2017-08-21
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Monday, Aug. 21, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
2017-08-22
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Tuesday, Aug. 22, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
Solar Eclipse from NASA Goddard
2017-08-21
View of the partial solar eclipse from NASA's Goddard Space Flight Center in Greenbelt, Md on Monday, August 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Credit: NASA/Goddard/Rebecca Roth
2017-08-21
This composite image of nine pictures shows the progression of a partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
2017-08-21
This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
The Moon is seen passing in front of the Sun at the point of the maximum of the partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
Public outreach and education during the 2016 total solar eclipse in Palu and Malang
NASA Astrophysics Data System (ADS)
Rachmadian, A. P.; Kunjaya, C.; Wahono, W.; Anugrah, A. A.
2016-11-01
MAGIC (Ma Chung Galactic Club) of Ma Chung University, Malang, is one of the amateur astronomers club who did public outreach and education during the Total Solar Eclipse March 9, 2016. The motivation for doing this was the bad experience during Total Solar Eclipse 1983. At that time the Indonesian government forbid the people to observe the Total Solar Eclipse in a way to avoid blindness. We try to fix this misunderstanding by educating people the safe way to enjoy the partial and total solar eclipse. MAGIC team was divided into two teams, one team went to Palu and did the solar eclipse related education in six high schools before and during the eclipse. The other team did the observation on Ma Chung University campus, Malang, to accompany people who want to see the partial solar eclipse through filtered telescopes. The sky during the solar eclipse was clear both in Malang and Palu. People were very excited and satisfied with the solar eclipse, and their interest to astronomy is increased.
David Levy's Guide to Eclipses, Transits, and Occultations
NASA Astrophysics Data System (ADS)
Levy, David H.
2010-08-01
Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.
Solar Eclipses Observed from Antarctica
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2013-01-01
Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.
Public Education and Outreach for Observing Solar Eclipses and Transits
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The general public is often very interested in observing solar eclipses, with widespread attention from newspapers and other sources often available only days before the events. Recently, the 2012 eclipse's partial phases in Australia and the 2015 eclipse's partial phases throughout Europe as well as western Asia and northern Africa, were widely viewed. The 21 August 2017 eclipse, whose totality will sweep across the Continental United States from northwest to southeast, will have partial phases visible throughout the U.S., Canada, Mexico, Central America, and into South America. The 2019 and 2020 partial phases of total eclipses will be visible throughout South America, and partial phases from annular eclipses will be visible from other parts of the world. The 9 May 2016 transit of Mercury will be best visible from the Western Hemisphere, Europe, and Africa. Many myths and misunderstandings exist about the safety of observing partial phases, and it is our responsibility as astronomers and educators to transmit accurate information and to attempt the widest possible distribution of such information. The Working Group on Public Education at Eclipses and Transits, formerly of Commission 46 on Education and Development and now of New Commission 11, tries to coordinate the distribution of information. In collaboration with the Solar Division's Working Group on Solar Eclipses, their website at http://eclipses.info is a one-stop shop for accurate information on how to observe eclipses, why it is interesting to do so, where they will be visible (with links to online maps and weather statistics), and how encouraging students to observe eclipses can be inspirational for them, perhaps even leading them to realize that the Universe can be understood and therefore renewing the strength of their studies. Links to information about transits of Mercury and Venus are also included.
Spectral irradiance curve calculations for any type of solar eclipse
NASA Technical Reports Server (NTRS)
Deepak, A.; Merrill, J. E.
1974-01-01
A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.
2017-08-21
This composite image of seven pictures shows the progression of a partial solar eclipse near from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. The second to the last frame shows the International Space Station, with a crew of six onboard, in silhouette as it transits the Sun at roughly five miles per second. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
Impact of the 2017 Solar Eclipse on Smart Grid
NASA Astrophysics Data System (ADS)
Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.
2017-12-01
With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.
Monitoring a photovoltaic system during the partial solar eclipse of August 2017
NASA Astrophysics Data System (ADS)
Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill
2018-05-01
The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.
Educating the Public about the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-01-01
On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds on the centerline. Our research on the 2017 total solar eclipse is supported by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.
2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203)
2017-08-21
2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203) In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
Impact of the 2017 Solar Eclipse on the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Reda, Ibrahim M; Andreas, Afshin M
With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid usersmore » with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.« less
2017-08-21
The Moon is seen passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
The Sun is seen as it rises behind Jack Mountain head of the solar eclipse, Monday, Aug. 21, 2017, Ross Lake, Northern Cascades National Park, Washington. A total solar eclipse will sweep across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017 Total Solar Eclipse - ISS Transit
2017-08-21
The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
2017 Total Solar Eclipse - ISS Transit
2017-08-21
This composite image, made from seven frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
2017 Total Solar Eclipse - ISS Transit
2017-08-21
The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from Ross Lake, Northern Cascades National Park, Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
The Moon is seen as it starts passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)
Sky brightness and color measurements during the 21 August 2017 total solar eclipse.
Bruns, Donald G; Bruns, Ronald D
2018-06-01
The sky brightness was measured during the partial phases and during totality of the 21 August 2017 total solar eclipse. A tracking CCD camera with color filters and a wide-angle lens allowed measurements across a wide field of view, recording images every 10 s. The partially and totally eclipsed Sun was kept behind an occulting disk attached to the camera, allowing direct brightness measurements from 1.5° to 38° from the Sun. During the partial phases, the sky brightness as a function of time closely followed the integrated intensity of the unobscured fraction of the solar disk. A redder sky was measured close to the Sun just before totality, caused by the redder color of the exposed solar limb. During totality, a bluer sky was measured, dimmer than the normal sky by a factor of 10,000. Suggestions for enhanced measurements at future eclipses are offered.
Resource Letter OSE-1: Observing Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew
2017-07-01
This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.
2017-08-21
The Moon is seen passing in front of the Sun during a total solar eclipse on Monday, August 21, 2017 from onboard a NASA Gulfstream III aircraft flying 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Carla Thomas)
2017 Total Solar Eclipse - ISS Transit
2017-08-21
This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from , Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
Atmospheric Science Data Center
2013-04-19
... June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an annular solar eclipse. Partial phases of ... to obscure about 75 percent of the solar disk. The two scenes are geolocated to adjacent paths within World Reference System-2. ...
Solar Eclipses and the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2009-05-01
Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.
Fifty year canon of solar eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1986-01-01
A reference of moderately detailed eclipse predictions and maps for use by the professional astronomical community is provided. The general characteristics of every solar eclipse and a detailed set of cylindrical project world maps which show the umbral paths of every solar eclipse from 1901 to 2100 are presented. The geodetic path coordinates and local circumstance on the center line, and a series of orthographic projection maps which show the regions of visibility of both partial and central phases for every eclipse from 1986 through 2035 are also provided.
NASA Technical Reports Server (NTRS)
Bean, T. A.; Bowhill, S. A.
1973-01-01
Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.
NASA Astrophysics Data System (ADS)
Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.
2018-06-01
Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.
Preparing for and Observing the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2015-11-01
I discuss ongoing plans and discussions for EPO and scientific observing of the 21 August 2017 total solar eclipse. I discuss aspects of EPO based on my experiences at the 60 solar eclipses I have seen. I share cloud statistics along the eclipse path compiled by Jay Anderson, the foremost eclipse meteorologist. I show some sample observations of composite imagery, of spectra, and of terrestrial temperature changes based on observations of recent eclipses, including 2012 from Australia and 2013 from Gabon. Links to various mapping sites of totality, partial phases, and other eclipse-related information, including that provided by Michael Zeiler, Fred Espenak (retired from NASA) and Xavier Jubier can be found on the website I run for the International Astronomical Union's Working Group on Eclipses at http://www.eclipses.info.
Ionospheric wave signature of the American solar eclipse on 21 August 2017 in Europe
NASA Astrophysics Data System (ADS)
Verhulst, Tobias G. W.; Stankov, Stanimir M.
2018-05-01
A total solar eclipse occurred on 21 August 2017, with the path of totality starting over the North Pacific Ocean, crossing North-America and ending over the Mid-Atlantic Ocean slightly North of the equator. As a result, a partial solar eclipse was observed as far away as the Western Europe. The ionospheric observatory in Dourbes, Belgium, was right on the edge of the partial eclipse and was exposed for a very short period of only few minutes just before the local sunset. High-resolution ionospheric measurements were carried out at the observatory with collocated digital ionosonde and GNSS receivers. The data analysis revealed a clear wave-like pattern in the ionosphere that can be seen arriving before the local onset of the eclipse. The paper details the analysis and provides a possible explanation of the observed phenomenon.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy; Lewis, Elaine; Reed, Shannon; Debebe, Asidesach; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Wright, Ernest
2017-01-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation and energy for this eclipse is off the charts! Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can.This talk will outline NASA’s education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)-Revised
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "Five Millennium Canon of Lunar Eclipses. "It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse(latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
NASA Astrophysics Data System (ADS)
Datta-Barua, S.; Gachancipa, J. N.; Deshpande, K.; Herrera, J. A.; Lehmacher, G. A.; Su, Y.; Gyuk, G.; Bust, G. S.; Hampton, D. L.
2017-12-01
High concentration of free electrons in the ionosphere can cause fluctuations in incoming electromagnetic waves, such as those from the different Global Navigation Satellite Systems (GNSS). The behavior of the ionosphere depends on time and location, and it is highly influenced by solar activity. The purpose of this study is to determine the impact of a total solar eclipse on the local ionosphere in terms of ionospheric scintillations, and on the global ionosphere in terms of TEC (Total Electron Content). The studied eclipse occurred on 21 August 2017 across the continental United States. During the eclipse, we expected to see a decrease in the scintillation strength, as well as in the TEC values. As a broader impact part of our recently funded NSF proposal, we temporarily deployed two GNSS receivers on the eclipse's totality path. One GNSS receiver was placed in Clemson, SC. This is a multi-frequency GNSS receiver (NovAtel GPStation-6) capable of measuring high and low rate scintillation data as well as TEC values from four different GNSS systems. We had the receiver operating before, during, and after the solar eclipse to enable the comparison between eclipse and non-eclipse periods. A twin receiver collected data at Daytona Beach, FL during the same time, where an 85% partial solar eclipse was observed. Additionally, we set up a ground receiver onsite in the path of totality in Perryville, Missouri, from which the Adler Planetarium of Chicago launched a high-altitude balloon to capture a 360-degree video of the eclipse from the stratosphere. By analyzing the collected data, this study looks at the effects of partial and total solar eclipse periods on high rate GNSS scintillation data at mid-latitudes, which had not been explored in detail. This study also explores the impact of solar eclipses on signals from different satellite constellations (GPS, GLONASS, and Galileo). Throughout the eclipse, the scintillation values did not appear to have dramatic changes. However, we observed lower scintillation activity on several satellites from different constellations. For example, between 16 UTC and 22 UTC, there was a slight drop in the S4 scintillation Index (amplitude) values, reaching a local minimum during the time of eclipse totality ( 18:30 UTC). Regarding the Total Electron Content (TEC), which measures the quantity of electrons in the ionosphere, there was a more drastic decrease in the values throughout the partial and total solar eclipse. Additionally, σφ (sigma-phi) values for phase scintillation showed the similar behavior compared to previous few days. This reveals that the solar eclipse did not have a major effect on the phase scintillation. In any case, the totality path was entirely in mid-latitude regions, where phase scintillations are expected to be lower compared to high latitudes.
Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere
NASA Astrophysics Data System (ADS)
Cherniakov, S.
2017-12-01
The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of the Tumanny observatory observations were carried out. It gave possibility to obtain the behavior of the electron concentration in time at the selected heights. Using the obtained experimental profiles, the effective recombination coefficients at the D-region heights of the ionosphere have been evaluated.
The Astrophysics of the Solar Corona at the August 21, 2017, American Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay
2017-01-01
The first total solar eclipse to cross the United States from coast to coast in 99 years will occur on August 21, 2017, with a 70-mile-wide path of totality from Oregon to South Carolina, with cloudiness statistics more favorable in the northwest than in the southeast. I will discuss a series of observations of the solar corona made during recent solar eclipses and related spacecraft observations. I will further discuss plans for using the 2017 eclipse for furthering our studies of the heating of the solar corona to millions of kelvins, of the dynamics of coronal mass ejections and polar plumes, and of the response of the corona to the solar magnetic field. I will conclude by discussing public-education plans for the eclipse, during which the whole U.S., Mexico, Central America, and Canada will enjoy a partial eclipse. My work at solar eclipses has recently been supported by the NSF and the Committee for Research and Exploration of the National Geographic Society, and I thank them both for research grants for our scientific studies of the 2017 total eclipse, including AGS-1602461 from the NSF and 987816 from National Geographic.
Observing Solar Eclipses in the Developing World
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.
2006-08-01
The paths of totality of total solar eclipses cross the world, with each spot receiving such a view about every 300 years. The areas of the world from which partial eclipses are visible are much wider. For the few days prior to a total eclipse, the attention of a given country is often drawn toward the eclipse, providing a teachable moment that we can use to bring astronomy to the public's attention. Also, it is important to describe how to observe the partial phases of the eclipse safely. Further, it is important to describe to those people in the zone of totality that it is not only safe but also interesting to view totality. Those who are misled by false warnings that overstate the hazards of viewing the eclipse, or that fail to distinguish between safe and unsafe times for naked-eye viewing, may well be skeptical when other health warnings--perhaps about AIDS or malaria prevention or polio inoculations--come from the authorities, meaning that the penalties for misunderstanding the astronomical event can be severe. Through the International Astronomical Union's Working Group on Solar Eclipses and through the I.A.U.'s Program Group on Public Education at the Times of Eclipses, part of the Commission on Education and Development, we make available information to national authorities, to colleagues in the relevant countries, and to others, through our Websites at http://www.eclipses.info and http://www.totalsolareclipse.net and through personal communication. Among our successes at the 29 March 2006 total solar eclipse was the distribution through a colleague in Nigeria of 400,000 eye-protection filters.
Solar eclipses as a vehicle for international astronomy education.
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.
The public's attention is drawn to astronomy whenever solar eclipse - partial, annular, or total - is visible, and we must take advantage of the opportunity to teach about the nature of science, the ability of astronomers to predict and analyze distant bodies and events, and the value of scientific research. We must also instruct people how to watch the partial and annular phases safely and that the total phase is not harmful.
Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model
NASA Astrophysics Data System (ADS)
Montornes, Alex; Codina, Bernat; Zack, John W.; Sola, Yolanda
2016-05-01
Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950-2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5 x 10-3 degrees (i.e., ~ 550 m at the Equator) and are slightly overestimated and underestimated, respectively. The second part includes a validation of the simulated global horizontal irradiance (GHI) for four total solar eclipses with measurements from the Baseline Surface Radiation Network (BSRN). The results show an improvement in mean absolute error (MAE) from 77 to 90 % under cloudless skies. Lower agreement between modeled and measured GHI is observed under cloudy conditions because the effect of clouds is not included in the simulations for a better analysis of the eclipse outcomes. Finally, an introductory discussion of eclipse-induced perturbations in the surface meteorological fields (e.g., temperature, wind speed) is provided by comparing the WRF-eclipse outcomes with control simulations.
Five Millennium Canon of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2006-01-01
During 5,000-year period from -1999 to +3000 (2000BCE to 3000CE), Earth will experience 11,898 eclipses of the Sun. The statistical distribution of eclipse types for this interval is as follows: 4,200 partial eclipses, 3956 annular eclipses, 3173 total eclipses,and 569 hybrid eclipses. Detailed global maps for each of the 11,898 eclipses delineate the geographic regions of visibility for both the penumbral (partial) and umbral or antumbral (total, annular, or hybrid) phases of every event. Modern political borders are plotted to assist in the determination of eclipse visibility. The uncertainty in Earth's rotational period expressed in the parameter (delta)T and its impact on the geographic visibility of eclipses in the past and future is discussed.
