably due to the small number of women that have flown in space. More research is needed in this area to evaluate whether any of the observed sex differences in physiology lead to altered performance in spaceflight and on the ground.

  3. A gender perspective on sleeplessness behavior, effects of sleep loss, and coping resources in patients with stable coronary artery disease.

    PubMed

    Edéll-Gustafsson, Ulla; Svanborg, Eva; Swahn, Eva

    2006-01-01

    The primary aim of this study was to systematically compare perceived sleep quality, sleeplessness behavior, sense of mastery, self-esteem, depression, subjective health, and effects of sleep loss in men and women with stable coronary artery disease (CAD). Further aims were to determine possible predictors of poor sleep quality and sense of mastery, as well as the consequences of too little sleep. Comparative-correlation and predictive design were used. Patients with a history of stable angina pectoris scheduled to undergo coronary angiography at Linköping University Hospital in Sweden were included. There were 47 women and 88 men (mean age 62.4 years) with CAD. Structured interviews using validated questionnaires covered sleep quality and sleep habits, effects of sleep loss, psychologic resources, and depression. Multiple stepwise regression analysis showed that sleeplessness behavior, depressed mood, female gender, and pharmacologic treatments with inflammation inhibitors significantly (P<.0001) accounted for the variance of poorer sleep quality. The analysis also showed that the following factors in descending order significantly accounted (P<.0001) for the outcome of sleep quality: inability to feel refreshed by sleep, difficulty in maintaining sleep, gastrointestinal problems, too little sleep, final morning awakening time, sleep onset latency, lying down because of daytime tiredness, and daytime physical tiredness. Compared with men, women with stable CAD may be especially at risk of experiencing poor sleep quality, even when sleeplessness behavior and pharmacologic treatments with inflammation inhibitors are controlled. It is also possible that they may be more at risk of depressed mood.

  4. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans.

    PubMed

    Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur

    2018-02-15

    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nap polygraphic recordings after partial sleep deprivation in patients with suspected epileptic seizures.

    PubMed

    Peraita-Adrados, R; Gutierrez-Solana, L; Ruiz-Falcó, M L; García-Peñas, J J

    2001-02-01

    A review of the literature shows that nap recordings make a significant contribution to epilepsy studies, providing evidence of specific EEG findings in patients suspected of having epilepsy. In addition, sleep deprivation can cause paroxysmal EEG activity and clinical seizures. We studied retrospectively 686 patients, 51.8% males and 48.2% females, who had experienced at least one episode classified from the clinical point of view as epileptic in origin. They were divided into six age groups. Patients underwent a two-hour (1 P.M.-3 P.M.) nap-video-polygraphic recording (EEG 13 channels using the standard 10-20 system, EOG, ECG, EMG and respiration), following a partial sleep deprivation (1 to 3 h) the night before. A second recording was made in 40 patients. In 35.3% of patients, a complete sleep cycle was obtained; in 64.6% sufficient light and deep NREM sleep was obtained, but not REM stage; in 9.3%, we only observed drowsiness and stage 1 of sleep, and this group was excluded from the analysis. Interictal and/or ictal epileptic discharges were observed during the first nap recording in 245 patients (40.4% of the sample). In addition, in 40 patients (11%) with normal or inconclusive first nap EEG, a second recording was able to demonstrate epileptic abnormalities in 35% of cases. Because of its good cost/benefit ratio and availability in most western laboratories, we consider the 'nap plus partial sleep deprivation' method as advantageous over other activation procedures.

  6. One night of sleep loss impairs innovative thinking and flexible decision making.

    PubMed

    Harrison, Y; Horne, J A

    1999-05-01

    Recent findings with clinically oriented neuropsychological tests suggest that one night without sleep causes particular impairment to tasks requiring flexible thinking and the updating of plans in the light of new information. This relatively little investigated field of sleep deprivation research has real-world implications for decision makers having lost a night's sleep. To explore this latter perspective further, we adapted a dynamic and realistic marketing decision making "game" embodying the need for these skills, and whereby such performance could be measured. As the task relied on the comprehension of a large amount of written information, a critical reasoning test was also administered to ascertain whether any failure at the marketing game might lie with information acquisition rather than with failures in decision making. Ten healthy highly motivated and trained participants underwent two counterbalanced 36 h trials, sleep vs no sleep. The critical reasoning task was unaffected by sleep loss, whereas performance at the game significantly deteri orated after 32-36 h of sleep loss, when sleep deprivation led to more rigid thinking, increased perseverative errors, and marked difficulty in appreciating an updated situation. At this point, and despite the sleep-deprived participants' best efforts to do well, their play collapsed, unlike that of the nonsleep-deprived participants. Copyright 1999 Academic Press.

  7. Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1999-01-01

    This project is concerned with identifying ways to prevent neurobehavioral and physical deterioration due to inadequate sleep in astronauts during long-duration manned space flight. The performance capability of astronauts during extended-duration space flight depends heavily on achieving recovery through adequate sleep. Even with appropriate circadian alignment, sleep loss can erode fundamental elements of human performance capability including vigilance, cognitive speed and accuracy, working memory, reaction time, and physiological alertness. Adequate sleep is essential during manned space flight not only to ensure high levels of safe and effective human performance, but also as a basic regulatory biology critical to healthy human functioning. There is now extensive objective evidence that astronaut sleep is frequently restricted in space flight to averages between 4 hr and 6.5 hr/day. Chronic sleep restriction during manned space flight can occur in response to endogenous disturbances of sleep (motion sickness, stress, circadian rhythms), environmental disruptions of sleep (noise, temperature, light), and curtailment of sleep due to the work demands and other activities that accompany extended space flight operations. The mechanism through which this risk emerges is the development of cumulative homeostatic pressure for sleep across consecutive days of inadequate sleep. Research has shown that the physiological sleepiness and performance deficits engendered by sleep debt can progressively worsen (i.e., accumulate) over consecutive days of sleep restriction, and that sleep limited to levels commonly experienced by astronauts (i.e., 4 - 6 hr per night) for as little as 1 week, can result in increased lapses of attention, degradation of response times, deficits in complex problem solving, reduced learning, mood disturbance, disruption of essential neuroendocrine, metabolic, and neuroimmune responses, and in some vulnerable persons, the emergence of uncontrolled sleep attacks. The prevention of cumulative performance deficits and neuroendocrine disruption from sleep restriction during extended duration space flight involves finding the most effective ways to obtain sleep in order to maintain the high-level cognitive and physical performance functions required for manned space flight. There is currently a critical deficiency in knowledge of the effects of how variations in sleep duration and timing relate to the most efficient return of performance per unit time invested in sleep during long-duration missions, and how the nature of sleep physiology (i.e., sleep stages, sleep electroencephalographic [EEG] power spectral analyses) change as a function of sleep restriction and performance degradation. The primary aim of this project is to meet these critical deficiencies through utilization of a response surface experimental paradigm, testing in a dose-response manner, varying combinations of sleep duration and timing, for the purpose of establishing how to most effectively limit the cumulative adverse effects on human performance and physiology of chronic sleep restriction in space operations.

  8. Clarification of the factor structure of the 12-item General Health Questionnaire among Japanese adolescents and associated sleep status.

    PubMed

    Suzuki, Hiroyuki; Kaneita, Yoshitaka; Osaki, Yoneatsu; Minowa, Masumi; Kanda, Hideyuki; Suzuki, Kenji; Wada, Kiyoshi; Hayashi, Kenji; Tanihata, Takeo; Ohida, Takashi

    2011-06-30

    If the factors affecting the mental health status of adolescents and their association with sleep status could be clarified, this information would be helpful for formulating lifestyle and healthcare guidance for the promotion of healthy growth and the prevention of mental problems in these individuals. The purpose of this study was to clarify (1) the factor structure of the 12-item General Health Questionnaire (GHQ-12), and (2) the associations between the factors extracted from this questionnaire and lifestyle, in particular sleep status, by using a representative sample population of Japanese adolescents. One hundred three thousand sixty hundred fifty self-administered questionnaires were collected from students enrolled in junior high and high schools in Japan. Of these questionnaires, 99,668 were analyzed. Sleep duration, subjective sleep assessment, bedtime, and insomnia symptoms of these students over the past month were studied to investigate sleep status. The factor analyses yielded two factors: depression/anxiety and loss of positive emotion. Sleep duration of less than 7h was found to be associated with both depression/anxiety and loss of positive emotion, whereas sleep duration of 8h or more was associated only with loss of positive emotion. Subjective sleep assessment and insomnia symptoms were associated with both depression/anxiety and loss of positive emotion. It was demonstrated that two underlying factors of mental health status were associated with differences in sleep status. In order to improve the mental health status of adolescents, it is important to provide guidance about sleep and lifestyle habits according to the mental health status of the individual. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The cognitive cost of sleep lost

    PubMed Central

    McCoy, John G.; Strecker, Robert E.

    2013-01-01

    A substantial body of literature supports the intuitive notion that a good night’s sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances. PMID:21875679

  10. A Novel Therapy for Chronic Sleep-Onset Insomnia: A Retrospective, Nonrandomized Controlled Study of Auto-Adjusting, Dual-Level, Positive Airway Pressure Technology.

    PubMed

    Krakow, Barry; Ulibarri, Victor A; McIver, Natalia D; Nadorff, Michael R

    2016-09-29

    Evidence indicates that behavioral or drug therapy may not target underlying pathophysiologic mechanisms for chronic insomnia, possibly due to previously unrecognized high rates (30%-90%) of sleep apnea in chronic insomnia patients. Although treatment studies with positive airway pressure (PAP) demonstrate decreased severity of chronic sleep maintenance insomnia in patients with co-occurring sleep apnea, sleep-onset insomnia has not shown similar results. We hypothesized advanced PAP technology would be associated with decreased sleep-onset insomnia severity in a sample of predominantly psychiatric patients with comorbid sleep apnea. We reviewed charts of 74 severe sleep-onset insomnia patients seen from March 2011 to August 2015, all meeting American Academy of Sleep Medicine Work Group criteria for a chronic insomnia disorder and all affirming behavioral and psychological origins for insomnia (averaging 10 of 18 indicators/patient), as well as averaging 2 or more psychiatric symptoms or conditions: depression (65.2%), anxiety (41.9%), traumatic exposure (35.1%), claustrophobia (29.7%), panic attacks (28.4%), and posttraumatic stress disorder (20.3%). All patients failed continuous or bilevel PAP and were manually titrated with auto-adjusting PAP modes (auto-bilevel and adaptive-servo ventilation). At 1-year follow-up, patients were compared through nonrandom assignment on the basis of a PAP compliance metric of > 20 h/wk (56 PAP users) versus < 20 h/wk (18 partial PAP users). PAP users showed significantly greater decreases in global insomnia severity (Hedges' g = 1.72) and sleep-onset insomnia (g = 2.07) compared to partial users (g = 1.04 and 0.91, respectively). Both global and sleep-onset insomnia severity decreased below moderate levels in PAP users compared to partial users whose outcomes persisted at moderately severe levels. In a nonrandomized controlled retrospective study, advanced PAP technology (both auto-bilevel and adaptive servo-ventilation) were associated with large decreases in insomnia severity for sleep-onset insomnia patients who strongly believed psychological factors caused their sleeplessness. PAP treatment of sleep-onset insomnia merits further investigation. © Copyright 2016 Physicians Postgraduate Press, Inc.

  11. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  12. Externalizing Behaviors and Callous-Unemotional Traits: Different Associations With Sleep Quality

    PubMed Central

    Akhtar, Reece; Holding, Benjamin C; Murray, Christina; Panatti, Jennifer; Claridge, Gordon; Sadeh, Avi; Barclay, Nicola L; O’Leary, Rachael; Maughan, Barbara; McAdams, Tom A; Rowe, Richard; Eley, Thalia C; Viding, Essi

    2017-01-01

    Abstract Study Objectives Sleep quality is associated with different aspects of psychopathology, but relatively little research has examined links between sleep quality and externalizing behaviors or callous-unemotional traits. We examined: (1) whether an association exists between sleep quality and externalizing behaviors; (2) whether anxiety mediates this association; (3) whether callous-unemotional traits are associated with sleep quality. Methods Data from two studies were used. Study 1 involved 1556 participants of the G1219 study aged 18–27 years (62% female). Questionnaire measures assessed sleep quality, anxiety, externalizing behaviors, and callous-unemotional traits. Study 2 involved 338 participants aged 18–66 years (65% female). Questionnaires measured sleep quality, externalizing behaviors, and callous-unemotional traits. In order to assess objective sleep quality, actigraphic data were also recorded for a week from a subsample of study 2 participants (n = 43). Results In study 1, poorer sleep quality was associated with greater externalizing behaviors. This association was partially mediated by anxiety and moderated by levels of callous-unemotional traits. There was no significant relationship between sleep quality and callous-unemotional traits. In study 2, poorer sleep quality, as assessed via self-reported but not objective measures, was associated with higher levels of externalizing behaviors. Furthermore, in study 2, better sleep quality (indicated in both questionnaires and actigraphy measures: lower mean activity, and greater sleep efficiency) was associated with higher levels of callous-unemotional traits. Conclusions Self-reports of poorer sleep quality are associated with externalizing behaviors, and this association is partially mediated by anxiety. Callous-unemotional traits are not associated with poor sleep and may even be related to better sleep quality. This is an exceptional finding given that poor sleep quality appears to be a characteristic of most psychopathology. PMID:28575510

  13. Sleep Loss Effects on Continuous Sustained Performance.

    DTIC Science & Technology

    1982-11-30

    Sleep loss, continuous performance, sustained performance, sleep deprivation, sleepiness, fatigue, circadian rhythm, hallucination . 20, ABSTRACT...complete the 42 hours and 9 experienced "psychological events such as hallucinations , visual illusions, and disorientation. Of the 20 subjects who... hallucinations , derealizations, and distortions (Mullaney, Kripke, and Fleck, 1981). All 20 subjects who were given either one 6-hour or six 1-hour

  14. Prevalence of Parasomnia in Autistic Children with Sleep Disorders

    PubMed Central

    Ming, Xue; Sun, Ye-Ming; Nachajon, Roberto V.; Brimacombe, Michael; Walters, Arthur S.

    2009-01-01

    The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD). Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children with ASD and 23 age-matched children of a non-autistic comparison group. The results showed significantly more non-REM parasomnias in 14 children with ASD on polysomnograms (PSG) and 16 ASD children by questionnaire, a finding that was not associated with medication use, other comorbid medical or psychiatric disorders, or sleep disordered breathing. Of the 14 children with ASD who had PSG evidence of parasomnia, 11 of them had a history suggestive of parasomnia by questionnaire. There was a high sensitivity but a low specificity of parasomnia in ASD by questionnaire in predicting the presence of parasomnia in the PSG. Of the parasomnias recorded in the laboratory, 13 ASD children had Disorders of Partial Arousal, consistent with sleep terrors or confusional arousals. Furthermore, multiple episodes of partial arousal occurred in 11 of the 13 ASD children who had PSG evidence of Disorders of Partial Arousal. Of the 11 ASD children with multiple episodes of partial arousal, 6 ASD children had multiple partial arousals during both nights’ PSG study. Sleep architecture was abnormal in children with ASD, characterized by increased spontaneous arousals, prolonged REM latency and reduced REM percentage. These results suggest a high prevalence of parasomnia in this cohort of children with ASD and a careful history intake of symptoms compatible with parasomnia could be prudent to diagnose parasomnia in ASD children when performing a PSG is not possible. PMID:23818789

  15. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work.

    PubMed

    Crowley, Stephanie J; Lee, Clara; Tseng, Christine Y; Fogg, Louis F; Eastman, Charmane I

    2004-09-15

    To assess performance, alertness, and mood during the night shift and subsequent daytime sleep in relation to the degree of re-alignment (re-entrainment) of circadian rhythms with a night-work, day-sleep schedule. Subjects spent 5 consecutive night shifts (11:00 pm-7:00 am) in the lab and slept at home in darkened bedrooms (8:30 am-3:30 pm). Subjects were categorized by the degree of re-entrainment attained after the 5 night shifts. Completely re-entrained: temperature minimum in the second half of daytime sleep; partially re-entrained: temperature minimum in the first half of daytime sleep; not re-entrained: temperature minimum did not delay enough to reach daytime sleep. See above. Young healthy adults (n = 67) who were not shift workers. Included bright light during the night shifts, sunglasses worn outside, a fixed dark daytime sleep episode, and melatonin. The effects of various combinations of these interventions on circadian re-entrainment were previously reported. Here we report how the degree of re-entrainment affected daytime sleep and measures collected during the night shift. Salivary melatonin was collected every 30 minutes in dim light (<20 lux) before and after the night shifts to determine the dim light melatonin onset, and the temperature minimum was estimated by adding a constant (7 hours) to the dim light melatonin onset. Subjects kept sleep logs, which were verified by actigraphy. The Neurobehavioral Assessment Battery was completed several times during each night shift. Baseline sleep schedules and circadian phase differed among the 3 re-entrainment groups, with later times resulting in more re-entrainment. The Neurobehavioral Assessment Battery showed that performance, sleepiness, and mood were better in the groups that re-entrained compared to the group that did not re-entrain, but there were no significant differences between the partial and complete re-entrainment groups. Subjects slept almost all of the allotted 7 hours during the day, and duration did not significantly differ among the re-entrainment groups. In young people, complete re-entrainment to the night-shift day-sleep schedule is not necessary to produce substantial benefits in neurobehavioral measures; partial re-entrainment (delaying the temperature minimum into the beginning of daytime sleep) is sufficient. The group that did not re-entrain shows that a reasonable amount of daytime sleep is not enough to produce good neurobehavioral performance during the night shift. Therefore, some re-alignment of circadian rhythms is recommended.

  16. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    PubMed

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  17. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss.

    PubMed

    Halassa, Michael M; Florian, Cedrick; Fellin, Tommaso; Munoz, James R; Lee, So-Young; Abel, Ted; Haydon, Philip G; Frank, Marcos G

    2009-01-29

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep, and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wild-type mice mimicked the transgenic phenotype, we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors.

  18. Identification of Cardiometabolic Vulnerabilities Caused by Effects of Synergistic Stressors that are Commonly Encountered During Space Missions

    NASA Technical Reports Server (NTRS)

    Ruger, M.; Scheer, F. A. J.; Barger, L. K.; Lockley, S. W.; Wang, W.; Johnston, S. L. III; Crucian, B.; Shea, A. S.

    2011-01-01

    Microgravity is a physiologically challenging state even when at rest. Astronauts experience additional physical and mental stresses, such as prolonged exertion, sleep loss and circadian misalignment, that could impact cardiovascular function. The main goals of this four year NASA project are to characterize the independent and synergistic effects on cardiovascular and immune function of: (1) circadian misalignment; (2) sleep loss; and (3) varied physical and mental stressors, mimicking some of the synergistic stressors experienced by astronauts. Sixteen healthy volunteers, aged 35-55 years, will be studied with standardized behavioral stressors occurring across all circadian phases, both with and without accruing sleep loss, achieved via two 11-day "forced desynchrony" protocols performed in each subject (randomized, within-subject design), where wake periods are advanced 4-h each "day" (i.e. recurring 20-h "days"). One protocol permits 8.33 h sleep opportunity per 20-h "day" (=10 h sleep per 24-h), and the other permits 5 h sleep per 20-h "day" (=6 h sleep per 24-h; matching the reported sleep duration of astronauts). In both protocols, subjects will perform a standardized stress battery including a cognitively challenging task; bicycle exercise, and passive 60deg head up tilt. Outcome variables include blood pressure, heart rate, arrhythmia frequency, cardiac vagal tone (from heart rate variability), sympathetic activity (catecholamines), and endothelial function. Additional measures of cardiac function (echocardiography), responses to a passive 80deg head up tilt, maximal oxygen uptake, and immune function will be assessed at the beginning and at the end of each protocol (i.e., without and with sleep loss, and before and after circadian misalignment). We hope to identify the relative impact on cardiovascular risk markers of varied behavioural stressors while subjects experience circadian misalignment and sleep loss, mimicking some of the synergistic stressors experienced by astronauts. Supported by NASANNX1 OAR 1 OG.

  19. Daily sleep quality affects drug craving, partially through indirect associations with positive affect, in patients in treatment for nonmedical use of prescription drugs

    PubMed Central

    Lydon-Staley, David M.; Cleveland, H. Harrington; Huhn, Andrew S.; Cleveland, Michael J.; Harris, Jonathan; Stankoski, Dean; Deneke, Erin; Meyer, Roger E.; Bunce, Scott C.

    2016-01-01

    Objective Sleep disturbance has been identified as a risk factor for relapse in addiction to a range of substances. The relationship between sleep quality and treatment outcome has received relatively little attention in research on nonmedical use of prescription drugs (NMUPD). This study examined the within-person association between sleep quality and craving in medically detoxified patients in residence for the treatment of NMUPD. Method Participants (n= 68) provided daily reports of their sleep quality, negative affect (NA), positive affect (PA), and craving for an average of 9.36 (SD= 2.99) days. Within-person associations of sleep quality and craving were examined using multilevel modeling. Within-person mediation analyses were used to evaluate the mediating roles of NA and PA in the relationship between sleep quality and craving. Results Greater cravings were observed on days of lower than usual sleep quality (γ10 = −0.10, p = .003). Thirty-one percent of the overall association between sleep quality and craving was explained by PA, such that poorer sleep quality was associated with lower PA and, in turn, lower PA was associated with greater craving. No evidence emerged for an indirect association between sleep quality and craving through NA. Conclusions Daily fluctuations in sleep quality were associated with fluctuations in craving, an association partially explained by the association between sleep quality and daily PA. These data encourage further research on the relationship between sleep, affect, and craving in NMUPD patients, as well as in patients with other substance use disorders. PMID:27544697

  20. Daily sleep quality affects drug craving, partially through indirect associations with positive affect, in patients in treatment for nonmedical use of prescription drugs.

    PubMed

    Lydon-Staley, David M; Cleveland, H Harrington; Huhn, Andrew S; Cleveland, Michael J; Harris, Jonathan; Stankoski, Dean; Deneke, Erin; Meyer, Roger E; Bunce, Scott C

    2017-02-01

    Sleep disturbance has been identified as a risk factor for relapse in addiction to a range of substances. The relationship between sleep quality and treatment outcome has received relatively little attention in research on nonmedical use of prescription drugs (NMUPD). This study examined the within-person association between sleep quality and craving in medically detoxified patients in residence for the treatment of NMUPD. Participants (n=68) provided daily reports of their sleep quality, negative affect (NA), positive affect (PA), and craving for an average of 9.36 (SD=2.99) days. Within-person associations of sleep quality and craving were examined using multilevel modeling. Within-person mediation analyses were used to evaluate the mediating roles of NA and PA in the relationship between sleep quality and craving. Greater cravings were observed on days of lower than usual sleep quality (γ 10 =-0.10, p=0.003). Thirty-one percent of the overall association between sleep quality and craving was explained by PA, such that poorer sleep quality was associated with lower PA and, in turn, lower PA was associated with greater craving. No evidence emerged for an indirect association between sleep quality and craving through NA. Daily fluctuations in sleep quality were associated with fluctuations in craving, an association partially explained by the association between sleep quality and daily PA. These data encourage further research on the relationship between sleep, affect, and craving in NMUPD patients, as well as in patients with other substance use disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oculomotor impairment during chronic partial sleep deprivation.

    PubMed

    Russo, M; Thomas, M; Thorne, D; Sing, H; Redmond, D; Rowland, L; Johnson, D; Hall, S; Krichmar, J; Balkin, T

    2003-04-01

    The effects of chronic partial sleep (sleep deprivation) and extended sleep (sleep augmentation) followed by recovery sleep on oculomotor function were evaluated in normal subjects to explore the usefulness of oculomotor assessment for alertness monitoring in fitness-for-duty testing. Sixty-six commercial drivers (24-62 years, 50m/16f) participated in a 15 day study composed of 3 training days with 8h time in bed per night, 7 experimental days with subjects randomly assigned to either 3, 5, 7, or 9h time in bed, and 3 recovery nights with 8h time in bed. Data from 57 subjects were used. Saccadic velocity (SV), initial pupil diameter (IPD), latency to pupil constriction (CL), and amplitude of pupil constriction (CA) were assessed and correlated with the sleep latency test (SLT), the Stanford sleepiness scale (SSS), and simulated driving performance. Regression analyses showed that SV slowed significantly in the 3 and 5h groups, IPD decreased significantly in the 9h group, and CL increased significantly in the 3h group. SLT and SSS significantly correlated with SV, IPD, CL, and driving accidents for the 3h group, and with CL for the 5h group. Analyses also showed a significant negative correlation between decreasing SV and increasing driving accidents in the 3h group and a significant negative correlation between IPD and driving accidents for the 7h group. The results demonstrate a sensitivity primarily of SV to sleepiness, and a correlation of SV and IPD to impaired simulated driving performance, providing evidence for the potential utility of oculomotor indicators in the detection of excessive sleepiness and deterioration of complex motor performance with chronic partial sleep restriction. This paper shows a relationship between sleep deprivation and oculomotor measures, and suggests a potential utility for oculometrics in assessing operational performance readiness under sleep restricted conditions.

  2. Sleep deprivation leads to mood deficits in healthy adolescents.

    PubMed

    Short, Michelle A; Louca, Mia

    2015-08-01

    The objectives of the study were to investigate the effects of 36 h of sleep deprivation on the discrete mood states of anger, depression, anxiety, confusion, fatigue, and vigour in healthy adolescents. Twelve healthy adolescent good sleepers (six male), aged 14-18 years (M = 16.17, standard deviation (SD) = 0.83), spent three consecutive nights in the sleep laboratory of the Centre for Sleep Research: two baseline nights with 10-h sleep opportunities and one night of total sleep deprivation. Every 2 h during wakefulness, they completed the Profile of Mood States - Short Form. Mood across two baseline days was compared to mood at the same clock time (0900 h to 1900 h) following one night without sleep. The subscales of depression, anger, confusion, anxiety, vigour, and fatigue were compared across days. All mood states significantly worsened following one night without sleep. Females showed a greater vulnerability to mood deficits following sleep loss, with greater depressed mood and anxiety following sleep deprivation only witnessed among female participants. While both males and females reported more confusion following sleep deprivation, the magnitude of this effect was greater for females. This study provides empirical support for the notion that sleep loss can causally affect mood states in healthy adolescents, with females having heightened vulnerability. Understanding the detrimental effects of insufficient sleep during adolescence is important, as it is a stage where sleep loss and mood dysregulation are highly prevalent. These findings escalate the importance of promoting sleep for the well-being of adolescents at this critical life phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Human Hippocampal Structure: A Novel Biomarker Predicting Mnemonic Vulnerability to, and Recovery from, Sleep Deprivation

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Stark, Shauna; Stark, Craig E.

    2016-01-01

    Sleep deprivation impairs the formation of new memories. However, marked interindividual variability exists in the degree to which sleep loss compromises learning, the mechanistic reasons for which are unclear. Furthermore, which physiological sleep processes restore learning ability following sleep deprivation are similarly unknown. Here, we demonstrate that the structural morphology of human hippocampal subfields represents one factor determining vulnerability (and conversely, resilience) to the impact of sleep deprivation on memory formation. Moreover, this same measure of brain morphology was further associated with the quality of nonrapid eye movement slow wave oscillations during recovery sleep, and by way of such activity, determined the success of memory restoration. Such findings provide a novel human biomarker of cognitive susceptibility to, and recovery from, sleep deprivation. Moreover, this metric may be of special predictive utility for professions in which memory function is paramount yet insufficient sleep is pervasive (e.g., aviation, military, and medicine). SIGNIFICANCE STATEMENT Sleep deprivation does not impact all people equally. Some individuals show cognitive resilience to the effects of sleep loss, whereas others express striking vulnerability, the reasons for which remain largely unknown. Here, we demonstrate that structural features of the human brain, specifically those within the hippocampus, accurately predict which individuals are susceptible (or conversely, resilient) to memory impairments caused by sleep deprivation. Moreover, this same structural feature determines the success of memory restoration following subsequent recovery sleep. Therefore, structural properties of the human brain represent a novel biomarker predicting individual vulnerability to (and recovery from) the effects of sleep loss, one with occupational relevance in professions where insufficient sleep is pervasive yet memory function is paramount. PMID:26911684

  4. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila.

    PubMed

    Keebaugh, Erin S; Park, Jin Hong; Su, Chenchen; Yamada, Ryuichi; Ja, William W

    2017-11-01

    Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation.

    PubMed

    Holst, Sebastian C; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter

    2017-04-10

    Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D 2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.

  6. A Case of Concomitant Obstructive Sleep Apnea and Non-Alcoholic Steatohepatitis Treated With CPAP Therapy

    PubMed Central

    Bajantri, Bharat; Lvovsky, Dmitry

    2018-01-01

    Obstructive sleep apnea syndrome is a disorder of sleep breathing that is a result of recurrent and intermittent hypoxia during sleep induced by the repeated partial or complete collapse of the upper airway, eventually causing chronic intermittent hypoxia. Non-alcoholic fatty liver disease is divided into non-alcoholic fatty liver and non-alcoholic steatohepatitis. Animal and human studies showed that obesity is associated with chronic liver hypoxia, even in the presence of systemic normoxia causing inflammation and release of cytokines. A “two-hit” model has been proposed. The first hit is characterized by insulin resistance and excess hepatic lipid accumulation secondary to abnormal fatty acid metabolism. Oxidative stress and inflammation are thought to comprise the second hit. Gold standard for the diagnosis of non-alcoholic steatohepatitis is a liver biopsy. Many clinical scores and non-invasive tools are used for the diagnosis of non-alcoholic steatohepatitis. Conservative management with lifestyle modifications including diet, exercise and weight loss remains the therapy of choice today. We present a case report of a 39-year-old man who was diagnosed with concomitant non-alcoholic steatohepatitis and severe obstructive sleep apnea. He was started treatment with continuous positive airway pressure and demonstrated excellent adherence to therapy for 6 years, with concomitant obstructive sleep apnea and non-alcoholic steatohepatitis which reversed with prolonged optimal continuous positive airway pressure therapy. Physical examination remained unremarkable except for morbid obesity. His abdominal girth, as well as body mass index, remained unchanged. After 6 years of optimal continuous positive airway pressure therapy, liver enzymes and relevant lipid panel normalized, suggesting reversal of non-alcoholic steatohepatitis. PMID:29915639

  7. Medical and Genetic Differences in the Adverse Impact of Sleep Loss on Performance: Ethical Considerations for the Medical Profession

    PubMed Central

    Czeisler, Charles A.

    2009-01-01

    The Institute of Medicine recently concluded that-on average-medical residents make more serious medical errors and have more motor vehicle crashes when they are deprived of sleep. In the interest of public safety, society has required limitations on work hours in many other safety sensitive occupations, including transportation and nuclear power generation. Those who argue in favor of traditional extended duration resident work hours often suggest that there are inter- individual differences in response to acute sleep loss or chronic sleep deprivation, implying that physicians may be more resistant than the average person to the detrimental effects of sleep deprivation on performance, although there is no evidence that physicians are particularly resistant to such effects. Indeed, recent investigations have identified genetic polymorphisms that may convey a relative resistance to the effects of prolonged wakefulness on a subset of the healthy population, although there is no evidence that physicians are over-represented in this cohort. Conversely, there are also genetic polymorphisms, sleep disorders and other inter-individual differences that appear to convey an increased vulnerability to the performance-impairing effects of 24 hours of wakefulness. Given the magnitude of inter-individual differences in the effect of sleep loss on cognitive performance, and the sizeable proportion of the population affected by sleep disorders, hospitals face a number of ethical dilemmas. How should the work hours of physicians be limited to protect patient safety optimally? For example, some have argued that, in contrast to other professions, work schedules that repeatedly induce acute and chronic sleep loss are uniquely essential to the training of physicians. If evidence were to prove this premise to be correct, how should such training be ethically accomplished in the quartile of physicians and surgeons who are most vulnerable to the effects of sleep loss on performance without unacceptably compromising patient safety? Moreover, once it is possible to identify reliably those most vulnerable to the adverse effects of sleep loss on performance, will academic medical centers have an obligation to evaluate the proficiency of both residents and staff physicians under conditions of acute and chronic sleep deprivation? Should work-hour policy limits be modified to ensure that they are not hazardous for the patients of the most vulnerable quartile of physicians, or should the limits be personalized to enable the most resistant quartile to work longer hours? Given that the prevalence of sleep disorders has increased in our society overall, and increases markedly with age, how should fitness for extended duration work hours be monitored over a physician's career? In the spirit of the dictum to do no harm, advances in understanding the medical and genetic basis of inter-individual differences in the performance vulnerability to sleep loss should be incorporated into the development of work-hour policy limits for both physicians and surgeons. PMID:19768182

  8. Medical and genetic differences in the adverse impact of sleep loss on performance: ethical considerations for the medical profession.

    PubMed

    Czeisler, Charles A

    2009-01-01

    The Institute of Medicine recently concluded that-on average-medical residents make more serious medical errors and have more motor vehicle crashes when they are deprived of sleep. In the interest of public safety, society has required limitations on work hours in many other safety sensitive occupations, including transportation and nuclear power generation. Those who argue in favor of traditional extended duration resident work hours often suggest that there are inter- individual differences in response to acute sleep loss or chronic sleep deprivation, implying that physicians may be more resistant than the average person to the detrimental effects of sleep deprivation on performance, although there is no evidence that physicians are particularly resistant to such effects. Indeed, recent investigations have identified genetic polymorphisms that may convey a relative resistance to the effects of prolonged wakefulness on a subset of the healthy population, although there is no evidence that physicians are over-represented in this cohort. Conversely, there are also genetic polymorphisms, sleep disorders and other inter-individual differences that appear to convey an increased vulnerability to the performance-impairing effects of 24 hours of wakefulness. Given the magnitude of inter-individual differences in the effect of sleep loss on cognitive performance, and the sizeable proportion of the population affected by sleep disorders, hospitals face a number of ethical dilemmas. How should the work hours of physicians be limited to protect patient safety optimally? For example, some have argued that, in contrast to other professions, work schedules that repeatedly induce acute and chronic sleep loss are uniquely essential to the training of physicians. If evidence were to prove this premise to be correct, how should such training be ethically accomplished in the quartile of physicians and surgeons who are most vulnerable to the effects of sleep loss on performance without unacceptably compromising patient safety? Moreover, once it is possible to identify reliably those most vulnerable to the adverse effects of sleep loss on performance, will academic medical centers have an obligation to evaluate the proficiency of both residents and staff physicians under conditions of acute and chronic sleep deprivation? Should work-hour policy limits be modified to ensure that they are not hazardous for the patients of the most vulnerable quartile of physicians, or should the limits be personalized to enable the most resistant quartile to work longer hours? Given that the prevalence of sleep disorders has increased in our society overall, and increases markedly with age, how should fitness for extended duration work hours be monitored over a physician's career? In the spirit of the dictum to do no harm, advances in understanding the medical and genetic basis of inter-individual differences in the performance vulnerability to sleep loss should be incorporated into the development of work-hour policy limits for both physicians and surgeons.

  9. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    ERIC Educational Resources Information Center

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  10. Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation, Independently of Sleep Loss

    PubMed Central

    Leproult, Rachel; Holmbäck, Ulf; Van Cauter, Eve

    2014-01-01

    Shift workers, who are exposed to irregular sleep schedules resulting in sleep deprivation and misalignment of circadian rhythms, have an increased risk of diabetes relative to day workers. In healthy adults, sleep restriction without circadian misalignment promotes insulin resistance. To determine whether the misalignment of circadian rhythms that typically occurs in shift work involves intrinsic adverse metabolic effects independently of sleep loss, a parallel group design was used to study 26 healthy adults. Both interventions involved 3 inpatient days with 10-h bedtimes, followed by 8 inpatient days of sleep restriction to 5 h with fixed nocturnal bedtimes (circadian alignment) or with bedtimes delayed by 8.5 h on 4 of the 8 days (circadian misalignment). Daily total sleep time (SD) during the intervention was nearly identical in the aligned and misaligned conditions (4 h 48 min [5 min] vs. 4 h 45 min [6 min]). In both groups, insulin sensitivity (SI) significantly decreased after sleep restriction, without a compensatory increase in insulin secretion, and inflammation increased. In male participants exposed to circadian misalignment, the reduction in SI and the increase in inflammation both doubled compared with those who maintained regular nocturnal bedtimes. Circadian misalignment that occurs in shift work may increase diabetes risk and inflammation, independently of sleep loss. PMID:24458353

  11. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation

    PubMed Central

    Maire, Micheline; Reichert, Carolin F.; Gabel, Virginie; Viola, Antoine U.; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina

    2014-01-01

    Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability. PMID:24639634

  12. Natural History of Excessive Daytime Sleepiness: Role of Obesity, Weight Loss, Depression, and Sleep Propensity

    PubMed Central

    Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Kritikou, Ilia; Calhoun, Susan L.; Liao, Duanping; Bixler, Edward O.

    2015-01-01

    Study Objectives: Excessive daytime sleepiness (EDS) is highly prevalent in the general population and is associated with occupational and public safety hazards. However, no study has examined the clinical and polysomnographic (PSG) predictors of the natural history of EDS. Design: Representative longitudinal study. Setting: Sleep laboratory. Participants: From a random, general population sample of 1,741 individuals of the Penn State Adult Cohort, 1,395 were followed up after 7.5 years. Measurements and Results: Full medical evaluation and 1-night PSG at baseline and standardized telephone interview at follow-up. The incidence of EDS was 8.2%, while its persistence and remission were 38% and 62%, respectively. Obesity and weight gain were associated with the incidence and persistence of EDS, while weight loss was associated with its remission. Significant interactions between depression and PSG parameters on incident EDS showed that, in depressed individuals, incident EDS was associated with sleep disturbances, while in non-depressed individuals, incident EDS was associated with increased physiologic sleep propensity. Diabetes, allergy/asthma, anemia, and sleep complaints also predicted the natural history of EDS. Conclusions: Obesity, a disorder of epidemic proportions, is a major risk factor for the incidence and chronicity of excessive daytime sleepiness (EDS), while weight loss is associated with its remission. Interestingly, objective sleep disturbances predict incident EDS in depressed individuals, whereas physiologic sleep propensity predicts incident EDS in those without depression. Weight management and treatment of depression and sleep disorders should be part of public health policies. Citation: Fernandez-Mendoza J, Vgontzas AN, Kritikou I, Calhoun SL, Liao D, Bixler EO. Natural history of excessive daytime sleepiness: role of obesity, weight loss, depression, and sleep propensity. SLEEP 2015;38(3):351–360. PMID:25581913

  13. Sleep restriction and degraded reaction-time performance in Figaro solo sailing races.

    PubMed

    Hurdiel, Rémy; Van Dongen, Hans P A; Aron, Christophe; McCauley, Peter; Jacolot, Laure; Theunynck, Denis

    2014-01-01

    In solo offshore sailing races like those of the Solitaire du Figaro, sleep must be obtained in multiple short bouts to maintain competitive performance and safety. Little is known about the amount of sleep restriction experienced at sea and the effects that fatigue from sleep loss have on sailors' performance. Therefore, we assessed sleep in sailors of yachts in the Figaro 2 Beneteau class during races and compared response times on a serial simple reaction-time test before and after races. Twelve men (professional sailors) recorded their sleep and measured their response times during one of the three single-handed races of 150, 300 and 350 nautical miles (nominally 24-50 h in duration). Total estimated sleep duration at sea indicated considerable sleep insufficiency. Response times were slower after races than before. The results suggest that professional sailors incur severe sleep loss and demonstrate marked performance impairment when competing in one- to two-day solo sailing races. Competitive performance could be improved by actively managing sleep during solo offshore sailing races.

  14. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    PubMed

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  15. Arousal from sleep does not lead to reduced dilator muscle activity or elevated upper airway resistance on return to sleep in healthy individuals.

    PubMed

    Jordan, Amy S; Cori, Jennifer M; Dawson, Andrew; Nicholas, Christian L; O'Donoghue, Fergal J; Catcheside, Peter G; Eckert, Danny J; McEvoy, R Doug; Trinder, John

    2015-01-01

    To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Observational study. Two sleep physiology laboratories. 35 men and 25 women with no medical or sleep disorders. Auditory tones to induce 3-s to 15-s cortical arousals from sleep. During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7±0.4 and 5.5±0.3 L/min, peak genioglossus activity 3.4%±1.0% and 4.8%±1.0% maximum, upper airway resistance 4.7±0.7 and 5.5±1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. © 2014 Associated Professional Sleep Societies, LLC.