Five Millennium Catalog of Lunar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "FiveMillenniumCanonofLunarEclipses." It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse (latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
Solar oblateness from Archimedes to Dicke
NASA Astrophysics Data System (ADS)
Sigismondi, C.; Oliva, P.
2005-10-01
The non-spherical shape of the Sun has been invoked to explain the anomalous precession of Mercury. A brief history of some methods for measuring the solar diameter is presented. Archimedes was the first to give upper and lower values for the solar diameter in the third century before Christ. Then there followed the method of total eclipses, used after Halley's observative campaign of 1715 eclipse. We will also discuss the variant of partial eclipses, useful to measure different chords of the solar disk and the method of Dicke, which correlates oblateness with luminous excess in the equatorial zone.
Report of the IAU Working Group on Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The Working Group on Solar Eclipses coordinates scientists and information in the study of the Sun and the heliosphere at solar eclipses. Our Website at http://eclipses.info has a wide variety of information, including links to maps and other websites dealing with solar eclipses, as well as information on how to observe the partial-phases of solar eclipses safely and why it is interesting for not only scientists but also for the public to observe eclipses and to see how we work to uncover the mysteries of the sun's upper atmosphere. In the last triennium, there were total eclipses in Australia and the Pacific in 2012; in an arc across Africa from Gabon to Uganda and Kenya in 2013; and in the Arctic, including Svalbard and the Faeroes plus many airplanes aloft, in 2015. In the coming triennium, there will be total solar eclipses in Indonesia and the Pacific in 2016 and then, on 21 August 2017, a total solar eclipse that will sweep across the Continental United States from northwest to southeast. Mapping websites, all linked to http://eclipses.info, include Fred Espenak's http://EclipseWise.com; Michael Zeiler's http://GreatAmericanEclipse.com and http://eclipse-maps.com; Xavier Jubier's http://xjubier.free.fr; and (with weather and cloudiness analysis) Jay Anderson's http://eclipser.ca. Members of the Working Group, chaired by Jay Pasachoff (U.S.), include Iraida Kim (Russia), Kiroki Kurokawa (Japan), Jagdev Singh (India), Vojtech Rusin (Slovakia), Zhongquan Qu (China), Fred Espenak (U.S.), Jay Anderson (Canada), Glenn Schneider (U.S.), Michael Gill (U.K.), Xavier Jubier (France), Michael Zeiler (U.S.), and Bill Kramer (U.S.).
NASA's Terra Satellite Sees Shadows of Solar Eclipse
2015-03-20
During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Effects of the March 2015 solar eclipse on near-surface atmospheric electricity.
Bennett, A J
2016-09-28
Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse
NASA Astrophysics Data System (ADS)
Schad, Thomas A.; Penn, Matthew J.; Armstrong, James
2016-05-01
Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.
[Eclipse retinopathy : A case series after the partial solar eclipse on 20 March 2015].
Bachmeier, I; Helbig, H; Greslechner, R
2017-01-01
Solar retinopathy refers to damage to the central macula caused by exposure to intense solar radiation, most frequently observed after a solar eclipse. Description of the morphological changes in spectral domain optical coherence tomography (SD-OCT) and the clinical course in patients with acute solar retinopathy. The study included a retrospective analysis of 12 eyes from 7 patients with solar retinopathy after the partial solar eclipse on 20 March 2015. Best corrected visual acuity, fundus changes and SD-OCT findings were analyzed. Out of the 7 patients 5 underwent treatment with 1 mg prednisolone per kg body weight. The average age of the patients was 30.1±13.1 years. Best corrected visual acuity was 0.65 at initial presentation. In the acute stage all affected eyes showed a small yellowish lesion in the centre of the fovea in the fundoscopic examination. In SD-OCT the continuity of all layers in the foveola appeared disrupted. In the follow-up examination these changes were partially resolved. After 2 months SD-OCT revealed a small defect of the ellipsoid zone. In one patient the defect could not be shown due to slightly excentric imaging sections. Best corrected visual acuity increased to 0.97. The SD-OCT is an appropriate tool to determine the exact localization of the site of damage and for follow-up examination in solar retinopathy. In the acute phase it shows a disruption of the continuity of all layers in the foveola. Despite good recovery of visual acuity a small central defect of the ellipsoid zone remains in the long term.
Scott, C J; Bradford, J; Bell, S A; Wilkinson, J; Barnard, L; Smith, D; Tudor, S
2016-09-28
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
MM Herculis - An eclipsing binary of the RS CVn
NASA Technical Reports Server (NTRS)
Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.
1983-01-01
V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.
NASA Astrophysics Data System (ADS)
Nugraha, M. G.; Saepuzaman, D.; Sholihat, F. N.; Ramayanti, S.; Setyadin, A. H.; Ferahenki, A. R.; Samsudin, A.; Utama, J. A.; Susanti, H.; Kirana, K. H.
2016-11-01
This study was conducted to determine the Earth's surface gravitational acceleration (g) prior to, during, and after a partial solar eclipse. Data was collected in Basic Physics Laboratory Universitas Pendidikan Indonesia, Bandung with coordinates S 6°51'48", E 107°35'40" for three days on March 8 - 10, 2016, in time interval measurement from 6 a.m. to 9 a.m. This research used a standard pendulum, Kater's reversible pendulum, which deviated less than 3° so that the motion can be regarded harmonics oscillation. The period of pendulum oscillation motion is measured by a light sensor (photogate sensor) with accuracy until 10-13 seconds. The data analysis shows that there is small difference value of gravity acceleration at the Earth's surface from three days of observation, i.e. in the order of 10-3 ms-2. It means, there is a changes in the Earth's surface gravitational acceleration (g) due to the partial solar eclipse but not significant.
Bradford, J.; Bell, S. A.; Wilkinson, J.; Smith, D.; Tudor, S.
2016-01-01
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth’s atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550766
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Speaking at the event was astronaut John-David Bartoe. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska
2017-12-08
This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Books and Other Resources for Education about the August 21, 2017, Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael
2017-06-01
As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP-1 on Solar Physics," AJP, 78, September, 890-901.
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
The 2017 Total Solar Eclipse (TSE2017) will occur on August 21 in the continental United States, bringing totality to this area for the first time since 1979. The Moon's umbra will traverse from Oregon to South Carolina in about 90 minutes, bringing an eerie darkness to 14 states coast-to-coast and a partial eclipse to every part of the country…
ERIC Educational Resources Information Center
Riddle, Bob
2005-01-01
Eclipses typically occur in pairs twice each year, and the second pair for this year will be this month, starting with an annular solar eclipse on October 3, and two weeks later a partial lunar eclipse on October 17. The path of annularity will travel from the North Atlantic Ocean to Spain, where the annular phase will last for more than four…
Reliability of the totality of the eclipse in AD 628 in Nihongi
NASA Astrophysics Data System (ADS)
Tanikawa, Kiyotaka; Soma, Mitsuru
It is generally accepted that the solar eclipse on April 10, 628 (the second day, the third month, the thirty-sixth year of Empress Suiko) recorded in Nihongi is not total but partial though it is written as a total eclipse. We argue for the record appealing to the contemporary total or near total eclipses in Chinese history books and Japanese occultation observation. If the value of the tidal term in the lunar longitude (the coefficient of T2 term) is different from the present value by about -2"/cy-2, then there disappears an apparent contradiction of ΔT around AD 600 derived from lunar and solar eclipses. Grazing occultation data are found to be useful.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Guest speakers were, astronaut John-David Bartoe, left, and communicator Jeff Lucas. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
NASA Astrophysics Data System (ADS)
Anggraeni, S.; Diana, S.; Supriatno, B.
2017-09-01
Some group students of plant Physiology course have given task to do free inquiry. They investigated of the nasty behaviour of several legume plants in response to changes in light during the partial solar eclipse that occurred at March 9, 2016. The investigation carried out in UPI Bandung, West Java, Indonesia, which is in the penumbra region of a total solar eclipse with the location coordinates of latitude: -6.86105, longitude: 07.59071, S 6057’ 37.53553 “and E 107035’ 24.29141”. They were measuring the movement of opening leaves every ten minutes at the beginning of the start until the end of the eclipse compared with the behaviour without eclipsing. Influence is expressed by comparing the leaf opening movement (measured in the form of leaf angular) at the time of the eclipse with a normal day. Each group was observed for one plant of the legume, there are: Mimosa pudica, Bauhinia purpurea, Caesalpinia pulcherrima, and Arachis pintoi. The results showed that the changes in leaf angular in plants Mimosa pudica, Caesalpinia pulcherrima, and Arachis pintoi differently significant, except for Bauhinia purpurea. In conclusion, the total solar eclipse in the penumbra area affects the movement of some nasty legume plants. It is recommended to conduct a study of the nasty behaviour of legume plants in the area umbra in the path of a total solar eclipse.
NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada
2017-12-08
This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Burt, Stephen
2016-09-28
A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
NASA Videofile of Solar Eclipse from Jefferson City, Missouri
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. During this event, NASA Glenn Research Center celebrates the eclipse at the capital eclipse event in Jefferson City, MO
ERIC Educational Resources Information Center
Riddle, Bob
2001-01-01
Describes occultation events involving the moon, when the moon blocks the view of planets or stars. Describes other events such as a partial solar eclipse, a penumbral lunar eclipse, meteor showers, and moon phases. Provides a list of internet resources related to these events. (DLH)
Public Education Plans for the 2017 August 21 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2016-06-01
A total solar eclipse will cross the continental United States on 2017 August 21, the first such in 99 years and the first whose path of totality on land is entirely in the United States since 1776. People in the rest of the United States-as well as in Canada, Central America, and northern South America-will have a partial solar eclipse. Totality will range up to about 70 km in diameter, and will be visible from a path that extends from Oregon to South Carolina. Cloudiness statistics based on decades on satellite infrared imaging are more favorable for western sites. The sun's diameter will be 80% covered in Miami (south of totality) and New York (north of totality), and 70% covered in Los Angeles (south of totality). For the Working Group on Solar Eclipses of the International Astronomical Union, I maintain a website at http://eclipses.info that provides links to a wide variety of eclipse-related material and to useful websites run by others.Prior to this total eclipse, annular eclipses will cross Africa (from Gabon to Tanzania and Madagascar) and Isle de la Réunion on 2016 September 1, and Chile and Argentina on 2017 February 26, at which time we plan an eclipse workshop in Esquel, Argentina.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.
Eclipse 2017: Through the eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA/GSFC Heliophysics Education Consortium
2016-10-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation y for energy for this eclipse is off the charts. Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can. This talk will outline NASA's education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
The total solar eclipse of 2010 July 11
NASA Astrophysics Data System (ADS)
McGee, H.; James, N.; Mason, J.
2010-08-01
The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.
Solar eclipse demonstrating the importance of photochemistry in new particle formation
NASA Astrophysics Data System (ADS)
Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka; Heikkinen, Liine; Yan, Chao; Sipilä, Mikko; Worsnop, Douglas R.; Bäck, Jaana; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
2017-04-01
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.
Solar eclipse demonstrating the importance of photochemistry in new particle formation
Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka; Heikkinen, Liine; Yan, Chao; Sipilä, Mikko; Worsnop, Douglas R.; Bäck, Jaana; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
2017-01-01
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions. PMID:28374761
2016-01-01
A wide range of surface and near-surface meteorological observations were made at the University of Reading’s Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550762
2017-12-08
Within the penumbra, the eclipse is partial (left), but within the umbra, the Moon completely covers the Sun (right). NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Total solar eclipse of 3 November 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.
A Mathematical Model of the Great Solar Eclipse of 1991.
ERIC Educational Resources Information Center
Lamb, John Jr.
1991-01-01
An activity that shows how mathematics can be used to model events in the real world is described. A way to calculate the area of the sun covered by the moon during a partial eclipse is presented. A computer program that will determine the coverage percentage is also included. (KR)
Total Solar Eclipse: “Through The Eyes of NASA,” Part 4
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
Total Solar Eclipse: “Through The Eyes of NASA,” Part 3
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.
2017-12-01
2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on the results of our efforts to engage the public with these two events, and make recommendations for extending and sustaining the engagement of the public in preparation for the 2024 total solar eclipse.
Annular Solar Eclipse of 10 May 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.
The 1984 eclipse of the symbiotic binary SY Muscae
NASA Technical Reports Server (NTRS)
Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.
1985-01-01
Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.
2017 Total Solar Eclipse Science Briefing
2017-06-21
During a June 21 media briefing from the Newseum in Washington, representatives from NASA, other federal agencies, and science organizations discussed the opportunity for scientific study offered by the total solar eclipse that will cross the U.S. on August 21. Over the course of 100 minutes, 14 states across the United States will experience more than two minutes of darkness in the middle of the day. Additionally, a partial eclipse will be viewable across all of North America. The eclipse will provide a unique opportunity to study the sun, Earth, moon and their interaction because of the eclipse’s long path over land coast to coast. Scientists will be able to take ground-based and airborne observations over a period of an hour and a half to complement the wealth of data and images provided by space assets.
Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective
NASA Astrophysics Data System (ADS)
Guhathakurta, M.
2017-12-01
The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.
Total Solar Eclipse of 2008 August 01
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2007-01-01
On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
The 2017 solar eclipse and Majorana & Allais gravity anomalies
NASA Astrophysics Data System (ADS)
Munera, Hector A.
2017-01-01
Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce torsional effects on scattered dark matter. Scattered gravity may be detected with mechanical gravimeters and torsinds located inside and outside the optical shadow path in USA, Canada and Mexico.
2017-08-21
A partial eclipse on Florida's Space Coast, the rare astronomical event was photographed from the top of the Vehicle Assembly Building, as the Moon passed between Earth and the midafternoon Sun. The Moon's shadow moved across the landscape from Oregon to South Carolina. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
Public education in developing countries on the occasions of eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
Total solar eclipses will cross southern Africa on June 21, 2001, and on December 4, 2002. Most of Africa will see partial phases. The total phase of the 2001 eclipse will be visible from parts of Angola, Zambia, Zimbabwe, Mozambique and Madagascar. The total phase of the 2002 eclipse will be visible from parts of Angola, Botswana, Zimbabwe, South Africa and Mozambique. Public education must be undertaken to tell the people how to look at the eclipse safely. We can take advantage of having the attention of the people and of news media to teach about not only eclipses but also the rest of astronomy. I am Chair of a "Public Education at Eclipses" subcommission of IAU Commission 46 on the Teaching of Astronomy, and we are able to advise educators and others about materials, procedures and information releases.
Bringing the Great American Solar Eclipse to West Virginia
NASA Astrophysics Data System (ADS)
Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.
2017-12-01
West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.