  16. Persistent reflux symptoms cause anxiety, depression, and mental health and sleep disorders in gastroesophageal reflux disease patients

    PubMed Central

    Kimura, Yoshihide; Kamiya, Takeshi; Senoo, Kyouji; Tsuchida, Kenji; Hirano, Atsuyuki; Kojima, Hisayo; Yamashita, Hiroaki; Yamakawa, Yoshihiro; Nishigaki, Nobuhiro; Ozeki, Tomonori; Endo, Masatsugu; Nakanishi, Kazuhisa; Sando, Motoki; Inagaki, Yusuke; Shikano, Michiko; Mizoshita, Tsutomu; Kubota, Eiji; Tanida, Satoshi; Kataoka, Hiromi; Katsumi, Kohei; Joh, Takashi

    2016-01-01

    Some patients with gastroesophageal reflux disease experience persistent reflux symptoms despite proton pump inhibitor therapy. These symptoms reduce their health-related quality of life. Our aims were to evaluate the relationship between proton pump inhibitor efficacy and health-related quality of life and to evaluate predictive factors affecting treatment response in Japanese patients. Using the gastroesophageal reflux disease questionnaire, 145 gastroesophageal reflux disease patients undergoing proton pump inhibitor therapy were evaluated and classified as responders or partial-responders. Their health-related quality of life was then evaluated using the 8-item Short Form Health Survey, the Pittsburgh Sleep Quality Index, and the Hospital Anxiety and Depression Scale questionnaires. Sixty-nine patients (47.6%) were partial responders. These patients had significantly lower scores than responders in 5/8 subscales and in the mental health component summary of the 8-item Short Form Health Survey. Partial responders had significantly higher Pittsburgh Sleep Quality Index and Hospital Anxiety and Depression Scale scores, including anxiety and depression scores, than those of responders. Non-erosive reflux disease and double proton pump inhibitor doses were predictive factors of partial responders. Persistent reflux symptoms, despite proton pump inhibitor therapy, caused mental health disorders, sleep disorders, and psychological distress in Japanese gastroesophageal reflux disease patients. PMID:27499583

  17. Persistent reflux symptoms cause anxiety, depression, and mental health and sleep disorders in gastroesophageal reflux disease patients.

    PubMed

    Kimura, Yoshihide; Kamiya, Takeshi; Senoo, Kyouji; Tsuchida, Kenji; Hirano, Atsuyuki; Kojima, Hisayo; Yamashita, Hiroaki; Yamakawa, Yoshihiro; Nishigaki, Nobuhiro; Ozeki, Tomonori; Endo, Masatsugu; Nakanishi, Kazuhisa; Sando, Motoki; Inagaki, Yusuke; Shikano, Michiko; Mizoshita, Tsutomu; Kubota, Eiji; Tanida, Satoshi; Kataoka, Hiromi; Katsumi, Kohei; Joh, Takashi

    2016-07-01

    Some patients with gastroesophageal reflux disease experience persistent reflux symptoms despite proton pump inhibitor therapy. These symptoms reduce their health-related quality of life. Our aims were to evaluate the relationship between proton pump inhibitor efficacy and health-related quality of life and to evaluate predictive factors affecting treatment response in Japanese patients. Using the gastroesophageal reflux disease questionnaire, 145 gastroesophageal reflux disease patients undergoing proton pump inhibitor therapy were evaluated and classified as responders or partial-responders. Their health-related quality of life was then evaluated using the 8-item Short Form Health Survey, the Pittsburgh Sleep Quality Index, and the Hospital Anxiety and Depression Scale questionnaires. Sixty-nine patients (47.6%) were partial responders. These patients had significantly lower scores than responders in 5/8 subscales and in the mental health component summary of the 8-item Short Form Health Survey. Partial responders had significantly higher Pittsburgh Sleep Quality Index and Hospital Anxiety and Depression Scale scores, including anxiety and depression scores, than those of responders. Non-erosive reflux disease and double proton pump inhibitor doses were predictive factors of partial responders. Persistent reflux symptoms, despite proton pump inhibitor therapy, caused mental health disorders, sleep disorders, and psychological distress in Japanese gastroesophageal reflux disease patients.

  18. Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions.

    PubMed

    Venkatraman, Vinod; Chuah, Y M Lisa; Huettel, Scott A; Chee, Michael W L

    2007-05-01

    Using a gambling task, we investigated how 24 hours of sleep deprivation modulates the neural response to the making of risky decisions with potentially loss-bearing outcomes. Two experiments involving sleep-deprived subjects were performed. In the first, neural responses to decision making and reward outcome were evaluated. A second control experiment evaluated responses to reward outcome only. Healthy right-handed adults participated in these experiments (26 [mean age 21.3 years] in Experiment 1 and 13 [mean age 21.7 years] in Experiment 2.) Following sleep deprivation, choices involving higher relative risk elicited greater activation in the right nucleus accumbens, signifying an elevated expectation of the higher reward once the riskier choice was made. Concurrently, activation for losses in the insular and orbitofrontal cortices was reduced, denoting a diminished response to losses. This latter finding of reduced insular activation to losses was also true when volunteers were merely shown the results of the computer's decision, that is, without having to make their own choice. These results suggest that sleep deprivation poses a dual threat to competent decision making by modulating activation in nucleus accumbens and insula, brain regions associated with risky decision making and emotional processing.

  19. Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats.

    PubMed

    Lasisi, Dr T J; Shittu, S T; Meludu, C C; Salami, A A

    2017-01-01

    Aim of this study was to investigate the effects of sleep deprivation on salivary factors in rats. Animals were randomly assigned into three groups of 6 animals each as control, total sleep deprivation (TSD) and partial sleep deprivation (PSD) groups. The multiple platform method was used to induce partial and total sleep deprivation for 7days. On the 8th day, stimulated saliva samples were collected for the analysis of salivary lag time, flow rate, salivary amylase activity, immunoglobulin A secretion rate and corticosterone levels using ELISA and standard kinetic enzyme assay. Data were analyzed using ANOVA with Dunnett T3 post hoc tests. Salivary flow rate reduced significantly in the TSD group compared with the PSD group as well as the control group (p=0.01). The secretion rate of salivary IgA was significantly reduced in the TSD group compared with the control group (p=0.04). Salivary amylase activity was significantly elevated in the TSD group compared with the PSD group as well as control group (p<0.001). However, there were no significant changes in the salivary lag time and levels of corticosterone among the groups. These findings suggest that total sleep deprivation is associated with reduced salivary flow rate and secretion rate of IgA as well as elevated levels of salivary amylase activity in rats. However, sleep recovery of four hours in the PSD group produced ameliorative effects on the impaired functions of salivary glands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Adverse Effects of Daylight Saving Time on Adolescents' Sleep and Vigilance

    PubMed Central

    Medina, Diana; Ebben, Matthew; Milrad, Sara; Atkinson, Brianna; Krieger, Ana C.

    2015-01-01

    Study Objectives: Daylight saving time (DST) has been established with the intent to reduce energy expenditure, however unintentional effects on sleep and vigilance have not been consistently measured. The objective of this study was to test the hypothesis that DST adversely affects high school students' sleep and vigilance on the school days following its implementation. Methods: A natural experiment design was used to assess baseline and post-DST differences in objective and subjective measures of sleep and vigilance by actigraphy, sleep diary, sleepiness scale, and psychomotor vigilance testing (PVT). Students were tested during school days immediately preceding and following DST. Results: A total of 40 high school students were enrolled in this study; 35 completed the protocol. Sleep duration declined by an average of 32 minutes on the weeknights post-DST, reflecting a cumulative sleep loss of 2 h 42 min as compared to the baseline week (p = 0.001). This finding was confirmed by sleep diary analyses, reflecting an average sleep loss of 27 min/night (p = 0.004) post-DST. Vigilance significantly deteriorated, with a decline in PVT performance post-DST, resulting in longer reaction times (p < 0.001) and increased lapses (p < 0.001). Increased daytime sleepiness was also demonstrated (p < 0.001). Conclusions: The early March DST onset adversely affected sleep and vigilance in high school students resulting in increased daytime sleepiness. Larger scale evaluations of sleep impairments related to DST are needed to further quantify this problem in the population. If confirmed, measures to attenuate sleep loss post-DST should be implemented. Citation: Medina D, Ebben M, Milrad S, Atkinson B, Krieger AC. Adverse effects of daylight saving time on adolescents' sleep and vigilance. J Clin Sleep Med 2015;11(8):879–884. PMID:25979095

  1. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  2. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    PubMed

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  3. Effects of sleep deprivation on cognition.

    PubMed

    Killgore, William D S

    2010-01-01

    Sleep deprivation is commonplace in modern society, but its far-reaching effects on cognitive performance are only beginning to be understood from a scientific perspective. While there is broad consensus that insufficient sleep leads to a general slowing of response speed and increased variability in performance, particularly for simple measures of alertness, attention and vigilance, there is much less agreement about the effects of sleep deprivation on many higher level cognitive capacities, including perception, memory and executive functions. Central to this debate has been the question of whether sleep deprivation affects nearly all cognitive capacities in a global manner through degraded alertness and attention, or whether sleep loss specifically impairs some aspects of cognition more than others. Neuroimaging evidence has implicated the prefrontal cortex as a brain region that may be particularly susceptible to the effects of sleep loss, but perplexingly, executive function tasks that putatively measure prefrontal functioning have yielded inconsistent findings within the context of sleep deprivation. Whereas many convergent and rule-based reasoning, decision making and planning tasks are relatively unaffected by sleep loss, more creative, divergent and innovative aspects of cognition do appear to be degraded by lack of sleep. Emerging evidence suggests that some aspects of higher level cognitive capacities remain degraded by sleep deprivation despite restoration of alertness and vigilance with stimulant countermeasures, suggesting that sleep loss may affect specific cognitive systems above and beyond the effects produced by global cognitive declines or impaired attentional processes. Finally, the role of emotion as a critical facet of cognition has received increasing attention in recent years and mounting evidence suggests that sleep deprivation may particularly affect cognitive systems that rely on emotional data. Thus, the extent to which sleep deprivation affects a particular cognitive process may depend on several factors, including the magnitude of global decline in general alertness and attention, the degree to which the specific cognitive function depends on emotion-processing networks, and the extent to which that cognitive process can draw upon associated cortical regions for compensatory support. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Association Between Sleep and Productivity Loss Among 598 676 Employees From Multiple Industries.

    PubMed

    Gingerich, Stefan B; Seaverson, Erin L D; Anderson, David R

    2018-05-01

    To examine the relationship between sleep habits and employee productivity. Cross-sectional health risk assessment analysis. Employer-sponsored health and well-being programs. A total of 598 676 employed adults from multiple industries. Self-reported average hours of sleep, fatigue, absence days, and presenteeism. Bivariate analyses to assess the relationships between self-reported hours of sleep and self-reported fatigue and mean and median absence and presenteeism. The relationship between sleep hours and both measures of productivity was U-shaped, with the least productivity loss among employees who reported 8 hours of sleep. More daytime fatigue correlated with more absence and presenteeism. Median absence and presenteeism was consistently lower than mean absence and presenteeism, respectively, for the various hours of sleep and levels of fatigue. Organizations looking to expand the value of their investment in employee health and well-being should consider addressing the employee sleep habits that may be negatively impacting productivity.

  5. Effects of Aquatic Exercise on Sleep in Older Adults with Mild Sleep Impairment: a Randomized Controlled Trial.

    PubMed

    Chen, Li-Jung; Fox, Kenneth R; Ku, Po-Wen; Chang, Yi-Wen

    2016-08-01

    Exercise has been found to be associated with improved sleep quality. However, most of the evidence is based on resistance exercise, walking, or gym-based aerobic activity. This study aimed to examine the effects of an 8-week aquatic exercise program on objectively measured sleep parameters among older adults with mild sleep impairment. A total of 67 eligible older adults with sleep impairment were selected and randomized to exercise and control groups, and 63 participants completed the study. The program involved 2 × 60-min sessions of aquatic exercise for 8 weeks. Participants wore wrist actigraphs to assess seven parameters of sleep for 1 week before and after the intervention. Mixed-design analysis of variance (ANOVA) was used to assess the differences between groups in each of the sleep parameters. No significant group differences on demographic variables, life satisfaction, percentage of body fat, fitness, seated blood pressure, and any parameter of sleep were found at baseline. Significant group × time interaction effects were found in sleep onset latency, F(1,58) = 6.921, p = .011, partial eta squared = .011, and in sleep efficiency, F(1, 61) = 16.909, p < 0.001, partial eta squared = .217. The exercise group reported significantly less time on sleep onset latency (mean difference = 7.9 min) and greater sleep efficiency (mean difference = 5.9 %) than the control group at posttest. There was no significant difference between groups in change of total sleep time, wake after sleep onset, activity counts, or number and length of awakenings. An 8-week aquatic exercise has significant benefits on some sleep parameters, including less time for sleep onset latency and better sleep efficiency in older adults with mild sleep impairment.

  6. Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)

    NASA Technical Reports Server (NTRS)

    Holley, D. C.; Winger, C. M.; Deroshia, C. W.; Heinold, M. P.; Edgar, D. M.; Kinney, N. E.; Langston, S. E.; Markley, C. L.; Anthony, J. A.

    1981-01-01

    The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations.

  7. The Effects of Insomnia and Sleep Loss on Cardiovascular Disease.

    PubMed

    Khan, Meena S; Aouad, Rita

    2017-06-01

    Sleep loss has negative impacts on quality of life, mood, cognitive function, and heath. Insomnia is linked to poor mood, increased use of health care resources, decreased quality of life, and possibly cardiovascular risk factors and disease. Studies have shown increase in cortisol levels, decreased immunity, and increased markers of sympathetic activity in sleep-deprived healthy subjects and those with chronic insomnia. The literature shows subjective complaints consistent with chronic insomnia and shortened sleep can be associated with development of diabetes, hypertension, and cardiovascular disease. This article explores the relationship between insufficient sleep and insomnia with these health conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study.

    PubMed

    Bumb, Jan M; Schilling, Claudia; Enning, Frank; Haddad, Leila; Paul, Franc; Lederbogen, Florian; Deuschle, Michael; Schredl, Michael; Nolte, Ingo

    2014-06-01

    Little is known about the relation between pineal volume and insomnia. Melatonin promotes sleep processes and, administered as a drug, it is suitable to improve primary and secondary sleep disorders in humans. Recent magnetic resonance imaging studies suggest that human plasma and saliva melatonin levels are partially determined by the pineal gland volume. This study compares the pineal volume in a group of patients with primary insomnia to a group of healthy people without sleep disturbance. Pineal gland volume (PGV) was measured on the basis of high-resolution 3 Tesla MRI (T1-magnetization prepared rapid gradient echo) in 23 patients and 27 controls, matched for age, gender and educational status. Volume measurements were performed conventionally by manual delineation of the pineal borders in multi-planar reconstructed images. Pineal gland volume was significantly smaller (P < 0.001) in patients (48.9 ± 26.6 mm(3) ) than in controls (79 ± 30.2 mm(3) ). In patients PGV correlated negatively with age (r = -0.532; P = 0.026). Adjusting for the effect of age, PGV and rapid eye movement (REM) latency showed a significant positive correlation (rS  = 0.711, P < 0.001) in patients. Pineal volume appears to be reduced in patients with primary insomnia compared to healthy controls. Further studies are needed to clarify whether low pineal volume is the basis or the consequence of functional sleep changes to elucidate the molecular pathology for the pineal volume loss in primary insomnia. © 2014 European Sleep Research Society.

  9. Sleep Patterns and Fatigue in New Mothers and Fathers

    PubMed Central

    Gay, Caryl L.; Lee, Kathryn A.; Lee, Shih-Yu

    2005-01-01

    The purpose of this study was to describe the sleep patterns and fatigue of both mothers and fathers before and after childbirth. The authors used wrist actigraphy and questionnaires to estimate sleep and fatigue in 72 couples during their last month of pregnancy and 1st month postpartum. Both parents experienced more sleep disruption at night during the postpartum period as compared to the last month of pregnancy. Compared to fathers, with their stable 24-h sleep patterns over time, mothers had less sleep at night and more sleep during the day after the baby was born. Sleep patterns were also related to parents’work status and type of infant feeding. Both parents self-reported more sleep disturbance and fatigue during the 1st month postpartum than during pregnancy. Mothers reported more sleep disturbance than fathers, but there was no gender difference in ratings of fatigue. At both time points, fathers obtained less total sleep than mothers when sleep was objectively measured throughout the entire 24-h day. Further research is needed to determine the duration of sleep loss for both mothers and fathers, to evaluate the effect of disrupted sleep and sleep loss on psychosocial functioning and job performance, and to develop interventions for improving sleep patterns of new parents. PMID:15068660

  10. Shift work: health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment

    PubMed Central

    Smith, Mark R; Eastman, Charmane I

    2012-01-01

    There are three mechanisms that may contribute to the health, performance, and safety problems associated with night-shift work: (1) circadian misalignment between the internal circadian clock and activities such as work, sleep, and eating, (2) chronic, partial sleep deprivation, and (3) melatonin suppression by light at night. The typical countermeasures, such as caffeine, naps, and melatonin (for its sleep-promoting effect), along with education about sleep and circadian rhythms, are the components of most fatigue risk-management plans. We contend that these, while better than nothing, are not enough because they do not address the underlying cause of the problems, which is circadian misalignment. We explain how to reset (phase-shift) the circadian clock to partially align with the night-work, day-sleep schedule, and thus reduce circadian misalignment while preserving sleep and functioning on days off. This involves controlling light and dark using outdoor light exposure, sunglasses, sleep in the dark, and a little bright light during night work. We present a diagram of a sleep-and-light schedule to reduce circadian misalignment in permanent night work, or a rotation between evenings and nights, and give practical advice on how to implement this type of plan. PMID:23620685

  11. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  12. A role for clock genes in sleep homeostasis.

    PubMed

    Franken, Paul

    2013-10-01

    The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Changes in Regional Adiposity and Cardio-Metabolic Function Following a Weight Loss Program with Sibutramine in Obese Men with Obstructive Sleep Apnea

    PubMed Central

    Phillips, Craig L.; Yee, Brendon J.; Trenell, Mike I.; Magnussen, John S.; Wang, David; Banerjee, Dev; Berend, Norbert; Grunstein, Ronald R.

    2009-01-01

    Background: Although obstructive sleep apnea (OSA) is strongly linked with obesity, both conditions have been associated with increased cardiovascular risk including glucose intolerance, dyslipidemia, and hypertension independent of one another. Weight loss is known to improve both cardiovascular risk and OSA severity. The aim of this study was to evaluate cardiovascular and metabolic changes, including compartment-specific fat loss in obese OSA subjects undergoing a weight loss program. Design: Observational study. Participants: 93 men with moderate-severe OSA. Interventions: 6-month open-label weight loss trial combining sibutramine (a serotonin and noradrenaline reuptake inhibitor) with a 600-kcal deficit diet and exercise. Measurements and Results: At baseline and following 6 months of weight loss, OSA was assessed together with CT-quantified intra-abdominal and liver fat and markers of metabolic and cardiovascular function. At 6 months, weight loss and improvements in OSA were accompanied by improved insulin resistance (HOMA), increased HDL cholesterol, and reduced total cholesterol/HDL ratio. There were also reductions in measures of visceral and subcutaneous abdominal fat and liver fat. Reductions in liver fat and sleep time spent below 90% oxyhemoglobin saturation partly explained the improvement in HOMA (R2 = 0.18). In contrast, arterial stiffness (aortic augmentation index), heart rate, blood pressure, and total cholesterol did not change. Conclusions: Weight loss with sibutramine was associated with improvements in metabolic and body composition risk factors but not blood pressure or arterial stiffness. Improved insulin resistance was partly associated with reductions in liver fat and hypoxemia associated with sleep apnea. Citation: Phillips CL; Yee BJ; Trenell MI; Magnussen JS; Wang D; Banerjee D; Berend N; Grunstein RR. Changes in regional adiposity and cardio-metabolic function following a weight loss program with sibutramine in obese men with obstructive sleep apnea. J Clin Sleep Med 2009;5(5):416-421. PMID:19961024

  14. Feeding methods, sleep arrangement, and infant sleep patterns: a Chinese population-based study.

    PubMed

    Huang, Xiao-Na; Wang, Hui-Shan; Chang, Jen-Jen; Wang, Lin-Hong; Liu, Xi-Cheng; Jiang, Jing-Xiong; An, Lin

    2016-02-01

    Findings from prior research into the effect of feeding methods on infant sleep are inconsistent. The objectives of this study were to examine infants' sleep patterns by feeding methods and sleep arrangement from birth to eight months old. This longitudinal cohort study enrolled 524 pregnant women at 34-41 weeks of gestation and their infants after delivery in 2006 and followed up until eight months postpartum. The study subjects were recruited from nine women and children hospitals in nine cities in China (Beijing, Chongqing, Wuhan, Changsha, Nanning, Xiamen, Xi'an, Jinan, and Hailin). Participating infants were followed up weekly during the first month and monthly from the second to the eighth month after birth. Twenty-four hour sleep diaries recording infants' sleeping and feeding methods were administered based on caregiver's self-report. Multivariable mixed growth curve models were fitted to estimate the effects of feeding methods and sleep arrangement on infants' sleep patterns over time, controlling for maternal and paternal age, maternal and paternal education level, household income, supplementation of complementary food, and infant birth weight and length. Exclusively formula fed infants had the greatest sleep percentage/24 h, followed by exclusively breast milk fed infants and partially breast milk fed infants (P<0.01). Night waking followed a similar pattern. However, the differences in sleep percentage and night waking frequency between exclusively formula and exclusively breast milk fed infants weakened over time as infants developed. In addition, compared to infants with bed-sharing sleep arrangement, those with room sharing sleep arrangement had greater daytime and 24-hour infant sleep percentage, whereas those with sleeping alone sleep arrangement had greater nighttime sleep percentage. Our data based on caregiver's self-report suggested that partial breastfeeding and bed-sharing may be associated with less sleep in infants. Health care professionals need to work with parents of newborns to develop coping strategies that will help prevent early weaning of breastfeeding.

  15. Role of sleep duration in the regulation of glucose metabolism and appetite.

    PubMed

    Morselli, Lisa; Leproult, Rachel; Balbo, Marcella; Spiegel, Karine

    2010-10-01

    Sleep curtailment has become a common behavior in modern society. This review summarizes the current laboratory evidence indicating that sleep loss may contribute to the pathophysiology of diabetes mellitus and obesity. Experimentally induced sleep loss in healthy volunteers decreases insulin sensitivity without adequate compensation in beta-cell function, resulting in impaired glucose tolerance and increased diabetes risk. Lack of sleep also down-regulates the satiety hormone leptin, up-regulates the appetite-stimulating hormone ghrelin, and increases hunger and food intake. Taken together with the epidemiologic evidence for an association between short sleep and the prevalence or incidence of diabetes mellitus and/or obesity, these results support a role for reduced sleep duration in the current epidemic of these metabolic disorders. Screening for habitual sleep patterns in patients with "diabesity" is therefore of great importance. Studies are warranted to investigate the putative therapeutic impact of extending sleep in habitual short sleepers with metabolic disorders. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    PubMed Central

    Trksak, George H.; Bracken, Bethany K.; Jensen, J. Eric; Plante, David T.; Penetar, David M.; Tartarini, Wendy L.; Maywalt, Melissa A.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent [31]P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, [31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse. PMID:24250276

  17. Working Memory Is Partially Preserved during Sleep

    PubMed Central

    Daltrozzo, Jérôme; Claude, Léa; Tillmann, Barbara; Bastuji, Hélène; Perrin, Fabien

    2012-01-01

    Although several cognitive processes, including speech processing, have been studied during sleep, working memory (WM) has never been explored up to now. Our study assessed the capacity of WM by testing speech perception when the level of background noise and the sentential semantic length (SSL) (amount of semantic information required to perceive the incongruence of a sentence) were modulated. Speech perception was explored with the N400 component of the event-related potentials recorded to sentence final words (50% semantically congruent with the sentence, 50% semantically incongruent). During sleep stage 2 and paradoxical sleep: (1) without noise, a larger N400 was observed for (short and long SSL) sentences ending with a semantically incongruent word compared to a congruent word (i.e. an N400 effect); (2) with moderate noise, the N400 effect (observed at wake with short and long SSL sentences) was attenuated for long SSL sentences. Our results suggest that WM for linguistic information is partially preserved during sleep with a smaller capacity compared to wake. PMID:23236418

  18. Working memory is partially preserved during sleep.

    PubMed

    Daltrozzo, Jérôme; Claude, Léa; Tillmann, Barbara; Bastuji, Hélène; Perrin, Fabien

    2012-01-01

    Although several cognitive processes, including speech processing, have been studied during sleep, working memory (WM) has never been explored up to now. Our study assessed the capacity of WM by testing speech perception when the level of background noise and the sentential semantic length (SSL) (amount of semantic information required to perceive the incongruence of a sentence) were modulated. Speech perception was explored with the N400 component of the event-related potentials recorded to sentence final words (50% semantically congruent with the sentence, 50% semantically incongruent). During sleep stage 2 and paradoxical sleep: (1) without noise, a larger N400 was observed for (short and long SSL) sentences ending with a semantically incongruent word compared to a congruent word (i.e. an N400 effect); (2) with moderate noise, the N400 effect (observed at wake with short and long SSL sentences) was attenuated for long SSL sentences. Our results suggest that WM for linguistic information is partially preserved during sleep with a smaller capacity compared to wake.

  19. Influence of sleep restriction on weight loss outcomes associated with caloric restriction.

    PubMed

    Wang, Xuewen; Sparks, Joshua R; Bowyer, Kimberly P; Youngstedt, Shawn D

    2018-05-01

    To examine the effects of moderate sleep restriction (SR) on body weight, body composition, and metabolic variables in individuals undergoing caloric restriction (CR). Overweight or obese adults were randomized to an 8 week caloric restriction (CR) regimen alone (n = 15) or combined with sleep restriction (CR + SR) (n = 21). All participants were instructed to restrict daily calorie intake to 95 per cent of their measured resting metabolic rate. Participants in the CR + SR group were also instructed to reduce time in bed on five nights and to sleep ad libitum on the other two nights each week. The CR + SR group reduced sleep by 57 ± 36 min per day during SR days and increased sleep by 59 ± 38 min per day during ad libitum sleep days, resulting in a sleep reduction of 169 ± 75 min per week. The CR and CR + SR groups lost similar amounts of weight, lean mass, and fat mass. However, the proportion of total mass lost as fat was significantly greater (p = 0.016) in the CR group. This proportion was greater than body fat percentage at baseline for the CR (p = 0.0035), but not the CR + SR group. Resting respiratory quotient was reduced (p = 0.033) only in CR, and fasting leptin concentration was reduced only in CR + SR (p = 0.029). Approximately 1 hr of SR on five nights a week led to less proportion of fat mass loss in individuals undergoing hypocaloric weight loss, despite similar weight loss. SR may adversely affect changes in body composition and "catch-up" sleep may not completely reverse it. ClinicalTrials.gov (NCT02413866).

  20. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents.

    PubMed

    Tan, Yafei; Chen, Ying; Lu, Yaogui; Li, Liping

    2016-03-14

    The primary aim of this study was to examine associations between problematic Internet use, depression and sleep disturbance, and explore whether there were differential effects of problematic Internet use and depression on sleep disturbance. A total of 1772 adolescents who participated in the Shantou Adolescent Mental Health Survey were recruited in 2012 in Shantou, China. The Chinese version of the Internet Addiction Test (IAT) was used to evaluate the prevalence and severity of Internet addiction. The Chinese version of the Pittsburgh Sleep Quality Index (PSQI), a 10-item version of the Center for Epidemiologic Studies Depression Scale (CESD-10), and other socio-demographic measures were also completed. Multiple regression analysis was used to test the mediating effect of problematic Internet use and depression on sleep disturbance. Among the participants, 17.2% of adolescents met the criteria for problematic Internet use, 40.0% were also classified as suffering from sleep disturbance, and 54.4% of students had depressive symptoms. Problematic Internet use was significantly associated with depressive symptoms and sleep disturbance. The correlation between depressive symptoms and sleep disturbance was highly significant. Both problematic Internet use (β = 0.014; Sobel test Z = 12.7, p < 0.001) and depression (β = 0.232; Sobel test Z = 3.39, p < 0.001) had partially mediating effects on sleep disturbance and depression was of greater importance for sleep disturbance than problematic Internet use. There is a high prevalence of problematic Internet use, depression and sleep disturbance among high school students in southern China, and problematic Internet use and depressive symptoms are strongly associated with sleep disturbance. This study provides evidence that problematic Internet use and depression have partially mediating effects on sleep disturbance. These results are important for clinicians and policy makers with useful information for prevention and intervention efforts.

  1. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    PubMed

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  2. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy.

    PubMed

    Black, Sarah Wurts; Morairty, Stephen R; Fisher, Simon P; Chen, Tsui-Ming; Warrier, Deepti R; Kilduff, Thomas S

    2013-03-01

    Humans with narcolepsy and orexin/ataxin-3 transgenic (TG) mice exhibit extensive, but incomplete, degeneration of hypo-cretin (Hcrt) neurons. Partial Hcrt cell loss also occurs in Parkinson disease and other neurologic conditions. Whether Hcrt antagonists such as almorexant (ALM) can exert an effect on the Hcrt that remains after Hcrt neurodegeneration has not yet been determined. The current study was designed to evaluate the hypnotic and cataplexy-inducing efficacy of a Hcrt antagonist in an animal model with low Hcrt tone and compare the ALM efficacy profile in the disease model to that produced in wild-type (WT) control animals. Counterbalanced crossover study. Home cage. Nine TG mice and 10 WT mice. ALM (30, 100, 300 mg/kg), vehicle and positive control injections, dark/active phase onset. During the 12-h dark period after dosing, ALM exacerbated cataplexy in TG mice and increased nonrapid eye movement sleep with heightened sleep/wake fragmentation in both genotypes. ALM showed greater hypnotic potency in WT mice than in TG mice. The 100 mg/kg dose conferred maximal promotion of cataplexy in TG mice and maximal promotion of REM sleep in WT mice. In TG mice, ALM (30 mg/ kg) paradoxically induced a transient increase in active wakefulness. Core body temperature (Tb) decreased after acute Hcrt receptor blockade, but the reduction in Tb that normally accompanies the wake-to-sleep transition was blunted in TG mice. These complex dose- and genotype-dependent interactions underscore the importance of effector mechanisms downstream from Hcrt receptors that regulate arousal state. Cataplexy promotion by ALM warrants cautious use of Hcrt antagonists in patient populations with Hcrt neurodegeneration, but may also facilitate the discovery of anticataplectic medications. Black SW; Morairty SR; Fisher SP; Chen TM; Warrier DR; Kilduff TS. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. SLEEP 2013;36(3):325-336.

  3. Sleep deprivation impairs precision of waggle dance signaling in honey bees

    PubMed Central

    Klein, Barrett A.; Klein, Arno; Wray, Margaret K.; Mueller, Ulrich G.; Seeley, Thomas D.

    2010-01-01

    Sleep is essential for basic survival, and insufficient sleep leads to a variety of dysfunctions. In humans, one of the most profound consequences of sleep deprivation is imprecise or irrational communication, demonstrated by degradation in signaling as well as in receiving information. Communication in nonhuman animals may suffer analogous degradation of precision, perhaps with especially damaging consequences for social animals. However, society-specific consequences of sleep loss have rarely been explored, and no function of sleep has been ascribed to a truly social (eusocial) organism in the context of its society. Here we show that sleep-deprived honey bees (Apis mellifera) exhibit reduced precision when signaling direction information to food sources in their waggle dances. The deterioration of the honey bee's ability to communicate is expected to reduce the foraging efficiency of nestmates. This study demonstrates the impact of sleep deprivation on signaling in a eusocial animal. If the deterioration of signals made by sleep-deprived honey bees and humans is generalizable, then imprecise communication may be one detrimental effect of sleep loss shared by social organisms. PMID:21156830

  4. Sleep loss and accidents--work hours, life style, and sleep pathology.

    PubMed

    Akerstedt, Torbjörn; Philip, Pierre; Capelli, Aurore; Kecklund, Göran

    2011-01-01

    A very important outcome of reduced sleep is accidents. The present chapter will attempt to bring together some of the present knowledge in this area. We will focus on the driving situation, for which the evidence of the link between sleep loss and accidents is quite well established, but we will also bring up working life in general where evidence is more sparse. It should be emphasized that reduced sleep as a cause of accidents implies that the mediating factor is sleepiness (or fatigue). This link is discussed elsewhere in this volume, but here we will bring in sleepiness (subjective or physiological) as an explanatory factor of accidents. Another central observation is that many real life accident studies do not link accidents to reduced sleep, but infer reduced sleep and/or sleepiness from the context, like, for example, from work schedules, life styles, or sleep pathology. Reduced sleep is mainly due to suboptimal work schedules (or to a suboptimal life style) or to sleep pathology. We have divided the present chapter into two areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.

    PubMed

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-12-01

    Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding.

  6. Impact of a physical activity intervention on adolescents' subjective sleep quality: a pilot study.

    PubMed

    Baldursdottir, Birna; Taehtinen, Richard E; Sigfusdottir, Inga Dora; Krettek, Alexandra; Valdimarsdottir, Heiddis B

    2017-12-01

    The aim of this pilot study was to examine the impact of a brief physical activity intervention on adolescents' subjective sleep quality. Cross-sectional studies indicate that physically active adolescents have better subjective sleep quality than those with more sedentary habits. However, less is known about the effectiveness of physical activity interventions in improving adolescents' subjective sleep quality. In a three-week physical activity intervention, four Icelandic upper secondary schools were randomized to either an intervention group with pedometers and step diaries or a control group without pedometers and diaries. Out of 84, a total of 53 students, aged 15-16 years, provided complete data or a minimum of two days step data (out of three possible) as well as sleep quality measures at baseline and follow-up. Subjective sleep quality, the primary outcome in this study, was assessed with four individual items: sleep onset latency, nightly awakenings, general sleep quality, and sleep sufficiency. Daily steps were assessed with Yamax CW-701 pedometers. The intervention group ( n = 26) had significantly higher average step-count ( p = 0.03, partial η 2 = 0.093) compared to the control group ( n = 27) at follow-up. Subjective sleep quality improved ( p = 0.02, partial η 2 = 0.203) over time in the intervention group but not in the control group. Brief physical activity interventions based on pedometers and step diaries may be effective in improving adolescents' subjective sleep quality. This has important public health relevance as the intervention can easily be disseminated and incorporated into school curricula.

  7. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults

    PubMed Central

    Spaeth, Andrea M.; Dinges, David F.; Goel, Namni

    2015-01-01

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60–2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability. PMID:26446681

  8. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults.

    PubMed

    Spaeth, Andrea M; Dinges, David F; Goel, Namni

    2015-10-08

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60-2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability.

  9. Heart rate changes in partial seizures: analysis of influencing factors among refractory patients

    PubMed Central

    2014-01-01

    Background We analyzed the frequency of heart rate (HR) changes related to seizures, and we sought to identify the influencing factors of these changes during partial seizures, to summarize the regularity of the HR changes and gain some insight into the mechanisms involved in the neuronal regulation of cardiovascular function. To date, detailed information on influencing factors of HR changes related to seizures by multiple linear regression analysis remains scarce. Methods Using video-electroencephalograph (EEG)-electrocardiograph (ECG) recordings, we retrospectively assessed the changes in the HR of 81 patients during a total of 181 seizures, including 27 simple partial seizures (SPS), 110 complex partial seizures (CPS) and 44 complex partial seizures secondarily generalized (CPS-G). The epileptogenic focus and the seizure type, age, gender, and sleep/wakefulness state of each patient were evaluated during and after the seizure onset. The HR changes were evaluated in the stage of epilepsy as time varies. Results Of the 181 seizures from 81 patients with ictal ECGs, 152 seizures (83.98%) from 74 patients were accompanied by ictal tachycardia (IT). And only 1 patient was accompanied by ictal bradycardia (IB). A patient has both IT and IB. We observed that HR difference was independently correlated with side, type and sleep/wakefulness state. In this analysis, the HR changes were related to the side, gender, seizure type, and sleep/wakefulness state. Right focus, male, sleep, and CPS-G showed more significant increases than that were observed in left, female, wakefulness, SPS and CPS. HR increases rapidly within 10 seconds before seizure onset and ictus, and typically slows to normal with seizure offset. Conclusion CPS-G, sleep and right focus led to higher ictal HR. The HR in the stage of epilepsy has regularly been observed to change to become time-varying. The risk factors of ictal HR need to be controlled along with sleep, CPS-G and right focus. Our study first explains that the HR in seizures has a regular evolution varying with time. Our study might help to further clarify the basic mechanisms of interactions between heart and brain, making seizure detection and closed-loop systems a possible therapeutic alternative in refractory patients. PMID:24950859

  10. Validation of the Sonomat Against PSG and Quantitative Measurement of Partial Upper Airway Obstruction in Children With Sleep-Disordered Breathing.

    PubMed

    Norman, Mark B; Pithers, Sonia M; Teng, Arthur Y; Waters, Karen A; Sullivan, Colin E

    2017-03-01

    To validate the Sonomat against polysomnography (PSG) metrics in children and to objectively measure snoring and stertor to produce a quantitative indicator of partial upper airway obstruction that accurately reflects the pathology of pediatric sleep-disordered breathing (SDB). Simultaneous PSG and Sonomat recordings were performed in 76 children (46 male, age 5.8 ± 2.8, BMI = 18.5 ± 3.8 kg/m2). Sleep time, individual respiratory events and the apnea/hypopnea index (AHI) were compared. Obstructed breathing sounds were measured from the unobtrusive non-contact experimental device. There was no significant difference in total sleep time (TST), respiratory events or AHI values, the latter over-estimated by 0.3 events hr-1 by the Sonomat. Poor signal quality was minimal and gender, BMI, and body position did not adversely influence event detection. Obstructive and central events were classified correctly. The number of runs and duration of snoring (13 399 events, 20% TST) and stertor (5748 events, 24% TST) were an order of magnitude greater than respiratory events (1367 events, 1% TST). Many children defined as normal by PSG had just as many or more runs of snoring and stertor as those with mild, moderate and severe obstructive sleep apnea (OSA). The Sonomat accurately diagnoses SDB in children using current metrics. In addition, it permits quantification of partial airway obstruction that can be used to better describe pediatric SDB. Its non-contact design makes it ideal for use in children. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Insufficient sleep: Enhanced risk-seeking relates to low local sleep intensity.

    PubMed

    Maric, Angelina; Montvai, Eszter; Werth, Esther; Storz, Matthias; Leemann, Janina; Weissengruber, Sebastian; Ruff, Christian C; Huber, Reto; Poryazova, Rositsa; Baumann, Christian R

    2017-09-01

    Chronic sleep restriction is highly prevalent in modern society and is, in its clinical form, insufficient sleep syndrome, one of the most prevalent diagnoses in clinical sleep laboratories, with substantial negative impact on health and community burden. It reflects every-day sleep loss better than acute sleep deprivation, but its effects and particularly the underlying mechanisms remain largely unknown for a variety of critical cognitive domains, as, for example, risky decision making. We assessed financial risk-taking behavior after 7 consecutive nights of sleep restriction and after 1 night of acute sleep deprivation compared to a regular sleep condition in a within-subject design. We further investigated potential underlying mechanisms of sleep-loss-induced changes in behavior by high-density electroencephalography recordings during restricted sleep. We show that chronic sleep restriction increases risk-seeking, whereas this was not observed after acute sleep deprivation. This increase was subjectively not noticed and was related to locally lower values of slow-wave energy during preceding sleep, an electrophysiological marker of sleep intensity and restoration, in electrodes over the right prefrontal cortex. This study provides, for the first time, evidence that insufficient sleep restoration over circumscribed cortical areas leads to aberrant behavior. In chronically sleep restricted subjects, low slow-wave sleep intensity over the right prefrontal cortex-which has been shown to be linked to risk behavior-may lead to increased and subjectively unnoticed risk-seeking. Ann Neurol 2017;82:409-418. © 2017 American Neurological Association.

  12. The association between optimal lifestyle-related health behaviors and employee productivity.

    PubMed

    Katz, Abigail S; Pronk, Nicolaas P; Lowry, Marcia

    2014-07-01

    To investigate the association between lifestyle-related health behaviors including sleep and the cluster of physical activity, no tobacco use, fruits and vegetables intake, and alcohol consumption termed the "Optimal Lifestyle Metric" (OLM), and employee productivity. Data were obtained from employee health assessments (N = 18,079). Regression techniques were used to study the association between OLM and employee productivity, sleep and employee productivity, and the interaction of both OLM and sleep on employee productivity. Employees who slept less or more than 7 or 8 hours per night experienced significantly more productivity loss. Employees who adhered to all four OLM behaviors simultaneously experienced less productivity loss compared with those who did not. Adequate sleep and adherence to the OLM cluster of behaviors are associated with significantly less productivity loss.

  13. Sleep Duration and Diabetes Risk in American Indian and Alaska Native Participants of a Lifestyle Intervention Project.