Science at Schools: Observation and Analysis of a Partial Solar Eclipse
NASA Astrophysics Data System (ADS)
dos Santos, Leonardo Barbosa Torres; dos Santos, Everaldo Faustino; das Neves, Leonardo Oliveira
2015-07-01
Natural phenomena, such as eclipses, prompt interest and curiosity of humans since antiquity. For this reason the systematic monitoring of these events could be used to raise people’s interest from the simple contemplation, to didactic interest or to scientific research. The objective of this paper is therefore to stimulate the application and development of scientific research in the school environment. For this aim we propose to monitor solar eclipses. Students should obtain photographic registers using appropriated equipment for the observation of the Sun. Throughout analyses of photographs it should be possible to determine representative parameters of the characteristics and evolution of these interesting astronomical events. The results could be compared to highly accurate predictions. A detailed description of the methodology and features to be applied to observations is also provided.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
Editors note:This week were in Boulder, Colorado at the47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Yesterdayspress conference was titled Preparing for the 2017 Great American Eclipse. Four speakers highlighted both outreach and research projects that are planned for the eclipse that will cross the continental United States on August 21st next year.Eclipse from High AltitudeFirst up, Angela Des Jardins (Montana Space Grant Consortium) introduced us to the nationwide Eclipse Ballooning Project.An eclipse as seen from the ISS. Being up high gives you a very different perspective on eclipses! [NASA]The last total solar eclipse in the continental United States was in 1979, and people were told to stay inside and watch from their TVs! For the next total solar eclipse in the US, we want the opposite: for everyone to be outdoors and in the path of totality to watch (with eclipse glasses lets be safe)! This eclipse is a fantastic educational opportunity, and a way to reach an enormous audience.And what better way to experience the eclipse than to be involved? The Eclipse Ballooning Project is involving more than 50 student teams from 30 states to fly high-altitude balloons at 20 locations along the total eclipse path. These balloons will send live videos and images from the edge of space to the NASA website.Why? Being someplace high up provides an entirely different view for an eclipse! Instead of looking up to watch the Moon slide in front of the Sun, you can look down to watch the Moons shadow race across the Earths surface at thousands of miles per hour. This unique perspective is rare, and has certainly never been covered live. This will be an awesome addition to other coverage of the eclipse!At Maximum TotalityThe next speaker, Gordon Emslie, described the outreach efforts planned at his institution, Western Kentucky University (WKU). The location where the eclipse totality will last the longest 2 minutes and 40 seconds is the small town of Hopkinsville, KY. WKU is located a little over an hour away, and both locations are prepared for a large influx of people on eclipse day!Partial solar eclipse as viewed by the space-based Solar Dynamics Observatory. [NASA/SDO]WKU is located just off the centerline of eclipse path, which has some advantages: this provides better viewing of some of the chromospheric features of the Sun during the eclipse, like priminences and solar loops. WKU is setting up a variety of educational and public outreach activities at their football stadium and the WKU farm, and they encourage you to come visit for the eclipse!In addition, they are participating in a nationwide experiment called Citizen CATE, short for the Continental American Telescopic Eclipse. This project will use 60 telescopes spanning the 2500 mile path of totality to record continuous data of the eclipse as it travels across the US. The result will be data of a remarkable 90 minutes of totality, revealing the activity of the solar corona and providing an extended view of the eclipse as has never been seen before.Science During the EclipseNext up was Shadia Habbal (University of Hawaii), who is a co-leader of the AAS 2017 Eclipse Task Force. In addition to her education and outreach efforts associated with the eclipse, however, Habbal is a solar eclipse researcher. She and her collaborators are known as the Solar Wind Sherpas, due to the fact that they hand-carry their science equipment around the world for solar eclipses!Solar corona during a 2008 eclipse, with color overlay indicating emission from highly ionized iron lines. [Habbal et al. 2010]The primary science done during solar eclipses is the study of the solar corona, the region that extends from the solar surface out to several solar radii. This region is too faint to observe normally, but when the light from the Suns disk is blocked out, we can examine it.Unfortunately, the space telescopes that observe the Sun all have relatively narrow fields of view. But during an eclipse, we can gain the larger context for the corona with ground-based observations, with the Moon conveniently blocking the light from the Suns disk! The cover photo is a spectacular example of this.Observations of the corona during eclipses can provide information on both enormous events, like coronal mass ejections, and faint dynamical features, like plasma instabilities and expanding loops. In addition, we can learn about the plasma properties by examining emission from highly charged ions. The upcoming eclipse should provide a great opportunity to do some coronal science!A Unique OpportunityThe final press-conference speaker for the meeting was Jay Pasachoff (Williams College and Caltech), a veteran solar eclipse observer who was able to speak to what we could expect if we make it into the path of totality next year.Path of totality across the continental US for the August 2017 eclipse. [Fred Espenak/NASA GSFC]Pasachoff pointed out that there are nearly 12 million people located within the band of totality. There are probably another 200 million within a days drive! He strongly encouraged anyone able to make it to the path of totality to do so, pointing out that the experience in person is completely unlike the experience of watching a video. The process of watching the world around you go dark, he says, is something that simply isnt captured when you watch an eclipse on TV.If you plan to travel for the eclipse, Pasachoffs recommendation is to aim for the northwest end of the path of totality, rather than the southeast end surprisingly, weather statistics suggest you have a better chance of not getting clouded out in the northwest.We now have a year left to educate everyone likely to view the eclipse on when and how to view it safely! Accordingly, Pasachoff concluded the conference by providing a series of links on where to find more information:eclipses.infototalsolareclipse.orgGreatAmericanEclipse.comeclipsophile.com
Total Solar Eclipse of 2006 March 29
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2004-01-01
On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total Solar Eclipse of 2002 December 04
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2001-01-01
On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations
2016-01-01
The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767
Annular and Total Solar Eclipses of 2010
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, J.
2008-01-01
While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.
Attempt of Serendipitous Science During the Mojave Volatile Prospector Field Expedition
NASA Technical Reports Server (NTRS)
Roush, T. L.; Colaprete, A.; Heldmann, J.; Lim, D. S. S.; Cook, A.; Elphic, R.; Deans, M.; Fluckiger, L.; Fritzler, E.; Hunt, David
2015-01-01
On 23 October a partial solar eclipse occurred across parts of the southwest United States between approximately 21:09 and 23:40 (UT), with maximum obscuration, 36%, occurring at 22:29 (UT). During 21-26 October 2014 the Mojave Volatile Prospector (MVP) field expedition deployed and operated the NASA Ames Krex2 rover in the Mojave desert west of Baker, California (Fig. 1, bottom). The MVP field expedition primary goal was to characterize the surface and sub-surface soil moisture properties within desert alluvial fans, and as a secondary goal to provide mission operations simulations of the Resource Prospector (RP) mission to a Lunar pole. The partial solar eclipse provided an opportunity during MVP operations to address serendipitous science. Science instruments on Krex2 included a neutron spectrometer, a near-infrared spectrometer with associated imaging camera, and an independent camera coupled with software to characterize the surface textures of the areas encountered. All of these devices are focused upon the surface and as a result are downward looking. In addition to these science instruments, two hazard cameras are mounted on Krex2. The chief device used to monitor the partial solar eclipse was the engineering development unit of the Near-Infrared Volatile Spectrometer System (NIRVSS) near-infrared spectrometer. This device uses two separate fiber optic fed Hadamard transform spectrometers. The short-wave and long-wave spectrometers measure the 1600-2400 and 2300-3400 nm wavelength regions with resolutions of 10 and 13 nm, respectively. Data are obtained approximately every 8 seconds. The NIRVSS stares in the opposite direction as the front Krex2.
Total Solar Eclipse of 1997 March 9
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1995-01-01
A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2001 June 21
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1999-01-01
On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Educational and Public Outreach Strategies in Anticipation of the 2017 U.S. Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Fulco, C.
2015-12-01
Those who have experienced a total solar eclipse will travel to every corner of the Earth to observe one, such is its spectacular nature. So it is fortunate indeed to have this remarkable event come to the U.S. in less than two years, with its path of totality from Oregon to South Carolina within a day's drive for most of the nation's population. The date of the 21 August 2017 "Great American Eclipse" is rapidly approaching, and with focus on science literacy in U.S. schools greater than ever, educational and public outreach (EPO) must begin in earnest to maximize the scientific and educational benefits from this rare event. As every location in the U.S. will observe at least a partial eclipse, having EPO strategies in place ensures that the greatest number of students and other observers throughout the country will: a) be aware of and prepared for this event, b) observe (and record) it safely and knowledgeably, and c) gain an increased awareness of the natural world. The need for teachers to promote scientific literacy through curriculum is critical for this event. Despite an increased presence of technology in the classroom, more rigorous educational learning standards and virtually instantaneous access to information, data show that science illiteracy in U.S. schools and in the general population is still widespread. In addition, much fear, ignorance and confusion continue to surround eclipses. Many school districts plan to keep students indoors during the eclipse, while the media can be expected to instruct the public to do the same, thus depriving would-be observers of an unforgettable and most likely a once-in-a-lifetime experience. It would be a tragedy on many levels if this eclipse were not viewed, recorded and remembered live and outdoors--not indoors watching on media--by as many persons as possible. Proper EPO strategies performed with ample lead time can ensure that the 2017 U.S. Total Solar Eclipse will be a success from coast-to-coast, and with it, a heightened level of scientific awareness among the educational community and general public alike. (photo: Total Solar Eclipse over Patagonia; copyright 2010 CNF)
The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon
NASA Astrophysics Data System (ADS)
Ahn, Young Sook; Lee, Yong Sam
2004-12-01
The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.
Solar Eclipse Computer API: Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve
2016-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
NASA Technical Reports Server (NTRS)
Mendillo, Michael
1999-01-01
This grant supported observational campaigns to record the size and brightness of the lunar atmosphere as seen in sodium gas (Na) emissions during the totality phase of lunar eclipses. Three eclipse events were attempted, two from the Mc Donald Observatory in Fort Davis Texas, and one from the site of Italy's Galileo National Telescope (GNT) in La Palma, in the Canary Islands. In all three cases, clear skies prevailed and excellent datasets were obtained. Following the observational component of the grant, a period of detailed processing and analysis began. Eclipse events were chosen for study because when the moon is in full phase it has been within the terrestrial magnetosphere for a few days, thereby shielded from solar wind impact upon its surface. Since sputtering of Na from the lunar regolith by solar wind particles had been proposed as a source of the Moon's atmosphere, this was a test of the mechanism. If the lunar Na appeared to be diminished in comparison to abundances seen at other phases (e.g., at quarter phase when the moon is directly in the solar wind), the solar wind sputtering would indeed be a major source of lunar Na. These experiments could not be conducted during any full moon night because scattering of bright moonlight is so strong that low-light-level imaging of the lunar atmosphere could not be achieved. Hence, the use of eclipses. The final result of these experiments was, for once, clear and unambiguous. The robust size and Na brightness levels measured during all of the eclipses showed that solar wind sputtering could not be a major source of the lunar atmosphere. A major paper on this conclusion was published in ICARUS, and an oral presentation of partial results given at the The Three Galileos conference in Padova (Italy) in January 1997 and at the DPS meeting in Cambridge, MA, in July 1997.
There's An App For That: Planning Ahead for the Solar Eclipse in August 2017
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve
2017-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
Fifty year canon of solar eclipses: 1986 - 2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1987-01-01
A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.
Total Solar Eclipse of 1999 August 11
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1997-01-01
On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Coordinated weather balloon solar radiation measurements during a solar eclipse.
Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Riebeek Kohl, H.; Weaver, K.; Overoye, D.; Martin, A.; Andersen, T.
2017-12-01
How cool was the eclipse? NASA GLOBE Observer challenged citizen scientists across North America to answer that question by observing temperature and cloud changes throughout the August 2017 Total Solar Eclipse. The experiment was meant to chart the impact of changes in solar energy at Earth's surface across all regions that experienced the eclipse, both partial and total. Citizen scientists reported air temperature every 5-10 minutes from first contact to last contact through the free GLOBE Observer app. They also reported cloud cover and cloud type every 15-30 minutes or as changes happened as a proxy for changes in the atmosphere. No data were collected during totality, as we wanted citizen scientists to focus on the eclipse at that time. To recruit citizen scientists, members of the GLOBE Observer Team participated in six large outreach events across the path of totality. We also encouraged participation outside the path of totality though partnerships with informal education institutions and direct communication to the public through NASA communication channels. This presentation will report statistics on citizen science participation and lessons learned about citizen science as an outreach tool. Did participation in the experiment enhance a person's eclipse experience? Did citizen scientists find enough value in the experiment to continue to participate in GLOBE Observer, a long-term citizen science program, after the eclipse? We will also present early results of observed temperature and cloud changes.
Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong
2018-04-01
It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.
What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?
NASA Astrophysics Data System (ADS)
Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.
2018-02-01
In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.
The Great American Eclipse: Lessons Learned from Public Education
NASA Astrophysics Data System (ADS)
Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory
2018-01-01
The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that emerged from the eclipse, there are valuable lessons that will be useful in helping the public prepare for future eclipses, in 2024 and beyond.
Coordinated weather balloon solar radiation measurements during a solar eclipse
2016-01-01
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757
Statistical analysis of geomagnetic field variations during solar eclipses
NASA Astrophysics Data System (ADS)
Kim, Jung-Hee; Chang, Heon-Young
2018-04-01
We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.
On-line Eclipse Resources from the U.S. Naval Observatory: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Fredericks, Amy C.; Bartlett, J. L.; Bell, S.; Stapleton, J. C.
2014-01-01
On 8 April 2024, “…night from mid-day…” (Archilochus, 648 BCE) will appear to fortunate observers along a narrow band, approximately 115 mi (185 km) wide, that crosses fifteen states from Texas to Maine. In response to growing interest in the two total solar eclipses that will sweep the continental United States in the next 11 years, the U.S. Naval Observatory has developed an on-line resource center with direct links to 2024-specific services: the 2024 April 8 Total Solar Eclipse page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php). The Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php) calculates tables of local circumstances for events visible throughout the world. A similar service is available for lunar eclipses, Lunar Eclipse Computer (http://aa.usno.navy.mil/data/docs/LunarEclipse.php). The USNO Eclipse Portal (http://astro.ukho.gov.uk/eclbin/query_usno.cgi) provides diagrams and animations showing the global circumstances for events visible throughout the world and local circumstances for events visible at selected locations. The Web site, which includes both solar and lunar eclipses, is a joint effort with Her Majesty’s Nautical Almanac Office. The Eclipses of the Sun and Moon page (http://aa.usno.navy.mil/data/docs/UpcomingEclipses.php) links to electronic copies of the visibility maps from The Astronomical Almanac. The Eclipse Reference List (http://aa.usno.navy.mil/faq/docs/eclipse_ref.php) is a representative survey of the available literature for those interested in delving into these phenomena, either technically or historically. As exciting as the 2024 total solar eclipse, another spectacular event will precede it; a total solar eclipse will cross a different swath of the continent on August 21, 2017. The U.S. Naval Observatory has a resource center for that event as well (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) . If your plans for 2024 are not yet made, visit the 2024 April 8 Total Solar Eclipse page to prepare for up to 4 minutes 31 seconds of “unexampled beauty, grandeur, and impressiveness” (Newcomb 1890) and of darkness.
NASA Astrophysics Data System (ADS)
Fienberg, R. T.; Speck, A. K.; Habbal, S. R.
2017-12-01
More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the task force's activities, take stock of what went right and what went wrong, and consider how to do an even better job preparing the nation for the next two "Great American" solar eclipses: the annular eclipse of October 14, 2023, and the total eclipse of April 8, 2024.
NASA Technical Reports Server (NTRS)
Mercer, R. D.
1973-01-01
The scientific and engineering findings are presented of the feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse. Included in the report is the computer program documentation of the solar eclipse determination; summary data on SR-71A type aircraft capabilities and limitations as an observing platform for solar eclipses; and the recordings of an informal conference on observations of solar eclipses using SR-71A type aircraft.
Outreach activities in anticipation of the 2016 solar eclipse in Sorong
NASA Astrophysics Data System (ADS)
Putra Raharja, Endra; Pramudya, Yudhiakto
2016-11-01
Sorong is located outside the narrow path of total solar eclipse on March 9th, 2016. The predicted obscuration of the sun was 94.2%. The public outreach to anticipate the solar eclipse was intended to educate students in junior and senior high school in Sorong Regency. Some of them are located in the remote area where the educational materials are difficult to find. The public outreach is unique, since it was run by the local person who is student of physics education. The student has both the ability to explain the solar eclipse phenomenon and able to adapt to knowledge level of students. The materials that were given to the schools are brochure and the eclipse glasses. Beside solar eclipse lectures in class, the pinhole workshop and observation practice were held. The limited materials and resources were faced during the public outreach. However, the enthusiasm was shown by the students and teachers. At least one of the schools held the solar eclipse observation on the day of the eclipse.
Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2017-12-01
The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Division of Atmospheric and Geospace Sciences of the National Science Foundation.
Solar diameter measurements from eclipses as a solar variability proxy
NASA Astrophysics Data System (ADS)
Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David
The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.
Raspberry Pi Eclipse Experiments
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda
2018-01-01
The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.
In the Shadow of the Moon, What Type of Solar Eclipse Will We See?
ERIC Educational Resources Information Center
Brown, Todd; Brown, Katrina
2017-01-01
Solar eclipses occur several times a year, but most people will be lucky if they see one total solar eclipse in their lifetime. There are two upcoming total solar eclipses that can be seen from different parts of the United States (August 21, 2017 and April 8, 2024), and they provide teachers with an amazing opportunity to engage students with a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Roberts, Billy J; Kutchenreiter, Mark C
The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of themore » path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.« less
On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations
NASA Astrophysics Data System (ADS)
Stankov, S.; Verhulst, T. G. W.
2017-12-01
A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Towne, Linda; Kaplan, George H.
2017-01-01
In anticipation of the 2017 August 21 total solar eclipse over the continental United States, the history of U.S. Naval Observatory eclipse observations illustrates the changes in science, technology, and policy over the past 148 years.USNO eclipse observations began in 1869, when staff traveled to Des Moines, Iowa and the Bering Strait to look for intra-mercurial planets and to observe the solar corona. During the golden age of eclipse expeditions, the USNO officially participated in a dozen expeditions between 1869 and 1929. Seven of these expeditions were to US locations: 1869 in Iowa; 1878 in Colorado, Wyoming, and Texas; 1880 in California; 1900 in Georgia and North Carolina; 1918 in Oregon; 1923 in California; and 1925 in New York. A total solar eclipse has not traced a path across the width of the continental US since 1918 although several eclipses have passed over parts of the US since then.A few official expeditions occurred later in the 20th century to measure the solar diameter, including a total eclipse in the northwest US in 1979 and an annular eclipse across the southeast in 1984. However, observations began transitioning to mostly personal adventures as individual astronomers arranged unofficial trips.Historians can use the USNO Multi-year Interactive Computer Almanac (MICA) to compute local circumstances for solar eclipses world-wide starting with the annual eclipse of 1800 April 24, which was visible from Alaska. Those looking to make history in 2017 may consult the USNO 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php).
On the Totality of the Eclipse in AD 628 in the Nihongi
NASA Astrophysics Data System (ADS)
Tanikawa, Kiyotaka; Sôma, Mitsuru
2004-02-01
It is widely accepted that the solar eclipse on AD 628 April 10 (the reign of Empress Suiko, 36th year, 3rd month, 2nd day) recorded in the Nihongi (****) was not total, but partial at the site of observation, though it is written as an exhausted eclipse. A contemporary Japanese occultation observation on AD 681 November 3 is also suspected as being a missing of Mars in the glaring light of the Moon. We suggest in this paper that both records in the Nihongi may be true. Several reasonings are put forward. We then point out the possibility that the value of ΔT at around AD 600 is about 2000s which is far less than 4500s, the value adopted by Stephenson (1997, Historical Eclipses and Earth's Rotation). Lunar grazing occultation data are found to be very useful.
Solar Eclipse: Concept of “Science” and “Language” Literacy
NASA Astrophysics Data System (ADS)
Haristiani, N.; Zaen, R.; Nandiyanto, A. B. D.; Rusmana, A. N.; Azis, F.; Danuwijaya, A. A.; Abdullah, A. G.
2018-02-01
The purpose of this study was to evaluate the concept of science and language literacy of solar eclipse. The study was conducted through a survey to 250 students with different ages (from 17 to 23 years old), grades, and majors in Universitas Pendidikan Indonesia. The survey was completed with a questionnaire consisting of 41 questions. In the case of the language literacy, experimental results showed that various expressions in facing the solar eclipse phenomenon are found. Relating to the science literacy, most students have good science understanding to the solar eclipse phenomenon. In conclusion, the understanding about the solar eclipse is affected by formal science education and religion understanding that they have been accepted since their childhood. These factors have also influenced the belief of Indonesian people to the solar eclipse myth and the way of expressions a language literacy.
SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser
None
2017-12-09
The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.
Heliophysics at total solar eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-08-01
Observations during total solar eclipses have revealed many secrets about the solar corona, from its discovery in the 17th century to the measurement of its million-kelvin temperature in the 19th and 20th centuries, to details about its dynamics and its role in the solar-activity cycle in the 21st century. Today's heliophysicists benefit from continued instrumental and theoretical advances, but a solar eclipse still provides a unique occasion to study coronal science. In fact, the region of the corona best observed from the ground at total solar eclipses is not available for view from any space coronagraphs. In addition, eclipse views boast of much higher quality than those obtained with ground-based coronagraphs. On 21 August 2017, the first total solar eclipse visible solely from what is now United States territory since long before George Washington's presidency will occur. This event, which will cross coast-to-coast for the first time in 99 years, will provide an opportunity not only for massive expeditions with state-of-the-art ground-based equipment, but also for observations from aloft in aeroplanes and balloons. This set of eclipse observations will again complement space observations, this time near the minimum of the solar activity cycle. This review explores the past decade of solar eclipse studies, including advances in our understanding of the corona and its coronal mass ejections as well as terrestrial effects. We also discuss some additional bonus effects of eclipse observations, such as recreating the original verification of the general theory of relativity.
NEWS: Eye safety and the solar eclipse
NASA Astrophysics Data System (ADS)
LeConte, David
1999-05-01
Total eclipses of the Sun are amongst nature's most magnificent spectacles, and offer the opportunity for an exceptional educational experience. Many people never see one in their lifetime, but it has been estimated that this August's eclipse will be seen by more people than any other. It would be a sadly lost opportunity if they were denied the experience because they fear a danger that is easily avoided. The dangers of eye damage are real and precautions need to be taken. Staring at the bright solar photosphere can cause temporary or permanent retinal damage. Since the retina has no pain receptors the observer can be unaware that the eye is being `cooked', and the damage may only become apparent several hours later. However, when the photosphere is completely blocked by the Moon during the brief period of totality (two minutes or less), it is quite safe to look directly. In fact, you will not otherwise see anything at all. It is a complex message to get across to the public, and especially to children, that protection is required during the partial phases but not during totality, and that those outside the path of totality require protection for the whole eclipse. The National Eclipse Group was established by PPARC in 1997 to coordinate educational activities, issue public information and give authoritative advice for the 1999 eclipse. It has published a Solar Eclipse Safety Code, which is available on the national eclipse web site (mentioned above). It advises that the safest way to view the Sun is indirectly, by projecting an image of the Sun with a `pinhole', mirror, binoculars or telescope. Most people, however, will wish to observe the eclipse directly. Sunglasses, photographic film, crossed polarizers, smoked glass and similar filters must not be used. The Safety Code states that the Sun may be viewed directly only through special filters made specifically for solar viewing. Such eclipse viewers are typically made of aluminized polyester film (often generically referred to as `aluminized Mylar') or polymer. Users should ensure that they are marked as having been supplied specifically for direct viewing of the Sun and carry the `CE' mark. To be awarded CE certification, the viewers must be tested in the visual, infrared and ultraviolet by Approved Bodies appointed by the Secretary of State for Trade and Industry, and they must pass a standard based on a specification prepared by Dr B Ralph Chou, University of Waterloo, Canada (see http://sunearth.gsfc.nasa.gov/eclipse/safety2.html). Any method of solar eclipse observation, whether direct or indirect, is not without its hazards. Severe eye damage can be caused, for example, by looking through a pinhole, rather than at the projected image, and will certainly result from looking through any optical instrument. Eclipse viewers should be placed over the eyes before looking up at the Sun and not removed until after looking away. Whatever method is used, children must be clearly instructed and closely supervised. Eclipse viewers are probably not appropriate for very young children. Descriptions of observing methods are in the activities packs for primary and secondary schools prepared by the Association for Astronomy Education and are available from CLEAPSS Schools Science Service and the National Eclipse Line (0345 600444).
Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles
2016-09-28
The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
Comparisons of Measurements and Modeling of Solar Eclipse Effects on VLF Transmissions
NASA Astrophysics Data System (ADS)
Eccles, J. V.; Rice, D. D.; Sojka, J. J.; Marshall, R. A.; Drob, D. P.; Decena, J. C.
2017-12-01
The solar eclipse of 2017 August 21 provides an excellent opportunity to examine Very Low Frequency (VLF) radio signal propagation through the path of the solar eclipse between Navy VLF transmitters and several VLF receivers. The VLF transmitters available for this study radio signal propagation study are NLK in Jim Creek, Washington (24.8 kHz, 192 kW, 48.20N, 121.90W), NML in LaMour, North Dakota (25.2 kHz, 500 kW 46.37N, 93.34W), and NAA in Cutler, Maine (24.0 kHz, 1000 kW, 44.65N, 67.29W). These VLF transmitters provide propagation paths to three VLF receivers at Utah State University (41.75N, 111.76W), Bear Lake Observatory (41.95N, 111.39W), Salt Lake City (40.76N, 111.89W) and one receiver in Boulder, Colorado (40.02N, 105.27W). The solar eclipse shadow will cross all propagations paths during the day and will modify the D region electron density within the solar shadow. The week prior to the solar eclipse will be used to generate a diurnal baseline of VLF single strength for each transmitter-receiver pair. These will be compared to the day of the solar eclipse to identify VLF propagation differences through the solar eclipse shawdow. Additionally, the electron density effects of the week prior and of the solar eclipse day will be modeled using the Data-Driven D Region (DDDR) model [Eccles et al., 2005] with a detailed eclipse solar flux mask. The Long-Wave Propagation Code and the HASEL RF ray-tracing code will be used to generate VLF signal strength for each measured propagation path through the days prior and the solar eclipse day. Model-measurement comparisons will be presented and the D region electron density effects of the solar eclipse will be examined. The DDDR is a time-dependent D region model, which makes it very suitable for the solar eclipse effects on the electron density for the altitude range of 36 to 130 km. Eccles J. V., R. D. Hunsucker, D. Rice, J. J. Sojka (2005), Space weather effects on midlatitude HF propagation paths: Observations and a data-driven D region model, Space Weather, 3, S01002, doi:10.1029/2004SW000094.
Coronal Dynamics at Recent Total Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Lu, M.; Davis, A. B.; Demianski, M.; Rusin, V.; Saniga, M.; Seaton, D. B.; Lucas, R.; Babcock, B. A.; Dantowitz, R.; Gaintatzis, P.; Seeger, C. H.; Malamut, C.; Steele, A.
2014-12-01
Our composite images of the solar corona based on extensive imaging at the total solar eclipses of 2010 (Easter Island), 2012 (Australia), and 2013 (Gabon) reveal several coronal mass ejections and other changes in coronal streamers and in polar plumes. Our resultant spatial resolution is finer than that available in imaging from spacecraft, including that from SOHO/LASCO or STEREO. We trace the eruptions back to their footpoints on the sun using imaging from SDO and SWAP, and follow them upwards through the corona, measuring velocities. The high-resolution computer compositing by Miloslav Druckmüller and Hana Druckmüllerová (2010 and 2013) and Pavlos Gaintatzis (2012) allows comparison of our images with those taken at intervals of minutes or hours along the totality path. Williams College's 2013 eclipse expedition was supported in part by grant 9327-13 from National Geographic Society/Committee for Research and Exploration. Our work on the 2012 eclipse is supported in part by grant AGS-1047726 from Solar Terrestrial Research/NSF AGS. V.R. and M.S. were partially supported by the VEGA grant agency project 2/0098/10 and 2/0003/13 (Slovak Academy of Sciences) and Grant 0139-12 from NG/CRE, and Hana Druckmüllerová by grant 205/09/1469 of the Czech Science Foundation. M.L. was supported by Sigma Xi. C.M. was a Keck Northeast Astronomy Consortium Summer Fellow, supported at Williams College by REU/NSF grant AST-1005024. Partial support was provided by U.S. Department of Defense's ASSURE program. J.M.P. thanks Caltech's Planetary Sciences Department for hospitality. Support for D.B.S. and SWAP came from PRODEX grant C90345 managed by ESA in collaboration with the Belgian Federal Science Policy Office (BELSPO) in support of the PROBA2/SWAP mission, and from the EC's Seventh Framework Programme (FP7/2007-2013) under grant 218816 (SOTERIA project, www.soteria-space.eu). SWAP is a project of the Centre Spatial de Liège and the Royal Observatory of Belgium funded by BELSPO.
SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-08
The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar willmore » be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.« less
Satellite observations of surface temperature during the March 2015 total solar eclipse.
Good, Elizabeth
2016-09-28
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2008-01-01
This catalog is a supplement to the "Five Millennium Canon of Solar Eclipses." It includes additional information for each eclipse that could not be included in the original 648-page publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Lunar Eclipse parameter, gamma, eclipse magnitude, geographic coordinates of greatest eclipse (latitude and longitude), and the circumstances at greatest eclipse (i.e., Sun altitude and azimuth, path width, and central line duration). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
The Unique Scientific Assets of Multi-Wavelength Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Habbal, S. R.; Druckmuller, M.; Ding, A.
2017-12-01
Total solar eclipses continue to yield new discoveries regarding the dynamics and thermodynamics of the corona, due to the radial span of the field of view available during totality, starting from the solar surface out to several solar radii, and due to the diagnostic potential provided by coronal emission lines. Scientific highlights from past eclipse observations as well as from the 21 August 2017 eclipse, now spanning a solar cycle, will be presented. These include white light and spectral line imaging as well as imaging spectrometry. Emphasis will be placed on the unique insights into the origin of dynamic structures captured in eclipse images, and the temperature distribution in the corona derived from these eclipse observations. Implications of these results for the general problem of coronal heating, as well as for the next generation of space instrumentation will be discussed.
What If It Rains on Your Eclipse? Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Keohane, J.
2010-01-01
It was a dark and rainy morning, not far out of Shanghai, when we saw the 2009 July 22 total solar eclipse. Many of the Americans puttering around their equipment that morning, in hopes that the sky would clear enough to catch some of event they had traveled around the world to view, were already planning ahead for 2017 August 21, when a narrow strip of the United States will experience up to 2 minutes and 45 seconds of totality. For most people, a total solar eclipse is once in a lifetime event steeped in legend. If you are situated along this privileged corridor, you will have a wonderful opportunity for public outreach. But what if it rains? Historically, August is mostly sunny at the location of greatest eclipse, near Makanda, Illinois. Even with such favorable circumstances, having a rain plan will ensure you make the most of the occasion. First, the flexibility to relocate your program to take advantage of the most favorable weather would be ideal. If that is not a realistic option, include some protective gear with your equipment so that you can set up despite misty or drizzling conditions. Second, monitoring changing light levels and temperatures should be possible even under cloudy skies. Third, for some sites, changes in wildlife behavior may also be noticeable. If the weather is clear, such projects could enhance your program during the partial phases of the eclipse and provide enrichment materials for those unable to attend. While 2017 may still seem in the distant future to all but eclipse fanatics, some creativity and advance brainstorming will ensure that your outreach program shines during the event, even if the Sun does not cooperate. S. Bell (2009, pc.), HMNAO, provided the eclipse predictions. Additional information is available via USNO Eclipse Portal (http://www.eclipse.org.uk/eclbin/query_usno.cgi).