    PubMed

    Nuyujukian, Daniel S; Beals, Janette; Huang, Haixiao; Johnson, Ann; Bullock, Ann; Manson, Spero M; Jiang, Luohua

    2016-11-01

    We examine the association between self-reported sleep duration and diabetes incidence in a national sample of American Indians/ Alaska Natives (AI/ANs) with prediabetes. Data were derived from the Special Diabetes Program for Indians Diabetes Prevention demonstration project. This longitudinal analysis included 1,899 participants with prediabetes recruited between January 1, 2006 and July 31, 2009 who reported sleep duration and completed all 16 classes of the lifestyle intervention consisting of diet, exercise, and behavior modification sessions to promote weight loss. Three years of follow-up data were included to fit Cox regression models to compute hazard ratios (HRs) for diabetes incidence across sleep duration categories. The crude diabetes incidence rate was 4.6 per 100 person-years among short sleepers (≤ 6 h per night) compared to 3.2 among those sleeping 7 h and 3.3 among those sleeping 8 h or more. After adjustment for age and sex, short sleep (≤ 6 h vs. others) was associated with increased diabetes risk (HR 1.55 [95% confidence interval 1.11-2.17]); risk remained significantly elevated after controlling for socioeconomic characteristics, health behaviors, and health status. When adjusting for body mass index and percent weight loss, the short sleep-diabetes relationship was attenuated (HR 1.32 [95% confidence interval 0.92-1.89]). No significant long sleep-diabetes association was found. Further, short sleepers lost significantly less weight than others (3.7% vs. 4.3%, P = 0.003). Short sleep duration, but not long duration, was significantly associated with increased diabetes risk and less weight loss among AI/ANs in a lifestyle intervention. Further exploration of the complex factors underlying short sleep duration is warranted. © 2016 Associated Professional Sleep Societies, LLC.

  14. Impact of sleep, screen time, depression and stress on weight change in the intensive weight loss phase of the LIFE study.

    PubMed

    Elder, C R; Gullion, C M; Funk, K L; Debar, L L; Lindberg, N M; Stevens, V J

    2012-01-01

    The LIFE study is a two-phase randomized clinical trial comparing two approaches to maintaining weight loss following guided weight loss. Phase I provided a nonrandomized intensive 6-month behavioral weight loss intervention to 472 obese (body mass index 30-50) adult participants. Phase II is the randomized weight loss maintenance portion of the study. This paper focuses on Phase I measures of sleep, screen time, depression and stress. The Phase I intervention consisted of 22 group sessions led over 26 weeks by behavioral counselors. Recommendations included reducing dietary intake by 500 calories per day, adopting the Dietary Approaches to Stop Hypertension (DASH) dietary pattern and increasing physical exercise to at least 180 min per week. Measures reported here are sleep time, insomnia, screen time, depression and stress at entry and post-weight loss intervention follow-up. The mean weight loss for all participants over the intensive Phase I weight loss intervention was 6.3 kg (s.d. 7.1). Sixty percent (N=285) of participants lost at least 4.5 kg (10 lbs) and were randomized into Phase II. Participants (N=472) attended a mean of 73.1% (s.d. 26.7) of sessions, completed 5.1 (s.d. 1.9) daily food records/week, and reported 195.1 min (s.d. 123.1) of exercise per week. Using logistic regression, sleep time (quadratic trend, P=0.030) and lower stress (P=0.024) at entry predicted success in the weight loss program, and lower stress predicted greater weight loss during Phase I (P=0.021). In addition, weight loss was significantly correlated with declines in stress (P=0.048) and depression (P=0.035). Results suggest that clinicians and investigators might consider targeting sleep, depression and stress as part of a behavioral weight loss intervention.

  15. Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study.

    PubMed

    Lo, June C; Ong, Ju Lynn; Leong, Ruth L F; Gooley, Joshua J; Chee, Michael W L

    2016-03-01

    To investigate the effects of sleep restriction (7 nights of 5 h time in bed [TIB]) on cognitive performance, subjective sleepiness, and mood in adolescents. A parallel-group design was adopted in the Need for Sleep Study. Fifty-six healthy adolescents (25 males, age = 15-19 y) who studied in top high schools and were not habitual short sleepers were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-w protocol consisting of 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the control groups), and 3 nights of recovery sleep (TIB = 9 h) at a boarding school. A cognitive test battery was administered three times each day. During the manipulation period, the SR group demonstrated incremental deterioration in sustained attention, working memory and executive function, increase in subjective sleepiness, and decrease in positive mood. Subjective sleepiness and sustained attention did not return to baseline levels even after 2 recovery nights. In contrast, the control group maintained baseline levels of cognitive performance, subjective sleepiness, and mood throughout the study. Incremental improvement in speed of processing, as a result of repeated testing and learning, was observed in the control group but was attenuated in the sleep-restricted participants, who, despite two recovery sleep episodes, continued to perform worse than the control participants. A week of partial sleep deprivation impairs a wide range of cognitive functions, subjective alertness, and mood even in high-performing high school adolescents. Some measures do not recover fully even after 2 nights of recovery sleep. A commentary on this article appears in this issue on page 497. © 2016 Associated Professional Sleep Societies, LLC.

  16. Sleep deprivation: a mind-body approach.

    PubMed

    Aguirre, Claudia C

    2016-11-01

    The purpose of this review is to summarize recent advances in our understanding of the impact sleep disturbances have on our health, with particular focus on the brain. The present review considers the influence of sleep disturbance on the neurovascular unit; the role of sleep disturbance in neurodegenerative diseases; and relevant strategies of neuro-immuno-endocrine interactions that likely contribute to the restorative power of sleep. Given the latest discoveries about the brain's waste clearance system and its relationship to neurodegenerative diseases like Alzheimer's disease, this review gives a brief overview on the molecular mechanisms behind sleep loss-related impairments. Recent evidence indicates that sleep plays a vital role in neuro-immuno-endocrine homeostasis. Sleep loss has been linked to elevated risks for cognitive and mood disorders, underscored by impaired synaptic transmission. The glymphatic system has been shown to be modulated by sleep and implicated in neurodegenerative disorders. Interactions between sleep quality, the immune system, and neurodegenerative disease are complex and a challenge to distil. These interactions are frequently bidirectional, because of sleep's characterization as an early symptom and as a potential factor contributing to the development and progression of mood and cognitive disorders. VIDEO ABSTRACT.

  17. Continuous positive airway pressure for the treatment of obstructive sleep apnea.

    PubMed

    Nurwidya, Fariz; Susanto, Agus Dwi; Juzar, Dafsah A; Kobayashi, Isao; Yunus, Faisal

    2016-01-01

    Obstructive sleep apnea (OSA) is a recurrent episode of partial or complete upper airway obstruction during sleep despite ongoing respiratory efforts and is implicated as the risk factor of cardiovascular disease. The OSA syndrome is typified by recurring partial or total occlusion of the pharynx, sleep fragmentation, episodes of gasping, and, eventually, daytime sleepiness. If it is left untreated, OSA syndrome can cause hypertension, coronary artery disease congestive heart disease, insulin resistance and death. In this review, we describe the pathogenesis and diagnosis of OSA. We also focused on the continuous positive airway pressure (CPAP) as the main therapy for OSA. CPAP has been shown to provide benefit for not only respiratory system, but also for cardiovascular system and metabolic system. Finally, we discussed briefly about the issue of adherence of using CPAP that could contribute to lower compliant in patient with OSA.

  18. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  19. Sleep-dependent modulation of affectively guided decision-making.

    PubMed

    Pace-Schott, Edward F; Nave, Genevieve; Morgan, Alexandra; Spencer, Rebecca M C

    2012-02-01

    A question of great interest in current sleep research is whether and how sleep might facilitate complex cognitive skills such as decision-making. The Iowa Gambling Task (IGT) was used to investigate effects of sleep on affect-guided decision-making. After a brief standardized preview of the IGT that was insufficient to learn its underlying rule, participants underwent a 12-h delay containing either a normal night's sleep (Sleep group; N = 28) or continuous daytime wake (Wake group; N = 26). Following the delay, both groups performed the full IGT. To control for circadian effects, two additional groups performed both the preview and the full task either in the morning (N = 17) or the evening (N = 21). In the IGT, four decks of cards were presented. Draws from two 'advantageous decks' yielded low play-money rewards, occasional low losses and, over multiple draws, a net gain. Draws from 'disadvantageous' decks yielded high rewards, occasional high losses and, over multiple draws, a net loss. Participants were instructed to win and avoid losing as much as possible, and better performance was defined as more advantageous draws. Relative to the wake group, the sleep group showed both superior behavioral outcome (more advantageous draws) and superior rule understanding (blindly judged from statements written at task completion). Neither measure differentiated the two control groups. These results illustrate a role of sleep in optimizing decision-making, a benefit that may be brought about by changes in underlying emotional or cognitive processes. © 2011 European Sleep Research Society.

  20. Natural history of excessive daytime sleepiness: role of obesity, weight loss, depression, and sleep propensity.

    PubMed

    Fernandez-Mendoza, Julio; Vgontzas, Alexandros N; Kritikou, Ilia; Calhoun, Susan L; Liao, Duanping; Bixler, Edward O

    2015-03-01

    Excessive daytime sleepiness (EDS) is highly prevalent in the general population and is associated with occupational and public safety hazards. However, no study has examined the clinical and polysomnographic (PSG) predictors of the natural history of EDS. Representative longitudinal study. Sleep laboratory. From a random, general population sample of 1,741 individuals of the Penn State Adult Cohort, 1,395 were followed up after 7.5 years. Full medical evaluation and 1-night PSG at baseline and standardized telephone interview at follow-up. The incidence of EDS was 8.2%, while its persistence and remission were 38% and 62%, respectively. Obesity and weight gain were associated with the incidence and persistence of EDS, while weight loss was associated with its remission. Significant interactions between depression and PSG parameters on incident EDS showed that, in depressed individuals, incident EDS was associated with sleep disturbances, while in non-depressed individuals, incident EDS was associated with increased physiologic sleep propensity. Diabetes, allergy/ asthma, anemia, and sleep complaints also predicted the natural history of EDS. Obesity, a disorder of epidemic proportions, is a major risk factor for the incidence and chronicity of EDS, while weight loss is associated with its remission. Interestingly, objective sleep disturbances predict incident EDS in depressed individuals, whereas physiologic sleep propensity predicts incident EDS in those without depression. Weight management and treatment of depression and sleep disorders should be part of our public health policies. © 2015 Associated Professional Sleep Societies, LLC.

  1. Determinants of shortened, disrupted, and mistimed sleep and associated metabolic health consequences in healthy humans.

    PubMed

    Cedernaes, Jonathan; Schiöth, Helgi B; Benedict, Christian

    2015-04-01

    Recent increases in the prevalence of obesity and type 2 diabetes mellitus (T2DM) in modern societies have been paralleled by reductions in the time their denizens spend asleep. Epidemiological studies have shown that disturbed sleep-comprising short, low-quality, and mistimed sleep-increases the risk of metabolic diseases, especially obesity and T2DM. Supporting a causal role of disturbed sleep, experimental animal and human studies have found that sleep loss can impair metabolic control and body weight regulation. Possible mechanisms for the observed changes comprise sleep loss-induced changes in appetite-signaling hormones (e.g., higher levels of the hunger-promoting hormone ghrelin) or hedonic brain responses, altered responses of peripheral tissues to metabolic signals, and changes in energy intake and expenditure. Even though the overall consensus is that sleep loss leads to metabolic perturbations promoting the development of obesity and T2DM, experimental evidence supporting the validity of this view has been inconsistent. This Perspective aims at discussing molecular to behavioral factors through which short, low-quality, and mistimed sleep may threaten metabolic public health. In this context, possible factors that may determine the extent to which poor sleep patterns increase the risk of metabolic pathologies within and across generations will be discussed (e.g., timing and genetics). © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Cognition and objectively measured sleep duration in children: a systematic review and meta-analysis.

    PubMed

    Short, Michelle A; Blunden, Sarah; Rigney, Gabrielle; Matricciani, Lisa; Coussens, Scott; M Reynolds, Chelsea; Galland, Barbara

    2018-06-01

    Sleep recommendations are widely used to guide communities on children's sleep needs. Following recent adjustments to guidelines by the National Sleep Foundation and the subsequent consensus statement by the American Academy of Sleep Medicine, we undertook a systematic literature search to evaluate the current evidence regarding relationships between objectively measured sleep duration and cognitive function in children aged 5 to 13 years. Cognitive function included measures of memory, attention, processing speed, and intelligence in children aged 5 to 13 years. Keyword searches of 7 databases to December 2016 found 23 meeting inclusion criteria from 137 full articles reviewed, 19 of which were suitable for meta-analysis. A significant effect (r = .06) was found between sleep duration and cognition, suggesting that longer sleep durations were associated with better cognitive functioning. Analyses of different cognitive domains revealed that full/verbal IQ was significantly associated with sleep loss, but memory, fluid IQ, processing speed and attention were not. Comparison of study sleep durations with current sleep recommendations showed that most children studied had sleep durations that were not within the range of recommended sleep. As such, the true effect of sleep loss on cognitive function may be obscured in these samples, as most children were sleep restricted. Future research using more rigorous experimental methodologies is needed to properly elucidate the relationship between sleep duration and cognition in this age group. Copyright © 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  3. Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway.

    PubMed

    Lee, Bo Kyung; Jung, An Na; Jung, Yi-Sook

    2018-07-01

    Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia , has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.

  4. Helicid alleviates pain and sleep disturbances in a neuropathic pain-like model in mice.

    PubMed

    Zhang, Meng-Qi; Wang, Tian-Xiao; Li, Rui; Huang, Zhi-Li; Han, Wu-Jian; Dai, Xiao-Chang; Wang, Yi-Qun

    2017-06-01

    Natural helicid (4-formylphenyl-O-β-d-allopyranoside), a main active constituent from seeds of the Chinese herb Helicia nilagirica, has been reported to exert a sedative, analgesic and hypnotic effect, and is used clinically to treat neurasthenic syndrome, vascular headaches and trigeminal neuralgia. In the current study, mechanical allodynia tests, electroencephalograms, electromyogram recordings and c-Fos expression in neuropathic pain-like model mice of partial sciatic nerve ligation were used to investigate the effect of helicid on neuropathic pain and co-morbid insomnia. Our results showed that helicid at a dose of 100, 200 or 400 mg kg -1 could increase the mechanical threshold by 2.5-, 2.8- and 3.1-fold for 3 h after administration, respectively. Helicid at 200 and 400 mg kg -1 given at 07:00 hours increased the amount of non-rapid eye movement sleep in a 3-h period by 1.27- and 1.35-fold in partial sciatic nerve ligated mice. However, helicid (400 mg kg -1 ) given at 21:00 hours did not change the sleep pattern in normal mice. Immunohistochemical study showed that helicid (400 mg kg -1 ) administration could reverse the increase of c-Fos expression in the neurons of the rostral anterior cingulate cortex and tuberomammillary nucleus, and the decrease of c-Fos expression in the ventrolateral preoptic area caused by partial sciatic nerve ligation. These results indicate that helicid is an effective agent for both neuropathic pain and sleep disturbances in partial sciatic nerve ligated mice. © 2017 European Sleep Research Society.

  5. Short Daytime Naps Briefly Attenuate Objectively Measured Sleepiness Under Chronic Sleep Restriction.

    PubMed

    Saletin, Jared M; Hilditch, Cassie J; Dement, William C; Carskadon, Mary A

    2017-09-01

    Napping is a useful countermeasure to the negative effects of acute sleep loss on alertness. The efficacy of naps to recover from chronic sleep loss is less well understood. Following 2 baseline nights (10 hours' time-in-bed), participants were restricted to 7 nights of 5-hour sleep opportunity. Ten adults participated in the No-Nap condition, and a further 9 were assigned to a Nap condition with a daily 45-minute nap opportunity at 1300 h. Sleepiness was assessed using the multiple sleep latency test and a visual analogue scale at 2-hour intervals. Both objective and subjective indexes of sleepiness were normalized within subject as a difference from those at baseline prior to sleep restriction. Mixed-effects models examined how the daytime nap opportunity altered sleepiness across the day and across the protocol. Short daytime naps attenuated sleepiness due to chronic sleep restriction for up to 6-8 hours after the nap. Benefits of the nap did not extend late into evening. Subjective sleepiness demonstrated a similar short-lived benefit that emerged later in the day when objective sleepiness already returned to pre-nap levels. Neither measure showed a benefit of the nap the following morning after the subsequent restriction night. These data indicate a short daytime nap may attenuate sleepiness in chronic sleep restriction, yet subjective and objective benefits emerge at different time scales. Because neither measure showed a benefit the next day, the current study underscores the need for careful consideration before naps are used as routine countermeasures to chronic sleep loss. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. Wireless nanosensor system for diagnosis of sleep disorders

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    A good night's sleep plays a vital role in physical and mental wellbeing by performing the recuperative function for the brain and the body. Notwithstanding the fact that, good sleep is an essential part of a person's life, an increasing number of people are experiencing sleep disorders and loss of sleep. According to the research by the National Institutes of Health (NIH), 50 to 70 million Americans suffer from sleep disorders and sleep deprivation. Although sleep disorder is a highly prevalent condition like diabetes or asthma, 80 to 90 percent of the cases remain undiagnosed. The short-term effects of sleep disorder are morning headaches, excessive daytime sleepiness, shot-term memory loss and depression, but the cumulative long-term effects result in severe health consequences like heart attacks and strokes. In addition, people suffering from sleep disorders are 7.5 times more likely to have a higher body mass index and 2.5 times more likely to have diabetes. Further, undiagnosed and untreated sleep disorders have a significant direct and indirect economic impact. The costs associated with untreated sleep disorders are far higher than the costs for adequate treatment. According to the survey, approximately 16 billion of dollars are spent on medical expenses associated with repeated doctor visits, prescriptions and medications.

  7. The Impact of Sleep Loss on Hippocampal Function

    ERIC Educational Resources Information Center

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  8. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. It has been shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep, as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended. We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: (1) subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated response (performance decrement) to sleep loss compared to subjects who have high MSLT scores (Alert subjects) on a nominal sleep schedule; (2) when permitted to extend sleep--thus discharging their sleep debt-the Sleepy subjects will show a sleep-loss response resembling that of the Alert subjects.

  9. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated response (performance decrement) to sleep loss compared to subjects who have high MSLT scores (Alert subjects) on a nominal sleep schedule. when permitted to extend sleep-thus discharging their sleep debt-the Sleepy subjects will show a sleep-loss response resembling that of the Alert subjects.

  10. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other normal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< or = 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> or = 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated response (performance decrement) to sleep loss compared to subjects who have high MSLT scores (Alert subjects) on a nominal sleep schedule. When permitted to extend sleep-thus discharging their sleep debt-the Sleepy subjects will show a sleep-loss response resembling that of the Alert subjects.

  11. Mindfulness-based stress reduction compared with cognitive behavioral therapy for the treatment of insomnia comorbid with cancer: a randomized, partially blinded, noninferiority trial.

    PubMed

    Garland, Sheila N; Carlson, Linda E; Stephens, Alisa J; Antle, Michael C; Samuels, Charles; Campbell, Tavis S

    2014-02-10

    Our study examined whether mindfulness-based stress reduction (MBSR) is noninferior to cognitive behavioral therapy for insomnia (CBT-I) for the treatment of insomnia in patients with cancer. This was a randomized, partially blinded, noninferiority trial involving patients with cancer with insomnia recruited from a tertiary cancer center in Calgary, Alberta, Canada, from September 2008 to March 2011. Assessments were conducted at baseline, after the program, and after 3 months of follow-up. The noninferiority margin was 4 points measured by the Insomnia Severity Index. Sleep diaries and actigraphy measured sleep onset latency (SOL), wake after sleep onset (WASO), total sleep time (TST), and sleep efficiency. Secondary outcomes included sleep quality, sleep beliefs, mood, and stress. Of 327 patients screened, 111 were randomly assigned (CBT-I, n = 47; MBSR, n = 64). MBSR was inferior to CBT-I for improving insomnia severity immediately after the program (P = .35), but MBSR demonstrated noninferiority at follow-up (P = .02). Sleep diary-measured SOL was reduced by 22 minutes in the CBT-I group and by 14 minutes in the MBSR group at follow-up. Similar reductions in WASO were observed for both groups. TST increased by 0.60 hours for CBT-I and 0.75 hours for MBSR. CBT-I improved sleep quality (P < .001) and dysfunctional sleep beliefs (P < .001), whereas both groups experienced reduced stress (P < .001) and mood disturbance (P < .001). Although MBSR produced a clinically significant change in sleep and psychological outcomes, CBT-I was associated with rapid and durable improvement and remains the best choice for the nonpharmacologic treatment of insomnia.

  12. Serum Amyloid A Production Is Triggered by Sleep Deprivation in Mice and Humans: Is That the Link between Sleep Loss and Associated Comorbidities?

    PubMed Central

    de Oliveira, Edson M.; Visniauskas, Bruna; Tufik, Sergio; Andersen, Monica L.; Chagas, Jair R.; Campa, Ana

    2017-01-01

    Serum amyloid A (SAA) was recently associated with metabolic endotoxemia, obesity and insulin resistance. Concurrently, insufficient sleep adversely affects metabolic health and is an independent predisposing factor for obesity and insulin resistance. In this study we investigated whether sleep loss modulates SAA production. The serum SAA concentration increased in C57BL/6 mice subjected to sleep restriction (SR) for 15 days or to paradoxical sleep deprivation (PSD) for 72 h. Sleep restriction also induced the upregulation of Saa1.1/Saa2.1 mRNA levels in the liver and Saa3 mRNA levels in adipose tissue. SAA levels returned to the basal range after 24 h in paradoxical sleep rebound (PSR). Metabolic endotoxemia was also a finding in SR. Increased plasma levels of SAA were also observed in healthy human volunteers subjected to two nights of total sleep deprivation (Total SD), returning to basal levels after one night of recovery. The observed increase in SAA levels may be part of the initial biochemical alterations caused by sleep deprivation, with potential to drive deleterious conditions such as metabolic endotoxemia and weight gain. PMID:28335560

  13. Effects of sleep schedules on commercial motor vehicle driver performance : part 1

    DOT National Transportation Integrated Search

    2000-09-01

    The Federal Motor Carrier Safety Administration sponsored a study to gather and analyze data on commercial motor vehicle (CMV) driver rest and recovery cycles, effects of partial sleep deprivation, and prediction of subsequent performance. The study ...

  14. Effects of sleep schedules on commercial motor vehicle driver performance : part 2

    DOT National Transportation Integrated Search

    2000-09-01

    The Federal Motor Carrier Safety Administration sponsored a study to gather and analyze data on commercial motor vehicle driver rest and recovery cycles, effects of partial sleep deprivation, and prediction of subsequent performance. The study began ...

  15. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.

    PubMed

    Massie, Ashley; Boland, Erin; Kapás, Levente; Szentirmai, Éva

    2018-06-05

    The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.

  16. Sleep recovery in participants after racing in the Finnmarkslop - Europe's longest dog‑sled race.

    PubMed

    Calogiuri, Giovanna; Rossi, Alessio; Formenti, Damiano; Weydahl, Andi

    2017-01-01

    During the dog-sled race, the Finnmarkslop (FL), which lasts up to 7 days, participants get little sleep and what they get is fragmented; concerns have been raised about proper sleep recovery. The aim of this study was to examine awareness of sleep deprivation by FL participants and post-race sleep recovery after completion of the race. A total of 55 participants responded to an online survey 1 week and 1 month after the race; this measured the following factors: their awareness of sleep loss and possible strategies for recovery; their sleep-wake patterns using a Pittsburgh Sleep Questionnaire Index; and possible changes in respondents' sleep-wake patterns compared with their regular routines. During the FL, participants slept about 3-4 hours a day. Many were not aware of the accumulated sleep debt and did not engage in strategies to make up the loss. Insufficient levels of sleep and impoverished sleep quality were observed after the race, especially among those who were engaged in the FL for a longer period. Alertness levels were affected 1 week after the race. Among participants in the FL, the lack of awareness of sleep debt and insufficient sleep recovery could lead to health consequences. Those engaged in the race for longer should be more cautious during the recovery process because of possible sleep problems occurring after the race. Educational campaigns and easy access to professional support should be provided for participants in this type of sporting event.

  17. The role of preoccupation in attributions for poor sleep.

    PubMed

    Ellis, Jason; Hampson, Sarah E; Cropley, Mark

    2007-04-01

    Studies examining the impact of daytime preoccupations with sleep are rare. The aim of the present study was to determine whether daytime preoccupations mediate the relationship between anxiety and attributions for poor sleep within older adults. A cross-sectional study examined the mediational role of sleep preoccupations in the link between anxiety and attributions for poor sleep in a sample of late-life insomniacs (n=92). The findings show that a preoccupation with sleep during the day mediates the relationship between anxiety and both sleep effort and sleep pattern problem attributions but does not mediate cognitive arousal attributions for insomnia and only partially mediates the relationship between anxiety and physical tension attributions for insomnia. The results are discussed in terms of the existing models of insomnia and cognitive intervention strategies.

  18. Arousal from Sleep Does Not Lead to Reduced Dilator Muscle Activity or Elevated Upper Airway Resistance on Return to Sleep in Healthy Individuals

    PubMed Central

    Jordan, Amy S.; Cori, Jennifer M.; Dawson, Andrew; Nicholas, Christian L.; O'Donoghue, Fergal J.; Catcheside, Peter G.; Eckert, Danny J.; McEvoy, R. Doug; Trinder, John

    2015-01-01

    Study Objectives: To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Design: Observational study. Setting: Two sleep physiology laboratories. Patients or Participants: 35 men and 25 women with no medical or sleep disorders. Interventions: Auditory tones to induce 3-s to 15-s cortical arousals from sleep. Measurements and Results: During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7 ± 0.4 and 5.5 ± 0.3 L/min, peak genioglossus activity 3.4% ± 1.0% and 4.8% ± 1.0% maximum, upper airway resistance 4.7 ± 0.7 and 5.5 ± 1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Conclusions: Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. Citation: Jordan AS, Cori JM, Dawson A, Nicholas CL, O'Donoghue FJ, Catcheside PG, Eckert DJ, McEvoy RD, Trinder J. Arousal from sleep does not lead to reduced dilator muscle activity or elevated upper airway resistance on return to sleep in healthy individuals. SLEEP 2015;38(1):53–59. PMID:25325511

  19. Circadian rhythms and risk for substance use disorders in adolescence

    PubMed Central

    Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.

    2014-01-01

    Purpose of the review This article explores recent research in adolescent circadian rhythms, neurobiological changes influencing affective regulation and reward responding, and the emergence of substance use and related problems. Recent findings Recent findings have confirmed that adolescents with drug and alcohol problems are also beset by sleep problems, and have advanced our understanding of the relationship between sleep problems and substance involvement in this developmental period. During adolescence, a shift to later preferred sleep times interacts with early school start times to cause sleep loss and circadian misalignment. Sleep loss and circadian misalignment may disrupt reward-related brain function and impair inhibitory control. Deficits or delays in mature reward and inhibitory functions may contribute to adolescent alcohol use and other substance involvement. Summary An integration of the available research literature suggests that changes in sleep and circadian rhythms during adolescence may contribute to accelerated substance use and related problems. PMID:25247459

  20. Complex Movement Disorders at Disease Onset in Childhood Narcolepsy with Cataplexy

    ERIC Educational Resources Information Center

    Plazzi, Giuseppe; Pizza, Fabio; Palaia, Vincenzo; Franceschini, Christian; Poli, Francesca; Moghadam, Keivan K.; Cortelli, Pietro; Nobili, Lino; Bruni, Oliviero; Dauvilliers, Yves; Lin, Ling; Edwards, Mark J.; Mignot, Emmanuel; Bhatia, Kailash P.

    2011-01-01

    Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of…

  1. Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Landolt, H-P; Glatzel, M; Blättler, T; Achermann, P; Roth, C; Mathis, J; Weis, J; Tobler, I; Aguzzi, A; Bassetti, C L

    2006-05-09

    The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

  2. Effect of oxcarbazepine on sleep architecture.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; González, Valentín; Hernandez, Mario

    2009-07-01

    The most common side effects following administration of antiepileptic drugs involve alterations in sleep architecture and varying degrees of daytime sleepiness. Oxcarbazepine is a drug that is approved as monotherapy for the treatment of partial seizures and generalized tonic-clonic seizures. However, there is no information about its effects on sleep pattern organization; therefore, the objective of this work was to analyze such effects. Animals (Wistar rats) exhibited three different behavioral and electrophysiological states of vigilance: wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Oral treatment with oxcarbazepine (100 mg/kg) produced an increment in total sleep time throughout the recording period. This increment involved both SWS and REM sleep. Mean duration of the REM sleep phase was not affected. In contrast, the frequency of this sleep phase increased significantly across the 10-hour period. REM sleep latency shortened significantly. Results obtained in this work indicate that oxcarbazepine's acute effects point to hypnotic properties.

  3. Aging worsens the effects of sleep deprivation on postural control.

    PubMed

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  4. Aging Worsens the Effects of Sleep Deprivation on Postural Control

    PubMed Central

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly. PMID:22163330

  5. Sleep Deprivation and the Epigenome.

    PubMed

    Gaine, Marie E; Chatterjee, Snehajyoti; Abel, Ted

    2018-01-01

    Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.

  6. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents

    PubMed Central

    Tan, Yafei; Chen, Ying; Lu, Yaogui; Li, Liping

    2016-01-01

    The primary aim of this study was to examine associations between problematic Internet use, depression and sleep disturbance, and explore whether there were differential effects of problematic Internet use and depression on sleep disturbance. A total of 1772 adolescents who participated in the Shantou Adolescent Mental Health Survey were recruited in 2012 in Shantou, China. The Chinese version of the Internet Addiction Test (IAT) was used to evaluate the prevalence and severity of Internet addiction. The Chinese version of the Pittsburgh Sleep Quality Index (PSQI), a 10-item version of the Center for Epidemiologic Studies Depression Scale (CESD-10), and other socio-demographic measures were also completed. Multiple regression analysis was used to test the mediating effect of problematic Internet use and depression on sleep disturbance. Among the participants, 17.2% of adolescents met the criteria for problematic Internet use, 40.0% were also classified as suffering from sleep disturbance, and 54.4% of students had depressive symptoms. Problematic Internet use was significantly associated with depressive symptoms and sleep disturbance. The correlation between depressive symptoms and sleep disturbance was highly significant. Both problematic Internet use (β = 0.014; Sobel test Z = 12.7, p < 0.001) and depression (β = 0.232; Sobel test Z = 3.39, p < 0.001) had partially mediating effects on sleep disturbance and depression was of greater importance for sleep disturbance than problematic Internet use. There is a high prevalence of problematic Internet use, depression and sleep disturbance among high school students in southern China, and problematic Internet use and depressive symptoms are strongly associated with sleep disturbance. This study provides evidence that problematic Internet use and depression have partially mediating effects on sleep disturbance. These results are important for clinicians and policy makers with useful information for prevention and intervention efforts. PMID:26985900

  7. Perceived insufficient rest or sleep--four states, 2006.

    PubMed

    2008-02-29

    Chronic sleep loss is an under-recognized public health problem that has a cumulative effect on physical and mental health. Sleep loss and sleep disorders can reduce quality of life and productivity, increase use of health-care services, and result in injuries, illness, or deaths. Epidemiologic surveys suggest that mean sleep duration among U.S. adults has decreased during the past two decades (CDC, unpublished data, 2007). An estimated 50-70 million persons in the United States have chronic sleep and wakefulness disorders. Most sleep disorders are marked by difficulty falling or staying asleep, daytime sleepiness, sleep-disordered breathing, or abnormal movements, behaviors, or sensations during sleep. To examine characteristics of men and women who reported days of perceived insufficient rest or sleep during the preceding 30 days, CDC analyzed 2006 Behavioral Risk Factor Surveillance System (BRFSS) data from four states (Delaware, Hawaii, New York, and Rhode Island). This report summarizes the results of that analysis. Among all respondents, 29.6% reported no days of insufficient rest or sleep during the preceding 30 days and 10.1% reported insufficient rest or sleep every day during the preceding 30 days. Rest and sleep insufficiency can be assessed in general medical-care visits and treated through effective behavioral and pharmacologic methods. Expanded and more detailed surveillance of insufficient rest or sleep (e.g., national estimates) might clarify the nature of this problem and its effect on the health of the U.S. population.

  8. Effects of an irregular bedtime schedule on sleep quality, daytime sleepiness, and fatigue among university students in Taiwan.

    PubMed

    Kang, Jiunn-Horng; Chen, Shih-Ching

    2009-07-19

    An irregular bedtime schedule is a prevalent problem in young adults, and could be a factor detrimentally affecting sleep quality. The goal of the present study was to explore the association between an irregular bedtime schedule and sleep quality, daytime sleepiness, and fatigue among undergraduate students in Taiwan. A total of 160 students underwent a semi-structured interview and completed a survey comprising 4 parts: Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and a rating of irregular bedtime frequency. Participants were grouped into 3 groups in terms of irregular bedtime frequency: low, intermediate, or high according to their 2-week sleep log. To screen for psychological disorders or distress that may have affected responses on the sleep assessment measures, the Chinese health questionnaire-12 (CHQ-12) was also administered. We found an increase in bedtime schedule irregularity to be significantly associated with a decrease in average sleep time per day (Spearman r = -0.22, p = 0.05). Multivariate regression analysis revealed that irregular bedtime frequency and average sleep time per day were correlated with PSQI scores, but not with ESS or FSS scores. A significant positive correlation between irregular bedtime frequency and PSQI scores was evident in the intermediate (partial r = 0.18, p = 0.02) and high (partial r = 0.15, p = 0.05) frequency groups as compared to low frequency group. The results of our study suggest a high prevalence of both an irregular bedtime schedule and insufficient sleep among university students in Taiwan. Students with an irregular bedtime schedule may experience poor sleep quality. We suggest further research that explores the mechanisms involved in an irregular bedtime schedule and the effectiveness of interventions for improving this condition.

  9. The effect of one night's sleep deprivation on adolescent neurobehavioral performance.

    PubMed

    Louca, Mia; Short, Michelle A

    2014-11-01

    To investigate the effects of one night's sleep deprivation on neurobehavioral functioning in adolescents. Participants completed a neurobehavioral test battery measuring sustained attention, reaction speed, cognitive processing speed, sleepiness, and fatigue every 2 h during wakefulness. Baseline performance (defined as those test bouts between 09:00 and 19:00 on days 2 and 3, following two 10-h sleep opportunities) were compared to performance at the same clock time the day following total sleep deprivation. The sleep laboratory at the Centre for Sleep Research. Twelve healthy adolescents (6 male), aged 14-18 years (mean = 16.17, standard deviation = 0.83). Sustained attention, reaction speed, cognitive processing speed, and subjective sleepiness were all significantly worse following one night without sleep than following 10-h sleep opportunities (all main effects of day, P < 0.05). Sleep deprivation led to increased variability on objective performance measures. There were between-subjects differences in response to sleep loss that were task-specific, suggesting that adolescents may not only vary in terms of the degree to which they are affected by sleep loss but also the domains in which they are affected. These findings suggest that one night of total sleep deprivation has significant deleterious effects upon neurobehavioral performance and subjective sleepiness. These factors impair daytime functioning in adolescents, leaving them at greater risk of poor academic and social functioning and accidents and injuries.

  10. Predicting risk in space: Genetic markers for differential vulnerability to sleep restriction

    NASA Astrophysics Data System (ADS)

    Goel, Namni; Dinges, David F.

    2012-08-01

    Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss—with intraclass correlation coefficients accounting for 58-92% of the variance in neurobehavioral measures—point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants—each independently—in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction—as determined from candidate gene studies—will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.

  11. Sleep disorders, obesity, and aging: the role of orexin

    PubMed Central

    Nixon, Joshua P.; Mavanji, Vijayakumar; Butterick, Tammy A.; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2015-01-01

    The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost. PMID:25462194

  12. Sleep disorders, obesity, and aging: the role of orexin.

    PubMed

    Nixon, Joshua P; Mavanji, Vijayakumar; Butterick, Tammy A; Billington, Charles J; Kotz, Catherine M; Teske, Jennifer A

    2015-03-01

    The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost. Published by Elsevier B.V.

  13. Sleepless in Chicago: Tracking the Effects of Adolescent Sleep Loss During the Middle School Years

    ERIC Educational Resources Information Center

    Fredriksen, Katia; Rhodes, Jean; Reddy, Ranjini; Way, Niobe

    2004-01-01

    The influence of the sleep patterns of 2,259 students, aged 11 to 14 years, on trajectories of depressive symptoms, self-esteem, and grades was longitudinally examined using latent growth cross-domain models. Consistent with previous research, sleep decreased over time. Students who obtained less sleep in sixth grade exhibited lower initial…

  14. Sleep Disturbance and Short Sleep as Risk Factors for Depression and Perceived Medical Errors in First-Year Residents.

    PubMed

    Kalmbach, David A; Arnedt, J Todd; Song, Peter X; Guille, Constance; Sen, Srijan

    2017-03-01

    While short and poor quality sleep among training physicians has long been recognized as problematic, the longitudinal relationships among sleep, work hours, mood, and work performance are not well understood. Here, we prospectively characterize the risk of depression and medical errors based on preinternship sleep disturbance, internship-related sleep duration, and duty hours. Survey data from 1215 nondepressed interns were collected at preinternship baseline, then 3 and 6 months into internship. We examined how preinternship sleep quality and internship sleep and work hours affected risk of depression at 3 months, per the Patient Health Questionnaire 9. We then examined the impact of sleep loss and work hours on depression persistence from 3 to 6 months. Finally, we compared self-reported errors among interns based on nightly sleep duration (≤6 hr vs. >6 hr), weekly work hours (<70 hr vs. ≥70 hr), and depression (non- vs. acutely vs. chronically depressed). Poorly sleeping trainees obtained less sleep and were at elevated risk of depression in the first months of internship. Short sleep (≤6 hr nightly) during internship mediated the relationship between sleep disturbance and depression risk, and sleep loss led to a chronic course for depression. Depression rates were highest among interns with both sleep disturbance and short sleep. Elevated medical error rates were reported by physicians sleeping ≤6 hr per night, working ≥ 70 weekly hours, and who were acutely or chronically depressed. Sleep disturbance and internship-enforced short sleep increase risk of depression development and chronicity and medical errors. Interventions targeting sleep problems prior to and during residency hold promise for curbing depression rates and improving patient care. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  15. Two cases of childhood narcolepsy mimicking epileptic seizures in video-EEG/EMG.

    PubMed

    Yanagishita, Tomoe; Ito, Susumu; Ohtani, Yui; Eto, Kaoru; Kanbayashi, Takashi; Oguni, Hirokazu; Nagata, Satoru

    2018-06-06

    Narcolepsy is characterized by excessive sleepiness, hypnagogic hallucinations, and sleep paralysis, and can occur with or without cataplexy. Here, we report two children with narcolepsy presenting with cataplexy mimicking epileptic seizures as determined by long-term video-electroencephalography (EEG) and electromyography (EMG) monitoring. Case 1 was a 15-year-old girl presenting with recurrent episodes of "convulsions" and loss of consciousness, who was referred to our hospital with a diagnosis of epilepsy showing "convulsions" and "complex partial seizures". The long-term video-polygraph showed a clonic attack lasting for 15 s, which corresponded to 1-2 Hz with interruption of mentalis EMG discharges lasting for 70-300 ms without any EEG changes. Narcolepsy was suspected due to the attack induced by hearty laughs and the presence of sleep attacks, and confirmed by low orexin levels in cerebrospinal fluid (CSF). Case 2 was an 11-year-old girl presenting with recurrent episodes of myoclonic attacks simultaneously with dropping objects immediately after hearty laughs, in addition to sleep attacks, hypnagogic hallucinations, and sleep paralysis. The long-term video-polygraph showed a subtle attack, characterized by dropping chopsticks from her hand, which corresponded to an interruption of ongoing deltoid EMG discharges lasting 140 ms without any EEG changes. A diagnosis of narcolepsy was confirmed by the low orexin levels in CSF. These cases demonstrate that children with narcolepsy may have attacks of cataplexy that resemble clonic or myoclonic seizures. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Preemptive Caffeine Administration Blocks the Increase in Postoperative Pain Caused by Previous Sleep Loss in the Rat: A Potential Role for Preoptic Adenosine A2A Receptors in Sleep-Pain Interactions.

    PubMed

    Hambrecht-Wiedbusch, Viviane S; Gabel, Maya; Liu, Linda J; Imperial, John P; Colmenero, Angelo V; Vanini, Giancarlo

    2017-09-01

    Sleep and pain are reciprocally related, but the precise mechanisms underlying this relationship are poorly understood. This study used a rat model of surgical pain to examine the effect of previous sleep loss on postoperative pain and tested the hypothesis that preoptic adenosinergic mechanisms regulate sleep-pain interactions. Relative to ad libitum sleep, 6 hours of total sleep deprivation prior to a surgical incision significantly enhanced postoperative mechanical hypersensitivity in the affected paw and prolonged the time to recovery from surgery. There were no sex-specific differences in these measures. There were also no changes in adrenocorticotropic hormone and corticosterone levels after sleep deprivation, suggesting that this effect was not mediated by the stress associated with the sleep perturbation. Systemic administration of the nonselective adenosine receptor antagonist caffeine at the onset of sleep deprivation prevented the sleep deprivation-induced increase in postoperative hypersensitivity. Microinjection of the adenosine A2A receptor antagonist ZM 241385 into the median preoptic nucleus (MnPO) blocked the increase in surgical pain levels and duration caused by prior sleep deprivation and eliminated the thermal hyperalgesia induced by sleep deprivation in a group of nonoperated (i.e., without surgical incision) rats. These data show that even a brief sleep disturbance prior to surgery worsens postoperative pain and are consistent with our hypothesis that adenosine A2A receptors in the MnPO contribute to regulate these sleep-pain interactions. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Fatigue Management in Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra

    2011-01-01

    Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.

  18. Neonatal Sleep Restriction Increases Nociceptive Sensitivity in Adolescent Mice.

    PubMed

    Araujo, Paula; Coelho, Cesar A; Oliveira, Maria G; Tufik, Sergio; Andersen, Monica L

    2018-03-01

    Sleep loss in infants may have a negative effect on the functional and structural development of the nociceptive system. We tested the hypothesis that neonatal sleep restriction induces a long-term increase of pain-related behaviors in mice and that this hypersensitivity occurs due to changes in the neuronal activity of nociceptive pathways. We aim to investigate the effects of sleep loss in neonatal mice on pain behaviors of adolescent and adult mice in a sex-dependent manner. We also analyzed neuroanatomical and functional changes in pain pathways associated with behavioral changes. An experimental animal study. A basic sleep research laboratory at Universidade Federal de São Paulo in Brazil. Neonatal mice at postnatal day (PND) 12 were randomly assigned to either control (CTRL), maternal separation (MS), or sleep restriction (SR) groups. MS and SR were performed 2 hours a day for 10 days (PND 12 until PND 21). The gentle handling method was used to prevent sleep. At PND 21, PND 35, or PND 90, the mice were tested for pain-related behaviors. Their brains were harvested and immunohistochemically stained for c-Fos protein in the anterior cingulate cortex, primary somatosensory cortex, and periaqueductal gray (PAG). Neonatal SR significantly increased nociceptive sensitivity in the hot plate test in adolescent mice (-23.5% of pain threshold). This alteration in nociceptive response was accompanied by a decrease in c-Fos expression in PAG (-40% of c-Fos positive cells compared to the CTRL group). The hypersensitivity found in adolescent mice was not present in adult animals, and all mice showed a comparable nociceptive response. Even using a mild manipulation method, in which a minimal amount of handling was applied to maintain wakefulness, sleep deprivation was a stressful event evidenced by higher corticosterone levels. Repeated exposures to sleep loss during early life were able to induce changes in the nociceptive response associated with alterations in neural activity in descending control of pain. Brain maturation, hypersensitivity, neuronal activity, nociception, pain, periaqueductal gray, postnatal development, sleep, sleep deprivation.

  19. Effects of Sleep on Training Effectiveness in Soldiers at Fort Leonard Wood, Missouri

    DTIC Science & Technology

    2010-11-01

    Jarrett, & Kupfer, 1992; Selvi , Gulec, Agargun, & Besiroglu, 2007; Taub & Berger, 1973; Wood & Magnello, 1992). For example, Boivin and colleagues......of partial sleep deprivation on mood, with morning chronotypes exhibiting less sensitivity of mood. A pattern similar to that described by Selvi

  20. Management of bruxism-induced complications in removable partial denture wearers using specially designed dentures: a clinical report.

    PubMed

    Baba, Kazuyoshi; Aridome, Kumiko; Pallegama, Ranjith Wasantha

    2008-01-01

    In patients with a limited number of remaining teeth, bruxism force can be destructive for both the remaining teeth and periodontal structures. This paper reports the successful management of four such patients with severe sleep bruxism, using conventional removable partial dentures and specially designed, splint-like removable partial dentures called a night denture. The night denture was fabricated in two different designs, which depended upon the pattern of the remaining tooth contacts. The patients were followed up for 2-6 years using a night denture in either of the two designs. Within the limitations of these four reports of clinical cases, the night denture appeared to be effective in managing the problems related to sleep bruxism.

  1. The impact of sleep loss on the facilitation of seizures: A prospective case-crossover study.

    PubMed

    Samsonsen, Christian; Sand, Trond; Bråthen, Geir; Helde, Grethe; Brodtkorb, Eylert

    2016-11-01

    The relationship between sleep and seizures is intricate. The aim of this study was to assess whether sleep loss is an independent seizure precipitant in a clinical setting. In this prospective, observational cross-over study, 179 consecutive hospital admissions for epileptic seizures were included. A semi-structured interview regarding several seizure precipitants was performed. The sleep pattern prior to the seizure, as well as alcohol, caffeine and drug use, were recorded. The interview was repeated by telephone covering the same weekday at a time when there had been no recent seizure. The Hospital Anxiety and Depression Scale (HADS) and a visual analogue scale for perceived stress were applied at admission. Student's t-test, Fisher exact test and ANOVA were used for statistical analyses. Complete data for analysis were retrieved in 144 patients. The sleep-time during the 24h prior to the seizure was lower (7.3h) compared to follow-up (8.3h; p<0.0005). Caffeine consumption and use of relevant non antiepileptic drugs (AED) were not different. HADS and stress scores at admission did not correlate with sleep-time difference. In ANOVA, controlled for alcohol consumption and AED use, the sleep-time difference remained significant (p=0.008). The interaction with alcohol intake was high, but the sleep-time difference remained highly significant also for the non- and low-consumption (≤2 units per day) subgroup (n=121, 7.50h vs 8.42h, p=0.001). Epileptic seizures are often precipitated by a combination of various clinical factors, but sleep loss stands out as an independent seizure trigger. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Homeostatic and Circadian Abnormalities in Sleep and Arousal in Gulf War Syndrome

    DTIC Science & Technology

    2015-10-01

    for the daytime fatigue and cognitive impairments commonly reported in GWI may be that these veterans undergo frontally specific sleep deprivation ...long-term sleep loss or as a result of an unknown process related to Gulf-War participation. The notion that sleep pathology results in acute...1 Award Number: W81XWH-10-2-0129 TITLE: Homeostatic and Circadian Abnormalities in Sleep and Arousal in Gulf War Syndrome PRINCIPAL INVESTIGATOR

  3. The Effect of One Night's Sleep Deprivation on Adolescent Neurobehavioral Performance

    PubMed Central

    Louca, Mia; Short, Michelle A.

    2014-01-01

    Study Objectives: To investigate the effects of one night's sleep deprivation on neurobehavioral functioning in adolescents. Design: Participants completed a neurobehavioral test battery measuring sustained attention, reaction speed, cognitive processing speed, sleepiness, and fatigue every 2 h during wakefulness. Baseline performance (defined as those test bouts between 09:00 and 19:00 on days 2 and 3, following two 10-h sleep opportunities) were compared to performance at the same clock time the day following total sleep deprivation. Setting: The sleep laboratory at the Centre for Sleep Research. Participants: Twelve healthy adolescents (6 male), aged 14-18 years (mean = 16.17, standard deviation = 0.83). Measurements and Results: Sustained attention, reaction speed, cognitive processing speed, and subjective sleepiness were all significantly worse following one night without sleep than following 10-h sleep opportunities (all main effects of day, P < 0.05). Sleep deprivation led to increased variability on objective performance measures. There were between-subjects differences in response to sleep loss that were task-specific, suggesting that adolescents may not only vary in terms of the degree to which they are affected by sleep loss but also the domains in which they are affected. Conclusions: These findings suggest that one night of total sleep deprivation has significant deleterious effects upon neurobehavioral performance and subjective sleepiness. These factors impair daytime functioning in adolescents, leaving them at greater risk of poor academic and social functioning and accidents and injuries. Citation: Louca M, Short MA. The effect of one night's sleep deprivation on adolescent neurobehavioral performance. SLEEP 2014;37(11):1799-1807. PMID:25364075

  4. Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study.

    PubMed

    Zhang, Jinxiao; Lau, Esther Yuet Ying; Hsiao, Janet H

    2018-03-01

    Resting-state spontaneous neural activities consume far more biological energy than stimulus-induced activities, suggesting their significance. However, existing studies of sleep loss and emotional functioning have focused on how sleep deprivation modulates stimulus-induced emotional neural activities. The current study aimed to investigate the impacts of sleep deprivation on the brain network of emotional functioning using electroencephalogram during a resting state. Two established resting-state electroencephalogram indexes (i.e. frontal alpha asymmetry and frontal theta/beta ratio) were used to reflect the functioning of the emotion regulatory neural network. Participants completed an 8-min resting-state electroencephalogram recording after a well-rested night or 24 hr sleep deprivation. The Sleep Deprivation group had a heightened ratio of the power density in theta band to beta band (theta/beta ratio) in the frontal area than the Sleep Control group, suggesting an effective approach with reduced frontal cortical regulation of subcortical drive after sleep deprivation. There was also marginally more left-lateralized frontal alpha power (left frontal alpha asymmetry) in the Sleep Deprivation group compared with the Sleep Control group. Besides, higher theta/beta ratio and more left alpha lateralization were correlated with higher sleepiness and lower vigilance. The results converged in suggesting compromised emotional regulatory processes during resting state after sleep deprivation. Our work provided the first resting-state neural evidence for compromised emotional functioning after sleep loss, highlighting the significance of examining resting-state neural activities within the affective brain network as a default functional mode in investigating the sleep-emotion relationship. © 2018 European Sleep Research Society.

  5. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    PubMed

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  6. Longitudinal assessment of daily activity patterns on weight change after involuntary job loss: the ADAPT study protocol.

    PubMed

    Haynes, Patricia L; Silva, Graciela E; Howe, George W; Thomson, Cynthia A; Butler, Emily A; Quan, Stuart F; Sherrill, Duane; Scanlon, Molly; Rojo-Wissar, Darlynn M; Gengler, Devan N; Glickenstein, David A

    2017-10-10

    The World Health Organization has identified obesity as one of the most visible and neglected public health problems worldwide. Meta-analytic studies suggest that insufficient sleep increases the risk of developing obesity and related serious medical conditions. Unfortunately, the nationwide average sleep duration has steadily declined over the last two decades with 25% of U.S. adults reporting insufficient sleep. Stress is also an important indirect factor in obesity, and chronic stress and laboratory-induced stress negatively impact sleep. Despite what we know from basic sciences about (a) stress and sleep and (b) sleep and obesity, we know very little about how these factors actually manifest in a natural environment. The Assessing Daily Activity Patterns Through Occupational Transitions (ADAPT) study tests whether sleep disruption plays a key role in the development of obesity for individuals exposed to involuntary job loss, a life event that is often stressful and disrupting to an individual's daily routine. This is an 18-month closed, cohort research design examining social rhythms, sleep, dietary intake, energy expenditure, waist circumference, and weight gain over 18 months in individuals who have sustained involuntary job loss. Approximately 332 participants who lost their job within the last 3 months are recruited from flyers within the Arizona Department of Economic Security (AZDES) Unemployment Insurance Administration application packets and other related postings. Multivariate growth curve modeling will be used to investigate the temporal precedence of changes in social rhythms, sleep, and weight gain. It is hypothesized that: (1) unemployed individuals with less consistent social rhythms and worse sleep will have steeper weight gain trajectories over 18 months than unemployed individuals with stable social rhythms and better sleep; (2) disrupted sleep will mediate the relationship between social rhythm disruption and weight gain; and (3) reemployment will be associated with a reversal in the negative trajectories outlined above. Positive findings will provide support for the development of obesity prevention campaigns targeting sleep and social rhythms in an accessible subgroup of vulnerable individuals.

  7. Can We Predict Cognitive Performance Decrements Due to Sleep Loss and the Recuperative Effects of Caffeine

    DTIC Science & Technology

    2015-10-14

    such as timely short naps and caffeine, are often used to mitigate the effects of sleep loss on performance. However, the timing, duration, and dosage...loss and the restorative effects of different dosages of caffeine on a specific individual’s performance. When used as a decision-aid tool, this model...provides the means to maximize Warfighter cognitive performance, resulting in peak alertness and prolonged alertness at the desired times

  8. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.

    PubMed

    Pellegrino, R; Sunaga, D Y; Guindalini, C; Martins, R C S; Mazzotti, D R; Wei, Z; Daye, Z J; Andersen, M L; Tufik, S

    2012-11-01

    Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

  9. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    PubMed Central

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  10. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice.

    PubMed

    Lassi, Glenda; Ball, Simon T; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.

  11. Health Effects of Sleep Deprivation,

    DTIC Science & Technology

    1990-06-01

    of an inordinate sleep loss (as hunger and thirst prevent us from going too long without food and water). Because of this, it takes great personal...drug-refractory depression. Neuropsychology 13:111-116, 1985. 82. Dowd PJ: Sleep deprivation effects on the vestibular habituation process. J Apply

  12. Investigating systematic individual differences in sleep-deprived performance on a high-fidelity flight simulator.

    PubMed

    Van Dongen, Hans P A; Caldwell, John A; Caldwell, J Lynn

    2006-05-01

    Laboratory research has revealed considerable systematic variability in the degree to which individuals' alertness and performance are affected by sleep deprivation. However, little is known about whether or not different populations exhibit similar levels of individual variability. In the present study, we examined individual variability in performance impairment due to sleep loss in a highly select population of militaryjet pilots. Ten active-duty F-117 pilots were deprived of sleep for 38 h and studied repeatedly in a high-fidelity flight simulator. Data were analyzed with a mixed-model ANOVA to quantify individual variability. Statistically significant, systematic individual differences in the effects of sleep deprivation were observed, even when baseline differences were accounted for. The findings suggest that highly select populations may exhibit individual differences in vulnerability to performance impairment from sleep loss just as the general population does. Thus, the scientific and operational communities' reliance on group data as opposed to individual data may entail substantial misestimation of the impact of job-related stressors on safety and performance.

  13. Are Cardiometabolic and Endocrine Abnormalities Linked to Sleep Difficulties in Schizophrenia? A Hypothesis Driven Review

    PubMed Central

    Robillard, Rébecca; Rogers, Naomi L.; Whitwell, Bradley G.

    2012-01-01

    Schizophrenia is a psychiatric disorder that includes symptoms such as hallucinations, disordered thoughts, disorganized or catatonic behaviour, cognitive dysfunction and sleep-wake disturbance. In addition to these symptoms, cardiometabolic dysfunction is common in patients with schizophrenia. While previously it has been thought that cardiometabolic symptoms in patients with schizophrenia were associated with medications used to manage this disorder, more recently it has been demonstrated that these symptoms are present in drug naive and unmedicated patients. Sleep-wake disturbance, resulting in chronic sleep loss has also been demonstrated to induce changes in cardiometabolic function. Chronic sleep loss has been associated with an increased risk for weight gain, obesity and cardiac and metabolic disorders, independent of other potentially contributing factors, such as smoking and body mass index. We hypothesise that the sleep-wake disturbance comorbid with schizophrenia may play a significant role in the high prevalence of cardiometabolic dysfunction observed in this patient population. Here we present a critical review of the evidence that supports this hypothesis. PMID:23429436

  14. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation

    PubMed Central

    Lee, Michael L.; Katsuyama, Ângela M.; Duge, Leanne S.; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J.; de la Iglesia, Horacio O.

    2016-01-01

    Study Objectives: Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. Methods: We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. Results: When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Conclusions: Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. Citation: Lee ML, Katsuyama AM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation. SLEEP 2016;39(11):2021–2031. PMID:27568801

  15. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  16. Computational cognitive modeling of the temporal dynamics of fatigue from sleep loss.

    PubMed

    Walsh, Matthew M; Gunzelmann, Glenn; Van Dongen, Hans P A

    2017-12-01

    Computational models have become common tools in psychology. They provide quantitative instantiations of theories that seek to explain the functioning of the human mind. In this paper, we focus on identifying deep theoretical similarities between two very different models. Both models are concerned with how fatigue from sleep loss impacts cognitive processing. The first is based on the diffusion model and posits that fatigue decreases the drift rate of the diffusion process. The second is based on the Adaptive Control of Thought - Rational (ACT-R) cognitive architecture and posits that fatigue decreases the utility of candidate actions leading to microlapses in cognitive processing. A biomathematical model of fatigue is used to control drift rate in the first account and utility in the second. We investigated the predicted response time distributions of these two integrated computational cognitive models for performance on a psychomotor vigilance test under conditions of total sleep deprivation, simulated shift work, and sustained sleep restriction. The models generated equivalent predictions of response time distributions with excellent goodness-of-fit to the human data. More importantly, although the accounts involve different modeling approaches and levels of abstraction, they represent the effects of fatigue in a functionally equivalent way: in both, fatigue decreases the signal-to-noise ratio in decision processes and decreases response inhibition. This convergence suggests that sleep loss impairs psychomotor vigilance performance through degradation of the quality of cognitive processing, which provides a foundation for systematic investigation of the effects of sleep loss on other aspects of cognition. Our findings illustrate the value of treating different modeling formalisms as vehicles for discovery.

  17. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences

    NASA Technical Reports Server (NTRS)

    Heuer, H.; Spijkers, W.; Kiesswetter, E.; Schmidtke, V.

    1998-01-01

    Tacit knowledge is part of many professional skills and can be studied experimentally with implicit-learning paradigms. The authors explored the effects of 2 different stressors, loss of sleep and mental fatigue, on implicit learning in a serial-response time (RT) task. In the 1st experiment, 1 night of sleep deprivation was shown to impair implicit but not explicit sequence learning. In the 2nd experiment, no impairment of both types of sequence learning was found after 1.5 hr of mental work. Serial-RT performance, in contrast, suffered from both stressors. These findings suggest that sleep deprivation induces specific risks for automatic, skill-based behavior that are not present in consciously controlled performance.

  18. Sleepiness and Safety: Where Biology Needs Technology.

    PubMed

    Abe, Takashi; Mollicone, Daniel; Basner, Mathias; Dinges, David F

    2014-04-01

    Maintaining human alertness and behavioral capability under conditions of sleep loss and circadian misalignment requires fatigue management technologies due to: (1) dynamic nonlinear modulation of performance capability by the interaction of sleep homeostatic drive and circadian regulation; (2) large differences among people in neurobehavioral vulnerability to sleep loss; (3) error in subjective estimates of fatigue on performance; and (4) to inform people of the need for recovery sleep. Two promising areas of technology have emerged for managing fatigue risk in safety-sensitive occupations. The first involves preventing fatigue by optimizing work schedules using biomathematical models of performance changes associated with sleep homeostatic and circadian dynamics. Increasingly these mathematical models account for individual differences to achieve a more accurate estimate of the timing and magnitude of fatigue effects on individuals. The second area involves technologies for detecting transient fatigue from drowsiness. The Psychomotor Vigilance Test (PVT), which has been extensively validated to be sensitive to deficits in attention from sleep loss and circadian misalignment, is an example in this category. Two shorter-duration versions of the PVT recently have been developed for evaluating whether operators have sufficient behavioral alertness prior to or during work. Another example is online tracking the percent of slow eyelid closures (PERCLOS), which has been shown to reflect momentary fluctuations of vigilance. Technologies for predicting and detecting sleepiness/fatigue have the potential to predict and prevent operator errors and accidents in safety-sensitive occupations, as well as physiological and mental diseases due to inadequate sleep and circadian misalignment.

  19. Distinct effects of acute and chronic sleep loss on DNA damage in rats.

    PubMed

    Andersen, M L; Ribeiro, D A; Bergamaschi, C T; Alvarenga, T A; Silva, A; Zager, A; Campos, R R; Tufik, S

    2009-04-30

    The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.

  20. Neuroimmunology of disordered sleep in depression and alcoholism.

    PubMed

    Irwin, M

    2001-11-01

    The specific functions of sleep are not known, although sleep is commonly considered a restorative process that is important for the proper functioning of the immune system. Severity of disordered sleep in depressed and alcoholic subjects correlates with declines in natural and cellular immunity and is associated with alterations in the complex cytokine network. Despite evidence that sleep and sleep loss have effects on immune processes and nocturnal secretion of cytokines, the physiological significance of these immune changes is not known. Moreover, in view of basic evidence of a reciprocal interaction between sleep and cytokines, further research is needed to understand whether alterations in cytokines contribute to disordered sleep.

  1. Sleep deprivation increases formation of false memory.

    PubMed

    Lo, June C; Chong, Pearlynne L H; Ganesan, Shankari; Leong, Ruth L F; Chee, Michael W L

    2016-12-01

    Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N = 58, mean age ± SD = 22.10 ± 1.60 years; 29 males), and 7 nights of partial sleep deprivation (5 h sleep opportunity) in these young adults and healthy adolescents (N = 54, mean age ± SD = 16.67 ± 1.03 years; 25 males). In both age groups, sleep-deprived individuals were more likely than well-rested persons to incorporate misleading post-event information into their responses during memory retrieval (P < 0.050). These findings reiterate the importance of adequate sleep in optimal cognitive functioning, reveal the vulnerability of adolescents' memory during sleep curtailment, and suggest the need to assess eyewitnesses' sleep history after encountering misleading information. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  2. Assessing Individual Differences in Adaptation to Extreme Environments: A 36-Hour Sleep Deprivation Study

    NASA Technical Reports Server (NTRS)

    Martinez, Jacqueline; Cowings, Patricia S.; Toscano, William B.

    2012-01-01

    In space, astronauts may experience effects of cumulative sleep loss due to demanding work schedules that can result in cognitive performance impairments, mood state deteriorations, and sleep-wake cycle disruption. Individuals who experience sleep deprivation of six hours beyond normal sleep times experience detrimental changes in their mood and performance states. Hence, the potential for life threatening errors increases exponentially with sleep deprivation. We explored the effects of 36-hours of sleep deprivation on cognitive performance, mood states, and physiological responses to identify which metrics may best predict fatigue induced performance decrements of individuals.

  3. Sleep Loss and Partner Violence Victimization

    ERIC Educational Resources Information Center

    Walker, Robert; Shannon, Lisa; Logan, T. K.

    2011-01-01

    Intimate partner violence victimization has been associated with serious health problems among women, including many disorders that involve sleep disturbances. However, there has been only limited examination of sleep duration among women with victimization experiences. A total of 756 women with a domestic violence order (DVO) against a male…

  4. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.

    PubMed

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Balkin, Thomas J; Reifman, Jaques

    2016-01-01

    Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss-from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges-and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  5. Semantic congruence reverses effects of sleep restriction on associative encoding.

    PubMed

    Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes

    2014-04-01

    Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain

    PubMed Central

    Elmenhorst, Eva-Maria; Hennecke, Eva; Kroll, Tina; Matusch, Andreas; Aeschbach, Daniel; Bauer, Andreas

    2017-01-01

    Adenosine and functional A1 adenosine receptor (A1AR) availability are supposed to mediate sleep–wake regulation and cognitive performance. We hypothesized that cerebral A1AR availability after an extended wake period decreases to a well-rested state after recovery sleep. [18F]CPFPX positron emission tomography was used to quantify A1AR availability in 15 healthy male adults after 52 h of sleep deprivation and following 14 h of recovery sleep. Data were additionally compared with A1AR values after 8 h of baseline sleep from an earlier dataset. Polysomnography, cognitive performance, and sleepiness were monitored. Recovery from sleep deprivation was associated with a decrease in A1AR availability in several brain regions, ranging from 11% (insula) to 14% (striatum). A1AR availabilities after recovery did not differ from baseline sleep in the control group. The degree of performance impairment, sleepiness, and homeostatic sleep-pressure response to sleep deprivation correlated negatively with the decrease in A1AR availability. Sleep deprivation resulted in a higher A1AR availability in the human brain. The increase that was observed after 52 h of wakefulness was restored to control levels during a 14-h recovery sleep episode. Individuals with a large increase in A1AR availability were more resilient to sleep-loss effects than those with a subtle increase. This pattern implies that differences in endogenous adenosine and A1AR availability might be causal for individual responses to sleep loss. PMID:28373571

  7. Sleep Deprivation in Pigeons and Rats Using Motion Detection

    PubMed Central

    Newman, Sarah M.; Paletz, Elliott M.; Obermeyer, William H.; Benca, Ruth M.

    2009-01-01

    Study Objectives: Forced sleep deprivation results in substantial behavioral and physiologic effects in mammals. The disk-over-water (DOW) method produces a syndrome characterized by increased energy expenditure and a robust preferentially rapid-eye-movement sleep rebound upon recovery or eventual death after several weeks of sleep deprivation. The DOW has been used successfully only in rats. This paper presents a method to enforce long-term controlled sleep deprivation across species and to compare its effects in rats and pigeons. Design and Intervention: A conveyor was substituted for the DOW disk. Behavior rather than electroencephalography was used to trigger arousal stimuli, as in gentle-handling deprivation. Rats and pigeons were deprived using this apparatus, and the were compared with each other and with published reports. Measurements and Results: The physiologic consequences and recovery sleep in rats were like those published for DOW rats. Magnitude of sleep loss and recovery patterns in pigeons were similar to those seen in rats, but expected symptoms of the sleep deprivation syndrome were absent in pigeons. The use of a motion trigger allowed us to measure and, thus, to assess the quality and impact of the procedure. Conclusion: Prolonged and controlled sleep deprivation can be enforced using automated motion detection and a conveyor-over-water system. Pigeons and rats, deprived of sleep to the same extent, showed similar patterns of recovery sleep, but pigeons did not exhibit the hyperphagia, weight loss, and debilitation seen in rats. Citation: Newman SM; Paletz EM; Obermeyer WH; Benca RM. Sleep Deprivation In Pigeons And Rats Using Motion Detection. SLEEP 2009;32(10):1299-1312. PMID:19848359

  8. Impaired Recognition of Facially Expressed Emotions in Different Groups of Patients with Sleep Disorders.

    PubMed

    Crönlein, Tatjana; Langguth, Berthold; Eichhammer, Peter; Busch, Volker

    2016-01-01

    Recently it has been shown that acute sleep loss has a direct impact on emotional processing in healthy individuals. Here we studied the effect of chronically disturbed sleep on emotional processing by investigating two samples of patients with sleep disorders. 25 patients with psychophysiologic insomnia (23 women and 2 men, mean age: 51.6 SD; 10.9 years), 19 patients with sleep apnea syndrome (4 women and 15 men, mean age: 51.9; SD 11.1) and a control sample of 24 subjects with normal sleep (15 women and 9 men, mean age 45.3; SD 8.8) completed a Facial Expressed Emotion Labelling (FEEL) task, requiring participants to categorize and rate the intensity of six emotional expression categories: anger, anxiety, fear, happiness, disgust and sadness. Differences in FEEL score and its subscales among the three samples were analysed using ANOVA with gender as a covariate. Both patients with psychophysiologic insomnia and patients with sleep apnea showed significantly lower performance in the FEEL test as compared to the control group. Differences were seen in the scales happiness and sadness. Patient groups did not differ from each other. By demonstrating that previously known effects of acute sleep deprivation on emotional processing can be extended to persons experiencing chronically disturbed sleep, our data contribute to a deeper understanding of the relationship between sleep loss and emotions.

  9. Violent somnambulism: a parasomnia of young men with stereotyped dream-like experiences.

    PubMed

    Szűcs, Anna; Kamondi, Anita; Zoller, Rezső; Barcs, Gábor; Szabó, Pál; Purebl, György

    2014-07-01

    To characterize a subgroup of arousal parasomnias associated with violent behavior in adults. A pilot study on clinical and polysomnographic data of 13 adult patients seen in a tertiary sleep center for the suspicion of arousal parasomnia associated with violence. Nine young patients (8 males 1 female) had a common pattern of abnormalities: similar 'claustrophobic' dream-like experiences and complex, vehement dream enactments; no REM sleep without atonia on polysomnography. We call this syndrome 'violent somnambulism'. The rest of the patients had alcoholic delirium, partial epilepsy, possible REM sleep behavior disorder and a single sleep walking episode provoked by a sleeping pill. Sleep related violence needs thorough diagnostic evaluation for preventing life-threatening consequences. Violent somnambulism appears to be a distinct NREM sleep-related overlap parasomnia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Early detection of changes in lung mechanics with oscillometry following bariatric surgery in severe obesity.

    PubMed

    Peters, Ubong; Hernandez, Paul; Dechman, Gail; Ellsmere, James; Maksym, Geoffrey

    2016-05-01

    Obesity is associated with respiratory symptoms that are reported to improve with weight loss, but this is poorly reflected in spirometry, and few studies have measured respiratory mechanics with oscillometry. We investigated whether early changes in lung mechanics following weight loss are detectable with oscillometry. Furthermore, we investigated whether the changes in lung mechanics measured in the supine position following weight loss are associated with changes in sleep quality. Nineteen severely obese female subjects (mean body mass index, 47.2 ± 6.6 kg/m(2)) were evaluated using spirometry, oscillometry, plethysmography, and the Pittsburgh Sleep Quality Index before and 5 weeks after bariatric surgery. These tests were conducted in both the upright and the supine position, and pre- and postbronchodilation with 200 μg of salbutamol. Five weeks after surgery, weight loss of 11.5 ± 2.5 kg was not associated with changes in spirometry and plethysmography, with the exception of functional residual capacity. There were also no changes in upright respiratory system resistance (Rrs) or reactance following weight loss. Importantly, however, in the supine position, weight loss caused a substantial reduction in Rrs. In addition, sleep quality improved significantly and was highly correlated with the reduction in supine Rrs. Prior to weight loss, subjects did not respond to the bronchodilator when assessed in the upright position with either spirometry or oscillometry; however, with modest weight loss, bronchodilator responsiveness returned to the normal range. Improvements in lung mechanics occur very early after weight loss, mostly in the supine position, resulting in improved sleep quality. These improvements are detectable with oscillometry but not with spirometry.

  11. The effects of 72 hours of sleep loss on psychological variables.

    PubMed

    Mikulincer, M; Babkoff, H; Caspy, T; Sing, H

    1989-05-01

    A study was conducted on the effects of 72 hours of sleep loss and modified continuous operations on performance and psychological variables. This paper presents the results of self-report data of 12 subjects for the following psychological variables: sleepiness, affect, motivation, cognitive difficulties, and waking dreams. The relationship between the self-report measures and performance in a visual search and memory task is also examined. Most of the psychological variables are significantly affected by the number of days of sleep deprivation, all are significantly affected by hour of day; but only sleepiness, affect and motivation are also significantly affected by the interaction between these variables. The peak hours for self-reported psychological complaints are generally between 0400 and 0800, while the lowest number of complaints are usually reported in the afternoon/early evening, between 1600 and 2000. In addition, the results showed that (a) the amplitude of the circadian component of the psychological data increased over the period of sleep loss, and (b) psychological data were more highly correlated with a measure of general performance than with accuracy. The mechanisms of sleep deprivation underlying its effects on psychological and performance measures are discussed.

  12. Best Practices for Fatigue Risk Management in Non-Traditional Shiftwork

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin E.

    2016-01-01

    Fatigue risk management programs provide effective tools to mitigate fatigue among shift workers. Although such programs are effective for typical shiftwork scenarios, where individuals of equal skill level can be divided into shifts to cover 24 hour operations, traditional programs are not sufficient for managing sleep loss among individuals with unique skill sets, in occupations where non-traditional schedules are required. Such operations are prevalent at NASA and in other high stress occupations, including among airline pilots, military personnel, and expeditioners. These types of operations require fatigue risk management programs tailored to the specific requirements of the mission. Without appropriately tailored fatigue risk management, such operations can lead to an elevated risk of operational failure, disintegration of teamwork, and increased risk of accidents and incidents. In order to design schedules for such operations, schedule planners must evaluate the impact of a given operation on circadian misalignment, acute sleep loss, chronic sleep loss and sleep inertia. In addition, individual-level factors such as morningness-eveningness preference and sleep disorders should be considered. After the impact of each of these factors has been identified, scheduling teams can design schedules that meet operational requirements, while also minimizing fatigue.

  13. The economic cost of inadequate sleep.

    PubMed

    Hillman, David; Mitchell, Scott; Streatfeild, Jared; Burns, Chloe; Bruck, Dorothy; Pezzullo, Lynne

    2018-06-04

    To estimate the economic cost (financial and nonfinancial) of inadequate sleep in Australia for the 2016-2017 financial year and relate this to likely costs in similar economies. Analysis was undertaken using prevalence, financial, and nonfinancial cost data derived from national surveys and databases. Costs considered included the following: (1) financial costs associated with health care, informal care provided outside healthcare sector, productivity losses, nonmedical work and vehicle accident costs, deadweight loss through inefficiencies relating to lost taxation revenue and welfare payments; and (2) nonfinancial costs of loss of well-being. They were expressed in US dollars ($). The estimated overall cost of inadequate sleep in Australia in 2016-2017 (population: 24.8 million) was $45.21 billion. The financial cost component was $17.88 billion, comprised of as follows: direct health costs of $160 million for sleep disorders and $1.08 billion for associated conditions; productivity losses of $12.19 billion ($5.22 billion reduced employment, $0.61 billion premature death, $1.73 billion absenteeism, and $4.63 billion presenteeism); nonmedical accident costs of $2.48 billion; informal care costs of $0.41 billion; and deadweight loss of $1.56 billion. The nonfinancial cost of reduced well-being was $27.33 billion. The financial and nonfinancial costs associated with inadequate sleep are substantial. The estimated total financial cost of $17.88 billion represents 1.55 per cent of Australian gross domestic product. The estimated nonfinancial cost of $27.33 billion represents 4.6 per cent of the total Australian burden of disease for the year. These costs warrant substantial investment in preventive health measures to address the issue through education and regulation.

  14. Replication and Pedagogy in the History of Psychology IV: Patrick and Gilbert (1896) on Sleep Deprivation

    ERIC Educational Resources Information Center

    Fuchs, Thomas; Burgdorf, Jeffrey

    2008-01-01

    We report an attempted replication of G. T. W. Patrick and J. A. Gilbert's pioneering sleep deprivation experiment "Studies from the psychological laboratory of the University of Iowa. On the effects of loss of sleep", conducted in 1895/96. Patrick and Gilbert's study was the first sleep deprivation experiment of its kind, performed by some of the…

  15. Subjective sleep disturbance in Chinese adults with epilepsy: Associations with affective symptoms.

    PubMed

    Shen, Yeru; Zhang, Mengmeng; Wang, Yu; Wang, Lanlan; Xu, Xiangjun; Xiao, Gairong; Chen, Jing; Zhang, Ting; Zhou, Nong

    2017-09-01

    As well as being a very common neurological disease worldwide, epilepsy significantly impairs patients' emotional, behavioral, and cognitive functioning. Sleep disturbances are the most frequent complaint in patients with epilepsy. The present study assesses the impact of a range of affective symptoms on subjective sleep quality and sleep disturbances in Chinese adults with epilepsy. Adults with epilepsy who visited our epilepsy clinic from July 2015 to March 2016 were enrolled in our study. Both patients and healthy controls completed the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISI), Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and Mini-mental State Examination (MMSE). Subjective sleep quality and sleep disturbances were examined with regard to self-reported symptoms of depression and anxiety, seizure-related factors, and demographic factors. The PSQI scores and ISI scores of patients were significantly higher (indicating lower quality sleep and more serious insomnia) than those of the control group. Symptoms associated with depression and anxiety were independently related to impaired subjective sleep quality and insomnia. Affective symptoms explained more of the variance in PSQI scores and ISI scores than did seizure-related or demographic variables. In addition, these variables also seemed to be less powerful contributing factors to subjective sleep quality and insomnia than affective symptoms, several seizure-related factors, such as seizure control, partial seizures and duration of epilepsy, which are also significantly associated with subjective sleep quality and insomnia. In addition, use of lamotrigine (LTG) was also associated with insomnia and use of clonazepam (CZP) and phenobarbital (PB) with daytime sleepiness in patients with epilepsy. Chinese adults with epilepsy have poorer self-reported subjective sleep quality and a higher prevalence of insomnia than the control group. Depressive- and anxiety-related symptoms independently exert an adverse effect on the subjective sleep quality and insomnia of patients. In addition, seizure control, partial seizures, and the duration of epilepsy affect the quality of sleep and insomnia in patients, but seem less powerful predictors of sleep quality and insomnia than affective symptoms. Early identification and treatment of affective symptoms is of great importance in improving the sleep quality and insomnia of patients with epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Medication effects on sleep and breathing.

    PubMed

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  17. Alcohol and Sleep Restriction Combined Reduces Vigilant Attention, Whereas Sleep Restriction Alone Enhances Distractibility

    PubMed Central

    Lee, James; Manousakis, Jessica; Fielding, Joanne; Anderson, Clare

    2015-01-01

    Study Objectives: Alcohol and sleep loss are leading causes of motor vehicle crashes, whereby attention failure is a core causal factor. Despite a plethora of data describing the effect of alcohol and sleep loss on vigilant attention, little is known about their effect on voluntary and involuntary visual attention processes. Design: Repeated-measures, counterbalanced design. Setting: Controlled laboratory setting. Participants: Sixteen young (18–27 y; M = 21.90 ± 0.60 y) healthy males. Interventions: Participants completed an attention test battery during the afternoon (13:00–14:00) under four counterbalanced conditions: (1) baseline; (2) alcohol (0.05% breath alcohol concentration); (3) sleep restriction (02:00–07:00); and (4) alcohol/sleep restriction combined. This test battery included a Psychomotor Vigilance Task (PVT) as a measure of vigilant attention, and two ocular motor tasks—visually guided and antisaccade—to measure the involuntary and voluntary allocation of visual attention. Measurements and Results: Only the combined condition led to reductions in vigilant attention characterized by slower mean reaction time, fastest 10% responses, and increased number of lapses (P < 0.05) on the PVT. In addition, the combined condition led to a slowing in the voluntary allocation of attention as reflected by increased antisaccade latencies (P < 0.05). Sleep restriction alone however increased both antisaccade inhibitory errors [45.8% errors versus < 28.4% all others; P < 0.001] and the involuntary allocation of attention, as reflected by faster visually guided latencies (177.7 msec versus > 185.0 msec all others) to a peripheral target (P < 0.05). Conclusions: Our data reveal specific signatures for sleep related attention failure: the voluntary allocation of attention is impaired, whereas the involuntary allocation of attention is enhanced. This provides key evidence for the role of distraction in attention failure during sleep loss. Citation: Lee J, Manousakis J, Fielding J, Anderson C. Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility. SLEEP 2015;38(5):765–775. PMID:25515101

  18. Update on energy homeostasis and insufficient sleep.

    PubMed

    Penev, Plamen D

    2012-06-01

    Driven by the demands and opportunities of modern life, many people habitually sleep less than 6 h a night. In the sleep clinic, chronic sleep restriction is recognized by the diagnosis of insufficient sleep syndrome (ICSD-9, 307.49-4), which is receiving increased scrutiny as a potential risk to metabolic health. Its relevance for the practicing endocrinologist is highlighted by a stream of epidemiological data that show an association of insufficient sleep with increased incidence of obesity and related morbidities. A central theme of this update is the notion that sleep loss incurs additional metabolic cost, which triggers a set of neuroendocrine, metabolic, and behavioral adaptations aimed at increasing food intake and conserving energy. Although this coordinated response may have evolved to offset the metabolic demands of extended wakefulness in natural habitats with limited food availability, it can be maladaptive in the context of a modern environment that allows many to overeat while maintaining a sedentary lifestyle without sufficient sleep. Importantly, such sleep loss-related metabolic adaptation may undermine the success of behavioral interventions based on reduced caloric intake and increased physical activity to lower metabolic risk in obesity-prone individuals. This emerging perspective is based on data from recently published human interventional studies and requires further experimental support. Nevertheless, it now seems prudent to recommend that overweight and obese individuals attempting to reduce their caloric intake and maintain increased physical activity should obtain adequate sleep and, if needed, seek effective treatment for any coexisting sleep disorders.

  19. Voluntary Sleep Loss in Rats

    PubMed Central

    Oonk, Marcella; Krueger, James M.; Davis, Christopher J.

    2016-01-01

    Study Objectives: Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Methods: Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. Results: After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. Conclusions: We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. Citation: Oonk M, Krueger JM, Davis CJ. Voluntary sleep loss in rats. SLEEP 2016;39(7):1467–1479. PMID:27166236

  20. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    PubMed

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. The Influence of Sleep Disordered Breathing on Weight Loss in a National Weight Management Program

    PubMed Central

    Janney, Carol A.; Kilbourne, Amy M.; Germain, Anne; Lai, Zongshan; Hoerster, Katherine D.; Goodrich, David E.; Klingaman, Elizabeth A.; Verchinina, Lilia; Richardson, Caroline R.