The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem
NASA Astrophysics Data System (ADS)
Yousef, S. M.
The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.
Satellite observations of surface temperature during the March 2015 total solar eclipse
2016-01-01
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764
The moderately interacting Algol-type eclipsing binary RY Geminorum
NASA Technical Reports Server (NTRS)
Plavec, Mirek J.; Dobias, Jan J.
1987-01-01
Ultraviolet spectra of the Algol-type semidetached system RY Geminorum, whose components can be described as A0 V and K0 IV, have been matched to the ultraviolet spectrum by Kurucz (1979) model atmospheres, and a best fit is found for T(eff) = 9150 K. Comparison with standard star spectra requires that this value be raised to 9400 K. The color excess of the system is determined to be no more than E(B-V) = 0.03 mag; the distance to the system is about 360 pc. The masses are approximately 2.36 and 0.38 solar masses, and the radii are 2.5 and 5.8 solar radii, respectively. The separation of the two centers is 26 solar radii. Evidence for a circumstellar line absorption is found in optical and ultraviolet spectrograms, and evidence is found in IUE spectra taken in partial eclipse for circumstellar emission lines of the type detected previously in the WS Serpentis stars and in several semidetected systems of the Algol type.
Ionospheric effects over Europe during the solar eclipse on 20 March 2015
NASA Astrophysics Data System (ADS)
Hoque, Mainul; Jakowski, Norbert; Berdermann, Jens
2017-04-01
A total solar eclipse occurred on March 20, 2015 moving from the North-West Europe towards the North-East. Due to strong solar radiation changes dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact e.g. on the temperature and ionization during the eclipse. We analyzed the 20 March 2015 solar eclipse effects on the ionospheric structure over Europe using multi-sensor observations such as vertical sounding (VS) and Global Positioning System (GPS) measurements. Whereas the VS measurements are used to provide peak electron density information at the ionospheric F2, F1 and E layers over selected ionosonde stations, a dense network of GPS stations is used to provide high spatial resolution of the total electron content (TEC) estimates over Europe. We reconstructed the TEC maps with 5 minutes time resolution and thus investigated the original TEC maps and differential TEC maps obtained by subtracting 27 days medians from the actual TEC map values on 20 March 2015. By combining VS and GPS measurements the equivalent slab thickness has been estimated over several ionosonde stations to get information how the shape of the vertical electron density profile changes during the eclipse. The analysis of the solar eclipse on 20 March 2015 presented here will contribute to understand the ionospheric response on solar eclipses occurring at different latitudes. The observations indicate that a number of competitive processes initiated by an eclipse are often enhanced by dynamic forces associated with large scale geophysical conditions not directly impacted by the solar eclipse. Our TEC estimation shows that the total ionization reduces up to 60% (after bias correction 40%) as a function of obscuration. Since the 20 March 2015 eclipse occurred during the negative phase of a severe geomagnetic storm on 17 March 2015, the observed TEC depletion is higher than those reported earlier for 1999 and 2005 eclipses. Thus, a negative bias of up to 20% was observed over Northern Europe already before the eclipse occurred. Moreover, the eclipse path of the solar eclipse in 2015 is traced at higher latitudes compared with eclipses observed in the years 1999 and 2005. The ionospheric response to the obscuration function is delayed up to 40 minutes decreasing with growing distance from the totality zone and increasing with altitude. The increasing delay with altitude is in agreement with earlier findings for other eclipses. The equivalent slab thickness was found to increase by approximately 80 -100 km during the solar eclipse on 20 March 2015 showing evidence for a pronounced loss in the bottomside ionosphere causing a delayed depletion of the topside ionosphere.
New Zealand Astronomy and the 9 September 1885 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Orchiston, Wayne; Rowe, Glen
The second half of the nineteenth century saw a blossoming of interest in solar eclipses as astronomers tried to establish whether the corona was a solar, lunar or terrestrial phenomenon, and as they investigated the nature of the corona, the chromosphere and prominences. Critical in these investigations were astronomy's newest allies: photography and spectroscopy. Photography was used with great effectiveness throughout the half century, but spectroscopy was first applied during the `Indian eclipse' of 1868. Thereafter, almost every total solar eclipse was subjected to scrutiny, the intensity of which depended upon the duration of the eclipse and the location of its path of totality. The first total solar eclipse visible from New Zealand following European settlement occurred on 9 September 1885, and attracted the attention of professional scientists and amateur astronomers. The centre of the path of totality extended from West Wanganui Inlet on the far northern reaches of the west coast of the South Island to Castle Point on the Wairarapa Coast, and a total eclipse was visible from population centres like Collingwood, Nelson, Picton, Wellington, Otaki, Palmerston North, Wanganui and throughout the Wairarapa. In this chapter we examine this eclipse, in the context of New Zealand astronomy and the international development of solar physics.
Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999
NASA Astrophysics Data System (ADS)
Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.
2000-11-01
During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse. This is because the diffuse light increases by more than 30% with respect to the direct solar radiation, increasing more at the shorter wavelength side of the UV spectrum. This plausible mechanism introduces an artificial decrease in total ozone during solar eclipse of more than 30 Dobson units (DU), which is confirmed by all Brewer and Dobson measurements. Changes in total ozone cited earlier in the refereed literature have not been confirmed in the present study.
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
NASA Technical Reports Server (NTRS)
Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
NASA Astrophysics Data System (ADS)
Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.
2016-11-01
Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Babcock, B. A.; Davis, A. B.; Demianski, M.; Lucas, R.; Lu, M.; Dantowitz, R.; Rusin, V.; Saniga, M.; Seaton, D. B.; Gaintatzis, P.; Voulgaris, A.; Seiradakis, J. H.; Gary, D. E.; Shaik, S. B.
2014-01-01
Our studies of the solar chromosphere and corona at the 2012 and 2013 eclipses shortly after cycle maximum 24 (2011/2012) of solar activity (see: http://www.swpc.noaa.gov/SolarCycle/) involved radio observations of the 2012 annular eclipse with the Jansky Very Large Array, optical observations of the 2012 total eclipse from Australia, optical observations of the 2013 annular eclipse from Tennant Creek, Australia, and the 3 November 2013 total solar eclipse from Gabon. Our observations are coordinated with those from solar spacecraft: Solar Dynamics Observatory AIA and HMI, Hinode XRT and SOT, SOHO LASCO and EIT, PROBA2 SWAP, and STEREO SECCHI. Our 2012 totality observations include a CME whose motion was observed with a 37-minute interval. We include first results from the expedition to Gabon for the 3 November 2013 eclipse, a summary of eclipse results from along the path of totality across Africa, and a summary of the concomitant spacecraft observations. The Williams College 2012 expeditions were supported in part by NSF grant AGS-1047726 from Solar Terrestrial Research/NSF AGS, and by the Rob Spring Fund and Science Center funds at Williams. The JVLA is supported by the NSF. The Williams College 2013 total-eclipse expedition was supported in part by grant 9327-13 from the Committee for Research and Exploration of the National Geographic Society. ML was also supported in part by a Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society (Grant ID: G20120315159311). VR and MS acknowledge support for 2012 from projects VEGA 2/0003/13 and NGS-3139-12 of the National Geographic Society. We are grateful to K. Shiota (Japan) for kindly providing us with some of his 2012 eclipse coronal images. We thank Alec Engell (Montana State U) for assistance on site, and Terry Cuttle (Queensland Amateur Astronomers) for help with site arrangements. We thank Aram Friedman (Ansible Technologies), Michael Kentrianakis, and Nicholas Weber (Dexter Southfield School) for collaboration on imaging at the Australian total eclipse.
Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data
NASA Astrophysics Data System (ADS)
KIM, J. H.; Chang, H. Y.
2017-12-01
We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Agata, H.; Maeda, K.; Okyudo, M..; Yamazaki, Y.
A total solar eclipse was observed on 2001 June 21 in Angola, Zambia, and Zimbabwe in Africa. For the purpose of promotion of science education using a solar eclipse as an educational project, the whole image and an enlarged image of the Sun, that showed the process of an eclipse and how things went in the observation area, were broadcast to the world through the Internet (Live Eclipse). Such images were distributed to four primary schools in Hiroshima and the Science and Technology Museum in Tokyo to give a remote lecture through computers. To find the effectiveness of the lecture, the learning effect on the participating children was examined two times before and after the remote lecture on the solar eclipse.
Analysis of ionospheric irregularities during total solar eclipse 2016 based on GNSS observation
NASA Astrophysics Data System (ADS)
Husin, A.; Jiyo; Anggarani, S.; Ekawati, S.; Dear, V.
2016-11-01
A total solar eclipse occurred over Indonesia in the morning hours on 9 March 2016. Ionisations in the ionosphere which is associated with the solar radiation during the total eclipse provided a good opportunity to study the ionospheric irregularities. Using global navigation satellite system (GNSS) data taken from dual-frequency receivers in Manado, we investigated and analysed the total electron content (TEC) perturbations with a time resolution of 60 s to reveal ionospheric irregularities during total eclipse. Result showed that TEC conditions based on IPP were decreased during solar eclipse on March 9, comparing with the neighbour day. The maximum percentage deviation (DTEC) from the average value during eclipse period, 00:00 - 02:40 UT reach -41.5%. The duration of maximum decrement in TEC occurs were around 2-30 minutes after the maximum obscuration.
2017-06-11
Marshall Space Flight Center employees view the August 21, 2017 solar eclipse at the center’s activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
2017-08-21
A total solar eclipse is seen on Monday, August 21, 2017 from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)
Total Eclipse From Onboard NASA's G-III Research Aircraft
2017-09-13
As the 2017 solar eclipse approaches and enters totality, NASA Armstrong staff and NASA senior management share their excitement and first-hand experience from aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft. The G-III aircraft flew at 35,000 feet above the coast of Oregon during the 2017 total solar eclipse, capturing some of the very first views of the 2017 total solar eclipse as it made its way across the United States.
First Results from the August 21, 2017, Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-08-01
I report on the observations planned and, weather permitting, made from our site in Salem, Oregon, at the August 21, 2017, total solar eclipse. I also give a first report on collaborators' successes, including Megamovie and simultaneous space observations. We also describe our participation in PBS's NOVA on the eclipse that was to be aired on public television on eclipse night. Our eclipse expedition is supported in large part by grants from the Solar Terrestrial Program of the Atmospheric Sciences Division of NSF and by the Committee for Research and Exploration of the National Geographic Society.
Solar Coronal Jets Extending to High Altitudes Observed during the 2017 August 21 Total Eclipse
NASA Astrophysics Data System (ADS)
Hanaoka, Yoichiro; Hasuo, Ryuichi; Hirose, Tsukasa; Ikeda, Akiko C.; Ishibashi, Tsutomu; Manago, Norihiro; Masuda, Yukio; Morita, Sakuhiro; Nakazawa, Jun; Ohgoe, Osamu; Sakai, Yoshiaki; Sasaki, Kazuhiro; Takahashi, Koichi; Toi, Toshiyuki
2018-06-01
Coronal jets, which extend from the solar surface to beyond 2 R ⊙, were observed in the polar coronal hole regions during the total solar eclipse on 2017 August 21. In a time-series of white-light images of the corona spanning 70 minutes taken with our multi-site observations of this eclipse, six jets were found as narrow structures upwardly ejected with an apparent speed of about 450 km s‑1 in polar plumes. On the other hand, extreme-ultraviolet (EUV) images taken with the Atmospheric Image Assembly of the Solar Dynamics Observatory show that all of the eclipse jets were preceded by EUV jets. Conversely, all the EUV jets whose brightnesses are comparable to ordinary soft X-ray jets and that occurred in the polar regions near the eclipse period, were observed as eclipse jets. These results suggest that ordinary polar jets generally reach high altitudes and escape from the Sun as part of the solar wind.
2015-01-01
The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856–1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century) and imaging investigations (since the latter half of the 20th century), Butler’s paintings reveal why white-light images misled researching and understanding the Sun’s atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017. PMID:27551356
Woo, Richard
2015-12-01
The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856-1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century) and imaging investigations (since the latter half of the 20th century), Butler's paintings reveal why white-light images misled researching and understanding the Sun's atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
Observation of the total solar eclipse on 21 June 2001 in Zambia
NASA Astrophysics Data System (ADS)
Takahashi, Noritsugu; Yumoto, Kiyohumi; Ichimoto, Kiyoshi
2002-04-01
On 21 June 2001, path of totality in Angola, Zambia, Zimbabwe, Mozambique, and Madagascar in Africa. The Japan Scientific Observation Team, consisting primarily of the members of the Solar Eclipse Subcommittee of the Committee for International Collaboration in Astronomy of the Science Council of JAPAN, visited Lusaka in Zambia to observe the total solar eclipse. Blessed with fine weather, the observation was successful. The outline of the influence of solar eclipse on the terrestrial magnetism, polarization of the flash spectrum, and other observation data, as well as the way educational activities were carried out, are reported.
The solar corona through the sunspot cycle: preparing for the August 21, 2017, total solar eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Seaton, Daniel; Rusin, Vojtech
2017-01-01
We discuss the evolution of the solar corona as seen at eclipses through the solar-activity cycle. In particular, we discuss the variations of the overall shape of the corona through the relative proportions of coronal streamers at equatorial and other latitudes vs. polar plumes. We analyze the two coronal mass ejections that we observed from Gabon at the 2013 total solar eclipse and how they apparently arose from polar crown filaments, one at each pole. We describe the change in the Ludendorff flattening index from solar maximum in one hemisphere as of the 2013 eclipse through the 2015 totality's corona we observed from Svalbard and, with diminishing sunspot and other magnetic activity in each hemisphere, through the 2016 corona we observed from Ternate, Indonesia.We discuss our observational plans for the August 21, 2017, total solar eclipse from our main site in Salem, Oregon, and subsidiary sites in Madras, OR; Carbondale, IL; and elsewhere, our main site chosen largely by its favorable rating in cloudiness statistics. We discuss the overlapping role of simultaneous spacecraft observations, including those expected not only from NASA's SDO, ESA's SWAP on PROBA2, and NRL/NASA/ESA's LASCO on SOHO but also from the new SUVI (Solar Ultraviolet Imager) aboard NOAA's GOES-R satellite, scheduled as of this writing to have been launched by the time of this January 2017 meeting.Our research on the 2013 and 2015 total solar eclipses was supported by grants from the Committee for Research and Exploration of the National Geographic Society (NG-CRE). Our research on the 2017 total solar eclipse is supported by both NG-CRE and the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.
2017 Total Solar Eclipse Across America Promo
2017-08-10
On Monday, August 21, 2017, all of North America will be treated to an eclipse of the sun. Anyone within the path of totality can see one of nature’s most awe inspiring sights - a total solar eclipse.
Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Lin, C. Y. T.; Deng, Y.
2017-12-01
During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.
Geographically Distributed Citizen Scientist Training for the 2017 Citizen CATE Experiment
NASA Astrophysics Data System (ADS)
Gelderman, Richard; Penn, Matt; Baer, Robert; Isberner, Fred; Pierce, Michael; Walter, Donald K.; Yanamandra-Fisher, Padma; Sheeley, Neil R.