    2016-01-01

    Study Objective: To investigate the influence of sleep disordered breathing (SDB) on weight loss in overweight/obese veterans enrolled in MOVE!, a nationally implemented behavioral weight management program delivered by the National Veterans Health Administration health system. Methods: This observational study evaluated weight loss by SDB status in overweight/obese veterans enrolled in MOVE! from May 2008–February 2012 who had at least two MOVE! visits, baseline weight, and at least one follow-up weight (n = 84,770). SDB was defined by International Classification of Diseases, Ninth Revision, Clinical Modification codes. Primary outcome was weight change (lb) from MOVE! enrollment to 6- and 12-mo assessments. Weight change over time was modeled with repeated-measures analyses. Results: SDB was diagnosed in one-third of the cohort (n = 28,269). At baseline, veterans with SDB weighed 29 [48] lb more than those without SDB (P < 0.001). On average, veterans attended eight MOVE! visits. Weight loss patterns over time were statistically different between veterans with and without SDB (P < 0.001); veterans with SDB lost less weight (−2.5 [0.1] lb) compared to those without SDB (−3.3 [0.1] lb; P = 0.001) at 6 months. At 12 mo, veterans with SDB continued to lose weight whereas veterans without SDB started to re-gain weight. Conclusions: Veterans with sleep disordered breathing (SDB) had significantly less weight loss over time than veterans without SDB. SDB should be considered in the development and implementation of weight loss programs due to its high prevalence and negative effect on health. Citation: Janney CA, Kilbourne AM, Germain A, Lai Z, Hoerster KD, Goodrich DE, Klingaman EA, Verchinina L, Richardson CR. The influence of sleep disordered breathing on weight loss in a national weight management program. SLEEP 2016;39(1):59–65. PMID:26350475

  2. Do all sedentary activities lead to weight gain: sleep does not.

    PubMed

    Chaput, Jean-Philippe; Klingenberg, Lars; Sjödin, Anders

    2010-11-01

    To discuss the benefits of having a good night's sleep for body weight stability. Experimental studies have shown that short-term partial sleep restriction decreases glucose tolerance, increases sympathetic tone, elevates cortisol concentrations, decreases the satiety hormone leptin, increases the appetite-stimulating hormone ghrelin, and increases hunger and appetite. Short sleep duration might increase the risk of becoming obese, because it does not allow the recovery of a hormonal profile facilitating appetite control. Lack of sleep could also lead to weight gain and obesity by increasing the time available for eating and by making the maintenance of a healthy lifestyle more difficult. Furthermore, the increased fatigue and tiredness associated with sleeping too little could lessen one's resolve to follow exercise regimens. Short sleep duration appears to be a novel and independent risk factor for obesity. With the growing prevalence of chronic sleep restriction, any causal association between reduced sleep and obesity would have substantial importance from a public health standpoint. Future research is needed to determine whether sleep extension in sleep-deprived obese individuals will influence appetite control and/or reduce the amount of body fat.

  3. Sibutramine versus continuous positive airway pressure in obese obstructive sleep apnoea patients.

    PubMed

    Ferland, A; Poirier, P; Sériès, F

    2009-09-01

    The aim of the present study was to compare the efficacy of 1 yr of sibutramine-induced weight loss versus continuous positive airway pressure (CPAP) treatment on sleep-disordered breathing, cardiac autonomic function and systemic blood pressure in obese patients with obstructive sleep apnoea. Subjects with a body mass index of > or =30 kg.m(-2) without previous treatment for obstructive sleep apnoea underwent either sibutramine (n = 22) or CPAP (n = 18) treatment for 1 yr. Sibutramine induced a 5.4+/-1.4 kg decrease in body weight compared to the CPAP group, in which no changes in anthropometric variables were observed. The CPAP treatment improved all sleep and respiratory variables, whereas sibutramine-induced weight loss improved only nocturnal arterial oxygen saturation profile. Only CPAP treatment improved night-time systolic and diastolic blood pressure and 24-h and daytime ambulatory diastolic blood pressure. Sibutramine-induced weight loss had no impact on indices of heart rate variability, whereas CPAP treatment increased daytime time domain indices. CPAP treatment for 1 yr had beneficial impacts on nocturnal breathing disturbances, and improved nocturnal oxygenation, night-time systolic and diastolic blood pressure, and daytime cardiac parasympathetic modulation. Sibutramine did not improve sleep-disordered breathing, systemic blood pressure or heart rate variability. There were no adverse effects, such as increment in blood pressure or arrhythmias, associated with this treatment regimen.

  4. Cognitive Performance Degradation on Sonar Operator and Torpedo Data Control Unit Operator after One Night of Sleep Deprivation

    DTIC Science & Technology

    1985-09-01

    8 II. SLEEP AND SOME CHARACTERISTICS . . . . . o . . 13 A. C"YCLE AND CYCLE EFFECT ... ......... 11 B. SLEEP DEPRIVATION...17 E. NAP: RESTORATIVE POWER AND SIDE EFFECTS OF THE NAP o . . o o o o e o o . o * o e o . 19 III. SLEEP LOSS AND...war periods. The effect of this situ- ation is a requirement for long hours of physically and mentally exhausting work without sleep. The silent war

  5. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons.

    PubMed

    McKay, Leanne C; Janczewski, Wiktor A; Feldman, Jack L

    2005-09-01

    Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations.

  6. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons

    PubMed Central

    McKay, Leanne C; Janczewski, Wiktor A; Feldman, Jack L

    2010-01-01

    Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations. PMID:16116455

  7. Impact of sleep loss before learning on cortical dynamics during memory retrieval.

    PubMed

    Alberca-Reina, E; Cantero, J L; Atienza, M

    2015-12-01

    Evidence shows that sleep loss before learning decreases activation of the hippocampus during encoding and promotes forgetting. But it remains to be determined which neural systems are functionally affected during memory retrieval after one night of recovery sleep. To investigate this issue, we evaluated memory for pairs of famous people's faces with the same or different profession (i.e., semantically congruent or incongruent faces) after one night of undisturbed sleep in subjects who either underwent 4hours of acute sleep restriction (ASR, N=20) or who slept 8hours the pre-training night (controls, N=20). EEG recordings were collected during the recognition memory task in both groups, and the cortical sources generating this activity localized by applying a spatial beamforming filter in the frequency domain. Even though sleep restriction did not affect accuracy of memory performance, controls showed a much larger decrease of alpha power relative to a baseline period when compared to sleep-deprived subjects. These group differences affected a widespread frontotemporoparietal network involved in retrieval of episodic/semantic memories. Regression analyses further revealed that associative memory in the ASR group was negatively correlated with alpha power in the occipital regions, whereas the benefit of congruency in the same group was positively correlated with delta power in the left lateral prefrontal cortex. Retrieval-related decreases of alpha power have been associated with the reactivation of material-specific memory representations, whereas increases of delta power have been related to inhibition of interferences that may affect the performance of the task. We can therefore draw the conclusion that a few hours of sleep loss in the pre-training night, though insufficient to change the memory performance, is sufficient to alter the processes involved in retrieving and manipulating episodic and semantic information. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cold Exposure and Sleep in the Rat: REM Sleep Homeostasis and Body Size

    PubMed Central

    Amici, Roberto; Cerri, Matteo; Ocampo-Garcés, Adrian; Baracchi, Francesca; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    2008-01-01

    Study Objectives: Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24°C. Design: EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10°C to −10°C and for 4 days during recovery. Setting: Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. Subjects: 24 male albino rats. Interventions: Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. Measurements and Results: REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a “fast rebound” threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. Conclusion: Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation. Citation: Amici R; Cerri M; Ocampo-Garcés A; Baracchi F; Dentico D; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G. Cold exposure and sleep in the rat: REM sleep homeostasis and body size. SLEEP 2008;31(5):708–715. PMID:18517040

  9. Validation of sleep-2-Peak: A smartphone application that can detect fatigue-related changes in reaction times during sleep deprivation.

    PubMed

    Brunet, Jean-François; Dagenais, Dominique; Therrien, Marc; Gartenberg, Daniel; Forest, Geneviève

    2017-08-01

    Despite its high sensitivity and validity in the context of sleep loss, the Psychomotor Vigilance Test (PVT) could be improved. The aim of the present study was to validate a new smartphone PVT-type application called sleep-2-Peak (s2P) by determining its ability to assess fatigue-related changes in alertness in a context of extended wakefulness. Short 3-min versions of s2P and of the classic PVT were administered at every even hour during a 35-h total sleep deprivation protocol. In addition, subjective measures of sleepiness were collected. The outcomes on these tests were then compared using Pearson product-moment correlations, t tests, and repeated measures within-groups analyses of variance. The results showed that both tests significantly correlated on all outcome variables, that both significantly distinguished between the alert and sleepy states in the same individual, and that both varied similarly through the sleep deprivation protocol as sleep loss accumulated. All outcome variables on both tests also correlated significantly with the subjective measures of sleepiness. These results suggest that a 3-min version of s2P is a valid tool for differentiating alert from sleepy states and is as sensitive as the PVT for tracking fatigue-related changes during extended wakefulness and sleep loss. Unlike the PVT, s2P does not provide feedback to subjects on each trial. We discuss how this feature of s2P raises the possibility that the performance results measured by s2P could be less impacted by motivational confounds, giving this tool added value in particular clinical and/or research settings.

  10. Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance

    PubMed Central

    Basner, Mathias; Rubinstein, Joshua; Fomberstein, Kenneth M.; Coble, Matthew C.; Ecker, Adrian; Avinash, Deepa; Dinges, David F.

    2008-01-01

    Study Objectives: To investigate the effects of night work and sleep loss on a simulated luggage screening task (SLST) that mimicked the x-ray system used by airport luggage screeners. Design: We developed more than 5,800 unique simulated x-ray images of luggage organized into 31 stimulus sets of 200 bags each. 25% of each set contained either a gun or a knife with low or high target difficulty. The 200-bag stimuli sets were then run on software that simulates an x-ray screening system (SLST). Signal detection analysis was used to obtain measures of hit rate (HR), false alarm rate (FAR), threat detection accuracy (A′), and response bias (B″D). Setting: Experimental laboratory study Participants: 24 healthy nonprofessional volunteers (13 women, mean age ± SD = 29.9 ± 6.5 years). Interventions: Subjects performed the SLST every 2 h during a 5-day period that included a 35 h period of wakefulness that extended to night work and then another day work period after the night without sleep. Results: Threat detection accuracy A′ decreased significantly (P < 0.001) while FAR increased significantly (P < 0.001) during night work, while both A′ (P = 0.001) and HR decreased (P = 0.008) during day work following sleep loss. There were prominent time-on-task effects on response bias B″D (P = 0.002) and response latency (P = 0.004), but accuracy A′ was unaffected. Both HR and FAR increased significantly with increasing study duration (both P < 0.001), while response latency decreased significantly (P < 0.001). Conclusions: This study provides the first systematic evidence that night work and sleep loss adversely affect the accuracy of detecting complex real world objects among high levels of background clutter. If the results can be replicated in professional screeners and real work environments, fatigue in luggage screening personnel may pose a threat for air traffic safety unless countermeasures for fatigue are deployed. Citation: Basner M; Rubinstein J; Fomberstein KM; Coble MC; Avinash D; Dinges DF. Effects of Night Work, Sleep Loss and Time on Task on Simulated Threat Detection Performance. SLEEP 2008;31(9):1251-1259. PMID:18788650

  11. [Relationship between sleep disordered breathing and body weight loss in patients with chronic obstructive pulmonary disease].

    PubMed

    Ito, Eiki; Murata, Akira; Yamamoto, Kazuo; Kudo, Shoji

    2003-04-01

    We evaluated body weight loss and growth hormone secretion in patients with sleep-disordered breathing associated with chronic obstructive pulmonary disease. Of 11 patients hospitalized for pulmonary rehabilitation, five (WL group) had a history of body weight loss within two years before their interviews, while the other 6 patients (NWL group) had no changes in body weight. All patients underwent body index measurements, pulmonary function tests, blood gas analyses, assessments of nutritional status, and full night polysomnography for two consecutive days. Growth hormone levels were measured in the first 3-hour period following falling asleep. There were no significant inter-group differences between the results of pulmonary function tests, blood gas analyses, or nutritional status assessment. The WL group had a significantly higher percentage loss of body weight than the NWL group (mean +/- S.D. 11.5 +/- 4.7% in the WL group versus 2.7 +/- 1.8% in the NWL group, p < 0.01). The WL group had a significantly higher sleep apnea/hypopnea index than the NWL group (42.4 +/- 9.5/hr in the WL group versus 7.8 +/- 2.9/hr in the NWL group, p < 0.01). The WL group showed a higher rate of stage I + II sleep than the NWL group (84.9 +/- 7.0% versus 64.5 +/- 8.7%), with lower rates of slow wave sleep (2.2 +/- 2.1% versus 15.0 +/- 8.7%) and rapid eye movement sleep (12.9 +/- 6.3% versus 20.6 +/- 1.0%). The WL group showed a low level of growth hormone secretion with no peak in the sequential curve, but had a higher level of insulin growth factor-1 than the NWL group (148 +/- 36 ng/ml versus 90 +/- 22 ng/ml, p < 0.01). These results suggest that chronic obstructive pulmonary disease patients undergoing weight loss are likely to have an increase of growth hormone secretions in the daytime, possibly induced by underlying psychiatric disorders such as depression. Patients with chronic obstructive pulmonary disease may lose weight regardless of nutritional status because of a disturbance of growth hormone secretion resulting of sleep-disordered breathing.

  12. Depression: relationships to sleep paralysis and other sleep disturbances in a community sample

    PubMed Central

    Szklo-Coxe, Mariana; Young, Terry; Finn, Laurel; Mignot, Emmanuel

    2009-01-01

    SUMMARY Sleep disturbances are important correlates of depression, with epidemiologic research heretofore focused on insomnia and sleepiness. This epidemiologic study’s aim was to investigate, in a community sample, depression’s relationships to other sleep disturbances: sleep paralysis (SP), hypnagogic/hypnopompic hallucinations (HH), cataplexy – considered rapid eye movement-related disturbances – and automatic behavior (AB). Although typical of narcolepsy, these disturbances are prevalent, albeit under-studied, in the population. Cross-sectional analyses (1998–2002), based on Wisconsin Sleep Cohort Study population-based data from 866 participants (mean age 54, 53% male), examined: depression (Zung Self-Rating Depression Scale), trait anxiety (Spielberger State-Trait Anxiety Inventory, STAI-T ≥ 75th percentile), and self-reported sleep disturbances. Descriptive sleep data were obtained by overnight polysomnography. Adjusted logistic regression models estimated depression’s associations with each (>few times ever) outcome – SP, HH, AB, and cataplexy. Depression’s associations with self-reported SP and cataplexy were not explained by anxiety. After anxiety adjustment, severe depression (Zung ≥55), vis-à-vis Zung <50, increased SP odds ~500% (P = 0.0008). Depression (Zung ≥50), after stratification by anxiety given an interaction (P = 0.02), increased self-reported cataplexy odds in non-anxious (OR 8.9, P = 0.0008) but not anxious (OR 1.1, P = 0.82) participants. Insomnia and sleepiness seemed only partial mediators or confounders for depression’s associations with self-reported cataplexy and SP. Anxiety (OR 1.9, P = 0.04) partially explained depression’s (Zung ≥55) association with HH (OR 2.2, P = 0.08). Anxiety (OR 1.6, P = 0.02) was also more related than depression to AB. Recognizing depression’s relationships to oft-neglected sleep disturbances, most notably SP, might assist in better characterizing depression and the full range of its associated sleep problems in the population. Longitudinal studies are warranted to elucidate mediators and causality. PMID:17716279

  13. Correlation between Sleep Duration and Risk of Stroke.

    PubMed

    Patyar, Sazal; Patyar, Rakesh Raman

    2015-05-01

    Modern lifestyle and job requirements have changed the sleep habits of most of the adult population. Various population-based studies have associated an increase in mortality with either shortened sleep or long sleep duration. Thus a U-shaped relationship between sleep duration and all-cause mortality in both men and women has been suggested. Several studies have found an association between sleep duration and risk of cardiovascular diseases also. Efforts to understand the etiology of stroke have indicated an association between sleep and stroke too. Obstructive sleep apnea, a sleep-related disorder, has been reported to significantly increase the risk of stroke. Moreover, many studies have shown that both short and long sleep durations are related to increased likelihood of diabetes and hypertension, which themselves are risk factors for stroke. Therefore, this review focuses on the correlation between sleep duration and risk of stroke based on the experimental and epidemiologic studies. Although a few experimental studies have reported that partial sleep deprivation may reduce stroke incidence and severity, yet, most experimental and observational studies have indicated a strong association between short/long sleep durations and higher risk of stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Ultradian rhythms in pituitary and adrenal hormones: their relations to sleep.

    PubMed

    Gronfier, C; Brandenberger, G

    1998-02-01

    Sleep and circadian rhythmicity both influence the 24-h profiles of the main pituitary and adrenal hormones. From studies using experimental strategies including complete and partial sleep deprivation, acute and chronic shifts in the sleep period, or complete sleep-wake reversal as occurs with transmeridian travel or shift-work, it appears that prolactin (PRL) and growth hormone (GH) profiles are mainly sleep related, while cortisol profile is mainly controlled by the circadian clock with a weak influence of sleep processes. Thyrotropin (TSH) profile is under the dual influence of sleep and circadian rhythmicity. Recent studies, in which we used spectral analysis of sleep electroencephalogram (EEG) rather than visual scoring of sleep stages, have evaluated the temporal associations between pulsatile hormonal release and the variations in sleep EEG activity. Pulses in PRL and in GH are positively linked to increases in delta wave activity, whereas TSH and cortisol pulses are related to decreases in delta wave activity. It is yet not clear whether sleep influences endocrine secretion, or conversely, whether hormone secretion affects sleep structure. These well-defined relationships raise the question of their physiological significance and of their clinical implications.

  15. Distress Tolerance Links Sleep Problems with Stress and Health in Homeless.

    PubMed

    Reitzel, Lorraine R; Short, Nicole A; Schmidt, Norman B; Garey, Lorra; Zvolensky, Michael J; Moisiuc, Alexis; Reddick, Carrie; Kendzor, Darla E; Businelle, Michael S

    2017-11-01

    We examined associations between sleep problems, distress intolerance, and perceived stress and health in a convenience sample of homeless adults. Participants (N = 513, 36% women, Mage = 44.5 ±11.9) self-reported sleep adequacy, sleep duration, unintentional sleep during the daytime, distress tolerance, urban stress, and days of poor mental health and days of poor physical health over the last month. The indirect effects of sleep problems on stress and health through distress tolerance were examined using a non-parametric, bias-corrected bootstrapping procedure. Sleep problems were prevalent (eg, 13.0 ±11.4 days of inadequate sleep and 4.7 ±7.9 days of unintentionally falling asleep during the preceding month). Distress intolerance partially accounted for the associations of inadequate sleep and unintentionally falling asleep, but not sleep duration, with urban stress and more days of poor mental and physical health. Many homeless individuals endure sleep problems. Given the connections between sleep and morbidity and mortality, results further support the need for more attention directed toward facilitating improvements in sleep quality to improve the quality of life of homeless adults, potentially including attention to improving distress tolerance skills.

  16. Neuronal machinery of sleep homeostasis in Drosophila.

    PubMed

    Donlea, Jeffrey M; Pimentel, Diogo; Miesenböck, Gero

    2014-02-19

    Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A One-Hour Sleep Restriction Impacts Brain Processing in Young Children Across Tasks: Evidence From Event-related Potentials

    PubMed Central

    Molfese, Dennis L.; Ivanenko, Anna; Key, Alexandra Fonaryova; Roman, Adrienne; Molfese, Victoria J.; O'Brien, Louise M.; Gozal, David; Kota, Srinivas; Hudac, Caitlin M.

    2014-01-01

    The effect of mild sleep restriction on cognitive functioning in young children is unclear, yet sleep loss may impact children's abilities to attend to tasks with high processing demands. In a preliminary investigation, six children (6.6 - 8.3 years of age) with normal sleep patterns performed three tasks: attention (“Oddball”), speech perception (conconant-vowel syllables) and executive function (Directional Stroop). Event-related potentials (ERP) responses were recorded before (Control) and following one-week of 1-hour per day of sleep restriction. Brain activity across all tasks following Sleep Restriction differed from activity during Control Sleep, indicating that minor sleep restriction impacts children's neurocognitive functioning. PMID:23862635

  18. A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake

    PubMed Central

    Fulcher, Ben D.; Phillips, Andrew J. K.; Postnova, Svetlana; Robinson, Peter A.

    2014-01-01

    The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia. PMID:24651580

  19. Altered Sleep Homeostasis in Rev-erbα Knockout Mice

    PubMed Central

    Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A.; Albrecht, Urs; Franken, Paul

    2016-01-01

    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Results: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1–4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. Citation: Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered sleep homeostasis in Rev-erbα knockout mice. SLEEP 2016;39(3):589–601. PMID:26564124

  20. Identification of SLEEPLESS, a sleep-promoting factor.

    PubMed

    Koh, Kyunghee; Joiner, William J; Wu, Mark N; Yue, Zhifeng; Smith, Corinne J; Sehgal, Amita

    2008-07-18

    Sleep is an essential process conserved from flies to humans. The importance of sleep is underscored by its tight homeostatic control. Through a forward genetic screen, we identified a gene, sleepless, required for sleep in Drosophila. The sleepless gene encodes a brain-enriched, glycosylphosphatidylinositol-anchored protein. Loss of SLEEPLESS protein caused an extreme (>80%) reduction in sleep; a moderate reduction in SLEEPLESS had minimal effects on baseline sleep but markedly reduced the amount of recovery sleep after sleep deprivation. Genetic and molecular analyses revealed that quiver, a mutation that impairs Shaker-dependent potassium current, is an allele of sleepless. Consistent with this finding, Shaker protein levels were reduced in sleepless mutants. We propose that SLEEPLESS is a signaling molecule that connects sleep drive to lowered membrane excitability.

  1. Disorders of Sleep and Ventilatory Control in Prader-Willi Syndrome

    PubMed Central

    Gillett, Emily S.; Perez, Iris A.

    2016-01-01

    Prader-Willi syndrome (PWS) is an imprinted genetic disorder conferred by loss of paternal gene expression from chromosome 15q11.2-q13. Individuals with PWS have impairments in ventilatory control and are predisposed toward sleep disordered breathing due to a combination of characteristic craniofacial features, obesity, hypotonia, and hypothalamic dysfunction. Children with PWS progress from failure to thrive during infancy to hyperphagia and morbid obesity during later childhood and onward. Similarly, the phenotype of sleep disordered breathing in PWS patients also evolves over time from predominantly central sleep apnea in infants to obstructive sleep apnea (OSA) in older children. Behavioral difficulties are common and may make establishing effective therapy with continuous positive airway pressure (CPAP) more challenging when OSA persists after adenotonsillectomy. Excessive daytime sleepiness (EDS) is also common in patients with PWS and may continue after OSA is effectively treated. We describe here the characteristic ventilatory control deficits, sleep disordered breathing, and excessive daytime sleepiness seen in individuals with PWS. We review respiratory issues that may contribute to sudden death events in PWS patients during sleep and wakefulness. We also discuss therapeutic options for treating sleep disordered breathing including adenotonsillectomy, weight loss, and CPAP. Lastly, we discuss the benefits and safety considerations related to growth hormone therapy. PMID:28933403

  2. Disorders of Sleep and Ventilatory Control in Prader-Willi Syndrome.

    PubMed

    Gillett, Emily S; Perez, Iris A

    2016-07-08

    Prader-Willi syndrome (PWS) is an imprinted genetic disorder conferred by loss of paternal gene expression from chromosome 15q11.2-q13. Individuals with PWS have impairments in ventilatory control and are predisposed toward sleep disordered breathing due to a combination of characteristic craniofacial features, obesity, hypotonia, and hypothalamic dysfunction. Children with PWS progress from failure to thrive during infancy to hyperphagia and morbid obesity during later childhood and onward. Similarly, the phenotype of sleep disordered breathing in PWS patients also evolves over time from predominantly central sleep apnea in infants to obstructive sleep apnea (OSA) in older children. Behavioral difficulties are common and may make establishing effective therapy with continuous positive airway pressure (CPAP) more challenging when OSA persists after adenotonsillectomy. Excessive daytime sleepiness (EDS) is also common in patients with PWS and may continue after OSA is effectively treated. We describe here the characteristic ventilatory control deficits, sleep disordered breathing, and excessive daytime sleepiness seen in individuals with PWS. We review respiratory issues that may contribute to sudden death events in PWS patients during sleep and wakefulness. We also discuss therapeutic options for treating sleep disordered breathing including adenotonsillectomy, weight loss, and CPAP. Lastly, we discuss the benefits and safety considerations related to growth hormone therapy.

  3. [Sleep health education for elderly people].

    PubMed

    Miyazaki, Soichiro; Nishiyama, Akiko

    2015-06-01

    Successful aging is characterized by minimal age-associated loss of the physiological functions of sleep and circadian clock. Sleep health education is necessary to have normal, quality nighttime sleep and full daytime alertness. Elderly people show changes of sleep parameters, accompanied by increased napping. Many studies have reported that daytime sleepiness or napping in elderly people could have potentially serious effects such as dementia and life-style related diseases. The main topics of sleep health education for elderly people are as follows: Right knowledge of sleep mechanism, understanding the bad influence of excessive napping, the effects of light on the circadian rhythm and negative effects of caffeine, alcohol and television.

  4. Bombesin administration impairs memory and does not reverse memory deficit caused by sleep deprivation.

    PubMed

    Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C

    2017-07-28

    Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [24-hour work: the interaction of stress and changes in the sleep-wake cycle in the police force].

    PubMed

    Garbarino, Sergio

    2014-01-01

    Disruption in police officers. In recent years there has been a widespread growth in services, available regardless of time or day organization (24/7 service) and a diffuse increase in their use, both in work and private lives, generally ignoring the importance of a regular sleep organization. Police officers - often need to work extended shifts and long hours under highly stressful conditions, which results in reduced levels of safety and operational effectiveness. In numerous studies, perceived stress has been found to correlate with both subjective and objective disturbances in sleep. Consequently, excessive daytime sleepiness is one of the most frequent health and safety hazards that police officers have to deal with. Sleep deprivation affects performance outcomes through a wide range of cognitive domains. Sleepiness and fatigue, caused by sleep loss, extended work and wakefulness, circadian misalignment and sleep disorders are major causes of workplace human errors, incidents, and accidents. Therefore, prevention of sleep loss, high levels of stress and fatigue is a key factor to consider when assessing emergency intervention. In order to combat fatigue and sleepiness, a 30-90 minutes nap before night shift could be a viable option.

  6. The eye in sleep apnea syndrome.

    PubMed

    Abdal, Helen; Pizzimenti, Joseph J; Purvis, Cheryl C

    2006-03-01

    Sleep apnea syndrome (SAS) is a disease characterized by recurrent complete or partial upper airway obstructions during sleep. The majority of patients with SAS demonstrate this obstruction either at the nasopharynx or the oropharynx. Risk factors for SAS include obesity, male gender, upper airway abnormalities, alcohol use, snoring, and neck girth of more than 17 in. in men or 16 in. in women. Reported ophthalmic findings in patients with SAS include floppy eyelid syndrome (FES), glaucoma, and non-arteritic anterior ischemic optic neuropathy (NAION).

  7. Tired and misconnected: A breakdown of brain modularity following sleep deprivation.

    PubMed

    Ben Simon, Eti; Maron-Katz, Adi; Lahav, Nir; Shamir, Ron; Hendler, Talma

    2017-06-01

    Sleep deprivation (SD) critically affects a range of cognitive and affective functions, typically assessed during task performance. Whether such impairments stem from changes to the brain's intrinsic functional connectivity remain largely unknown. To examine this hypothesis, we applied graph theoretical analysis on resting-state fMRI data derived from 18 healthy participants, acquired during both sleep-rested and sleep-deprived states. We hypothesized that parameters indicative of graph connectivity, such as modularity, will be impaired by sleep deprivation and that these changes will correlate with behavioral outcomes elicited by sleep loss. As expected, our findings point to a profound reduction in network modularity without sleep, evident in the limbic, default-mode, salience and executive modules. These changes were further associated with behavioral impairments elicited by SD: a decrease in salience module density was associated with worse task performance, an increase in limbic module density was predictive of stronger amygdala activation in a subsequent emotional-distraction task and a shift in frontal hub lateralization (from left to right) was associated with increased negative mood. Altogether, these results portray a loss of functional segregation within the brain and a shift towards a more random-like network without sleep, already detected in the spontaneous activity of the sleep-deprived brain. Hum Brain Mapp 38:3300-3314, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Sleep Impairment and Reduced Interneuron Excitability in a Mouse Model of Dravet Syndrome

    PubMed Central

    Kalume, Franck; Oakley, John C.; Westenbroek, Ruth E.; Gile, Jennifer; de la Iglesia, Horacio O.; Scheuer, Todd; Catterall, William A.

    2015-01-01

    Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our genetic mouse model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice. PMID:25766678

  9. Prevalence and Correlates of Sleep Problems in Adult Israeli Jews Exposed to Actual or Threatened Terrorist or Rocket Attacks

    PubMed Central

    Palmieri, Patrick A.; Chipman, Katie J.; Canetti, Daphna; Johnson, Robert J.; Hobfoll, Stevan E.

    2010-01-01

    Study Objectives: To estimate the prevalence of, and to identify correlates of clinically significant sleep problems in adult Israeli citizens exposed to chronic terrorism and war trauma or threat thereof. Methods: A population-based, cross-sectional study of 1001 adult Israeli citizens interviewed by phone between July 15 and August 26, 2008. The phone survey was conducted in Hebrew and assessed demographics, trauma/stressor exposure, probable posttraumatic stress disorder (PTSD), probable depression, and sleep problems. Probable PTSD and depression were assessed with the PTSD Symptom Scale (PSS) and Patient Health Questionnaire (PHQ-9), respectively, following DSM-IV diagnostic criteria. Sleep problems in the past month were assessed with the Pittsburgh Sleep Quality Index (PSQI), on which a global composite score ≥ 6 indicates a clinical-level sleep problem. Results: Prevalence of probable PTSD and depression was 5.5% and 5.8%, respectively. Prevalence of clinically significant sleep problems was 37.4% overall, but was significantly higher for probable PTSD (81.8%) and probable depression (79.3%) subgroups. Independent correlates of poor sleep included being female, older, less educated, experiencing major life stressors, and experiencing psychosocial resource loss. Psychosocial resource loss due to terrorist attacks emerged as the strongest potentially modifiable risk factor for sleep problems. Conclusions: Sleep problems are common among Israeli adults living under chronic traumatic threat and trauma exposure. Given the continuing threat of war, interventions that bolster psychosocial resources may play an important role in preventing or alleviating sleep problems in this population. Citation: Palmieri PA; Chipman KJ; Canetti D; Johnson RJ; Hobfoll SE. Prevalence and correlates of sleep problems in adult Israeli Jews exposed to actual or threatened terrorist or rocket attacks. J Clin Sleep Med 2010;6(6):557-564. PMID:21206544

  10. Clinical Predictors of Residual Sleep Apnea after Weight Loss Therapy in Obese Adolescents.

    PubMed

    Van Eyck, Annelies; De Guchtenaere, Ann; Van Gaal, Luc; De Backer, Wilfried; Verhulst, Stijn L; Van Hoorenbeeck, Kim

    2018-05-01

    To investigate clinical factors that could predict residual sleep-disordered breathing (SDB) after weight loss. Obese subjects between 10 and 19 years of age were recruited while entering an in-patient weight loss treatment program. All subjects underwent anthropometry and sleep screening using a portable device at baseline and after 4-6 months of therapy. Sleep and International Study of Asthma and Allergies in Childhood questionnaires were completed at baseline. A total of 339 patients were included. Median age was 15.4 years (10.1-19.1). Body mass index z score at baseline was 2.75 ± 0.42, and 35% of subjects were boys. SDB was present in 32%. After a mean decrease in body mass index z score of 32%, residual SDB was found in 20% of subjects with SDB at baseline. Subjects with more severe SDB (OR 1.18; CI 1.01-1.34; P = .02) and respiratory allergies (OR 7.85; CI 1.20-51.39; P = .03) were at higher risk of developing residual SDB, unlike age, sex, and anthropometric variables. Weight loss was successful for treating SDB in 80% of patients. More severe SDB and the presence of respiratory allergies at baseline were associated with a higher risk of residual SDB after weight loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Disruption of adolescents' circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors.

    PubMed

    Touitou, Yvan; Touitou, David; Reinberg, Alain

    2016-11-01

    Although sleep is a key element in adolescent development, teens are spending increasing amounts of time online with health risks related to excessive use of electronic media (computers, smartphones, tablets, consoles…) negatively associated with daytime functioning and sleep outcomes. Adolescent sleep becomes irregular, shortened and delayed in relation with later sleep onset and early waking time due to early school starting times on weekdays which results in rhythm desynchronization and sleep loss. In addition, exposure of adolescents to the numerous electronic devices prior to bedtime has become a great concern because LEDs emit much more blue light than white incandescent bulbs and compact fluorescent bulbs and have therefore a greater impact on the biological clock. A large number of adolescents move to evening chronotype and experience a misalignment between biological and social rhythms which, added to sleep loss, results in e.g. fatigue, daytime sleepiness, behavioral problems and poor academic achievement. This paper on adolescent circadian disruption will review the sensitivity of adolescents to light including LEDs with the effects on the circadian system, the crosstalk between the clock and the pineal gland, the role of melatonin, and the behavior of some adolescents(media use, alcohol consumption, binge drinking, smoking habits, stimulant use…). Lastly, some practical recommendations and perspectives are put forward. The permanent social jet lag resulting in clock misalignment experienced by a number of adolescents should be considered as a matter of public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  13. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  14. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  15. Emotional working memory during sustained wakefulness.

    PubMed

    Tempesta, Daniela; De Gennaro, Luigi; Presaghi, Fabio; Ferrara, Michele

    2014-12-01

    In the present study we investigated whether one night of sleep deprivation can affect working memory (WM) performance with emotional stimuli. Twenty-five subjects were tested after one night of sleep deprivation and after one night of undisturbed sleep at home. As a second aim of the study, to evaluate the cumulative effects of sleep loss and of time-of-day changes on emotional WM ability, the subjects were tested every 4 h, from 22:00 to 10:00 hours, in four testing sessions during the sleep deprivation period (deprivation sessions: D1, D2, D3 and D4). Subjects performed the following test battery: Psychomotor Vigilance Task, 0-back task, 2-back task and an 'emotional 2-back task' with neutral, positive and negative emotional pictures selected from the International Affective Picture System. Results showed lower accuracy in the emotional WM task when the participants were sleep-deprived relative to when they had slept, suggesting the crucial role of sleep for preserving WM ability. In addition, the accuracy for the negative pictures remains stable during the sessions performed from 22:00 to 06:00 hours (D1, D2 and D3), while it drops at the D4 session, when the participants had accumulated the longest sleep debt. It is suggested that, during sleep loss, attentional and WM mechanisms may be sustained by the higher arousing characteristics of the emotional (negative) stimuli. © 2014 European Sleep Research Society.

  16. Sleep Deprivation and Oxidative Stress in Animal Models: A Systematic Review

    PubMed Central

    Villafuerte, Gabriel; Miguel-Puga, Adán; Murillo Rodríguez, Eric; Machado, Sergio; Manjarrez, Elias; Arias-Carrión, Oscar

    2015-01-01

    Because the function and mechanisms of sleep are partially clear, here we applied a meta-analysis to address the issue whether sleep function includes antioxidative properties in mice and rats. Given the expansion of the knowledge in the sleep field, it is indeed ambitious to describe all mammals, or other animals, in which sleep shows an antioxidant function. However, in this paper we reviewed the current understanding from basic studies in two species to drive the hypothesis that sleep is a dynamic-resting state with antioxidative properties. We performed a systematic review of articles cited in Medline, Scopus, and Web of Science until March 2015 using the following search terms: Sleep or sleep deprivation and oxidative stress, lipid peroxidation, glutathione, nitric oxide, catalase or superoxide dismutase. We found a total of 266 studies. After inclusion and exclusion criteria, 44 articles were included, which are presented and discussed in this study. The complex relationship between sleep duration and oxidative stress is discussed. Further studies should consider molecular and genetic approaches to determine whether disrupted sleep promotes oxidative stress. PMID:25945148

  17. The role of basic psychological need satisfaction, sleep, and mindfulness in the health-related quality of life of people living with HIV.

    PubMed

    Campbell, Rachel; Vansteenkiste, Maarten; Delesie, Liesbeth; Soenens, Bart; Tobback, Els; Vogelaers, Dirk; Mariman, An

    2016-11-01

    Research has not yet examined the relationship between psychological need satisfaction, sleep, mindfulness, and health-related quality of life in people living with HIV. This cross-sectional study ( N = 101; 84% male; mean age = 45.48, SD = 12.75) found need satisfaction to relate positively to physical and mental health. Sleep quality fully mediated the association with physical health and partially mediated the association with mental health. Furthermore, mindfulness related to higher sleep quality through higher need satisfaction. Findings underscore the role of need satisfaction in determining health-related quality of life and sleep quality in people living with HIV and suggest that mindfulness may facilitate need satisfaction.

  18. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis.

    PubMed

    Novati, A; Hulshof, H J; Koolhaas, J M; Lucassen, P J; Meerlo, P

    2011-09-08

    Sleep loss strongly affects brain function and may even predispose susceptible individuals to psychiatric disorders. Since a recurrent lack of sleep frequently occurs during adolescence, it has been implicated in the rise in depression incidence during this particular period of life. One mechanism through which sleep loss may contribute to depressive symptomatology is by affecting hippocampal function. In this study, we examined the effects of sleep loss on hippocampal integrity at young age by subjecting adolescent male rats to chronic sleep restriction (SR) for 1 month from postnatal day 30 to 61. They were placed in slowly rotating drums for 20 h per day and were allowed 4 h of rest per day at the beginning of the light phase. Anxiety was measured using an open field and elevated plus maze test, while saccharine preference was used as an indication of anhedonia. All tests were performed after 1 and 4 weeks of SR. We further studied effects of SR on hypothalamic-pituitary-adrenal (HPA) axis activity, and at the end of the experiment, brains were collected to measure hippocampal volume and neurogenesis. Behavior of the SR animals was not affected, except for a transient suppression of saccharine preference after 1 week of SR. Hippocampal volume was significantly reduced in SR rats compared to home cage and forced activity controls. This volume reduction was not paralleled by reduced levels of hippocampal neurogenesis and could neither be explained by elevated levels of glucocorticoids. Thus, our results indicate that insufficient sleep may be a causal factor in the reductions of hippocampal volume that have been reported in human sleep disorders and mood disorders. Since changes in HPA activity or neurogenesis are not causally implicated, sleep disturbance may affect hippocampal volume by other, possibly more direct mechanisms. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Sleep quality and daytime function in adults with cystic fibrosis and severe lung disease.

    PubMed

    Dancey, D R; Tullis, E D; Heslegrave, R; Thornley, K; Hanly, P J

    2002-03-01

    It was hypothesized that adult cystic fibrosis (CF) patients with severe lung disease have impaired daytime function related to nocturnal hypoxaemia and sleep disruption. Nineteen CF patients (forced expiratory volume in one second 28+/-7% predicted) and 10 healthy subjects completed sleep diaries, overnight polysomnography (PSG), and assessment of daytime sleepiness and neurocognitive function. CF patients tended to report more awakenings (0.7+/-0.5 versus 0.3+/-0.2 x h(-1), p=0.08), and PSG revealed reduced sleep efficiency (71+/-25 versus 93+/-4%, p=0.004) and a higher frequency of awakenings (4.2+/-2.7 versus 2.4+/-1.4 x h(-1), p=0.06). Mean arterial oxygen saturation during sleep was lower in CF patients (84.4+/-6.8 versus 94.3+/-1.5%, p<0.0001) and was associated with reduced sleep efficiency (regression coefficient (r)=0.57, p=0.014). CF patients had short sleep latency on the multiple sleep latency test (6.7+/-3 min). The CF group reported lower levels of activation and happiness and greater levels of fatigue (p<0.01), which correlated with indices of sleep loss, such as sleep efficiency (r=0.47, p=10.05). Objective neurocognitive performance was also impaired in CF patients, reflected by lower throughput for simple addition/subtraction, serial reaction and colour-word conflict. The authors concluded that adult cystic fibrosis patients with severe lung disease have impaired neurocognitive function and daytime sleepiness, which is partly related to chronic sleep loss and nocturnal hypoxaemia.

  20. Narcolepsy-cataplexy and loss of sphincter control.

    PubMed Central

    Vgontzas, A. N.; Sollenberger, S. E.; Kales, A.; Bixler, E. O.; Vela-Bueno, A.

    1996-01-01

    We describe the case of a 34-year-old man who presented intermittent faecal incontinence as a manifestation of cataplexy. The patient's sleep history was positive for the full narcoleptic tetrad (sleep attacks, cataplexy, sleep paralysis and hypnagogic hallucinations) while extensive neuropsychiatric work up was negative for any neurologic or psychiatric illness. Repeat polysomnograms (including a polysomnogram with a full seizure montage) were positive for pathologic sleepiness, but there was no evidence of a seizure disorder. The course of the patient's symptomatology and the favourable response of his symptoms to stimulants and imipramine support the theory that his intermittent loss of sphincter control is part of his narcolepsy-cataplexy. PMID:8796217

  1. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  2. The Bidirectional Relationship between Sleep and Immunity against Infections.