2016-01-01
The solar eclipse of 21 August 2017 will be visible to over a half billion people across the entire North American continent. The roughly 100-mile wide path of totality, stretching from Oregon to South Carolina, will be the destination for tens of millions of people. In the decades since 1979, when the last total solar eclipse was visible from the continental USA, the phenomenon of Internet enabled citizen science has grown to be an accepted mode for science. The Citizen Continental-America Telescopic Eclipse (Citizen CATE) experiment has been funded as one of the three 2017 eclipse related NASA STEM agreements to engage citizen scientists in a unique, cutting-edge solar physics experiment. Teams across the USA will be trained to use standardized refracting telescope and digital imager set-ups to observe the solar corona during the eclipse, acquiring multiple exposures to create one high dynamic range image. After observing during the eclipse, the CATE volunteers will upload the combined image to a cloud-storage site and the CATE team will then work to properly orient and align all the images collected from across the continent to produce a continuous 90-minutes movie. A time-compressed first cut of the entire sequence will be made available to media outlets on the same afternoon of the eclipse, with hope that high quality images will encourage the most accurate coverage of this Great American Eclipse. We discuss overall the project, as well as details of the initial tests of the prototype set-up (including in the Faroe Islands during the March 2015 total solar eclipse) and plans for the future night-time and day-time observing campaigns, and for a handful of observing teams positioned for overlapping observations of the March 2016 total solar eclipse in the South Pacific.
Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone
NASA Astrophysics Data System (ADS)
Winter, H. D., III
2017-12-01
The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.
2017-06-11
Marshall Space Flight Center employee, Phillip Domen, safely views the August 21, 2017 solar eclipse with his homemade viewing box. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
Determination of variations of the solar radius from solar eclipse observations
NASA Technical Reports Server (NTRS)
Sofia, S.; Dunham, D. W.; Fiala, A. D.
1980-01-01
This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.
Spectral changes in the zenith skylight during total solar eclipses.
Hall, W N
1971-06-01
The relative spectral intensity of the zenith sky was measured with an optical scanning spectrometer at Nantucket Island, Massachusetts, during the total solar eclipse of 7 March 1970. The spectral ratios I(5100 A)/I(4300 A) and I(5900 A)/I(5100 A) at Nantucket remained unchanged for 96% or less obscuration of the sun by the moon. The results are compared with other recent relative spectral intensity measurements made during total solar eclipses. Comparison with other eclipse measurements for solar elevation angle at totality less than 45 degrees shows a blue color shift consistent with rayleigh scattering. Eclipses with solar elevation angles at totality greater than 45 degrees do not show consistent color shifts. This inconsistency may be due to difficulty in establishing a suitable reference spectrum for comparison with the spectral distribution of the zenith sky at totality. Selection of a suitable reference spectrum is discussed.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
2016-01-01
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763
Solar eclipse over the South Pacific Ocean
2017-12-08
During a total solar eclipse, the MODIS instrument on NASA's Aqua satellite recorded this image of the shadow of the moon over the South Pacific Ocean on March 8, 2016, at 10:05 pm EST. This total solar eclipse was the last one before an August 21, 2017, total solar eclipse that will be visible in much of the United States. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Initial Results of HamSCI Ham Radio 21 August 2017 Eclipse Ionospheric Experiments
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Gerrard, A. J.; Vega, J. S.; Katz, J. D.; West, M. L.; Gunning, S. W.; Moses, M. L.; Miller, E. S.; Erickson, P. J.; Huba, J.; Silver, H. W.; Ceglia, F.; Smith, P.; Williams, R.; Shovkoplyas, A.; Earle, G. D.; Gerzoff, R.; Gladstone, P.; Reyer, S. E.; Ackermann, J. R.; Bern, D.; Rose, S. W.
2017-12-01
On 21 August 2017, a total solar eclipse will cause the shadow of the moon to traverse the United States from Oregon to South Carolina in just over 90 minutes. The sudden absence of sunlight due to the eclipse, especially solar UV and x-rays, provides an impulse function to the upper atmosphere that modifies the neutral dynamics, plasma concentrations, and related properties. Despite more than 60 years of research, questions remain regarding eclipse-induced ionospheric impacts. Ham radio operators' advanced technical skills and inherent interest in ionospheric science make the amateur radio community ideal for contributing to and and participating in large-scale ionospheric sounding experiments. We present initial results from three amateur radio experiments designed to study the 2017 total solar eclipse: the Solar Eclipse QSO Party (SEQP), the HF Wideband Recording Experiment, and the Eclipse Frequency Measurement Test (FMT). These experiments are coordinated by HamSCI, the Ham Radio Science Citizen Investigation, a citizen science organization that connects the amateur radio community to the professional space science research community for mutual benefit.
2017-06-11
Former Spacelab 1 Mission scientist Rick Chappell views the August 21, 2017 solar eclipse with his wife. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.
Multicolor eclipse studies of UU Aquarii. 1: Observations and system parameters
NASA Technical Reports Server (NTRS)
Baptista, R.; Steiner, J. E.; Cieslinski, D.
1994-01-01
A study of the eclipses in UU Aqr from multicolor high-speed photometry is presented. A revised ephemeris for the times of minimum and an upper limit for orbital period variations are obtained. We use measurements of contact phases in the eclipse light curve to derive the binary geometry and to estimate masses and relevant dimensions. We find a mass ratio of q = 0.30 +/- 0.07 and an inclination of i = 78 deg +/- 2 deg. The masses of the component stars are M(sub 1) = 0.67 +/- 0.14 solar mass and M(sub 2) = 0.20 +/- 0.07 solar mass. Our photometric model predicts K(sub 1) = 84 +/- 26 km/s, which is approximately 30% smaller than the velocity amplitude obtained from the emission lines. From the white dwarf fluxes we estimate T(sub wd) approximately = 34,000 K and a distance of d = 270 +/- 50 pc if the inner disk is opaque. UU Aqr has long term brightness variations of approximately = 0.3 m on timescales of approximately 4 yr. The system was in a 'high' state in 1989 and 1990 and in a 'low' state in 1988 and 1992. The high state results from an increase in the brightness of the outer and cooler parts of the disk, mainly due to the appearance of a bright spot at disk rim. Based on the smooth and gradual eclipse shape and on the absence of a prominent hump in the light curve we suggest that UU Aqr is a high mass-transfer nova-like system with a relatively bright and optically thick accretion disk. We find no perceptible eclipse in the H-alpha emission line. The fluxes at mid-eclipse can be fitted by a compostion of a late-type spectrum plus an optically thin hydrogen emission-line spectrum. These evidences suggest that the emission lines are formed in an extended region only partially occulted during eclipse.
Constructing 'Black Sun': the Documentary Film of the 2012 Eclipses
NASA Astrophysics Data System (ADS)
Holbrook, Jarita
2014-06-01
2012 offered an opportunity that was not to be missed: two solar eclipses. Drs Alphonse Sterling and Hakeem Oluseyi began doing collaborative research during total solar eclipses in 2006 in Ghana. Since then they have continued to do eclipse observation when funds and whether permitted. As a filmmaker, the opportunity to film Sterling and Oluseyi during the 2012 eclipses in Tokyo and Cairns fulfilled the goal of showing the excitement of time-sensitive research, the lives of astrophysicists, and diversity within the astronomy community. As an astrophysicist who did not specialize in solar astrophysics, it was an opportunity for me both to learn and to solidify for the audience what we know about the sun and the importance of eclipse observation. Clips of the film will be included.
Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal
2017-01-01
The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.
NASA Technical Reports Server (NTRS)
Alexander, Doug; Edge, Ted; Willowby, Doug
1998-01-01
The planned orbit of the AXAF-I spacecraft will subject the spacecraft to both short, less than 30 minutes for solar and less than 2 hours for lunar, and long earth eclipses and lunar eclipses with combined conjunctive duration of up to 3 to 4 hours. Lack of proper Electrical Power System (EPS) conditioning prior to eclipse may cause loss of mission. To avoid this problem, for short eclipses, it is necessary to off-point the solar array prior to or at the beginning of the eclipse to reduce the battery state of charge (SOC). This yields less overcharge during the high charge currents at sun entry. For long lunar eclipses, solar array pointing and load scheduling must be tailored for the profile of the eclipse. The battery SOC, loads, and solar array current-voltage (I-V) must be known or predictable to maintain the bus voltage within acceptable range. To address engineering concerns about the electrical performance of the AXAF-I solar array under Low Intensity and Low Temperature (LILT) conditions, Marshall Space Flight Center (MSFC) engineers undertook special testing of the AXAF-I Development Verification Test (DVT) solar panel in September-November 1997. In the test the DVT test panel was installed in a thermal vacuum chamber with a large view window with a mechanical "flapper door". The DVT test panel was "flash" tested with a Large Area Pulse Solar Simulator (LAPSS) at various fractional sun intensities and panel (solar cell) temperatures. The testing was unique with regards to the large size of the test article and type of testing performed. The test setup, results, and lessons learned from the testing will be presented.
Dynamics of Coronal Structures Captured During the 2012 and 2013 Total Solar Eclipses
NASA Astrophysics Data System (ADS)
Alzate, N.; Habbal, S. R.; Druckmuller, M.
2017-12-01
White light eclipse images taken during total solar eclipses provide a very high dynamic range spanning tens of solar radii starting from the solar surface. They capture the instantaneous state of the corona, including dynamic events. We present observations of the 2012 November 13 and 2013 November 3 total solar eclipses, taken by Constantinos Emmanouilidis, in which we captured high latitude tethered prominences accompanied by CMEs, as well as several `atypical' large scale structures, spanning a few solar radii above the solar surface. By complementing the eclipse observations with co-temporaneous SDO/AIA, STEREO/EUVI and SOHO/LASCO observations, we show how the shape of the atypical structures outlines the shape of faint CME shock fronts, driven by flaring activities. The tethered prominences were imaged from their anchor at the solar surface out to several solar radii. The SDO/AIA 30.4, 17.1 and 19.3 nm emission clearly show how a direct link between the cool (104 - 105 K) filamentary emission from prominence material, and the filamentary structures emitting at coronal temperatures (> 106 K), is unmistakably present. The observed survival of these tethered systems out to the field of view of LASCO C3, establishes the likely origin of counter-streaming electrons associated with CMEs observed in interplanetary space (ICMEs). They also provide new insights for CME-initiation models associated with prominence eruptions. Our work highlights the uniqueness of eclipse observations in identifying the impact of transit events on large-scale coronal structures.
Notable Images of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry
2018-01-01
The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.
The 1995 total solar eclipse: an overview.
NASA Astrophysics Data System (ADS)
Singh, J.
A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
Observation of the solar eclipse of 20 March 2015 at the Pruhonice station
NASA Astrophysics Data System (ADS)
Mošna, Zbyšek; Boška, Josef; Knížová, Petra Koucká; Šindelářová, Tereza; Kouba, Daniel; Chum, Jaroslav; Rejfek, Luboš; Potužníková, Kateřina; Arikan, Feza; Toker, Cenk
2018-06-01
Response of the atmosphere to the Solar Eclipse on 20 March 2015 is described for mid-latitude region of Czech Republic. For the first time we show join analysis using Digisonde vertical sounding, manually processed Digisonde drift measurement, and Continuous Doppler Sounding for the solar eclipse study. The critical frequencies foE, foF1 and foF2 show changes with different time offset connected to the solar eclipse. Digisonde drift measurement shows significant vertical plasma drifts in F2 region deviating from daily mean course with amplitudes reaching 15-20 m/s corresponding to the time of solar eclipse. Continuous Doppler Sounding shows propagation of waves in the NE direction with velocities between 70 and 100 m/s with a peak 30 min after first contact. We observed increased and persistent wave activity at heights between 150 and 250 km at time about 20-40 min after beginning of SE with central period 65 min.
2017-06-11
Krisdon Manecke and Danielle Burleson of the Office of the Chief Information Officer (OCIO) view the August 21, 2017 solar eclipse at the Marshall Space Flight Center’s viewing opportunity at the activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
2017-06-11
Judy Darwin of the Marshall Space Flight Center’s Office of the Chief Information Officer (CIO) views the August 21, 2017 solar eclipse through the telescope set up for Marshall employees. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
The Role of Solar Eclipses in El Nino/La Nina Events
NASA Astrophysics Data System (ADS)
Chiu, B. C.
2005-08-01
The first hint of the fact that solar eclipses mark the enhanced storms called El Nino or La Nina, came from the article by Robert Allan on analysis of frequencies of these events (2001, perhaps Fourier analysis). One mystery was the cause of a cycle with period 15 to 20 years. But the Saros Series of solar eclipses has a period of 18+ years. Then we had the data from Galapagos Islands for the whole 20th century (Philander 2004). The graph of high and low temperatures indicates El Ninos and La Ninas. A search through charts of solar eclipses for those with good locations for bringing high tides at the Tropics, gave a good picture: those at the eastern coast of the pacific Ocean gave El Ninos, and those at the west gave La Ninas. More than half of the peaks and troughs on the temperature graph can be identified with solar eclipses. We looked more closely at a few events that caused great storms. They are described in J. M. Nash's book, ``El Nino" (2002). The most striking case is that of the 1998 Feb. 22 solar eclipse, which corresponds to the so-called El Nino of 1997-98. In conclusion, I would say that the annual El nino effect is due to the sun's travel between the Tropic of Cancer and Tropic of Capricorn. But the enhanced El Niino/La Nina is due to the coming together of sun and moon in the solar eclipses, which seem to come irregularly.
EFFECTS OF TOTAL SOLAR ECLIPSE ON MENTAL PATIENTS—A CLINICOBIOCHEMICAL CORRELATION
Boral, G. C.; Mishra, D. C.; Pal, S. K.; Ghosh, K. K.
1981-01-01
SUMMARY Thirteen treated psychotic cases comprising of eight schizophrenic, four M.D.P. (manic type) and one M. D. P. (depressive type), who were clinically symptom free, were studied in respect of their hormones and behavioural abnormalities under effect of total solar eclipse. Of the hormones studied viz., T2, T4, TSH, Cortisol and prolactin, it is prolactin which showed an increase in titre associated with behavioural abnormalities in concerned patients during and immediately after the total solar eclipse. Deflection in both prolactin and behaviour gradually seemed to normalise over the post eclipse period. PMID:22064835
Ionospheric response over Europe during the solar eclipse of March 20, 2015
NASA Astrophysics Data System (ADS)
Hoque, Mohammed Mainul; Wenzel, Daniela; Jakowski, Norbert; Gerzen, Tatjana; Berdermann, Jens; Wilken, Volker; Kriegel, Martin; Sato, Hiroatsu; Borries, Claudia; Minkwitz, David
2016-10-01
The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth's upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC) maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS) and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF) signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the Sun's obscuration function. By modelling TEC depletion and knowing the Sun's obscuration function in advance, Global Navigation Satellite System (GNSS) operators may improve the broadcast ionospheric correction during a solar eclipse day.
Paper Moon: Simulating a Total Solar Eclipse
ERIC Educational Resources Information Center
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
2017 Solar Eclipse, Ames Research Center
2017-08-21
Taking a break from his duties at the Ames Vertical Gun Range to look up at the eclipse over Ames Research Center in Mountain View Adam Parrish not only views but wears, on his forehead, the image of the 2017 Solar eclipse at 09:20:56 on August 21, 2017.
An outstanding researcher of the solar eclipses- Nicolas Donitch
NASA Astrophysics Data System (ADS)
Gaina, Alex
1998-09-01
Nicolae Donitch (1874, Chisinau-1958, Nice, France?) worked in Russia (until 1917), Romania (1918-1944) and France (1945-1958?). His observatory was placed in Dubossary-Vechi (where he worked with some intervals between 1908 and 1944. He was designated by the Russian Academy of Sciences for the observations of the total Solar eclipse in Elche (Spain) on 28 May 1900. Other solar eclipses observed by N. Donitch: 17-18 may 1901, Padong (Sumatra); 1904 - the annular eclipse of the Sun in Pnom-Penh (Cambodge); august 1905, Alcala de Chisvert (Spain) and Assuan (Upper Egypt); 16/17 April 1912, Portugal; 21 august 1914, Crimea; 1925, USA; 1929 Indochina and Philipines; 1930, Egypt; 1932 Egypt and cape Porpoise,Maine USA; 1936, Inneboli, Turkey. Other solar investigations by N. Donitch; Solar cromosphere (Odessa, 1902; Mount- Blanch, 1902-1903); The passage of the planet Mercury through the solar disk (November, 1907, Egypt; October 1914, Algeria).
Stellar background observation during Total Solar Eclipse March 9th 2016
NASA Astrophysics Data System (ADS)
Mumtahana, Farahhati; Timur Jaelani, Anton; Muhamad, Johan; Sutastio, Heri
2016-11-01
We report observation and an early analysis of stellar background from total solar eclipse in Ternate, Indonesia. The eclipse phenomena which occurred on March, 9th 2016 was observed with certain portable instruments in order to obtain the stars behind the Sun in particular field of view and resolution. From our observation site in Ternate city, solar eclipse occurred in the late morning when the weather was unfortunately cloudy. However, during the darkness of totality, we obtained several point source objects between the gaps of the moving clouds and we suspected them as very faint stars due to their appearance in several frames. Those so called stars have been identified and measured with respect to their positions toward the center of the Sun. The main purpose of this research is to revisit strong lensing calculation of the Sun during total solar eclipse by measuring the deflection angle of the background stars as it had been calculated by Einstein and proved by Eddington at a total solar eclipse in 1919. To accomplish this aim, we need to conduct another observation to measure position of the same stars in the next period when those stars appear in the night sky.
2017-06-11
Robert Wilson of the Solar/Solar terrestrial Studies team at the National Space Science and Technology Center, a joint research and collaborative think tank partnership of the University of Alabama in Huntsville (UAH) and the Marshall Space Flight Center, adjusts his telescope which is set up as a viewing opportunity for MSFC employees prior to the August 21, 2017 solar eclipse event. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
"Pink" Full Moon and Partial Lunar Eclipse on April 25, 2013
2017-12-08
Share YOUR pink moon and/or partial lunar eclipse images in our Flickr Group here: www.flickr.com/groups/pinkmoon/ TimeThursday, April 25, 2013, 21:00 UT Phase 100.0% Diameter - 1962.6 arcseconds Distance - 365185 km (28.66 Earth diameters There is a special lunar name for every full moon in a year. The April 25 full moon is known as the “Full Pink Moon” because of the grass pink – or wild ground phlox – flower, which is one of the earliest widespread flowers to bloom in the spring. This month’s full moon is also known as the Sprouting Grass moon and the Egg moon. The first lunar eclipse of 2013 occurs at the Moon's ascending node in southern Virgo about 12° east of Spica (mv = +1.05). It is visible primarily from the Eastern Hemisphere. This event will not be visible in North America, it will only be visible from Eastern Europea, Africa, Asia, and Western Australia. April’s full moon, which is set to rise tonight, is known as a pink moon. And this year it coincides with the partial lunar eclipse. This NASA animation shows elevation measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mapping the 2017 Eclipse: Education, Navigation, Inspiration
NASA Astrophysics Data System (ADS)
Zeiler, M.
2015-12-01
Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.
Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon
NASA Astrophysics Data System (ADS)
Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.
2017-12-01
The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.
Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor
2008-12-01
Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.
Solar-system Education for the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-10-01
I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.
The solar eclipse: a natural meteorological experiment
2016-01-01
A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550768
Amateur observations of solar eclipses and derivation of scientific data
NASA Astrophysics Data System (ADS)
Stoev, A. D.; Stoeva, P. V.
2008-12-01
This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs "Total solar eclipse 1999 and 2006" (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 - Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133-137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR-Terrestrial Influences, Sofia, November 24-25, pp. 69-72, 2005). Results from teaching and training the students in the procedures, methods and equipment necessary for the observation of a total solar eclipse (TSE) at the Yuri Gagarin Public Astronomical Observatory (PAO) in Stara Zagora, Bulgaria, as well as the selection process used in determining participation in the different observational teams are discussed. The final stages reveal the special methodology used to investigate the level of "pretensions", the levels of ambition displayed by the students in achieving each independent goal, and the setting of goals in context with their problem solving capabilities and information gathering abilities in the scientific observation process. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse and Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that the students benefit from the activities of processing data, observational results and their interpretation, and preparation of summary reports. This exercise is intended to provide the basic training necessary to develop the creativity of the students and amateur astronomers involved. This will enable the students from the Astronomy schools at Public Astronomical Observatories and Planetaria (PAOP) to further develop their creative skills, emotional-volitional personal qualities with an orientation towards scientific analysis, using observations and experiments, to build an effective scientific style of thinking. Students of the Yuri Gagarin Public Astronomical Observatory, whom are already being nurtured in this manner, should be able to participate with great success in Scientific Research Programs devoted to the International Heliophysical Year.
NASA Astrophysics Data System (ADS)
Brunier, Serge; Luminet, Jean-Pierre
2000-12-01
Stargazers who may have missed the last total solar eclipse of the 20th century this past summer have just been given another chance to observe this "once in a lifetime" occurrence. Inside Glorious Eclipses they will find startling images and rich personal accounts that fully capture this event and other recent eclipses. The book will also insure that readers will not miss another eclipse in the next 60 years! Specially designed in a beautiful, large format, the volume portrays eclipses of all kinds--lunar, solar, and those occurring elsewhere in the Solar System and beyond. Brunier and Luminet have gathered together all aspects of eclipses, and carefully selected a host of lavish images. The authors detail the history of eclipses, the celestial mechanics involved, their observation, and scientific interest. Personal accounts of recent eclipses are also included as well as all relevant information about forthcoming eclipses up to 2060. Complete with NASA maps and data, Glorious Eclipses is the ultimate source for all those interested in these remarkable (and rare) celestial events. Serge Brunier is chief editor of the journal Ciel et Espace, a photo-journalist, and the author of many nonfiction books aimed at both specialists and the general public. Jean-Pierre Luminet is an astrophysicist at the Paris-Meudon Observatory and director of research at the Centre pour la Recherche Scientifique. He is the author of many popular astronomy books, including Black Holes (Cambridge University Press, 1992).
NASA Astrophysics Data System (ADS)
Pérez-Ayúcar, M.; Breitfelner, M.
2017-09-01
Solar transits are rare astronomical event of profound historical importance and with an enormous potential to engage nowadays students and general public into Planetary Sciences and Space. Mercury transits occur only about every 13-14 times per century. Total solar eclipses occur around 18 months apart somewhere on Earth, but they recur only every 3-4 centuries on the same location. Although its historic scientific importance (examples, to measure the distances in the solar system, to observe the solar corona) has diminished since humanity roams our solar system with robotic spacecrafts, transits remain a spectacular astronomical event that is used very effectively to engage general public and students to Science and Space in general. The educational project CESAR (Cooperation through Education in Science and Astronomy Research) has been covering since 2012 such events (Venus transit 2012, live Sun transmissions, solar eclipses, ISS transits ...). We report the outstanding outcome of the two public educational and outreach events since last year: the May 2016 Mercury Transit, and the recent August 2017 Total Eclipse. And the follow up activities expected for future transits.
NASA Astrophysics Data System (ADS)
Duncan, D. K.
2016-12-01
On Aug. 21, 2017 a Total Eclipse of the Sun will cross the US. For the first time in 40 years every state will have at least 80% of the sun covered by the moon, and lucky people from Oregon to South Carolina will see the beauty of the total eclipse and remember it all their lives. It is as difficult to convey the impression of a total eclilpse as it is to convey what the Grand Canyon is like. Words cannot do it justice. It looks like the end of the world as the flames of solar prominances rise from the edge of the "black hole" of the eclipsed sun, and silver streamers of the sun's corona stretch across the sky. People scream, applaud, or cry. Animals do strange things. At a total eclipse in the Galapagos dozens of whales and dolphins surfaced at the time of the total elcipse, surrounded our boat, and after the eclipse swam away. At a partial eclipse, even a 99% eclipse, those spectacular aspects are not seen, so it is a good idea to make plans to go to where the eclipse is total. This session will use examples from 10 total eclipses the author has viewed and made available to the public, since March 7, 1970, to suggest practical preparations for the evnt. Advice will be given on how and where to see the eclipse yourself, and how to help the public, teachers, and students where you live enjoy the spectacle and raise their interest in science. It is hoped that by the time of the AGU meeting "Kits" of educational materials and safe eclipse-watching glasses will be available to AGU members. This will be discussed. A Public Service Announcement suitable for use on television, the Internet, or in schools should also be available.
The August 21, 2017 American total solar eclipse through the eyes of GPS
NASA Astrophysics Data System (ADS)
Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.
2018-04-01
We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.
Countdown to the Great American Eclipse
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
The Great American Total Solar Eclipse (TSE2017) will occur on August 21 this year--the first total solar eclipse in the continental United States since 1979. For many reasons, this is a scientific and educational milestone event of the highest magnitude that should not be missed by any teacher and student whether or not their school is in session…
Eclipses in Australian Aboriginal Astronomy
NASA Astrophysics Data System (ADS)
Hamacher, Duane W.; Norris, Ray P.
2011-07-01
We explore about fifty different Australian Aboriginal accounts of lunar and solar eclipses to determine how Aboriginal groups understood this phenomenon. We summarize the literature on Aboriginal references to eclipses. We show that many Aboriginal groups viewed eclipses negatively, frequently associating them with bad omens, evil magic, disease, blood and death. In many communities, elders or medicine men claimed to be able to control or avert eclipses by magical means, solidifying their roles as providers and protectors within their communities. We also show that some Aboriginal groups seem to have understood the motions of the Sun-Earth-Moon system, the connection between the lunar phases and tides, and acknowledged that solar eclipses were caused by the Moon blocking the Sun.
Hinode Satellite Captures Total Solar Eclipse Video Aug. 21
2017-08-21
The Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan and NASA released this video of Aug. 21 total solar eclipse taken by the X-ray telescope aboard the Hinode joint solar observation satellite as it orbited high above the Pacific Ocean.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
British Observations of the 18 August 1868 Total Solar Eclipse from Guntoor, India
NASA Astrophysics Data System (ADS)
Orchiston, Wayne; Lee, Eun-Hee; Ahn, Young-Sook
The total solar eclipse of 18 August 1868 was observed in Aden, India, Siam (present-day Thailand) and the Dutch East Indies (present-day Indonesia). One Indian expedition was sponsored by the Royal Astronomical Society, and led by Major J.F. Tennant. In this chapter we describe the observing team and instruments, discuss their observations, and conclude with some remarks on the place of the 1868 eclipse in solar studies and later nineteenth century European astronomical expeditions to India.
A new astronomical dating of the Trojan war's end.
NASA Astrophysics Data System (ADS)
Papamarinopoulos, S.; Preka-Papadema, P.; Mitropetros, P.; Antonopoulos, P.; Mitropetrou, E.; Saranditis, G.
A solar eclipse's evolution was described in the Iliad in a stepwise mode manifested in increasing gradual darkness, during a warm day at late noon; from Sarpedon's death time to few later from Patroclus' death time. We examined the solar eclipses within the time span 1400-1130 B.C. and we found that only the annular solar eclipse on 6th June 1218 yr B.C. observable in Troy with significant obscuration 75.2 % fits fully with the Homeric descriptions.
NASA Astrophysics Data System (ADS)
Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.
Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.
NASA's SDO Catches a Double Photobomb
2017-12-08
On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Simulation of Ionospheric Response During Solar Eclipse Events
NASA Astrophysics Data System (ADS)
Kordella, L.; Earle, G. D.; Huba, J.
2016-12-01
Total solar eclipses are rare, short duration events that present interesting case studies of ionospheric behavior because the structure of the ionosphere is determined and stabilized by varying energies of solar radiation (Lyman alpha, X-ray, U.V., etc.). The ionospheric response to eclipse events is a source of scientific intrigue that has been studied in various capacities over the past 50 years. Unlike the daily terminator crossings, eclipses cause highly localized, steep gradients of ionization efficiency due to their comparatively small solar zenith angle. However, the corona remains present even at full obscuration, meaning that the energy reduction never falls to the levels seen at night. Previous eclipse studies performed by research groups in the US, UK, China and Russia have shown a range of effects, some counter-intuitive and others contradictory. In the shadowed region of an eclipse (i.e. umbra) it is logical to assume a reduction in ionization rates correlating with the reduction of incident solar radiation. Results have shown that even this straightforward hypothesis may not be true; effects on plasma distribution, motion and temperature are more appreciable than might be expected. Recent advancements in ionospheric simulation codes present the opportunity to investigate the relationship between geophysical conditions and geomagnetic location on resulting eclipse event ionosphere. Here we present computational simulation results using the Naval Research Lab (NRL) developed ionospheric modeling codes Sami2 and Sami3 (Sami2 is Another Model of the Ionosphere) modified with spatio-temporal photoionization attenuation functions derived from theory and empirical data.
Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project
NASA Astrophysics Data System (ADS)
Penn, M. J.; Haden, C.
2017-12-01
On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar science and eclipses. Volunteers also reported learning a great deal about safety while observing the Sun. This evaluation study will add to the body of knowledge about the effectiveness and utility of citizen science programs. Findings will be updated with data collected during and immediately after the eclipse events.
G-III Aircraft from NASA Armstrong Provides Live TV Coverage of Solar Eclipse Across America
2017-08-13
For the first time in 99 years, a total solar eclipse will cross the entire nation Monday, Aug. 21. A total solar eclipse occurs when the sun is completely obscured by the moon. The lunar shadow enters the United States near Lincoln City, Oregon, at 9:05 a.m. PDT. Totality, where the moon completely covers the sun, begins in Lincoln City around 10:16 a.m. PDT. During totality, there will be up to two and a half minutes of darkness. The G-III aircraft was modified with upgraded windows and communications equipment to enable high-definition video to be streamed to NASA TV during the eclipse enabling citizen science. The aircraft will be flying at 25,000 feet over the coast of Oregon, near Lincoln City during the eclipse on August 21, 2017.