    PubMed

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  3. Sleep deprivation suppresses aggression in Drosophila

    PubMed Central

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  4. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes.

    PubMed

    Massart, R; Freyburger, M; Suderman, M; Paquet, J; El Helou, J; Belanger-Nelson, E; Rachalski, A; Koumar, O C; Carrier, J; Szyf, M; Mongrain, V

    2014-01-21

    Sleep is critical for normal brain function and mental health. However, the molecular mechanisms mediating the impact of sleep loss on both cognition and the sleep electroencephalogram remain mostly unknown. Acute sleep loss impacts brain gene expression broadly. These data contributed to current hypotheses regarding the role for sleep in metabolism, synaptic plasticity and neuroprotection. These changes in gene expression likely underlie increased sleep intensity following sleep deprivation (SD). Here we tested the hypothesis that epigenetic mechanisms coordinate the gene expression response driven by SD. We found that SD altered the cortical genome-wide distribution of two major epigenetic marks: DNA methylation and hydroxymethylation. DNA methylation differences were enriched in gene pathways involved in neuritogenesis and synaptic plasticity, whereas large changes (>4000 sites) in hydroxymethylation where observed in genes linked to cytoskeleton, signaling and neurotransmission, which closely matches SD-dependent changes in the transcriptome. Moreover, this epigenetic remodeling applied to elements previously linked to sleep need (for example, Arc and Egr1) and synaptic partners of Neuroligin-1 (Nlgn1; for example, Dlg4, Nrxn1 and Nlgn3), which we recently identified as a regulator of sleep intensity following SD. We show here that Nlgn1 mutant mice display an enhanced slow-wave slope during non-rapid eye movement sleep following SD but this mutation does not affect SD-dependent changes in gene expression, suggesting that the Nlgn pathway acts downstream to mechanisms triggering gene expression changes in SD. These data reveal that acute SD reprograms the epigenetic landscape, providing a unique molecular route by which sleep can impact brain function and health.

  5. Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance.

    PubMed

    Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W

    2012-12-01

    Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.

  6. Reduced heart rate variability during sleep in long-duration spaceflight.

    PubMed

    Xu, D; Shoemaker, J K; Blaber, A P; Arbeille, P; Fraser, K; Hughson, R L

    2013-07-15

    Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 ± 8.9 beats per minute (bpm) compared with preflight 53.3 ± 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.

  7. Sleep and Dreaming in Posttraumatic Stress Disorder.

    PubMed

    Miller, Katherine E; Brownlow, Janeese A; Woodward, Steve; Gehrman, Philip R

    2017-08-22

    Sleep disturbances are core features of posttraumatic stress disorder (PTSD). This review aims to characterize sleep disturbances, summarize the knowledge regarding the relationships between trauma exposure and sleep difficulties, and highlight empirically supported and/or utilized treatments for trauma-related nightmares and insomnia. Trauma-related nightmares and insomnia, and other sleep disorders, are frequently reported among trauma survivors. The roles of fear of sleep, REM density, and decreased parasympathetic activity are beginning to inform the relationship between trauma exposure and sleep difficulties. Additionally, the potential adaptive role of sleep loss immediately following a traumatic experience is being recognized. Interventions targeting these sleep disturbances show promise in reducing symptoms. Research in understanding the role of sleep on the development, course, and treatment of PTSD is expanding. Longitudinal investigations are needed to further elucidate these relationships and identify treatments most effective in ameliorating symptoms.

  8. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    PubMed

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important implications for understanding and managing sleep loss-induced cognitive impairment in emergency response, disaster management, military operations, and other dynamic real-world settings with uncertain outcomes and imperfect information. © 2015 Associated Professional Sleep Societies, LLC.

  9. Confusion

    MedlinePlus

    ... imbalance Illness in an older person, such as loss of brain function ( dementia ) Illness in a person with existing neurological disease, such as a stroke Infections Lack of sleep (sleep deprivation) Low blood sugar Low levels of oxygen (for ...

  10. Sleep Time: Media Hype vs. Diary Data

    ERIC Educational Resources Information Center

    Michelson, William

    2011-01-01

    Sleep duration has figured into claims of two trends promoted recently as dysfunctional in the mass media. One is the observation that the population at large is sleeping less than before. The second is that the annual change from Standard Time to Daylight Savings (or summer) Time causes adverse effects, largely through the loss of an hour's…

  11. Tai Chi Chih Compared With Cognitive Behavioral Therapy for the Treatment of Insomnia in Survivors of Breast Cancer: A Randomized, Partially Blinded, Noninferiority Trial

    PubMed Central

    Olmstead, Richard; Carrillo, Carmen; Sadeghi, Nina; Nicassio, Perry; Ganz, Patricia A.; Bower, Julienne E.

    2017-01-01

    Purpose Cognitive behavioral therapy for insomnia (CBT-I) and Tai Chi Chih (TCC), a movement meditation, improve insomnia symptoms. Here, we evaluated whether TCC is noninferior to CBT-I for the treatment of insomnia in survivors of breast cancer. Patients and Methods This was a randomized, partially blinded, noninferiority trial that involved survivors of breast cancer with insomnia who were recruited from the Los Angeles community from April 2008 to July 2012. After a 2-month phase-in period with repeated baseline assessment, participants were randomly assigned to 3 months of CBT-I or TCC and evaluated at months 2, 3 (post-treatment), 6, and 15 (follow-up). Primary outcome was insomnia treatment response—that is, marked clinical improvement of symptoms by the Pittsburgh Sleep Quality Index—at 15 months. Secondary outcomes were clinician-assessed remission of insomnia; sleep quality; total sleep time, sleep onset latency, sleep efficiency, and awake after sleep onset, derived from sleep diaries; polysomnography; and symptoms of fatigue, sleepiness, and depression. Results Of 145 participants who were screened, 90 were randomly assigned (CBT-I: n = 45; TCC: n = 45). The proportion of participants who showed insomnia treatment response at 15 months was 43.7% and 46.7% in CBT-I and TCC, respectively. Tests of noninferiority showed that TCC was noninferior to CBT-I at 15 months (P = .02) and at months 3 (P = .02) and 6 (P < .01). For secondary outcomes, insomnia remission was 46.2% and 37.9% in CBT-I and TCC, respectively. CBT-I and TCC groups showed robust improvements in sleep quality, sleep diary measures, and related symptoms (all P < .01), but not polysomnography, with similar improvements in both groups. Conclusion CBT-I and TCC produce clinically meaningful improvements in insomnia. TCC, a mindful movement meditation, was found to be statistically noninferior to CBT-I, the gold standard for behavioral treatment of insomnia. PMID:28489508

  12. The effect of partial acclimatization to high altitude on loop gain and central sleep apnoea severity.

    PubMed

    Andrews, Gareth; Ainslie, Philip N; Shepherd, Kelly; Dawson, Andrew; Swart, Marianne; Lucas, Samuel; Burgess, Keith R

    2012-07-01

    Loop gain is an engineering term that predicts the stability of a feedback control system, such as the control of breathing. Based on earlier studies at lower altitudes, it was hypothesized that acclimatization to high altitude would lead to a reduction in loop gain and thus central sleep apnoea (CSA) severity. This study used exposure to very high altitude to induce CSA in healthy subjects to investigate the effect of partial acclimatization on loop gain and CSA severity. Measurements were made on 12 subjects (age 30 ± 10 years, body mass index 22.8 ± 1.9, eight males, four females) at an altitude of 5050 m over a 2-week period upon initial arrival (days 2-4) and following partial acclimatization (days 12-14). Sleep was studied by full polysomnography, and resting arterial blood gases were measured. Loop gain was measured by the 'duty cycle' method (duration of hyperpnoea/cycle length). Partial acclimatization to high-altitude exposure was associated with both an increase in loop gain (duty cycle fell from 0.60 ± 0.05 to 0.55 ± 0.06 (P = 0.03)) and severity of CSA (apnoea-hypopnoea index increased from 76.8 ± 48.8 to 115.9 ± 20.2 (P = 0.01)), while partial arterial carbon dioxide concentration fell from 29 ± 3 to 26 ± 2 (P = 0.01). Contrary to the results at lower altitudes, at high-altitude loop gain and severity of CSA increased. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  13. The Influence of Sleep Disordered Breathing on Weight Loss in a National Weight Management Program.

    PubMed

    Janney, Carol A; Kilbourne, Amy M; Germain, Anne; Lai, Zongshan; Hoerster, Katherine D; Goodrich, David E; Klingaman, Elizabeth A; Verchinina, Lilia; Richardson, Caroline R

    2016-01-01

    To investigate the influence of sleep disordered breathing (SDB) on weight loss in overweight/obese veterans enrolled in MOVE!, a nationally implemented behavioral weight management program delivered by the National Veterans Health Administration health system. This observational study evaluated weight loss by SDB status in overweight/obese veterans enrolled in MOVE! from May 2008-February 2012 who had at least two MOVE! visits, baseline weight, and at least one follow-up weight (n = 84,770). SDB was defined by International Classification of Diseases, Ninth Revision, Clinical Modification codes. Primary outcome was weight change (lb) from MOVE! enrollment to 6- and 12-mo assessments. Weight change over time was modeled with repeated-measures analyses. SDB was diagnosed in one-third of the cohort (n = 28,269). At baseline, veterans with SDB weighed 29 [48] lb more than those without SDB (P < 0.001). On average, veterans attended eight MOVE! visits. Weight loss patterns over time were statistically different between veterans with and without SDB (P < 0.001); veterans with SDB lost less weight (-2.5 [0.1] lb) compared to those without SDB (-3.3 [0.1] lb; P = 0.001) at 6 months. At 12 mo, veterans with SDB continued to lose weight whereas veterans without SDB started to re-gain weight. Veterans with sleep disordered breathing (SDB) had significantly less weight loss over time than veterans without SDB. SDB should be considered in the development and implementation of weight loss programs due to its high prevalence and negative effect on health. © 2016 Associated Professional Sleep Societies, LLC.

  14. The role of sleep dysfunction in the occurrence of delusions and hallucinations: A systematic review

    PubMed Central

    Reeve, Sarah; Sheaves, Bryony; Freeman, Daniel

    2015-01-01

    Background Sleep dysfunction is extremely common in patients with schizophrenia. Recent research indicates that sleep dysfunction may contribute to psychotic experiences such as delusions and hallucinations. Objectives The review aims to evaluate the evidence for a relationship between sleep dysfunction and individual psychotic experiences, make links between the theoretical understanding of each, and highlight areas for future research. Method A systematic search was conducted to identify studies investigating sleep and psychotic experiences across clinical and non-clinical populations. Results 66 papers were identified. This literature robustly supports the co-occurrence of sleep dysfunction and psychotic experiences, particularly insomnia with paranoia. Sleep dysfunction predicting subsequent psychotic experiences receives support from epidemiological surveys, research on the transition to psychosis, and relapse studies. There is also evidence that reducing sleep elicits psychotic experiences in non-clinical individuals, and that improving sleep in individuals with psychosis may lessen psychotic experiences. Anxiety and depression consistently arise as (partial) mediators of the sleep and psychosis relationship. Conclusion Studies are needed that: determine the types of sleep dysfunction linked to individual psychotic experiences; establish a causal connection between sleep and psychotic experiences; and assess treatments for sleep dysfunction in patients with non-affective psychotic disorders such as schizophrenia. PMID:26407540

  15. Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence.

    PubMed

    Chen, Jie; Liang, Jie; Lin, Xiao; Zhang, Yang; Zhang, Yan; Lu, Lin; Shi, Jie

    2017-12-06

    Sleep is one of the most fundamental processes of life, playing an important role in the regulation of brain function. The long-term lack of sleep can cause memory impairments, declines in learning ability, and executive dysfunction. In the present study, we evaluated the effects of sleep deprivation on instrumental learning behavior, particularly goal-directed and habitual actions in humans, and investigated the underlying neural mechanisms. Healthy college students of either gender were enrolled and randomly divided into sleep deprivation group and sleep control group. fMRI data were collected. We found that one night of sleep deprivation led to greater responsiveness to stimuli that were associated with devalued outcomes in the slips-of-action test, indicating a deficit in the formation of goal-directed control and an overreliance on habits. Furthermore, sleep deprivation had no effect on the expression of acquired goal-directed action. The level of goal-directed action after sleep deprivation was positively correlated with baseline working memory capacity. The neuroimaging data indicated that goal-directed learning mainly recruited the ventromedial PFC (vmPFC), the activation of which was less pronounced during goal-directed learning after sleep deprivation. Activation of the vmPFC during goal-directed learning during training was positively correlated with the level of goal-directed action performance. The present study suggests that people rely predominantly on habits at the expense of goal-directed control after sleep deprivation, and this process involves the vmPFC. These results contribute to a better understanding of the effects of sleep loss on decision-making. SIGNIFICANCE STATEMENT Understanding the cognitive consequences of sleep deprivation has become extremely important over the past half century, given the continued decline in sleep duration in industrialized societies. Our results provide novel evidence that goal-directed action may be particularly vulnerable to sleep loss, and the brain mechanism underlying this effect was explored. Elucidation of the effects of sleep deprivation on decision-making will deepen our understanding of the function of sleep, emphasizing the role of sleep in cognitive impairments and mental health. Copyright © 2017 the authors 0270-6474/17/3711979-14$15.00/0.

  16. Racial differences in sleep architecture: the role of ethnic discrimination.

    PubMed

    Tomfohr, Lianne; Pung, Meredith A; Edwards, Kate M; Dimsdale, Joel E

    2012-01-01

    African Americans have been consistently shown to have less deep (slow wave sleep; SWS) and more light (Stages 1 and 2) sleep than Caucasian Americans. This paper explored whether discrimination, a stressor that uniquely impacts certain ethnic groups, contributes to differences in sleep architecture. The sleep of 164 African and Caucasian Americans was examined with laboratory based polysomnography (PSG). Experiences of perceived discrimination (The Scale of Ethnic Experience) and sociodemographic factors were also assessed. After adjusting for age, body mass index (BMI), socioeconomic status (SES) and smoking status, African Americans slept approximately 4.5% more total sleep time (TST) in Stage 2 sleep and 4.7% less TST in SWS than Caucasian Americans (ps<.05). Perceived discrimination was a partial mediator of ethnic differences in sleep architecture. Individuals who reported experiencing more discrimination slept more time in Stage 2 and less time in SWS (ps<.05). Results suggest that the impact of stress related to ethnic group membership plays a part in explaining differences in sleep architecture. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Impact of a Mindfulness-Based Weight-Loss Intervention on Sleep Quality Among Adults with Obesity: Data from the SHINE Randomized Controlled Trial.

    PubMed

    Adler, Elizabeth; Dhruva, Anand; Moran, Patricia J; Daubenmier, Jennifer; Acree, Michael; Epel, Elissa S; Bacchetti, Peter; Prather, Aric A; Mason, Ashley; Hecht, Frederick M

    2017-03-01

    Sleep disturbance is a common problem among adults with obesity. Mindfulness interventions have been shown to improve sleep quality in various populations but have not been investigated in adults with obesity. The aim of this study was to compare the effects of a mindfulness-based weight-loss intervention with an active control on self-reported sleep quality among adults with obesity. This study was a secondary analysis of a randomized controlled trial and included 194 adults with a body mass index in the range 30-45 kg/m 2 . The treatment intervention included mindfulness-based eating and stress-management practices, and the active control intervention included training in progressive muscle relaxation (PMR). Both groups received identical diet and exercise guidelines in 17 group sessions conducted over 5.5 months that were matched for time, attention, and social support. The primary outcome of this analysis was between-group change in self-reported sleep quality, which was assessed using the Pittsburgh Sleep Quality Index (PSQI) global score at baseline and at 6, 12, and 18 months. Between-group differences in mean PSQI change scores in the mindfulness group (n = 100) compared to the control group (n = 94) were -0.27 (-0.68, 1.22; p = 0.58) at 6 months, -0.57 (-0.35, 1.50; p = 0.22) at 12 months, and -0.50 (-0.53, 1.53; p = 0.34) at 18 months, all in the direction of more sleep improvement in the mindfulness group but none reaching statistical significance. In the mindfulness group, average weekly minutes of meditation practice time was associated with improved sleep quality from baseline to 6 months. No statistically significant evidence was found that a weight-loss program that incorporates mindfulness improves self-reported sleep quality compared to a control diet/exercise intervention that included PMR. Within the mindfulness group, average weekly minutes of mindfulness practice was associated with improved sleep quality.

  18. Health consequences of shift work and insufficient sleep.

    PubMed

    Kecklund, Göran; Axelsson, John

    2016-11-01

    This review summarises the literature on shift work and its relation to insufficient sleep, chronic diseases, and accidents. It is based on 38 meta-analyses and 24 systematic reviews, with additional narrative reviews and articles used for outlining possible mechanisms by which shift work may cause accidents and adverse health. Evidence shows that the effect of shift work on sleep mainly concerns acute sleep loss in connection with night shifts and early morning shifts. A link also exists between shift work and accidents, type 2 diabetes (relative risk range 1.09-1.40), weight gain, coronary heart disease (relative risk 1.23), stroke (relative risk 1.05), and cancer (relative risk range 1.01-1.32), although the original studies showed mixed results. The relations of shift work to cardiometabolic diseases and accidents mimic those with insufficient sleep. Laboratory studies indicate that cardiometabolic stress and cognitive impairments are increased by shift work, as well as by sleep loss. Given that the health and safety consequences of shift work and insufficient sleep are very similar, they are likely to share common mechanisms. However, additional research is needed to determine whether insufficient sleep is a causal pathway for the adverse health effects associated with shift work. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Using off-the-shelf lossy compression for wireless home sleep staging.

    PubMed

    Lan, Kun-Chan; Chang, Da-Wei; Kuo, Chih-En; Wei, Ming-Zhi; Li, Yu-Hung; Shaw, Fu-Zen; Liang, Sheng-Fu

    2015-05-15

    Recently, there has been increasing interest in the development of wireless home sleep staging systems that allow the patient to be monitored remotely while remaining in the comfort of their home. However, transmitting large amount of Polysomnography (PSG) data over the Internet is an important issue needed to be considered. In this work, we aim to reduce the amount of PSG data which has to be transmitted or stored, while having as little impact as possible on the information in the signal relevant to classify sleep stages. We examine the effects of off-the-shelf lossy compression on an all-night PSG dataset from 20 healthy subjects, in the context of automated sleep staging. The popular compression method Set Partitioning in Hierarchical Trees (SPIHT) was used, and a range of compression levels was selected in order to compress the signals with various degrees of loss. In addition, a rule-based automatic sleep staging method was used to automatically classify the sleep stages. Considering the criteria of clinical usefulness, the experimental results show that the system can achieve more than 60% energy saving with a high accuracy (>84%) in classifying sleep stages by using a lossy compression algorithm like SPIHT. As far as we know, our study is the first that focuses how much loss can be tolerated in compressing complex multi-channel PSG data for sleep analysis. We demonstrate the feasibility of using lossy SPIHT compression for wireless home sleep staging. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Pain Sensitivity and Recovery From Mild Chronic Sleep Loss

    PubMed Central

    Roehrs, Timothy A.; Harris, Erica; Randall, Surilla; Roth, Thomas

    2012-01-01

    Study Objectives: To determine whether an extended bedtime in sleepy and otherwise healthy volunteers would increase alertness and thereby also reduce pain sensitivity. Setting: Outpatient with sleep laboratory assessments. Participants and Interventions: Healthy volunteers (n = 18), defined as having an average daily sleep latency on the Multiple Sleep Latency Test (MSLT) < 8 min, were randomized to 4 nights of extended bedtime (10 hr) (EXT) or 4 nights of their diary-reported habitual bedtimes (HAB). On day 1 and day 4 they received a standard MSLT (10:00, 12:00, 14:00, and 16:00 hr) and finger withdrawal latency pain testing to a radiant heat stimulus (10:30 and 14:30 hr). Results: During the four experimental nights the EXT group slept 1.8 hr per night more than the HAB group and average daily sleep latency on the MSLT increased in the EXT group, but not the HAB group. Similarly, finger withdrawal latency was increased (pain sensitivity was reduced) in the EXT group but not the HAB group. The nightly increase in sleep time during the four experimental nights was correlated with the improvement in MSLT, which in turn was correlated with reduced pain sensitivity. Conclusions: These are the first data to show that an extended bedtime in mildly sleepy healthy adults, which resulted in increased sleep time and reduced sleepiness, reduces pain sensitivity. Citation: Roehrs TA; Harris E; Randall S; Roth T. Pain sensitivity and recovery from mild chronic sleep loss. SLEEP 2012;35(12):1667-1672. PMID:23204609

  1. Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence

    PubMed Central

    Schmidt, Michelle A.; Wisor, Jonathan P.

    2014-01-01

    Methamphetamine-induced wakefulness is dependent on monoamine transporter blockade. Subsequent to methamphetamine-induced wakefulness, the amount of time spent asleep and the depth of sleep are increased relative to baseline sleep. The mechanisms that drive methamphetamine-induced hypersomnolence are not fully understood. We recently observed that methamphetamine exposure elevates the expression of the sleep-promoting cytokine, interleukin-1 β in CD11b-positive monocytes within the brain. Here, we sought to determine whether activation of the interleukin 1 receptor (IL1R) drives the increase in the depth and amount of sleep that occurs subsequent to methamphetamine-induced wakefulness. IL1R-deficient mice and wild type control mice were subjected to systemic methamphetamine (1 and 2mg/kg) and saline treatments. The wake-promoting effect of methamphetamine was modestly potentiated by IL1R-deficiency. Additionally, the increase in time spent in NREMS subsequent to methamphetamine-induced wakefulness in wild type mice was abolished in IL1R-deficient mice. The increase in time spent asleep after 3 h of behaviorally enforced wakefulness was also abolished in IL1R-deficient mice. Increases in EEG slow wave activity triggered by methamphetamine and sleep deprivation were of equal magnitude in IL1R-deficient and wild type mice. These data demonstrate that IL1R activation contributes to hypersomnolence that occurs after sleep loss, whether that sleep loss is triggered pharmacologically by methamphetamine or through behavioral sleep deprivation. PMID:22387068

  2. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss

    PubMed Central

    Bermudez, Eduardo B.; Klerman, Elizabeth B.; Czeisler, Charles A.; Cohen, Daniel A.; Wyatt, James K.; Phillips, Andrew J. K.

    2016-01-01

    Sleep restriction causes impaired cognitive performance that can result in adverse consequences in many occupational settings. Individuals may rely on self-perceived alertness to decide if they are able to adequately perform a task. It is therefore important to determine the relationship between an individual’s self-assessed alertness and their objective performance, and how this relationship depends on circadian phase, hours since awakening, and cumulative lost hours of sleep. Healthy young adults (aged 18–34) completed an inpatient schedule that included forced desynchrony of sleep/wake and circadian rhythms with twelve 42.85-hour “days” and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:enforced-wakefulness. We investigated whether subjective alertness (visual analog scale), circadian phase (melatonin), hours since awakening, and cumulative sleep loss could predict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calculation Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that allowed nonlinear interactions between explanatory variables were evaluated using the Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accurate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved when all explanatory variables were included in the model. The best AIC score for ADD was achieved with circadian phase and subjective alertness variables. We conclude that subjective alertness alone is a weak predictor of objective vigilant or cognitive performance. Predictions can, however, be improved by knowing an individual’s circadian phase, current wake duration, and cumulative sleep loss. PMID:27019198

  3. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    PubMed

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  4. Post-match Perceived Exertion, Feeling and Wellness in Professional Soccer Players.

    PubMed

    Fessi, Mohamed Saifeddin; Moalla, Wassim

    2018-01-18

    The aim of this study was to assess post-match perceived exertion, feeling and wellness according to the match outcome (winning, drawing or losing) in professional soccer players. Twelve outfield players were followed during 52 official matches where the outcomes (win, draw or lose) were noted. Following each match players completed both a 10-point scale rating of perceived exertion (RPE) and an 11-point scale rating of perceived feeling. Rating of perceived sleep quality, stress, fatigue and muscle soreness were collected separately on a 7-point scale the day following each match. Player RPE was higher by a very largely magnitude following a loss compared to a draw or a win and higher by a small magnitude after a draw compared to a win. Players felt more pleasure after a win compared to a draw or loss and more displeasure after a loss compared to draw. The players reported a largely and moderately better-perceived sleep quality, less stress and fatigue following a win compared to draw or a loss, and a moderately bad-perceived sleep quality, higher stress and fatigue following a draw compared to a loss. In contrast, only a trivial-small change was observed in perceived muscle soreness between all outcomes. Matches outcomes moderately to largely affect RPE, perceived feeling, sleep quality, stress and fatigue whereas perceived muscle soreness remains high regardless of the match outcome. However, winning a match decreases the strain and improves both pleasure and wellness in professional soccer players.

  5. Adverse Effects of Two Nights of Sleep Restriction on the Hypothalamic-Pituitary-Adrenal Axis in Healthy Men

    PubMed Central

    Guyon, A.; Balbo, M.; Morselli, L. L.; Tasali, E.; Leproult, R.; L'Hermite-Balériaux, M.; Van Cauter, E.

    2014-01-01

    Context: Insufficient sleep is associated with increased cardiometabolic risk. Alterations in hypothalamic-pituitary-adrenal axis may underlie this link. Objective: Our objective was to examine the impact of restricted sleep on daytime profiles of ACTH and cortisol concentrations. Methods: Thirteen subjects participated in 2 laboratory sessions (2 nights of 10 hours in bed versus 2 nights of 4 hours in bed) in a randomized crossover design. Sleep was polygraphically recorded. After the second night of each session, blood was sampled at 20-minute intervals from 9:00 am to midnight to measure ACTH and total cortisol. Saliva was collected every 20 minutes from 2:00 pm to midnight to measure free cortisol. Perceived stress, hunger, and appetite were assessed at hourly intervals by validated scales. Results: Sleep restriction was associated with a 19% increase in overall ACTH levels (P < .03) that was correlated with the individual amount of sleep loss (rSp = 0.63, P < .02). Overall total cortisol levels were also elevated (+21%; P = .10). Pulse frequency was unchanged for both ACTH and cortisol. Morning levels of ACTH were higher after sleep restriction (P < .04) without concomitant elevation of cortisol. In contrast, evening ACTH levels were unchanged while total and free cortisol increased by, respectively, 30% (P < .03) and 200% (P < .04). Thus, the amplitude of the circadian cortisol decline was dampened by sleep restriction (−21%; P < .05). Sleep restriction was not associated with higher perceived stress but resulted in an increase in appetite that was correlated with the increase in total cortisol. Conclusion: The impact of sleep loss on hypothalamic-pituitary-adrenal activity is dependent on time of day. Insufficient sleep dampens the circadian rhythm of cortisol, a major internal synchronizer of central and peripheral clocks. PMID:24823456

  6. Adverse effects of two nights of sleep restriction on the hypothalamic-pituitary-adrenal axis in healthy men.

    PubMed

    Guyon, A; Balbo, M; Morselli, L L; Tasali, E; Leproult, R; L'Hermite-Balériaux, M; Van Cauter, E; Spiegel, K

    2014-08-01

    Insufficient sleep is associated with increased cardiometabolic risk. Alterations in hypothalamic-pituitary-adrenal axis may underlie this link. Our objective was to examine the impact of restricted sleep on daytime profiles of ACTH and cortisol concentrations. Thirteen subjects participated in 2 laboratory sessions (2 nights of 10 hours in bed versus 2 nights of 4 hours in bed) in a randomized crossover design. Sleep was polygraphically recorded. After the second night of each session, blood was sampled at 20-minute intervals from 9:00 am to midnight to measure ACTH and total cortisol. Saliva was collected every 20 minutes from 2:00 pm to midnight to measure free cortisol. Perceived stress, hunger, and appetite were assessed at hourly intervals by validated scales. Sleep restriction was associated with a 19% increase in overall ACTH levels (P < .03) that was correlated with the individual amount of sleep loss (rSp = 0.63, P < .02). Overall total cortisol levels were also elevated (+21%; P = .10). Pulse frequency was unchanged for both ACTH and cortisol. Morning levels of ACTH were higher after sleep restriction (P < .04) without concomitant elevation of cortisol. In contrast, evening ACTH levels were unchanged while total and free cortisol increased by, respectively, 30% (P < .03) and 200% (P < .04). Thus, the amplitude of the circadian cortisol decline was dampened by sleep restriction (-21%; P < .05). Sleep restriction was not associated with higher perceived stress but resulted in an increase in appetite that was correlated with the increase in total cortisol. The impact of sleep loss on hypothalamic-pituitary-adrenal activity is dependent on time of day. Insufficient sleep dampens the circadian rhythm of cortisol, a major internal synchronizer of central and peripheral clocks.

  7. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    PubMed

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  8. Gender differences in sleep deprivation effects on risk and inequality aversion: evidence from an economic experiment.

    PubMed

    Ferrara, Michele; Bottasso, Anna; Tempesta, Daniela; Carrieri, Marika; De Gennaro, Luigi; Ponti, Giovanni

    2015-01-01

    Excessive working hours--even at night--are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects' risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females' reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making.

  9. Gender Differences in Sleep Deprivation Effects on Risk and Inequality Aversion: Evidence from an Economic Experiment

    PubMed Central

    Ferrara, Michele; Bottasso, Anna; Tempesta, Daniela; Carrieri, Marika; De Gennaro, Luigi; Ponti, Giovanni

    2015-01-01

    Excessive working hours—even at night—are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects’ risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females’ reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making. PMID:25793869

  10. Sleep Deprivation in Critical Illness: Its Role in Physical and Psychological Recovery

    PubMed Central

    Kamdar, Biren B.; Needham, Dale M.; Collop, Nancy A.

    2012-01-01

    Critically ill patients frequently experience poor sleep, characterized by frequent disruptions, loss of circadian rhythms, and a paucity of time spent in restorative sleep stages. Factors that are associated with sleep disruption in the intensive care unit (ICU) include patient-ventilator dysynchrony, medications, patient care interactions, and environmental noise and light. As the field of critical care increasingly focuses on patients' physical and psychological outcomes following critical illness, understanding the potential contribution of ICU-related sleep disruption on patient recovery is an important area of investigation. This review article summarizes the literature regarding sleep architecture and measurement in the critically ill, causes of ICU sleep fragmentation, and potential implications of ICU-related sleep disruption on patients' recovery from critical illness. With this background information, strategies to optimize sleep in the ICU are also discussed. PMID:21220271

  11. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  12. The Effect of Aging and Severity of Sleep Apnea on Heart Rate Variability Indices in Obstructive Sleep Apnea Syndrome

    PubMed Central

    Song, Man-Kyu; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak

    2012-01-01

    Objective This study aims to analyze how much heart rate variability (HRV) indices discriminatively respond to age and severity of sleep apnea in the obstructive sleep apnea syndrome (OSAS). Methods 176 male OSAS patients were classified into four groups according to their age and apnea-hypopnea index (AHI). The HRV indices were compared via analysis of covariance (ANCOVA). In particular, the partial correlation method was performed to identify the most statistically significant HRV indices in the time and frequency domains. Stepwise multiple linear regressions were further executed to examine the effects of age, AHI, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), and sleep parameters on the significant HRV indices. Results The partial correlation analysis yielded the NN50 count (defined as the number of adjacent R-wave to R-wave intervals differing by more than 50 ms) and low frequency/high frequency (LF/HF) ratio to be two most statistically significant HRV indices in both time and frequency domains. The two indices showed significant differences between the groups. The NN50 count was affected by age (p<0.001) and DBP (p=0.039), while the LF/HF ratio was affected by AHI (p<0.001), the amount of Stage 2 sleep (p=0.005), and age (p=0.021) in the order named in the regression analysis. Conclusion The NN50 count more sensitively responded to age than to AHI, suggesting that the index is mainly associated with an age-related parasympathetic system. On the contrary, the LF/HF ratio responded to AHI more sensitively than to age, suggesting that it is mainly associated with a sympathetic tone likely reflecting the severity of sleep apnea. PMID:22396687

  13. The impact of sleep loss on hippocampal function

    PubMed Central

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values “work around the clock.” Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs. PMID:24045505

  14. Association Between Employee Sleep With Workplace Health and Economic Outcomes.

    PubMed

    Burton, Wayne N; Chen, Chin-Yu; Schultz, Alyssa B; Li, Xingquan

    2017-02-01

    Poor sleep can impact occupational functioning. The current study examines health risks, medical conditions, and workplace economic outcomes associated with self-reported hours of sleep among employees. Employees of a global financial services corporation were categorized on the basis of their self-reported average hours of sleep. Differences in health care costs, productivity measures, health risks, and medical conditions were analyzed by hours of sleep while controlling for confounding variables. A strong U-shaped relationship between health care costs, short-term disability, absenteeism, and presenteeism (on-the-job work loss) and the hours of sleep was found among employees. The nadir of the "U" occurs for 7 or 8 hours of sleep per night. Worksite wellness programs often address health risks and medical conditions and may benefit from incorporating sleep education.

  15. How (and why) the immune system makes us sleep

    PubMed Central

    Imeri, Luca; Opp, Mark R.

    2010-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176

  16. How (and why) the immune system makes us sleep.

    PubMed

    Imeri, Luca; Opp, Mark R

    2009-03-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

  17. School Schedules Affect Sleep Timing in Children and Contribute to Partial Sleep Deprivation

    ERIC Educational Resources Information Center

    Anacleto, Tâmile Stella; Adamowicz, Taísa; Simões da Costa Pinto, Laura; Louzada, Fernando Mazzilli

    2014-01-01

    Although the environmental light/dark cycle is the main zeitgeber for the human species, the social cues seem to be important in the synchronization of circadian rhythms. In Brazil, the existence of two school schedules--one with only morning classes (MG) and other with only afternoon classes (AG)--allows the investigation of the effect of school…

  18. The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anesthesia.

    PubMed

    Moody, E J; Skolnick, P

    1988-01-01

    Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane.

  19. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  20. Insomnia of childhood.

    PubMed

    Lipton, Jonathan; Becker, Ronald E; Kothare, Sanjeev V

    2008-12-01

    Insomnia is a major public health problem and is the most common sleep disturbance in both adults and children. The causes of sleeplessness are age-dependent and have potentially enormous effects on cognitive development, behavior, family dynamics, and the metabolic health of children. Here we review the epidemiology, cause, pathophysiology, and clinical approach to pediatric insomnia. Normal sleep is crucial for brain function, behavior, and normal metabolism. Consistently, sleep loss has been linked to behavioral and attention problems, impaired learning and memory, obesity, and psychiatric disorders. The neurological mechanisms that govern sleep initiation and maintenance are poorly understood. The types of insomnia are age-dependent and can occur as primary disorders, or in the context of another primary sleep disorder such as restless legs syndrome, or secondary to another underlying medical condition. Children with chronic diseases and especially children with neurodevelopmental disorders are at particular risk of insomnia. Pediatric insomnia is common and is a source of potential psychophysiological stress to both children and their caregivers. The causes of insomnia are various. Pediatricians should have a working knowledge of the causes of sleeplessness in order to promptly curtail the chronic effects of sleep loss and effectively screen for underlying, potentially treatable disorders.

  1. The exploratory power of sleep effort, dysfunctional beliefs and arousal for insomnia severity and polysomnography-determined sleep.

    PubMed

    Hertenstein, Elisabeth; Nissen, Christoph; Riemann, Dieter; Feige, Bernd; Baglioni, Chiara; Spiegelhalder, Kai

    2015-08-01

    Differences between subjective sleep perception and sleep determined by polysomnography (PSG) are prevalent, particularly in patients with primary insomnia, indicating that the two measures are partially independent. To identify individualized treatment strategies, it is important to understand the potentially different mechanisms influencing subjective and PSG-determined sleep. The aim of this study was to investigate to what extent three major components of insomnia models, i.e., sleep effort, dysfunctional beliefs and attitudes about sleep, and presleep arousal, are associated with subjective insomnia severity and PSG-determined sleep. A sample of 47 patients with primary insomnia according to DSM-IV criteria and 52 good sleeper controls underwent 2 nights of PSG and completed the Glasgow Sleep Effort Scale, the Dysfunctional Beliefs and Attitudes about Sleep Scale, the Pre-Sleep Arousal Scale and the Insomnia Severity Index. Regression analyses were conducted to investigate the impact of the three predictors on subjective insomnia severity and PSG- determined total sleep time. All analyses were adjusted for age, gender, depressive symptoms and group status. The results showed that subjective insomnia severity was associated positively with sleep effort. PSG-determined total sleep time was associated negatively with somatic presleep arousal and dysfunctional beliefs and attitudes about sleep. This pattern of results provides testable hypotheses for prospective studies on the impact of distinct cognitive and somatic variables on subjective insomnia severity and PSG-determined total sleep time. © 2015 European Sleep Research Society.

  2. Sleep associated monitoring on awakening mediates the relationship between cutaneous body image dissatisfaction and insomnia symptoms

    PubMed Central

    Akram, Umair

    2017-01-01

    INTRODUCTION This study examined the relationship between dissatisfaction with cutaneous body image and insomnia symptoms, incorporating the mediating role of monitoring for signs of poor-sleep on awakening and throughout the day. METHODS Two hundred twenty-one participants completed The Insomnia Severity Index, Cutaneous Body Image Scale, and subscales of the Sleep Associated Monitoring Index. RESULTS The results demonstrated that insomnia symptoms were significantly associated with a greater dissatisfaction with cutaneous body image. Moreover, this relationship was partially mediated by sleep associated monitoring on awakening, but not throughout the day. CONCLUSIONS These findings provide further understanding of the potential mechanisms underlying negative self-perceptions of physical appearance in insomnia. PMID:28966747

  3. The development of insomnia or the plasticity of good sleep? A preliminary study of acute changes in sleep and insomnia resulting from an analogue trauma.

    PubMed

    Richardson, Cele; Gradisar, Michael; Pulford, Amanda

    2015-01-01

    The present preliminary study aimed to shed light on the mechanisms underlying the development of insomnia. An analogue stressor (i.e., trauma video) was used to prevent presleep cognitive de-arousal. Subsequent changes in nocturnal sleep and sleep-related attentional processing were examined. Thirty-four participants were randomly assigned to either a cognitive arousal (trauma video; age: M = 22.9, SD = 4.3, 6 male, 11 female) or control (pleasant video; age: M = 23.8, SD = 5.8, 7 male, 10 female) condition. Although no significant differences were found for presleep cognitive de-arousal (p = .39), the cognitive arousal group experienced a significant worsening in sleep latency (p = .048, partial η(2) = .12) and an increase in sleep-related attentional bias (p = .032, d = 0.51) following the manipulation. However, changes in sleep and attentional bias were not maintained. Vulnerability to stress did not significantly account for any change in attentional bias, arousal, or sleep. These findings challenge current conceptualizations of the development of insomnia, yet also supporting the notion that good sleep is a default state that protects individuals from sleep disturbance.

  4. Role of Sex and the Environment in Moderating Weight Gain Due to Inadequate Sleep.

    PubMed

    Coborn, Jamie E; Houser, Monica M; Perez-Leighton, Claudio E; Teske, Jennifer A

    2017-12-01

    The growing prevalence of obesity, inadequate sleep and sleep disorders together with the negative impact of lack of sleep on overall health highlights the need for therapies targeted towards weight gain due to sleep loss. Sex disparities in obesity and sleep disorders are present; yet, the role of sex is inadequately addressed and thus it is unclear whether sensitivity to sleep disruption differs between men and women. Like sex, environmental factors contribute to the development of obesity and poor sleep. The obesogenic environment is characterized by easy access to palatable foods and a low demand for energy expenditure in daily activities. These and other environmental factors are discussed, as they drive altered sleep or their interaction with food choice and intake can promote obesity. We discuss data that suggest differences in sleep patterns and responses to sleep disruption influence sex disparities in weight gain, and that enviromental disturbances alter sleep and interact with features of the obesogenic environment that together promote obesity.

  5. Short sleep mediates the association between long work hours and increased body mass index.

    PubMed

    Magee, Christopher A; Caputi, Peter; Iverson, Don C

    2011-04-01

    This study examined whether short sleep duration, physical activity and time spent sitting each day mediated the association between long work hours and body mass index (BMI). Participants included 16,951 middle aged Australian adults who were employed in full time work (i.e. ≥35 h a week). Data on BMI, sleep duration, work hours and other health and demographic variables were obtained through a self-report questionnaire. A multiple mediation model was tested whereby sleep duration, physical activity and amount of time spent sitting were entered as potential mediators between work hours and BMI. The results demonstrated that short sleep partially mediated the association between long work hours and increased BMI in males. In females, long work hours were indirectly related to higher BMI through short sleep. The results provide some support for the hypothesis that long work hours could contribute to obesity via a reduction in sleep duration; this warrants further investigation in prospective studies.

  6. Affective mediators of the association between pleasant events and global sleep quality in community-dwelling adults.

    PubMed

    Tighe, Caitlan A; Shoji, Kristy D; Dautovich, Natalie D; Lichstein, Kenneth L; Scogin, Forrest

    2016-02-01

    This study explored the association of engagement in pleasant events and global sleep quality, as well as examined the intermediary roles of positive affect and depressive symptoms in this association. Data were derived from the Midlife in the United States-II study. The sample consisted of 1054 community-dwelling adults. Participants completed the Pittsburgh Sleep Quality Index and indicated the frequency and enjoyableness of experiences on a positive events scale. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Positive affect was measured using the Mood and Symptoms Questionnaire. Regression analyses indicated more frequent engagement in pleasant events was associated with better global sleep quality. Depressive symptoms, but not positive affect, partially mediated the association between pleasant events and global sleep quality. The findings suggest that behavioral engagement in pleasant events may be related to global sleep quality via depressive symptoms, but not positive affect. These findings highlight the potential for engagement in pleasant activities to influence both mood and sleep.

  7. Gustatory and metabolic perception of nutrient stress in Drosophila.

    PubMed

    Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D

    2015-02-24

    Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.

  8. Is lack of sleep capable of inducing DNA damage in aged skin?

    PubMed

    Kahan, V; Ribeiro, D A; Egydio, F; Barros, L A; Tomimori, J; Tufik, S; Andersen, M L

    2014-01-01

    Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. The aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation nor sleep restriction increased genetic damage, measured by tail movement and tail intensity values. Taken together, the findings are consistent with the notion that aging overrides the effect of sleep loss on the genetic damage in elderly mice. © 2014 S. Karger AG, Basel.

  9. Sleep and Epilepsy: Strange Bedfellows No More.

    PubMed

    St Louis, Erik K

    2011-09-01

    Ancient philosophers and theologians believed that altered consciousness freed the mind to prophesy the future, equating sleep with seizures. Only recently has the bidirectional influences of epilepsy and sleep upon one another received more substantive analysis. This article reviews the complex and increasingly recognized interrelationships between sleep and epilepsy. NREM sleep differentially activates interictal epileptiform discharges during slow wave (N3) sleep, while ictal seizure events occur more frequently during light NREM stages N1 and N2. The most commonly encountered types of sleep-related epilepsies (those with preferential occurrence during sleep or following arousal) include frontal and temporal lobe partial epilepsies in adults, and benign epilepsy of childhood with centrotemporal spikes (benign rolandic epilepsy) and juvenile myoclonic epilepsy in children and adolescents. Comorbid sleep disorders are frequent in patients with epilepsy, particularly obstructive sleep apnea in refractory epilepsy patients which may aggravate seizure burden, while treatment with nasal continuous positive airway pressure often improves seizure frequency. Distinguishing nocturnal events such as NREM parasomnias (confusional arousals, sleep walking, and night terrors), REM parasomnias including REM sleep behavior disorder, and nocturnal seizures if frequently difficult and benefits from careful history taking and video-EEG-polysomnography in selected cases. Differentiating nocturnal seizures from primary sleep disorders is essential for determining appropriate therapy, and recognizing co-existent sleep disorders in patients with epilepsy may improve their seizure burden and quality of life.

  10. The neurobiology, diagnosis, and treatment of narcolepsy.

    PubMed

    Scammell, Thomas E

    2003-02-01

    Narcolepsy is a common cause of chronic sleepiness distinguished by intrusions into wakefulness of physiological aspects of rapid eye movement sleep such as cataplexy and hallucinations. Recent advances provide compelling evidence that narcolepsy may be a neurodegenerative or autoimmune disorder resulting in a loss of hypothalamic neurons containing the neuropeptide orexin (also known as hypocretin). Because orexin promotes wakefulness and inhibits rapid eye movement sleep, its absence may permit inappropriate transitions between wakefulness and sleep. These discoveries have considerably improved our understanding of the neurobiology of sleep and should foster the development of rational treatments for a variety of sleep disorders.

  11. Persistent Short-Term Memory Defects Following Sleep Deprivation in a Drosophila Model of Parkinson Disease

    PubMed Central

    Seugnet, Laurent; Galvin, James E.; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J.

    2009-01-01

    Study Objectives: Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on short-term memory using a Drosophila model of Parkinson disease. Participants: Transgenic strains of Drosophila melanogaster. Design: Using the GAL4-UAS system, human α-synuclein was expressed throughout the nervous system of adult flies. α-Synuclein expressing flies (αS flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. Measurments and Results: When sleep deprived at an intermediate stage of the pathology, αS flies showed persistent short-term memory deficits that lasted ≥ 3 days. Cognitive deficits were not observed in younger αS flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived αS flies. Blocking D1-like receptors during sleep deprivation prevented persistent short-term memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. Conclusions: These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics. Citation: Seugnet L; Galvin JE; Suzuki Y; Gottschalk L; Shaw PJ. Persistent short-term memory defects following sleep deprivation in a drosophila model of parkinson disease. SLEEP 2009;32(8):984-992. PMID:19725249

  12. Modeling Neurocognitive Decline and Recovery During Repeated Cycles of Extended Sleep and Chronic Sleep Deficiency.

    PubMed

    St Hilaire, Melissa A; Rüger, Melanie; Fratelli, Federico; Hull, Joseph T; Phillips, Andrew J K; Lockley, Steven W

    2017-01-01

    Intraindividual night-to-night sleep duration is often insufficient and variable. Here we report the effects of such chronic variable sleep deficiency on neurobehavioral performance and the ability of state-of-the-art models to predict these changes. Eight healthy males (mean age ± SD: 23.9 ± 2.4 years) studied at our inpatient intensive physiologic monitoring unit completed an 11-day protocol with a baseline 10-hour sleep opportunity and three cycles of two 3-hour time-in-bed (TIB) and one 10-hour TIB sleep opportunities. Participants received one of three polychromatic white light interventions (200 lux 4100K, 200 or 400 lux 17000K) for 3.5 hours on the morning following the second 3-hour TIB opportunity each cycle. Neurocognitive performance was assessed using the psychomotor vigilance test (PVT) administered every 1-2 hours. PVT data were compared to predictions of five group-average mathematical models that incorporate chronic sleep loss functions. While PVT performance deteriorated cumulatively following each cycle of two 3-hour sleep opportunities, and improved following each 10-hour sleep opportunity, performance declined cumulatively throughout the protocol at a more accelerated rate than predicted by state-of-the-art group-average mathematical models. Subjective sleepiness did not reflect performance. The light interventions had minimal effect. Despite apparent recovery following each extended sleep opportunity, residual performance impairment remained and deteriorated rapidly when rechallenged with subsequent sleep loss. None of the group-average models were capable of predicting both the build-up in impairment and recovery profile of performance observed at the group or individual level, raising concerns regarding their use in real-world settings to predict performance and improve safety. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    PubMed Central

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important implications for understanding and managing sleep loss-induced cognitive impairment in emergency response, disaster management, military operations, and other dynamic real-world settings with uncertain outcomes and imperfect information. Citation: Whitney P, Hinson JM, Jackson ML, Van Dongen HPA. Feedback blunting: total sleep deprivation impairs decision making that requires updating based on feedback. SLEEP 2015;38(5):745–754. PMID:25515105

  14. Optimizing sleep to maximize performance: implications and recommendations for elite athletes.

    PubMed

    Simpson, N S; Gibbs, E L; Matheson, G O

    2017-03-01

    Despite a growing body of literature demonstrating a positive relationship between sleep and optimal performance, athletes often have low sleep quality and quantity. Insufficient sleep among athletes may be due to scheduling constraints and the low priority of sleep relative to other training demands, as well as a lack of awareness of the role of sleep in optimizing athletic performance. Domains of athletic performance (e.g., speed and endurance), neurocognitive function (e.g., attention and memory), and physical health (e.g., illness and injury risk, and weight maintenance) have all been shown to be negatively affected by insufficient sleep or experimentally modeled sleep restriction. However, healthy adults are notoriously poor at self-assessing the magnitude of the impact of sleep loss, underscoring the need for increased awareness of the importance of sleep among both elite athletes and practitioners managing their care. Strategies to optimize sleep quality and quantity in athletes include approaches for expanding total sleep duration, improving sleep environment, and identifying potential sleep disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  16. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  17. Portable Diagnostic Devices for Identifying Obstructive Sleep Apnea among Commercial Motor Vehicle Drivers: Considerations and Unanswered Questions

    PubMed Central

    Zhang, Chunbai; Berger, Mark; Malhotra, Atul; Kales, Stefanos N.

    2012-01-01

    Obstructive sleep apnea (OSA), a syndrome defined by breathing abnormalities during sleep, can lead to fatigue and excessive daytime sleepiness (EDS) with an increased risk of motor vehicle crashes. Identifying commercial motor vehicle operators with unrecognized OSA is a major public health priority. Portable monitors (PMs) are being actively marketed to trucking firms as potentially lower-cost and more accessible alternatives to the reference standard of in-laboratory polysomnography (PSG) in the diagnosis of OSA among commercial motor vehicle operators. Several factors regarding PMs remain uncertain in this unique patient population: their sensitivity and specificity; the cost-benefit ratio of the PMs versus PSG; potential barriers from human factors; and evolving technologic advancement. Human factors that alter test accuracy are a major concern among commercial drivers motivated to gain/maintain employment. Current available data using PMs as a diagnostic tool among CMV operators indicate relatively high data loss and high loss to follow-up. Loss to follow-up has also been an issue using PSG in commercial motor vehicle operators. Furthermore, PM testing and PM results interpretation protocols may have no sleep specialist oversight, and sometimes minimal physician oversight and involvement. Additional studies comparing unattended and unmonitored PMs directly against full in-laboratory PSG are needed to provide evidence for their efficacy among commercial motor vehicle operators. Citation: Zhang C; Berger M; Malhotra A; Kales SN. Portable diagnostic devices for identifying obstructive sleep apnea among commercial motor vehicle drivers: considerations and unanswered questions. SLEEP 2012;35(11):1481-1489. PMID:23115397

  18. Real-time individualization of the unified model of performance.

    PubMed

    Liu, Jianbo; Ramakrishnan, Sridhar; Laxminarayan, Srinivas; Balkin, Thomas J; Reifman, Jaques

    2017-12-01

    Existing mathematical models for predicting neurobehavioural performance are not suited for mobile computing platforms because they cannot adapt model parameters automatically in real time to reflect individual differences in the effects of sleep loss. We used an extended Kalman filter to develop a computationally efficient algorithm that continually adapts the parameters of the recently developed Unified Model of Performance (UMP) to an individual. The algorithm accomplishes this in real time as new performance data for the individual become available. We assessed the algorithm's performance by simulating real-time model individualization for 18 subjects subjected to 64 h of total sleep deprivation (TSD) and 7 days of chronic sleep restriction (CSR) with 3 h of time in bed per night, using psychomotor vigilance task (PVT) data collected every 2 h during wakefulness. This UMP individualization process produced parameter estimates that progressively approached the solution produced by a post-hoc fitting of model parameters using all data. The minimum number of PVT measurements needed to individualize the model parameters depended upon the type of sleep-loss challenge, with ~30 required for TSD and ~70 for CSR. However, model individualization depended upon the overall duration of data collection, yielding increasingly accurate model parameters with greater number of days. Interestingly, reducing the PVT sampling frequency by a factor of two did not notably hamper model individualization. The proposed algorithm facilitates real-time learning of an individual's trait-like responses to sleep loss and enables the development of individualized performance prediction models for use in a mobile computing platform. © 2017 European Sleep Research Society.

  19. Association between sleep deficiency and cardiometabolic disease: implications for health disparities

    PubMed Central

    Rangaraj, Vittobai Rashika; Knutson, Kristen L.

    2016-01-01

    Cardiometabolic diseases, which include obesity, diabetes, hypertension and cardiovascular disease, are associated with reduced quality of life and reduced life expectancy. Unfortunately, racial/ethnic and socioeconomic disparities in these diseases exist such that minority populations, such as African Americans and Hispanics, and those of lower socioeconomic status, experience a greater burden. Several reports have indicated that there are differences in sleep duration and quality that mirror the disparities in cardiometabolic disease. The goal of this paper is to review the association between sleep and cardiometabolic disease risk because of the possibility that suboptimal sleep may partially mediate the cardiometabolic disease disparities. We will review both experimental studies that have restricted sleep duration or impaired sleep quality and examined biomarkers of cardiometabolic disease risk, including glucose metabolism and insulin sensitivity, appetite regulation and food intake, and immune function. We will also review observational studies that have examined the association between habitual sleep duration and quality and the prevalence or risk of obesity, diabetes, hypertension and cardiovascular disease. Many experimental and observational studies do support an association between suboptimal sleep and increased cardiometabolic disease risk. PMID:26431758

  20. Effects of noise on sleep inertia as a function of circadian placement of a one-hour nap.

    PubMed

    Tassi, P; Nicolas, A; Dewasmes, G; Eschenlauer, R; Ehrhart, J; Salame, P; Muzet, A; Libert, J P

    1992-08-01

    The purpose of the present study was to analyse the arousing effects of noise on sleep inertia as a function of circadian placement of a one-hour nap. In a first experiment, we measured the effects of sleep inertia in a neutral acoustic environment after a one-hour nap placed either at 0100 or 0400 on response time during a spatial memory test. In a second experiment were analysed the effects of an intense continuous noise on sleep inertia. The results showed that noise produced a total abolition of sleep inertia after an early nap (0000 to 0100). This may be due to the arousing effect of noise; however, results are less clear after a late nap 0300 to 0400 as noise seems to be ineffective. This result is discussed in terms of either a function of time-of-day effect or of prior sleep intensity. Moreover, our data suggest a possible interaction of noise with partial sleep deprivation leading to a slight deleterious effect those subjects who did not sleep at all.

  1. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    PubMed

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Sleep deprived and sweating it out: the effects of total sleep deprivation on skin conductance reactivity to psychosocial stress.

    PubMed

    Liu, Jean C J; Verhulst, Silvan; Massar, Stijn A A; Chee, Michael W L

    2015-01-01

    We examined how sleep deprivation alters physiological responses to psychosocial stress by evaluating changes in skin conductance. Between-subjects design with one group allocated to 24 h of total sleep deprivation and the other to rested wakefulness. The study took place in a research laboratory. Participants were 40 healthy young adults recruited from a university. Sleep deprivation and feedback. Electrodermal activity was monitored while participants completed a difficult perceptual task with false feedback. All participants showed increased skin conductance levels following stress. However, compared to well-rested participants, sleep deprived participants showed higher skin conductance reactivity with increasing stress levels. Our results suggest that sleep deprivation augments allostatic responses to increasing psychosocial stress. Consequentially, we propose sleep loss as a risk factor that can influence the pathogenic effects of stress. © 2014 Associated Professional Sleep Societies, LLC.

  3. [Influence of environmental noise on sleep quality and sleeping disorders-implications for health].

    PubMed

    Kohlhuber, M; Bolte, G

    2011-12-01

    Environmental noise is a well-known risk factor influencing sleep-wake behavior and sleep quality. Epidemiologic studies have shown that environmental noise is regarded as the most annoying environmental factor. Noise causes modifications in physiologic and mental functions and may result in health outcomes like elevated blood pressure and ischemic heart disease. Reactions to high sound levels during sleep are decreased sleep intensity, arousals, and increased stress hormone secretion. Effects of poor sleep quality are reduced cognitive performance, tiredness, and psychosomatic symptoms. Long-term consequences of recurrent sleep loss due to environmental noise may be heart disease and increased medication intake. Arousals occur especially due to single noise events and intermittent noise. Laboratory and field studies showed no habituation of physiologic parameters to high sound levels. Sleep is especially sensitive to noise; therefore, sound levels during nighttime should be much lower than during daytime.

  4. Sleep, circadian rhythms, and psychomotor vigilance.

    PubMed

    Van Dongen, Hans P A; Dinges, David F

    2005-04-01

    Psychomotor vigilance performance is highly relevant to athletic performance. It is influenced by a sleep homeostatic process, which builds up pressure for sleep during wakefulness and dissipates this pressure during sleep, and a circadian rhythm process, which produces a waxing and waning of pressure for wakefulness over a 24 hours of the day. During total sleep deprivation, these two processes cause performance to deteriorate progressively over days, modulated within days by further performance reductions at night and relative improvements during the daytime. As the homeostatic pressure for sleep builds up higher across prolonged wakefulness, the rate of dissipation of that pressure during subsequent sleep is enhanced exponentially, so that even brief periods of sleep provide significant performance recuperation. Nevertheless, sleep restriction practiced on a chronic basis induces cumulative performance deficits of the same order of magnitude as observed during total sleep deprivation. There are also considerable individual differences in the degree of vulnerability to performance impairment from sleep loss, and these differences represent a trait.

  5. An experimental test of blunting using sleep-restriction as an acute stressor in Type D and non-Type D women.

    PubMed

    O'Leary, Éanna D; Howard, Siobhán; Hughes, Brian M; James, Jack E

    2013-10-01

    Recent years have seen a growing interest in evidence indicating that a low, or blunted, cardiovascular response to stress may predict increased risk for a range of adverse health outcomes. Type D personality has been associated with poor health in cardiac patients, and more recently, has been associated with lower reactivity to laboratory stress in healthy individuals, underpinned by an increase in vascular responding. Previous findings have also demonstrated that partial sleep restriction is characterised by a robust vascular profile. However, despite the fact that a vascular response profile underpins both reactivity in sleep restricted adults and blunted reactivity in healthy Type D adults, limited empirical work has examined the correlates of sleep restriction and Type D. The present study sought to investigate if manipulation of sleep duration in healthy Type D and non-Type D individuals would alter cardiovascular reactivity to stress, and in particular whether such manipulation could elucidate the comparative nature of blunting. Seventy female university students completed a laboratory social stress task while undergoing continuous hemodynamic monitoring, after either a night of partial sleep restriction or a full night's rest. In both groups, Type D participants exhibited relatively low SBP stress responses, consistent with the view that at-risk groups show blunting in (some indices of) cardiovascular reactivity. For non-Type D participants, low SBP responses were observed only in participants who had undergone sleep restriction, suggesting that sleep-restriction served as an environmental stressor which precipitated in non-Type D persons a cardiovascular stress response resembling that ordinarily seen in Type D persons. This blunted response was associated with an increase in vascular responding. Thus, the findings suggest that blunting is characterised not only by reductions in some (frequently studied) cardiovascular parameters, but also by increases in others. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Sleep in elite athletes and nutritional interventions to enhance sleep.

    PubMed

    Halson, Shona L

    2014-05-01

    Sleep has numerous important physiological and cognitive functions that may be particularly important to elite athletes. Recent evidence, as well as anecdotal information, suggests that athletes may experience a reduced quality and/or quantity of sleep. Sleep deprivation can have significant effects on athletic performance, especially submaximal, prolonged exercise. Compromised sleep may also influence learning, memory, cognition, pain perception, immunity and inflammation. Furthermore, changes in glucose metabolism and neuroendocrine function as a result of chronic, partial sleep deprivation may result in alterations in carbohydrate metabolism, appetite, food intake and protein synthesis. These factors can ultimately have a negative influence on an athlete's nutritional, metabolic and endocrine status and hence potentially reduce athletic performance. Research has identified a number of neurotransmitters associated with the sleep-wake cycle. These include serotonin, gamma-aminobutyric acid, orexin, melanin-concentrating hormone, cholinergic, galanin, noradrenaline, and histamine. Therefore, nutritional interventions that may act on these neurotransmitters in the brain may also influence sleep. Carbohydrate, tryptophan, valerian, melatonin and other nutritional interventions have been investigated as possible sleep inducers and represent promising potential interventions. In this review, the factors influencing sleep quality and quantity in athletic populations are examined and the potential impact of nutritional interventions is considered. While there is some research investigating the effects of nutritional interventions on sleep, future research may highlight the importance of nutritional and dietary interventions to enhance sleep.

  7. Atypical sexual behavior during sleep.

    PubMed

    Guilleminault, Christian; Moscovitch, Adam; Yuen, Kin; Poyares, Dalva

    2002-01-01

    This article reports a case series of atypical sexual behavior during sleep, which is often harmful to patients or bed partners. Eleven subjects underwent clinical evaluation of complaints of sleep-related atypical sexual behavior. Complaints included violent masturbation, sexual assaults, and continuous (and loud) sexual vocalizations during sleep. One case was a medical-legal case. Sleep logs, clinical evaluations, sleep questionnaires, structured psychiatric interviews, polysomnography, actigraphy, home electroencephalographic monitoring during sleep, and clinical electroencephalographic monitoring while awake and asleep were used to determine clinical diagnoses. Atypical sexual behaviors during sleep were associated with feelings of guilt, shame, and depression. Because of these feelings, patients and bed partners often tolerated the abnormal behavior for long periods of time without seeking medical attention. The following pathologic sleep disorders were demonstrated on polysomnography: partial complex seizures, sleep-disordered breathing, stage 3 to 4 non-rapid eye movement (REM) sleep parasomnias, and REM sleep behavior disorder. These findings were concurrent with morning amnesia. The atypical behaviors were related to different syndromes despite the similarity of complaints from bed partners. In most cases the disturbing and often harmful symptoms were controlled when counseling was instituted and sleep disorders were treated. In some cases treatment of seizures or psychiatric disorders was also needed. Clonazepam with simultaneous psychotherapy was the most common successful treatment combination. The addition of antidepressant or antiepileptic medications was required in specific cases.

  8. Bidirectional relationship between sleep and optimism with depressive mood as a mediator: A longitudinal study of Chinese working adults.

    PubMed

    Lau, Esther Yuet Ying; Harry Hui, C; Cheung, Shu-Fai; Lam, Jasmine

    2015-11-01

    Sleep and optimism are important psycho-biological and personality constructs, respectively. However, very little work has examined the causal relationship between them, and none has examined the potential mechanisms operating in the relationship. This study aimed to understand whether sleep quality was a cause or an effect of optimism, and whether depressive mood could explain the relationship. Internet survey data were collected from 987 Chinese working adults (63.4% female, 92.4% full-time workers, 27.0% married, 90.2% Hong Kong residents, mean age=32.59 at three time-points, spanning about 19 months). Measures included a Chinese attributional style questionnaire, the Pittsburgh Sleep Quality Index, and the Depression Anxiety Stress Scale. Cross-sectional analyses revealed moderate correlations among sleep quality, depressive mood, and optimism. Cross-lagged analyses showed a bidirectional causality between optimism and sleep. Path analysis demonstrated that depressive mood fully mediated the influence of optimism on sleep quality, and it partially mediated the influence of sleep quality on optimism. Optimism improves sleep. Poor sleep makes a pessimist. The effects of sleep quality on optimism could not be fully explained by depressive mood, highlighting the unique role of sleep on optimism. Understanding the mechanisms of the feedback loop of sleep quality, mood, and optimism may provide insights for clinical interventions for individuals presented with mood-related problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    PubMed

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.

  10. PubMed

    Monaca, C; Franco, P; Philip, P; Dauvilliers, Y

    In the new international classification of sleep disorders (ICSD-3), narcolepsy is differentiated into two distinct pathologies: type 1 narcolepsy (NT1) and type 2 narcolepsy (NT2). NT1 is characterised by periods of an irrepressible need to sleep, cataplexy (a sudden loss of muscle tone triggered by emotion) and in some cases the presence of symptoms such as hypnagogic hallucinations, sleep paralysis and disturbed night-time sleep. Its physiopathology is based on the loss of hypocretin neurons in the hypothalamus, seemingly connected to an auto-immune process. By definition, cataplexy is absent and the hypocretin levels in the CSF are normal in NT2. Confirming the diagnosis requires polysomnography and multiple sleep latency tests. The choice of further investigations is based on the presence or absence of typical cataplexy. Further investigations include HLA typing, lumbar puncture to measure the hypocretin level in the CSF, or even brain imagery in the case of narcolepsy suspected to be secondary to an underlying pathology. In this consensus we propose recommendations for the work-up to be carried out during diagnosis and follow-up for patients suffering from narcolepsy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Subjective but Not Actigraphy-Defined Sleep Predicts Next-Day Fatigue in Chronic Fatigue Syndrome: A Prospective Daily Diary Study.

    PubMed

    Russell, Charlotte; Wearden, Alison J; Fairclough, Gillian; Emsley, Richard A; Kyle, Simon D

    2016-04-01

    This study aimed to (1) examine the relationship between subjective and actigraphy-defined sleep, and next-day fatigue in chronic fatigue syndrome (CFS); and (2) investigate the potential mediating role of negative mood on this relationship. We also sought to examine the effect of presleep arousal on perceptions of sleep. Twenty-seven adults meeting the Oxford criteria for CFS and self-identifying as experiencing sleep difficulties were recruited to take part in a prospective daily diary study, enabling symptom capture in real time over a 6-day period. A paper diary was used to record nightly subjective sleep and presleep arousal. Mood and fatigue symptoms were rated four times each day. Actigraphy was employed to provide objective estimations of sleep duration and continuity. Multilevel modelling revealed that subjective sleep variables, namely sleep quality, efficiency, and perceiving sleep to be unrefreshing, predicted following-day fatigue levels, with poorer subjective sleep related to increased fatigue. Lower subjective sleep efficiency and perceiving sleep as unrefreshing predicted reduced variance in fatigue across the following day. Negative mood on waking partially mediated these relationships. Increased presleep cognitive and somatic arousal predicted self-reported poor sleep. Actigraphy-defined sleep, however, was not found to predict following-day fatigue. For the first time we show that nightly subjective sleep predicts next-day fatigue in CFS and identify important factors driving this relationship. Our data suggest that sleep specific interventions, targeting presleep arousal, perceptions of sleep and negative mood on waking, may improve fatigue in CFS. © 2016 Associated Professional Sleep Societies, LLC.

  12. Sleep-obesity relation: underlying mechanisms and consequences for treatment.

    PubMed

    St-Onge, M-P

    2017-02-01

    Short sleep duration has been associated with obesity in numerous epidemiological studies. However, such association studies cannot establish evidence of causality. Clinical intervention studies, on the other hand, can provide information on a causal effect of sleep duration on markers of weight gain: energy intake and energy expenditure. Herein is an overview of the science related to the impact of sleep restriction, in the context of clinical intervention studies, on energy intake, energy expenditure and body weight. Additionally, studies that evaluate the impact of sleep restriction on weight loss and the impact of sleep extension on appetite are discussed. Information to date suggests that weight management is hindered when attempted in the context of sleep restriction, and the public should be made aware of the negative consequences of sleep restriction for weight regulation. © 2017 World Obesity Federation.

  13. Future Directions in Sleep and Developmental Psychopathology.

    PubMed

    Meltzer, Lisa J

    2017-01-01

    It is critical for psychologists to gain a better understanding about the intersection between sleep and developmental psychopathology. However, while many strive to answer the question of whether sleep causes developmental psychopathology, or vice versa, ultimately the relationship between sleep and developmental psychopathology is complex and dynamic. This article considers future directions in the field of clinical child and adolescent psychology that go beyond this mechanistic question, highlighting areas important to address for clinicians and researchers who strive to better understand how best to serve children and adolescents with developmental psychopathology. Questions are presented about what is normal in terms of sleep across development, the role of individual variability in terms of sleep needs and vulnerability to sleep loss, and how sleep may serve as a risk or resilience factor for developmental psychopathology, concluding with considerations for interventions.

  14. Review of somatic symptoms in post-traumatic stress disorder.

    PubMed

    Gupta, Madhulika A

    2013-02-01

    Post-traumatic stress disorder (PTSD) is associated with both (1) 'ill-defined' or 'medically unexplained' somatic syndromes, e.g. unexplained dizziness, tinnitus and blurry vision, and syndromes that can be classified as somatoform disorders (DSM-IV-TR); and (2) a range of medical conditions, with a preponderance of cardiovascular, respiratory, musculoskeletal, neurological, and gastrointestinal disorders, diabetes, chronic pain, sleep disorders and other immune-mediated disorders in various studies. Frequently reported medical co-morbidities with PTSD across various studies include cardiovascular disease, especially hypertension, and immune-mediated disorders. PTSD is associated with limbic instability and alterations in both the hypothalamic- pituitary-adrenal and sympatho-adrenal medullary axes, which affect neuroendocrine and immune functions, have central nervous system effects resulting in pseudo-neurological symptoms and disorders of sleep-wake regulation, and result in autonomic nervous system dysregulation. Hypervigilance, a central feature of PTSD, can lead to 'local sleep' or regional arousal states, when the patient is partially asleep and partially awake, and manifests as complex motor and/or verbal behaviours in a partially conscious state. The few studies of the effects of standard PTSD treatments (medications, CBT) on PTSD-associated somatic syndromes report a reduction in the severity of ill-defined and autonomically mediated somatic symptoms, self-reported physical health problems, and some chronic pain syndromes.

  15. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significancemore » was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.« less

  16. Elevated body temperature during sleep in orexin knockout mice

    PubMed Central

    Mochizuki, Takatoshi; Klerman, Elizabeth B.; Sakurai, Takeshi; Scammell, Thomas E.

    2008-01-01

    Core body temperature (Tb) is influenced by many physiological factors, including behavioral state, locomotor activity, and biological rhythms. To determine the relative roles of these factors, we examined Tb in orexin knockout (KO) mice, which have a narcolepsy-like phenotype with severe sleep-wake fragmentation. Because orexin is thought to promote heat production during wakefulness, we hypothesized that orexin KO mice would have lower Tb while awake. Surprisingly, the Tb of orexin KO mice was 0.4°C higher than wild-type (WT) littermates during the dark period. Orexin KO mice had normal diurnal variations in Tb, but the ultradian rhythms of Tb, locomotor activity, and wakefulness were markedly reduced. During sustained wakefulness, Tb was the same in both groups. During the first 15 min of spontaneous sleep, the Tb of WT mice decreased by 1.0°C, but Tb in orexin KO mice decreased only 0.4°C. Even during intense recovery sleep after 8 hr of sleep deprivation, the Tb of orexin KO mice remained 0.7°C higher than in WT mice. This blunted fall in Tb during sleep may be due to inadequate activation of heat loss mechanisms or sustained activity in heat-generating systems. These observations reveal an unexpected role for orexin in thermoregulation. In addition, because heat loss is an essential aspect of sleep, the blunted fall in Tb of orexin KO mice may provide an explanation for the fragmented sleep of narcolepsy. PMID:16556901

  17. Sleep disorder risk factors among student athletes.

    PubMed

    Monma, Takafumi; Ando, Akira; Asanuma, Tohru; Yoshitake, Yutaka; Yoshida, Goichiro; Miyazawa, Taiki; Ebine, Naoyuki; Takeda, Satoko; Omi, Naomi; Satoh, Makoto; Tokuyama, Kumpei; Takeda, Fumi

    2018-04-01

    To clarify sleep disorder risk factors among student athletes, this study examined the relationship between lifestyle habits, competition activities, psychological distress, and sleep disorders. Student athletes (N = 906; male: 70.1%; average age: 19.1 ± 0.8 years) in five university sports departments from four Japanese regions were targeted for analysis. Survey items were attributes (age, gender, and body mass index), sleep disorders (recorded through the Pittsburgh Sleep Quality Index), lifestyle habits (bedtime, wake-up time, smoking, drinking alcohol, meals, part-time jobs, and use of electronics after lights out), competition activities (activity contents and competition stressors), and psychological distress (recorded through the K6 scale). The relation between lifestyle habits, competition activities, psychological distress, and sleep disorders was explored using logistic regression analysis. Results of multivariate logistic regression analysis with attributes as adjustment variables showed that "bedtime," "wake-up time," "psychological distress," "part-time jobs," "smartphone/cellphone use after lights out," "morning practices," and "motivation loss stressors," were risk factors that were independently related to sleep disorders. Sleep disorders among student athletes are related to lifestyle habits such as late bedtime, early wake-up time, late night part-time jobs, and use of smartphones/cellphones after lights out; psychological distress; and competition activities such as morning practices and motivation loss stressors related to competition. Therefore, this study suggests the importance of improving these lifestyle habits, mental health, and competition activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Persistent insomnia: the role of objective short sleep duration and mental health.

    PubMed

    Vgontzas, Alexandros N; Fernandez-Mendoza, Julio; Bixler, Edward O; Singareddy, Ravi; Shaffer, Michele L; Calhoun, Susan L; Liao, Duanping; Basta, Maria; Chrousos, George P

    2012-01-01

    Few population-based, longitudinal studies have examined risk factors for persistent insomnia, and the results are inconsistent. Furthermore, none of these studies have examined the role of polysomnographic (PSG) variables such as sleep duration or sleep apnea on the persistence of insomnia. Representative longitudinal study. Sleep laboratory. From a random, general population sample of 1741 individuals of the adult Penn State Cohort, 1395 were followed-up after 7.5 years. Individuals underwent one-night PSG and full medical evaluation at baseline and a telephone interview at follow-up. PSG sleep duration was analyzed as a continuous variable and as a categorical variable: < 6 h sleep (short sleep duration) and ≥ 6 h sleep (longer sleep duration). The rates of insomnia persistence, partial remission, and full remission were 44.0%, 30.0%, and 26.0%, respectively. Objective short sleep duration significantly increased the odds of persistent insomnia as compared to normal sleep (OR = 3.19) and to fully remitted insomnia (OR = 4.92). Mental health problems at baseline were strongly associated with persistent insomnia as compared to normal sleep (OR = 9.67) and to a lesser degree compared to fully remitted insomnia (OR = 3.68). Smoking, caffeine, and alcohol consumption and sleep apnea did not predict persistent insomnia. Objective short sleep duration and mental health problems are the strongest predictors of persistent insomnia. These data further support the validity and clinical utility of objective short sleep duration as a novel marker of the biological severity of insomnia.

  19. The Impact of Sleep Deprivation on the Brain

    PubMed

    Trošt Bobić, Tatjana; Šečić, Ana; Zavoreo, Iris; Matijević, Valentina; Filipović, Branimir; Kolak, Željka; Bašić Kes, Vanja; Ciliga, Dubravka; Sajković, Dubravka

    2016-09-01

    Each sleep phase is characterized by specific chemical, cellular and anatomic events of vital importance for normal neural functioning. Different forms of sleep deprivation may lead to a decline of cognitive functions in individuals. Studies in this field make a distinction between total sleep deprivation, chronic sleep restriction, and the situation of sleep disruption. Investigations covering the acute effects of sleep deprivation on the brain show that the discovered behavioral deficits in most cases regenerate after two nights of complete sleep. However, some studies done on mice emphasize the possible chronic effects of long-term sleep deprivation or chronic restriction on the occurrence of neurodegenerative diseases such as Alzheimer’s disease and dementia. In order to better understand the acute and chronic effects of sleep loss, the mechanisms of neural adaptation in the situations of insufficient sleep need to be further investigated. Future integrative research on the impact of sleep deprivation on neural functioning measured through the macro level of cognitive functions and the micro molecular and cell level could contribute to more accurate conclusions about the basic cellular mechanisms responsible for the detected behavioral deficits occurring due to sleep deprivation.

  20. The effect of sleep deprivation on leadership behaviour in military officers: an experimental study.

    PubMed

    Olsen, Olav Kjellevold; Pallesen, Ståle; Torsheim, Torbjørn; Espevik, Roar

    2016-12-01

    While several studies show that leaders frequently lack sleep, little is known about how this influences leadership behaviour. The present study encompasses an experiment that investigated how three main types of leadership behaviour: transformational (four sub-facets); transactional (two sub-facets); and passive-avoidant (two sub-facets) leadership differed across a rested and a long-term, partially sleep-deprived condition. A total of 16 military naval officers participated. In both conditions, the leaders managed a team of three subordinates in a navy navigation simulator, instructed to complete a specific mission (A or B). Both sleep state (rested or sleep deprived) and mission were counterbalanced. Leadership behaviour was video recorded and subsequently rated on the three leadership behaviours. Overall, the scores on transformational leadership (and on two of four sub-facets) and transactional leadership (on both sub-facets) decreased from the rested to sleep-deprived condition, whereas scores on passive-avoidant leadership overall (and on both sub-facets) increased from the rested to sleep-deprived condition. This study underscores the importance of including sleep as a potentially important determinant when assessing leadership effectiveness. © 2016 European Sleep Research Society.

  1. Artificial light at night causes an unexpected increase in oxalate in developing male songbirds

    PubMed Central

    Pinxten, Rianne; Eens, Marcel

    2018-01-01

    Abstract Artificial light at night (ALAN) is a widespread and increasing environmental pollutant with known negative impacts on animal physiology and development. Physiological effects could occur through sleep disruption and deprivation, but this is difficult to quantify, especially in small developing birds. Sleep loss can potentially be quantified by using oxalate, a biomarker for sleep debt in adult humans and rats. We examined the effect of ALAN on oxalate in free-living developing great tits (Parus major) as effects during early-life could have long-lasting and irreversible consequences. Nestlings’ physiology was quantified at baseline (= 13 days after hatching) and again after two nights of continued darkness (control) or exposure to ALAN (treatment). We found that ALAN increased oxalate levels but only in male nestlings, rather than decreasing it as was found in sleep-deprived humans and rats. Our results using developing birds differ strongly from those obtained with adult mammals. However, we used ALAN to reduce sleep while in rats forced movement was used. Finally, we used free-living opposed to laboratory animals. Whether oxalate is a reliable marker of sleep loss in developing great tits remains to be examined. Potentially the increase of oxalate in male nestlings was unrelated to sleep debt. Nonetheless, our results substantiate physiological effects of ALAN in developing animals and may provide a foundation for future work with free-living animals. PMID:29479432

  2. GABAergic Transmission in Rat Pontine Reticular Formation Regulates the Induction Phase of Anesthesia and Modulates Hyperalgesia Caused by Sleep Deprivation

    PubMed Central

    Vanini, Giancarlo; Nemanis, Kriste; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia, and pain. The role of PnO GABA in modulating these states remains incompletely understood. The present study used time to Loss and time to Resumption of Righting Response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (1) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR, and nociception; (2) propofol decreases GABA levels in the PnO; and (3) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor (3-MPA) or a GABA uptake inhibitor (NPA) into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (−18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss. PMID:24674578

  3. GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation.

    PubMed

    Vanini, Giancarlo; Nemanis, Kriste; Baghdoyan, Helen A; Lydic, Ralph

    2014-07-01

    The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nociception; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor [nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (-18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Sleep disturbance as a proximal predictor of suicidal intent in recently hospitalized attempters.

    PubMed

    Ferentinos, Panagiotis; Porichi, Evgenia; Christodoulou, Christos; Dikeos, Dimitris; Papageorgiou, Charalambos; Douzenis, Athanassios

    2016-03-01

    Insomnia and short self-reported sleep duration are associated with suicidality, adjusting for concurrent depression. Yet, it is unknown whether they correlate with attempters' suicidal intent and the lethality of suicidal acts. This cross-sectional study in hospitalized suicide attempters aimed to investigate whether temporally proximal self-reported sleep disturbance predicts suicidal intent or exerts mediatory effects. Attempters were retrospectively assessed for insomnia severity (Athens Insomnia Scale [AIS]) and average night sleep duration (ANSD) for 2 weeks preceding attempt. The effects of insomnia or ANSD on suicidal intent (Beck's Suicide Intent Scale [BSIS]) were explored in multiple regressions. Mediatory effects were investigated in structural equation models (SEMs). A total of 127 adults (59.8% females) were interviewed within two weeks post-suicide attempt. Major psychiatric diagnoses included affective, psychotic, and alcohol-related disorders. Of the participants, 38.6% had current major depression (MDE). A total of 62.2% reported insomnia (AIS ≥ 6); 42.5% reported short ANSD (≤5 hours). BSIS was predicted by AIS (p = 0.034), short ANSD (p = 0.015), or insomnia with short ANSD (p = 0.006). In SEMs, indirect effects of current MDE, affective disorder, and alcohol-related disorder diagnoses on BSIS via AIS tested significant; both AIS and short ANSD partially mediated the effect of age on BSIS. Insomnia, short ANSD, and, in particular, insomnia with short ANSD proximally predicted suicidal intent in recent attempters. The effects of current depression and affective and alcohol-related disorder diagnoses on suicidal intent were partially mediated by insomnia; both insomnia and short ANSD partially mediated the effect of age on suicidal intent. Therefore, management of sleep disturbance in at-risk subjects is important, as it may reduce unfavorable outcomes of suicidal acts. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Is sleep deprivation a contributor to obesity in children?

    PubMed

    Chaput, Jean-Philippe

    2016-03-01

    Chronic lack of sleep (called "sleep deprivation") is common in modern societies with 24/7 availability of commodities. Accumulating evidence supports the role of reduced sleep as contributing to the current obesity epidemic in children and youth. Longitudinal studies have consistently shown that short sleep duration is associated with weight gain and the development of obesity. Recent experimental studies have reported that sleep restriction leads to weight gain in humans. Increased food intake appears to be the main mechanism by which insufficient sleep results in weight gain. Voluntary sleep restriction has been shown to increase snacking, the number of meals eaten per day, and the preference for energy-dense foods. Although the causes of sleep loss in the pediatric population are numerous, more research looking at screen exposure before bedtime and its effects on sleep is needed given the pervasiveness of electronic media devices in today's environment. Health professionals should routinely ask questions about sleep and promote a good night's sleep because insufficient sleep impacts activity and eating behaviors. Future research should examine the clinical benefits of increasing sleep duration on eating behaviors and body weight control and determine the importance of adequate sleep to improve the treatment of obesity.

  6. A review of sleepwalking (somnambulism): the enigma of neurophysiology and polysomnography with differential diagnosis of complex partial seizures.

    PubMed

    Hughes, John R

    2007-12-01

    The goal of this report is to review all aspects of sleepwalking (SW), also known as somnambulism. Various factors seem to initiate SW, especially drugs, stress, and sleep deprivation. As an etiology, heredity is important, but other conditions include thyrotoxicosis, stress, and herpes simplex encephalitis. Psychological characteristics of sleepwalkers often include aggression, anxiety, panic disorder, and hysteria. Polysomnographic characteristics emphasize abnormal deep sleep associated with arousal and slow wave sleep fragmentation. In the differential diagnosis, the EEG is important to properly identify a seizure disorder, rather than SW. Associated disorders are Tourette's syndrome, sleep-disordered breathing, and migraine. Various kinds of treatment are discussed, as are legal considerations, especially murder during sleepwalking.

  7. [Prevalence of Obstructive Sleep Apnea Syndrome among holders of a category B driver's license and among professionals in the Province of Pesaro-Urbino (Italy)].

    PubMed

    Vittoria, Emanuela; Sisti, Davide; Pascucci, Paolo; Carlotti, Eugenio; Cappelli, Giorgio; Grossi, Paola

    2017-01-01

    Obstructive Sleep Apnea Syndrome (OSAS) is a sleeping disorder caused by repeated episodes of partial or complete obstruction of the upper airways during sleep. During 2013, a pilot project was performed in the Marche region (Italy), co-jointly by the University "Politecnica delle Marche" and the Italian National Institute of Work Accident Insurance (INAIL), among holders of a category "B" driver's licence and among professionals undergoing screening at an Occupational Medicine Service covering the Province of Pesaro-Urbino (Italy). Nineteen percent of 553 subjects undergoing a screening examination were found to be affected by OSAS. The data collected is of great interest in the phase of implementation of new national laws.

  8. Assessment of Sleep Quantity and Sleep Disturbances During Recovery From Sports-Related Concussion in Youth Athletes.

    PubMed

    Murdaugh, Donna L; Ono, Kim E; Reisner, Andrew; Burns, Thomas G

    2018-05-01

    To determine the relation between sleep quantity and sleep disturbances on symptoms and neurocognitive ability during the acute phase (<7d) and after sports-related concussion (SRC; >21d). Prospective inception cohort study. General community setting of regional middle and high schools. A sample (N=971) including youth athletes with SRC (n=528) and controls (n=443) (age, 10-18y). Not applicable. Athletes completed the Immediate Post-Concussion Assessment and Cognitive Testing battery. Partial correlation analyses and independent t tests were conducted to assess sleep quantity the night before testing. Multivariate analysis of covariance was used to assess sleep disturbances and their interaction with age. Less sleep quantity was correlated with greater report of cognitive (P=.001) and neuropsychological (P=.024) symptoms specific to prolonged recovery from SRC. Sleep disturbances significantly affect each migraine, cognitive, and neuropsychological symptoms (P<.001). A significant interaction was found between sleep disturbances and age (P=.04) at >21 days post-SRC. Findings emphasize that the continued presence of low sleep quantity and sleep disturbances in youth athletes with SRC should be a specific indicator to health professionals that these athletes are at an increased risk of protracted recovery. Further research should identify additional factors that may interact with sleep to increase the risk of protracted recovery. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure.

    PubMed

    DePorter, Danielle P; Coborn, Jamie E; Teske, Jennifer A

    2017-10-01

    Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain. © 2017 The Obesity Society.

  10. Recognising sleep apnoea.

    PubMed

    How, C H; Hsu, P P; Tan, K L

    2015-03-01

    Most people spend a third of their lives sleeping, and thus, sleep has a major impact on all of us. As sleep is a function and not a structure, it is challenging to treat and prevent its complications. Sleep apnoea is one such complication, with serious and potentially life-threatening consequences. Local studies estimate that about 15% of Singapore's population is afflicted with sleep apnoea. The resulting sleep fragmentation may result in poor quality of sleep, leading to daytime sleepiness. Sleep apnoea may also be the underlying cause of high blood pressure, memory loss, poor concentration and work performance, motor vehicle accidents, and marital problems. Evaluation involves a sleep study, followed by patient education, and an individualised step-wise management approach should be explored. Many patients will require follow-up for a long period of time, as management options may not offer a permanent cure; other contributory causes may arise at different phases of their lives, compounded by genetic and hormonal issues, ethnicity and the modern hazards of a fast-paced society.

  11. Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit.

    PubMed

    Liu, Sha; Liu, Qili; Tabuchi, Masashi; Wu, Mark N

    2016-06-02

    Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A pilot study of the safety implications of Australian nurses' sleep and work hours.

    PubMed

    Dorrian, Jillian; Lamond, Nicole; van den Heuvel, Cameron; Pincombe, Jan; Rogers, Ann E; Dawson, Drew

    2006-01-01

    The frequency and severity of adverse events in Australian healthcare is under increasing scrutiny. A recent state government report identified 31 events involving "death or serious [patient] harm" and 452 "very high risk" incidents. Australia-wide, a previous study identified 2,324 adverse medical events (AME) in a single year, with more than half considered preventable. Despite the recognized link between fatigue and error in other industries, to date, few studies of medical errors have assessed the fatigue of the healthcare professionals involved. Nurses work extended and unpredictable hours with a lack of regular breaks and are therefore likely to experience elevated fatigue. Currently, there is very little available information on Australian nurses' sleep or fatigue levels, nor is there any information about whether this affects their performance. This study therefore aims to examine work hours, sleep, fatigue and error occurrence in Australian nurses. Using logbooks, 23 full-time nurses in a metropolitan hospital completed daily recordings for one month (644 days, 377 shifts) of their scheduled and actual work hours, sleep length and quality, sleepiness, and fatigue levels. Frequency and type of nursing errors, near errors, and observed errors (made by others) were recorded. Nurses reported struggling to remain awake during 36% of shifts. Moderate to high levels of stress, physical exhaustion, and mental exhaustion were reported on 23%, 40%, and 36% of shifts, respectively. Extreme drowsiness while driving or cycling home was reported on 45 occasions (11.5%), with three reports of near accidents. Overall, 20 errors, 13 near errors, and 22 observed errors were reported. The perceived potential consequences for the majority of errors were minor; however, 11 errors were associated with moderate and four with potentially severe consequences. Nurses reported that they had trouble falling asleep on 26.8% of days, had frequent arousals on 34.0% of days, and that work-related concerns were either partially or fully responsible for their sleep disruption on 12.5% of occasions. Fourteen out of the 23 nurses reported using a sleep aid. The most commonly reported sleep aids were prescription medications (62.7%), followed by alcohol (26.9%). Total sleep duration was significantly shorter on workdays than days off (p < 0.01). In comparison to other workdays, sleep was significantly shorter on days when an error (p < 0.05) or a near error (p < 0.01) was recorded. In contrast, sleep was higher on workdays when someone else's error was recorded (p = 0.08). Logistic regression analysis indicated that sleep duration was a significant predictor of error occurrence (chi2 = 6.739, p = 0.009, e beta = 0.727). The findings of this pilot study suggest that Australian nurses experience sleepiness and related physical symptoms at work and during their trip home. Further, a measurable number of errors occur of various types and severity. Less sleep may lead to the increased likelihood of making an error, and importantly, the decreased likelihood of catching someone else's error. These pilot results suggest that further investigation into the effects of sleep loss in nursing may be necessary for patient safety from an individual nurse perspective and from a healthcare team perspective.

  13. Adolescents' electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age.

    PubMed

    Lemola, Sakari; Perkinson-Gloor, Nadine; Brand, Serge; Dewald-Kaufmann, Julia F; Grob, Alexander

    2015-02-01

    Adolescence is a time of increasing vulnerability for poor mental health, including depression. Sleep disturbance is an important risk factor for the development of depression during adolescence. Excessive electronic media use at night is a risk factor for both adolescents' sleep disturbance and depression. To better understand the interplay between sleep, depressive symptoms, and electronic media use at night, this study examined changes in adolescents' electronic media use at night and sleep associated with smartphone ownership. Also examined was whether sleep disturbance mediated the relationship between electronic media use at night and depressive symptoms. 362 adolescents (12-17 year olds, M = 14.8, SD = 1.3; 44.8% female) were included and completed questionnaires assessing sleep disturbance (short sleep duration and sleep difficulties) and depressive symptoms. Further, participants reported on their electronic media use in bed before sleep such as frequency of watching TV or movies, playing video games, talking or text messaging on the mobile phone, and spending time online. Smartphone ownership was related to more electronic media use in bed before sleep, particularly calling/sending messages and spending time online compared to adolescents with a conventional mobile phone. Smartphone ownership was also related to later bedtimes while it was unrelated to sleep disturbance and symptoms of depression. Sleep disturbance partially mediated the relationship between electronic media use in bed before sleep and symptoms of depression. Electronic media use was negatively related with sleep duration and positively with sleep difficulties, which in turn were related to depressive symptoms. Sleep difficulties were the more important mediator than sleep duration. The results of this study suggest that adolescents might benefit from education regarding sleep hygiene and the risks of electronic media use at night.

  14. Subjective but Not Actigraphy-Defined Sleep Predicts Next-Day Fatigue in Chronic Fatigue Syndrome: A Prospective Daily Diary Study

    PubMed Central

    Russell, Charlotte; Wearden, Alison J.; Fairclough, Gillian; Emsley, Richard A.; Kyle, Simon D.

    2016-01-01

    Study Objectives: This study aimed to (1) examine the relationship between subjective and actigraphy-defined sleep, and next-day fatigue in chronic fatigue syndrome (CFS); and (2) investigate the potential mediating role of negative mood on this relationship. We also sought to examine the effect of presleep arousal on perceptions of sleep. Methods: Twenty-seven adults meeting the Oxford criteria for CFS and self-identifying as experiencing sleep difficulties were recruited to take part in a prospective daily diary study, enabling symptom capture in real time over a 6-day period. A paper diary was used to record nightly subjective sleep and presleep arousal. Mood and fatigue symptoms were rated four times each day. Actigraphy was employed to provide objective estimations of sleep duration and continuity. Results: Multilevel modelling revealed that subjective sleep variables, namely sleep quality, efficiency, and perceiving sleep to be unrefreshing, predicted following-day fatigue levels, with poorer subjective sleep related to increased fatigue. Lower subjective sleep efficiency and perceiving sleep as unrefreshing predicted reduced variance in fatigue across the following day. Negative mood on waking partially mediated these relationships. Increased presleep cognitive and somatic arousal predicted self-reported poor sleep. Actigraphy-defined sleep, however, was not found to predict following-day fatigue. Conclusions: For the first time we show that nightly subjective sleep predicts next-day fatigue in CFS and identify important factors driving this relationship. Our data suggest that sleep specific interventions, targeting presleep arousal, perceptions of sleep and negative mood on waking, may improve fatigue in CFS. Citation: Russell C, Wearden AJ, Fairclough G, Emsley RA, Kyle SD. Subjective but not actigraphy-defined sleep predicts next-day fatigue in chronic fatigue syndrome: a prospective daily diary study. SLEEP 2016;39(4):937–944. PMID:26715232

  15. Fatal familial insomnia presenting with agrypnia excitata and very low atonia index level: A case report and literature review.

    PubMed

    Yang, Tae-Won; Park, Byeongsu; Kim, Keun Tae; Jun, Jin-Sun; Kim, Young-Soo; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jung, Ki-Young

    2018-05-01

    Fatal familial insomnia (FFI) is a human prion disease that is characterized by sleep-wake cycle deterioration, loss of slow-wave sleep, and motor overactivation over the daily 24-hour period. Here, we report the case of a 57-year-old man who had an irregular sleep-wake cycle and exhibited frequent movements and vocalizations during sleep. Video-polysomnography showed disrupted sleep structure, rapid alternation between sleep stages, and an absence of sleep spindles and slow-wave sleep. Moreover, body movements persisted throughout the entire sleep period, including rapid eye movement (REM) sleep. The atonia index was very low (<0.025) during REM sleep. Genetic testing revealed a prion protein gene mutation at codon 178, and the patient was diagnosed with FFI. We tried to treat with amantadine, doxycycline, and immunotherapies, but the disease progressed. Sleep disturbance is the most frequent and essential symptom of FFI. FFI is difficult to diagnose due to the low sensitivity of diagnostic tools. Diagnoses can be further supported by better knowledge of typical polysomnographic findings.

  16. Fatigue Risk Management in Aviation Maintenance: Current Best Practices and Potential Future Countermeasures

    DTIC Science & Technology

    2011-06-01

    consequence of an underlying medical condition, such as insomnia or sleep apnea (Kryger, Roth & Dement, 2005). In these situa- tions, medical attention will...of sleep loss for some mili- tary missions (Caldwell et al., 2009). There have been suggestions that such substances may have potential as fatigue...National Transportation Safety Board PERCLOS----Percentage of Eye Closure SAFTE -------- Sleep Activity Fatigue and Task Effectiveness SMS

  17. Specific headache factors predict sleep disturbances among youth with migraine.

    PubMed

    Heyer, Geoffrey L; Rose, Sean C; Merison, Kelsey; Perkins, Sara Q; Lee, Jo Ellen M

    2014-10-01

    There is a paucity of pediatric data addressing the complex relationship between primary headaches and sleep disturbances. Our study objective was to explore headache-related factors that predict sleep disturbance and to compare sleep complaints with other forms of headache-related disability among youth with migraines. A prospective cohort study was conducted in patients 10-18 years old with migraine or probable migraine and without daily sleep complaints. The patients completed a 90-day internet-based headache diary. On headache days, patients rated headache intensity, answered Pediatric Migraine Disability Assessment-based questions modified for daily scoring, and reported sleep disturbances that resulted as a direct effect of proximate headaches. Fifty-two patients generated 4680 diary entries, 984 patients (21%) involved headaches. Headache intensity (P = 0.009) and timing of headache onset (P < 0.001) were predictive of sleep disturbances. Three Pediatric Migraine Disability Assessment-based items were also associated with sleep disturbances: partial school-day absence (P = 0.04), recreational activities prevented (P < 0.001), and decreased functioning during recreational activities (P < 0.001). Sleep disturbances correlated positively and significantly with daily headache disability scores (rpb = 0.35; P < 0.01). We conclude that specific headache factors predict sleep disturbances among youth with primary headaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Obstructive sleep apnea in adults: epidemiology, clinical presentation, and treatment options.

    PubMed

    Lurie, Alain

    2011-01-01

    Obstructive sleep apnea (OSA) is characterized by repetitive episodes of complete and partial obstructions of the upper airway during sleep. The diagnosis of OSA requires the objective demonstration of abnormal breathing during sleep by measuring the respiratory disturbance index (RDI, events per hour of sleep), i.e. the frequency of apnea (complete upper airway obstruction), hypopnea (partial upper airway obstruction) and arousals from sleep related to respiratory efforts. OSA is defined by combining symptoms and an RDI ≥5 or by an RDI ≥15 without symptoms. The apnea-hypopnea index (AHI), the frequency of apnea and hypopnea events per hour of sleep, is widely used to define OSA (many clinical and epidemiological studies use this metric). In the general adult population, the prevalence of OSA defined by ≥5 apnea and hypopnea events per hour of sleep associated with excessive sleepiness is approximately 3-7% in men and 2-5% in women. The prevalence of OSA is much higher, e.g. ≥50%, in patients with cardiac or metabolic disorders than in the general population. Risk factors for OSA include obesity (the strongest risk factor), upper airway abnormalities, male gender, menopause and age (the prevalence of OSA associated with a higher risk of morbidity and mortality increases with age and peaks at approximately 55 years of age). OSA is associated with symptoms during sleep (snoring, choking and nocturia) and wakefulness (excessive sleepiness, fatigue and lack of energy) and with sequelae such as psychological changes, alterations in the quality of life, and social, familial and professional performance including vehicle and industrial accidents. The identification of OSA may be a difficult task for the clinician, even in populations in which OSA is highly prevalent such as patients with cardiovascular disorders because they may not present the cardinal signs of the disease, e.g. excessive sleepiness and obesity. Guidelines have been developed to tailor OSA therapy to patients according to the results of their disease evaluation and their preferences. Copyright © 2011 S. Karger AG, Basel.

  19. Napping: Do's and Don'ts for Healthy Adults

    MedlinePlus

    ... fatigue or unexpected sleepiness Are about to experience sleep loss, for example, due to a long work shift Want to make planned naps part of your daily routine If you're ... or have a sleep disorder or other medical condition that's disrupting your ...

  20. Circadian Rhythms, Sleep, and Disorders of Aging.

    PubMed

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Sleep disturbances and suicidality: relationships and clinical implications].

    PubMed

    Norra, C; Richter, N

    2013-10-01

    Besides several risk factors for suicide, there is a recent increase in clinical and epidemiological studies pointing to a potential relationship between sleep loss or sleep disturbances and suicidality. This work, based on a systematic literature research, gives an overview on the findings of relationships between suicidality (i. e., suicidal thoughts, suicide attempts, suicides) and sleep disturbances, especially insomnia, nightmares, but also hypersomnia and nocturnal panic attacks. There is evidence that sleep disturbances in suicidal insomniacs with comorbid psychiatric disorder are independently predictive for suicidality, too. Shared aspects of pathogenesis of the two entities and therapeutic options are also discussed. Recognition of sleep disturbances is essential for suicide prevention in clinical practice. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Total sleep deprivation decreases flow experience and mood status

    PubMed Central

    Kaida, Kosuke; Niki, Kazuhisa

    2014-01-01

    Background The purpose of this study was to examine the effect of sleep deprivation on flow experience. Methods Sixteen healthy male volunteers of mean age 21.4±1.59 (21–24) years participated in two experimental conditions, ie, sleep-deprivation and normal sleep. In the sleep-deprived condition, participants stayed awake at home for 36 hours (from 8 am until 10 pm the next day) beginning on the day prior to an experimental day. In both conditions, participants carried out a simple reaction time (psychomotor vigilance) task and responded to a questionnaire measuring flow experience and mood status. Results Flow experience was reduced after one night of total sleep deprivation. Sleep loss also decreased positive mood, increased negative mood, and decreased psychomotor performance. Conclusion Sleep deprivation has a strong impact on mental and behavioral states associated with the maintenance of flow, namely subjective well-being. PMID:24376356

  3. What drives productivity loss in chronic rhinosinusitis? A SNOT-22 subdomain analysis.

    PubMed

    Chowdhury, Naweed I; Mace, Jess C; Smith, Timothy L; Rudmik, Luke

    2018-01-01

    Previous studies have shown declines in productivity due to chronic rhinosinusitis (CRS) are correlated with disease-specific quality-of-life (QOL) measures. However, it is unclear which symptom domains contribute primarily to productivity loss. This investigation sought to assess the association between CRS-specific QOL subdomain impairment and productivity loss. Prospective, multi-institutional, observational cohort study. There were 198 patients with refractory CRS enrolled between August 2012 and June 2015. Baseline QOL measures were obtained across five subdomains of the 22-item SinoNasal Outcome Test (SNOT-22). Lost productivity time was determined from patient-reported measures of annual absenteeism, presenteeism, and lost leisure time, and then monetized using annual daily wage rates from the 2012 US National Census and 2013 Department of Labor statistics. Productivity losses correlated with impairments in both SNOT-22 psychological dysfunction (Spearman correlation coefficient [Rs] = 0.428, P < .001), and sleep dysfunction domain scores (Rs = 0.355, P < .001). Higher SNOT-22 total scores also significantly correlated with increased monetized productivity losses (Rs = 0.366, P < .001). The mean annual productivity cost was $11,820/patient, whereas patients with comorbid immunodeficiency ($23,285/patient), tobacco use ($23,195/patient), and steroid dependency ($18,910/patient) reported higher than average annual productivity costs. Multivariate linear regression found maximum annual productivity costs in adjusted psychological ($13,300/patient, P < .001) and sleep dysfunction ($9,275/patient, P < .001) domains. Impairments in sleep and psychological SNOT-22 domains correlate with productivity losses. Patients with comorbid immunodeficiency, smoking, and steroid dependency had higher than average productivity losses. Targeted management of psychological and sleep dysfunction in combination with standard symptom control may improve patient-centered care and reduce the annual economic burden of CRS. 2c. Laryngoscope, 128:23-30, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Caffeine and energy drink use by combat arms soldiers in Afghanistan as a countermeasure for sleep loss and high operational demands.

    PubMed

    McLellan, Tom M; Riviere, Lyndon A; Williams, Kelly W; McGurk, Dennis; Lieberman, Harris R

    2018-03-11

    Combat deployments are characterized by high operational demands with limited opportunities for sleep leading to fatigue and degraded cognitive and operational performance. Caffeine in moderate doses is recognized as an effective intervention for physical and cognitive decrements associated with sleep loss. This report is based on data collected by two separate, independently conducted surveys administered in Afghanistan in 2011-2012. It assessed caffeine use and sleep disruption among U.S. Army combat soldiers (J-MHAT 8; n = 518) and among deployed soldiers with different military assignments (USARIEM Deployment Survey; n = 260). Daily caffeine intake assessed in the J-MHAT 8 survey averaged 404 ± 18 mg. In the USARIEM Deployment Survey, intake was 303 ± 29 mg and was significantly higher among combat arms soldiers (483 ± 100 mg) compared to combat service support personnel (235 ± 23 mg). In both surveys, over 55% of total caffeine intake was from energy drinks. Additional sources of caffeine included coffee, tea, sodas, gum, candy, and over-the-counter medications. Higher caffeine intake was not associated with ability to fall asleep at night or wake-up in the morning (J-MHAT 8 survey). Higher caffeine consumption was associated with disrupted sleep from high operational tempo and nighttime duties of combat operations. Overall caffeine consumption and energy drink use in Afghanistan was greater than among non-deployed soldiers and civilians. Caffeine was frequently used as a countermeasure during night operations to offset adverse effects of sleep loss on physical and cognitive function, consistent with current Department of the Army recommendations.

  5. Update in obstructive sleep apnea syndrome in children.

    PubMed

    Balbani, Aracy P S; Weber, Silke A T; Montovani, Jair C

    2005-01-01

    The prevalence of OSAS in children is 0.7-3%, with peak incidence in pre-schoolers. It is characterised by partial or complete upper airway obstruction during sleep, causing intermittent hypoxia. Both anatomical (severe nasal obstruction, craniofacial anomalies, hypertrophy of the pharyngeal lymphoid tissue, laryngeal anomalies, etc.) and functional factors (neuromuscular diseases) predispose to OSAS during childhood. The main cause of OSAS in children in adenotonsillar hypertrophy. The most common clinical manifestations of OSAS are: nocturnal snoring, respiratory pauses, restless sleep and mouth breathing. Nocturnal pulse oximetry, nocturnal noise audio/videotape recording and nap polysomnography are useful tools for screening suspected cases of OSAS in children, and the gold-standard for diagnosis is overnight polysomnography in the sleep laboratory. On the contrary of SAOS adults, children usually present: less arousals associated to apnea events, more numerous apneas/hypopneas during REM sleep, and more significant oxyhemoglobin desaturation even in short apneas. The treatment of OSAS may be surgical (adenotonsillectomy, craniofacial abnormalities correction, tracheostomy) or clinical (sleep hygiene, continuous positive airway pressure--CPAP).

  6. Cultivating teacher mindfulness: Effects of a randomized controlled trial on work, home, and sleep outcomes.

    PubMed

    Crain, Tori L; Schonert-Reichl, Kimberly A; Roeser, Robert W

    2017-04-01

    The effects of randomization to a workplace mindfulness training (WMT) or a waitlist control condition on teachers' well-being (moods and satisfaction at work and home), quantity of sleep, quality of sleep, and sleepiness during the day were examined in 2 randomized, waitlist controlled trials (RCTs). The combined sample of the 2 RCTs, conducted in Canada and the United States, included 113 elementary and secondary school teachers (89% female). Measures were collected at baseline, postprogram, and 3-month follow-up; teachers were randomly assigned to condition after baseline assessment. Results showed that teachers randomized to WMT reported less frequent bad moods at work and home, greater satisfaction at work and home, more sleep on weekday nights, better quality sleep, and decreased insomnia symptoms and daytime sleepiness. Training-related group differences in mindfulness and rumination on work at home at postprogram partially mediated the reductions in negative moods at home and increases in sleep quality at follow-up. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Subjective Sleep Quality as a Possible Mediator in the Relationship between Personality Traits and Depressive Symptoms in Middle-Aged Adults

    PubMed Central

    Peck, Katlyn; Mallya, Sasha; Lupien, Sonia J.

    2016-01-01

    This study explored the mediating role of sleep in the relationship between personality traits and depressive symptoms in a group of community-dwelling men and women (Mage = 57.92, SD = 4.00). Participants completed the short form NEO Five Factor Inventory (NEO-FFI), Pittsburgh Sleep Quality Index (PSQI), and the Center for Epidemiologic Studies Depression Scale (CES-D). High neuroticism and low conscientiousness was associated with poor sleep, as well as greater depressive symptom severity. Partial indirect mediation effects were found between personality traits (i.e., neuroticism and conscientiousness) and depressive symptoms through self-report sleep measures. An alternative model was also explored, entering depression as the mediator; however a smaller portion of the variance was explained by this model, compared with the hypothesized model. The current study provides preliminary information regarding the mechanisms that influence the relationship between personality traits, sleep, and depression among a group of community-dwelling middle-aged adults. Implications and future directions are discussed. PMID:27285159

  8. Cold exposure and sleep in the rat: REM sleep homeostasis and body size.

    PubMed

    Amici, Roberto; Cerri, Matteo; Ocampo-Garcés, Adrian; Baracchi, Francesca; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    2008-05-01

    Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24 degrees C. EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10 degrees C to -10 degrees C and for 4 days during recovery. Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. 24 male albino rats. Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a "fast rebound" threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation.

  9. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    PubMed

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Forced sex: a critical factor in the sleep difficulties of young Australian women.

    PubMed

    Astbury, Jill; Bruck, Dorothy; Loxton, Deborah

    2011-01-01

    The prevalence of forced sex and its contribution to sleep difficulties among young Australian women aged 24-30 years (n=9,061) was examined using data from the 2003 Australian Longitudinal Study of Women's Health. The lifetime prevalence of reported forced sex was 8.7%. Significantly higher levels of recurrent sleep difficulties, prescription sleep medication, clinical depression, anxiety disorder, self-harm, and substance use, as well as lower socioeconomic status (SES) indicators, were reported by the forced sex group compared to the no forced sex group. Hierarchical logistic regression revealed the high odds (OR=1.95, CI=1.66-2.26) of recurrent sleep difficulty in such women becomes partially attenuated, but remains statistically significant, after adjusting for key psychological, SES, and behavioral variables. Clinical implications for primary care providers and sleep specialists are discussed. Sleep difficulties are highly prevalent and affect more than 30% of those seeking primary health care (Kushida et al., 2005). They negatively impact on the way a person feels and functions (Dinges et al., 1997) and make a significant contribution to accidents, health care costs, and problems at work (Roth, 2005).

  11. One night of sleep restriction following heavy exercise impairs 3-km cycling time-trial performance in the morning.

    PubMed

    Chase, John D; Roberson, Paul A; Saunders, Michael J; Hargens, Trent A; Womack, Christopher J; Luden, Nicholas D

    2017-09-01

    The goal of this project was to examine the influence of a single night of sleep restriction following heavy exercise on cycling time-trial (TT) performance and skeletal muscle function in the morning. Seven recreational cyclists (age, 24 ± 7 years; peak oxygen consumption, 62 ± 4 mL·kg -1 ·min -1 ) completed 2 phases, each comprising evening (EX1) and next-morning (EX2) exercise sessions. EX1 and EX2 were separated by an assigned sleep condition: a full night of rest (CON; 7.1 ± 0.3 h of sleep) or sleep restriction through early waking (SR; 2.4 ± 0.2 h). EX1 comprised baseline testing (muscle soreness, isokinetic torque, and 3-km TT performance) followed by heavy exercise that included 60 min of high-intensity cycling intervals and resistance exercise. EX2 was performed to assess recovery from EX1 and included all baseline measures. Magnitude-based inferences were used to evaluate all variables. SR had a negative effect (very likely) on the change in 3-km TT performance compared with CON. Specifically, 3-km TT performance was 'very likely' slower during EX2 compared with EX1 following SR (-4.0% ± 3.0%), whereas 3-km TT performance was 'possibly' slower during EX2 (vs. EX1) following CON (-0.5% ± 3.0%). Sleep condition did not influence changes in peak torque or muscle soreness from EX1 to EX2. A single night of sleep restriction following heavy exercise had marked consequences on 3-km TT performance the next morning. Because occasional sleep loss is likely, strategies to ameliorate the consequences of sleep loss on performance should be investigated.

  12. Sleep in children with autistic spectrum disorder.

    PubMed

    Cortesi, Flavia; Giannotti, Flavia; Ivanenko, Anna; Johnson, Kyle

    2010-08-01

    Children and adolescents with autistic spectrum disorders (ASD) suffer from sleep problems, particularly insomnia, at a higher rate than typically developing children, ranging from 40% to 80%. Sleep problems in ASD might occur as a result of complex interactions between biological, psychological, social/environmental, and family factors, including child rearing practices that are not conducive to good sleep. Interestingly, children with a history of developmental regression have a more disturbed sleep pattern than children without regression. Even though regulation of sleep in children with ASD is still poorly understood, circadian abnormalities in autism might be the result of genetic abnormalities related to melatonin synthesis and melatonin's role in modulating synaptic transmission. Recently a bifurcation of the sleep/wake cycle with increased sensitivity to external noise and short sleep duration causing irregular sleep onset and wake up times has been suggested. Identifying and treating sleep disorders may result not only in improved sleep, but also impact favorably on daytime behavior and family functioning. Several studies have also demonstrated effectiveness of behavioral interventions for sleep onset and maintenance problems in these populations. When behavioral interventions are not effective or lead only to a partial response, pharmacological treatment options should be considered. Studies of melatonin use in children with ASD provide evidence for its effectiveness and safety in the long run. The clinician assessing a child with an ASD should screen carefully for sleep disorders and make referrals as indicated. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Meta-Analysis of the Antidepressant Effects of Acute Sleep Deprivation.

    PubMed

    Boland, Elaine M; Rao, Hengyi; Dinges, David F; Smith, Rachel V; Goel, Namni; Detre, John A; Basner, Mathias; Sheline, Yvette I; Thase, Michael E; Gehrman, Philip R

    To provide a quantitative meta-analysis of the antidepressant effects of sleep deprivation to complement qualitative reviews addressing response rates. English-language studies from 1974 to 2016 using the keywords sleep deprivation and depression searched through PubMed and PsycINFO databases. A total of 66 independent studies met criteria for inclusion: conducted experimental sleep deprivation, reported the percentage of the sample that responded to sleep deprivation, provided a priori definition of antidepressant response, and did not seamlessly combine sleep deprivation with other therapies (eg, chronotherapeutics, repetitive transcranial magnetic stimulation). Data extracted included percentage of responders, type of sample (eg, bipolar, unipolar), type of sleep deprivation (eg, total, partial), demographics, medication use, type of outcome measure used, and definition of response (eg, 30% reduction in depression ratings). Data were analyzed with meta-analysis of proportions and a Poisson mixed-effects regression model. The overall response rate to sleep deprivation was 45% among studies that utilized a randomized control group and 50% among studies that did not. The response to sleep deprivation was not affected significantly by the type of sleep deprivation performed, the nature of the clinical sample, medication status, the definition of response used, or age and gender of the sample. These findings support a significant effect of sleep deprivation and suggest the need for future studies on the phenotypic nature of the antidepressant response to sleep deprivation, on the neurobiological mechanisms of action, and on moderators of the sleep deprivation treatment response in depression. © Copyright 2017 Physicians Postgraduate Press, Inc.

  14. Obstructive Sleep Apnea and Sleep Architecture in Adolescents With Severe Obesity: Effects of a 9-Month Lifestyle Modification Program Based on Regular Exercise and a Balanced Diet.

    PubMed

    Roche, Johanna; Gillet, Valérie; Perret, Frédéric; Mougin, Fabienne

    2018-06-15

    Physical exercise and lifestyle modification are recognized as adjunct therapy for obstructive sleep apnea (OSA) in overweight adults. The objectives of this study were to investigate the effects of long-term physical exercise combined with a balanced diet on sleep architecture, sleep duration, and OSA in adolescents with severe obesity. This interventional study was conducted in a nursing institution. Participants were aged 14.6 ± 1.2 years with obesity (body mass index (BMI) = 40.2 ± 6.5 kg/m 2 ). At admission and at 9 months, participants underwent ambulatory polysomnography and incremental maximal exercise testing to determine cardiorespiratory fitness. Twenty-four subjects completed the study. Analyses were performed on the whole population and on a subgroup of subjects with OSA (OSA-subgroup). OSA, defined as obstructive apnea-hypopnea index (OAHI) ≥ 2 events/h, was diagnosed in 58.3% of the population. OAHI was only associated with fat mass in males ( r = .75, P < .05). At 9 months postintervention, weight loss (-11.1 kg, P < .0001) and improved cardiorespiratory fitness (VO 2 peak: +4.9 mL/min/kg, P < .001) were found in the whole population. Sleep duration was increased (+34 minutes, P < .05) and sleep architecture was changed with an increase of rapid eye movement sleep (+2.5%, P < .05) and a decrease of stage N3 sleep (-3.1%, P < .001). Similar results were found in the OSA subgroup. However, OAHI remained unchanged ( P = .18). A combination of supervised aerobic exercise and a balanced diet led to weight loss, improved aerobic capacity, and modified sleep architecture without changes in OSA. A commentary on this article appears in this issue on page 907. Registry: ClinicalTrials.gov, Title: Exercise and Venous Compression on Upper Airway Resistance in Obese Teenagers With OSA (OBESOMAC), URL: https://clinicaltrials.gov/ct2/show/NCT02588469, Identifier: NCT02588469. © 2018 American Academy of Sleep Medicine.

  15. Distinct Mechanisms Underlie Quiescence during Two Caenorhabditis elegans Sleep-Like States

    PubMed Central

    Trojanowski, Nicholas F.; Nelson, Matthew D.; Flavell, Steven W.

    2015-01-01

    Electrophysiological recordings have enabled identification of physiologically distinct yet behaviorally similar states of mammalian sleep. In contrast, sleep in nonmammals has generally been identified behaviorally and therefore regarded as a physiologically uniform state characterized by quiescence of feeding and locomotion, reduced responsiveness, and rapid reversibility. The nematode Caenorhabditis elegans displays sleep-like quiescent behavior under two conditions: developmentally timed quiescence (DTQ) occurs during larval transitions, and stress-induced quiescence (SIQ) occurs in response to exposure to cellular stressors. Behaviorally, DTQ and SIQ appear identical. Here, we use optogenetic manipulations of neuronal and muscular activity, pharmacology, and genetic perturbations to uncover circuit and molecular mechanisms of DTQ and SIQ. We find that locomotion quiescence induced by DTQ- and SIQ-associated neuropeptides occurs via their action on the nervous system, although their neuronal target(s) and/or molecular mechanisms likely differ. Feeding quiescence during DTQ results from a loss of pharyngeal muscle excitability, whereas feeding quiescence during SIQ results from a loss of excitability in the nervous system. Together these results indicate that, as in mammals, quiescence is subserved by different mechanisms during distinct sleep-like states in C. elegans. SIGNIFICANCE STATEMENT Sleep behavior is characterized by cessation of feeding and locomotion, reduced responsiveness, and rapid reversibility. In mammals and birds, there are sleep states that have fundamentally different electrophysiology despite outwardly similar behavior. However, it is not clear whether behavioral sleep is a uniform state in animals in which electrophysiology is not readily possible. The nematode Caenorhabditis elegans displays sleep-like behavior under two conditions: during development and after exposure to environmental stressors. Here, we show that feeding and locomotion quiescence during these two sleep-like states are produced by different mechanisms. This provides the first identification of two mechanistically distinct forms of quiescence during sleep-like states in an invertebrate. PMID:26511247

  16. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis.

    PubMed

    Compta, Yaroslau; Iranzo, Alex; Santamaría, Joan; Casamitjana, Roser; Graus, Francesc

    2007-06-01

    A 69-year-old man with anti-Ma2 paraneoplastic encephalitis presented with subacute onset of severe hypersomnia, memory loss, parkinsonism, and gaze palsy. A brain magnetic resonance imaging study showed bilateral damage in the dorsolateral midbrain, amygdala, and paramedian thalami. Videopolysomnography disclosed rapid eye movement (REM) sleep behavior disorder, and a Multiple Sleep Latency Test showed a mean sleep latency of 7 minutes and 4 sleep-onset REM periods. The level of hypocretin-1 in the cerebrospinal fluid was low (49 pg/mL). This observation illustrates that REM sleep behavior disorder and narcoleptic features are 2 REM-sleep abnormalities that (1) may share the same autoimmune-mediated origin affecting the brainstem, limbic, and diencephalic structures and (2) may occur in the setting of the paraneoplastic anti-Ma2-associated encephalitis.

  17. Evaluation of water content around airway in obstructive sleep apnea patients using peripharyngeal mucosal T2 magnetic resonance imaging.

    PubMed

    Rahmawati, Anita; Chishaki, Akiko; Ohkusa, Tomoko; Hashimoto, Sonomi; Adachi, Kazuo; Nagao, Michinobu; Konishi Nishizaka, Mari; Ando, Shin-Ichi

    2017-11-01

    Obstructive sleep apnea (OSA) is common sleep disorder characterized by repetitive episodes of airway closure which usually occurs in the retropalatal region of the oropharynx. It has been known that upper airway mucosa in OSA patients is described as edematous, but not fully clarified. This study aimed to investigate and establish magnetic resonance imaging (MRI) parameter to estimate tissue water content at retropalatal level and its relationship with sleep parameters in OSA patients. Forty-eight subjects with OSA underwent overnight polysomnography and cervical MRI with 1.5-tesla [mean (SD) age 55 (14) years and apnea-hypopnea index (AHI) 45.2 (26.1) events/hour, 79.2% male]. On the axial T2-weighted images from epipharynx to oropharynx, the signal intensities of masseter muscle and peripharyngeal mucosa [T2 mucous-to-masseter intensity ratio (T2MMIR)], was used as water content estimation in the retropalatal region. Partial correlation analysis was performed to examine the correlation between T2MMIR and polysomnography parameters. We found that there were strong and positive correlations between the T2MMIR and AHI (r = 0.545, P < 0.05), supine AHI (r = 0.553, P < 0.05) and REM AHI (r = 0.640, P < 0.01) by partial correlation analysis. Besides, in patients with less efficient sleep who had more stage 1 sleep, significantly higher T2MMIR was noted (r = 0.357, P < 0.05). This study confirmed that peripharyngeal T2MMIR can be a simple parameter representing peripharyngeal tissue water contents related to severe OSA. © 2015 John Wiley & Sons Ltd.

  18. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.

    2000-01-01

    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  19. Chronic stress undermines the compensatory sleep efficiency increase in response to sleep restriction in adolescents.

    PubMed

    Astill, Rebecca G; Verhoeven, Dorit; Vijzelaar, Romy L; Van Someren, Eus J W

    2013-08-01

    To investigate the effects of real-life stress on the sleep of adolescents, we performed a repeated-measures study on actigraphic sleep estimates and subjective measures during one regular school week, two stressful examination weeks and a week's holiday. Twenty-four adolescents aged 17.63 ± 0.10 years (mean ± standard error of the mean) wore actigraphs and completed diaries on subjective stress, fatigue, sleep quality, number of examinations and consumption of caffeine and alcohol for 4 weeks during their final year of secondary school. The resulting almost 500 assessments were analysed using mixed-effect models to estimate the effects of mere school attendance and additional examination stress on sleep estimates and subjective ratings. Total sleep time decreased from 7:38 h ± 12 min during holidays to 6:40 h ± 12 min during a regular school week. This 13% decrease elicited a partial compensation, as indicated by a 3% increase in sleep efficiency and a 6% decrease in the duration of nocturnal awakenings. During examination weeks total sleep time decreased to 6:23 h ± 8 min, but it was now accompanied by a decrease in sleep efficiency and subjective sleep quality and an increase in wake bout duration. In conclusion, school examination stress affects the sleep of adolescents. The compensatory mechanism of more consolidated sleep, as elicited by the sleep restriction associated with mere school attendance, collapsed during 2 weeks of sustained examination stress. © 2013 European Sleep Research Society.

  20. Sleep Deprivation and Exercise Tolerance.

    DTIC Science & Technology

    1986-01-01

    thermoneutral environment) is alike unchanged by loss of sleep. 5) Seven subjects were allowed to exercise to thermal comfort in a very cold (OC, 2.5...Subjects selected identical work loads for thermal comfort , and became exhausted/miserable after similar period of exposure. Physiologi- cal response and

Top