MISR Watches Motion of the Moon's Shadow During Total Solar Eclipse
2017-09-19
On Aug. 21, 2017, a total solar eclipse swept across the United States -- the first such eclipse in the contiguous 48 states since 1979, and the first cross-country eclipse since 1918. A partial eclipse was visible in all 50 states, and initial estimates suggest that upwards of 20 million people observed the Moon completely obscuring the Sun in the 70-mile-wide (113-kilometer-wide) path of totality. While viewing a total solar eclipse from the ground is an amazing experience, satellites orbiting Earth see the eclipse from a unique perspective. As the Moon's shadow passed through the United States, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite was capturing images of eastern Wyoming and western Nebraska from its altitude of 438 miles (705 kilometers) above the surface. MISR gathers images on a strip about 249 miles (400 kilometers) wide directly below the path of the satellite. Incredibly, given that the shadow of the Moon took only 90 minutes to cross the entire United States, and Terra itself moves at a brisk 16,700 miles per hour from north to south, MISR happened to be in exactly the right place at the right time to capture totality. From the ground, the moment of totality appears suddenly, sweeping over the sky in just a few seconds. "I was unprepared for just how dark it actually was," says Mika Tosca, a researcher who works with MISR data and who observed the eclipse in Nebraska. "The streetlights even turned on. Everything fell silent, and I swear the temperature dropped." From the vantage point of space, however, it’s possible to see the entire shadow of the Moon, with the completely dark, circular umbra and the more diffuse penumbra. MISR contains nine cameras oriented at different angles, viewing forward, downward, and backward along the flight path, resulting in an approximate seven-minute interval for all nine cameras to image a single location on Earth's surface. This animation combines these nine images into a movie showing the motion of the Moon's shadow during this seven-minute period. In the first image, captured by the camera pointing farthest ahead of the satellite, totality has not quite begun in the area seen by MISR. From the second camera onward, totality sweeps across the image area from west to east, beginning just west of the town of Jay Em, Wyoming, and proceeding about halfway across the MISR swath to the town of Alliance, Nebraska. The motion of the lunar shadow in different pairs of images leads to estimates of the local ground speed ranging between 1,480 and 1,820 miles per hour (2,382 and 2,929 kilometers per hour). The spread in values is a measure of the uncertainty of the estimate. At this location, the predicted speed of the eclipse calculated from lunar orbital motion is about 1,658 miles per hour (2,668 kilometers per hour), which falls in the middle of the range estimated from the MISR images. Tosca's observation that the temperature dropped during the eclipse is a well-known phenomenon. The GLOBE Observer, a phone application dedicated to citizen science and sponsored by NASA, encouraged eclipse-goers to record the local air temperature at regular intervals. Data collected by nearby observers in the path of totality show that, on average, temperatures dropped by 9.3 degrees Fahrenheit (5.2 degrees Celsius) during the eclipse. This compares to an average of 5.4 degrees Fahrenheit drop measured at several Nebraska Mesonet weather stations within the path of totality. The decrease in the amount of sunlight reaching Earth affected more than temperatures. Areas that get a large portion of their power from solar energy were naturally concerned about shortages during the eclipse -- the state of California, though not in the path of totality, estimated that 6,000 megawatts of solar power would be lost during the eclipse. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21957
“Total Eclipse Preview Show”, Total Solar Eclipse: “Through The Eyes of NASA,” Part 1
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website.
Symbolism and discovery: eclipses in art.
Blatchford, Ian
2016-09-28
There is a fascinating tradition of depicting solar eclipses in Western art, although these representations have changed over time. Eclipses have often been an important feature of Christian iconography, but valued as much for their biblical significance as for the splendour of the physical event. However, as Western culture passed through the Renaissance and Enlightenment the depictions of eclipses came to reflect new astronomical knowledge and a thirst for rational learning well beyond the confines of the church and other elites. Artists also played a surprisingly important role in helping scientists in the nineteenth century understand and record the full phenomena of an eclipse, even as the advent of photography also came to solve a number of scientific puzzles. In the most recent century, artists have responded to eclipses with symbolism, abstraction and playfulness.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Did Aboriginal Australians record a simultaneous eclipse and aurora in their oral traditions?
NASA Astrophysics Data System (ADS)
Fuller, Robert S.; Hamacher, Duane W.
2017-12-01
We investigate an Australian Aboriginal cultural story that seems to describe an extraordinary series of astronomical events occurring at the same time. We hypothesise that this was a witnessed natural event and explore natural phenomena that could account for the description. We select a thunderstorm, total solar eclipse, and strong Aurora Australis as the most likely candidates, then conclude a plausible date of 764 CE. We evaluate the different factors that would determine whether all these events could have been visible, include meteorological data, alternative total solar eclipse dates, solar activity cycles, aurorae appearances, and sky brightness during total solar eclipses. We conduct this study as a test-case for rigorously and systematically examining descriptions of rare natural phenomena in oral traditions, highlighting the difficulties and challenges with interpreting this type of hypothesis.
Social Impact of Solar Eclipse in Indonesia: A Comparative Study
NASA Astrophysics Data System (ADS)
Mumpuni, Emanuel S.; Hidayat, Bambang
2012-09-01
The social impact and public comprehension of the natural phenomenon varies depending on how a particular cultural background perceives the phenomenon and how the interaction between general public and the authoritative bodies has persisted. While astronomers and scientists have taken for granted that solar eclipse is a natural phenomenon and subjected it to various scientific studies, large percentages of the population have been left uninformed scientifically and have responded to the phenomena quite differently. The technical and scientific aspects of the earliest expedition, to Padang (Sumatra) in 1901, have recently been discussed at length.Two major solar eclipses, namely the 1926 and 1929, offered many scientific outputs as well as results on observations of societies: anthropology, demography, and culinary habits of the local inhabitants. Those days, science was the preserve of a few selected. To a certain degree, many old perceptions of on natural phenomena, with their ruling deities still lingered on. The purpose of this paper is to show the changing views of the endogenous population in particular after the government's massive efforts to enlighten the people and to empower the younger generations in comprehending natural phenomena. The great efforts of the Government of Indonesia's Institute of Sciences (LIPI) related to the June 1983 solar eclipse produced a dramatic change in the sense of appreciation of solar eclipse as a natural phenomenon in consequence of relative motions of the Sun, Moon and the Earth. It took however another five years, till the time of the great eclipse in 1988, to a full fruition in which younger generations as well as older ones abandoned almost completely the old views and embarked on the understanding the value of solar eclipse for science.
Report about the Solar Eclipse on August 11, 1999
NASA Astrophysics Data System (ADS)
1999-08-01
This webpage provides information about the total eclipse on Wednesday, August 11, 1999, as it was seen by ESO staff, mostly at or near the ESO Headquarters in Garching (Bavaria, Germany). The zone of totality was about 108 km wide and the ESO HQ were located only 8 km south of the line of maximum totality. The duration of the phase of totality was about 2 min 17 sec. The weather was quite troublesome in this geographical area. Heavy clouds moved across the sky during the entire event, but there were also some holes in between. Consequently, sites that were only a few kilometres from each other had very different viewing conditions. Some photos and spectra of the eclipsed Sun are displayed below, with short texts about the circumstances under which they were made. Please note that reproduction of pictures on this webpage is only permitted, if the author is mentioned as source. Information made available before the eclipse is available here. Eclipse Impressions at the ESO HQ Photo by Eddy Pomaroli Preparing for the Eclipse Photo: Eddy Pomaroli [JEG: 400 x 239 pix - 116k] [JPEG: 800 x 477 pix - 481k] [JPEG: 3000 x 1789 pix - 3.9M] Photo by Eddy Pomaroli During the 1st Partial Phase Photo: Eddy Pomaroli [JPEG: 400 x 275 pix - 135k] [JPEG: 800 x 549 pix - 434k] [JPEG: 2908 x 1997 pix - 5.9M] Photo by Hamid Mehrgan Heavy Clouds Above Digital Photo: Hamid Mehrgan [JPEG: 400 x 320 pix - 140k] [JPEG: 800 x 640 pix - 540k] [JPEG: 1280 x 1024 pix - 631k] Photo by Olaf Iwert Totality Approaching Digital Photo: Olaf Iwert [JPEG: 400 x 320 pix - 149k] [JPEG: 800 x 640 pix - 380k] [JPEG: 1280 x 1024 pix - 536k] Photo by Olaf Iwert Beginning of Totality Digital Photo: Olaf Iwert [JPEG: 400 x 236 pix - 86k] [JPEG: 800 x 471 pix - 184k] [JPEG: 1280 x 753 pix - 217k] Photo by Olaf Iwert A Happy Eclipse Watcher Digital Photo: Olaf Iwert [JPEG: 400 x 311 pix - 144k] [JPEG: 800 x 622 pix - 333k] [JPEG: 1280 x 995 pix - 644k] ESO HQ Eclipse Video Clip [MPEG-version] ESO HQ Eclipse Video Clip (2425 frames/01:37 min) [MPEG Video; 160x120 pix; 2.2M] [MPEG Video; 320x240 pix; 4.4Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] This Video Clip was prepared from a "reportage" of the event at the ESO HQ that was transmitted in real-time to ESO-Chile via ESO's satellite link. It begins with some sequences of the first partial phase and the eclipse watchers. Clouds move over and the landscape darkens as the phase of totality approaches. The Sun is again visible at the very moment this phase ends. Some further sequences from the second partial phase follow. Produced by Herbert Zodet. Dire Forecasts The weather predictions in the days before the eclipse were not good for Munich and surroundings. A heavy front with rain and thick clouds that completely covered the sky moved across Bavaria the day before and the meteorologists predicted a 20% chance of seeing anything at all. On August 10, it seemed that the chances were best in France and in the western parts of Germany, and much less close to the Alps. This changed to the opposite during the night before the eclipse. Now the main concern in Munich was a weather front approaching from the west - would it reach this area before the eclipse? The better chances were then further east, nearer the Austrian border. Many people travelled back and forth along the German highways, many of which quickly became heavily congested. Preparations About 500 persons, mostly ESO staff with their families and friends, were present at the ESO HQ in the morning of August 11. Prior to the eclipse, they received information about the various aspects of solar eclipses and about the specific conditions of this one in the auditorium. Protective glasses were handed out and it was the idea that they would then follow the eclipse from outside. In view of the pessimistic weather forecasts, TV sets had been set up in two large rooms, but in the end most chose to watch the eclipse from the terasse in front of the cafeteria and from the area south of the building. Several telescopes were set up among the trees and on the adjoining field (just harvested). Clouds and Holes It was an unusual solar eclipse experience. Heavy clouds were passing by with sudden rainshowers, but fortunately there were also some holes with blue sky in between. While much of the first partial phase was visible through these, some really heavy clouds moved in a few minutes before the total phase, when the light had begun to fade. They drifted slowly - too slowly! - towards the east and the corona was never seen from the ESO HQ site. From here, the view towards the eclipsed Sun only cleared at the very instant of the second "diamond ring" phenomenon. This was beautiful, however, and evidently took most of the photographers by surprise, so very few, if any, photos were made of this memorable moment. Temperature Curve by Benoit Pirenne Temperature Curve on August 11 [JPEG: 646 x 395 pix - 35k] Measured by Benoit Pirenne - see also his meteorological webpage Nevertheless, the entire experience was fantastic - there were all the expected effects, the darkness, the cool air, the wind and the silence. It was very impressive indeed! And it was certainly a unique day in ESO history! Carolyn Collins Petersen from "Sky & Telescope" participated in the conference at ESO in the days before and watched the eclipse from the "Bürgerplatz" in Garching, about 1.5 km south of the ESO HQ. She managed to see part of the totality phase and filed some dramatic reports at the S&T Eclipse Expedition website. They describe very well the feelings of those in this area! Eclipse Photos Several members of the ESO staff went elsewhere and had more luck with the weather, especially at the moment of totality. Below are some of their impressive pictures. Eclipse Photo by Philippe Duhoux First "Diamond Ring" [JPEG: 400 x 292 pix - 34k] [JPEG: 800 x 583 pix - 144k] [JPEG: 2531 x 1846 pix - 1.3M] Eclipse Photo by Philippe Duhoux Totality [JPEG: 400 x 306 pix - 49k] [JPEG: 800 x 612 pix - 262k] [JPEG: 3039 x 1846 pix - 3.6M] Eclipse Photo by Philippe Duhoux Second "Diamond Ring" [JPEG: 400 x 301 pix - 34k] [JPEG: 800 x 601 pix - 163k] [JPEG: 2905 x 2181 pix - 2.0M] The Corona (Philippe Duhoux) "For the observation of the eclipse, I chose a field on a hill offering a wide view towards the western horizon and located about 10 kilometers north west of Garching." "While the partial phase was mostly cloudy, the sky went clear 3 minutes before the totality and remained so for about 15 minutes. Enough to enjoy the event!" "The images were taken on Agfa CT100 colour slide film with an Olympus OM-20 at the focus of a Maksutov telescope (f = 1000 mm, f/D = 10). The exposure times were automatically set by the camera. During the partial phase, I used an off-axis mask of 40 mm diameter with a mylar filter ND = 3.6, which I removed for the diamond rings and the corona." Note in particular the strong, detached protuberances to the right of the rim, particularly noticeable in the last photo. Eclipse Photo by Cyril Cavadore Totality [JPEG: 400 x 360 pix - 45k] [JPEG: 800 x 719 pix - 144k] [JPEG: 908 x 816 pix - 207k] The Corona (Cyril Cavadore) "We (C.Cavadore from ESO and L. Bernasconi and B. Gaillard from Obs. de la Cote d'Azur) took this photo in France at Vouzier (Champagne-Ardennes), between Reims and Nancy. A large blue opening developed in the sky at 10 o'clock and we decided to set up the telescope and the camera at that time. During the partial phase, a lot of clouds passed over, making it hard to focus properly. Nevertheless, 5 min before totality, a deep blue sky opened above us, allowing us to watch it and to take this picture. 5-10 Minutes after the totality, the sky was almost overcast up to the 4th contact". "The image was taken with a 2x2K (14 µm pixels) Thomson "homemade" CCD camera mounted on a CN212 Takahashi (200 mm diameter telescope) with a 1/10.000 neutral filter. The acquisition software set exposure time (2 sec) and took images in a complete automated way, allowing us to observe the eclipse by naked eye or with binoculars. To get as many images as possible during totality, we use binning 2x2 to reduce the readout time to 19 sec. Afterward, one of the best image was flat-fielded and processed with a special algorithm that modelled a fit the continuous component of the corona and then subtracted from the original image. The remaining details were enhanced by unsharp masking and added to the original image. Finally, gaussian histogram equalization was applied". Eclipse Photo by Eddy Pomaroli Second "Diamond Ring" [JPEG: 400 x 438 pix - 129k] [JPEG: 731 x 800 pix - 277k] [JPEG: 1940 x 2123 pix - 2.3M] Diamond Ring at ESO HQ (Eddy Pomaroli) "Despite the clouds, we saw the second "diamond ring" from the ESO HQ. In a sense, we were quite lucky, since the clouds were very heavy during the total phase and we might easily have missed it all!". "I used an old Minolta SRT-101 camera and a teleobjective (450 mm; f/8). The exposure was 1/125 sec on Kodak Elite 100 (pushed to 200 ASA). I had the feeling that the Sun would become visible and had the camera pointed, by good luck in the correct direction, as soon as the cloud moved away". Eclipse Photo by Roland Reiss First Partial Phase [JPEG: 400 x 330 pix - 94k] [JPEG: 800 x 660 pix - 492k] [JPEG: 3000 x 2475 pix - 4.5M] End of First Partial Phase (Roland Reiss) "I observed the eclipse from my home in Garching. The clouds kept moving and this was the last photo I was able to obtain during the first partial phase, before they blocked everything". "The photo is interesting, because it shows two more images of the eclipsed Sun, below the overexposed central part. In one of them, the remaining, narrow crescent is particularly well visible. They are caused by reflections in the camera. I used a Minolta camera and a Fuji colour slide film". Eclipse Spectra Some ESO people went a step further and obtained spectra of the Sun at the time of the eclipse. Eclipse Spectrum by Roland Reiss Coronal Spectrum [JPEG: 400 x 273 pix - 94k] [JPEG: 800 x 546 pix - 492k] [JPEG: 3000 x 2046 pix - 4.5M] Coronal Spectrum (CAOS Group) The Club of Amateurs in Optical Spectroscopy (with Carlos Guirao Sanchez, Gerardo Avila and Jesus Rodriguez) obtained a spectrum of the solar corona from a site in Garching, about 2 km south of the ESO HQ. "This is a plot of the spectrum and the corresponding CCD image that we took during the total eclipse. The main coronal lines are well visible and have been identified in the figure. Note in particular one at 6374 Angstrom that was first ascribed to the mysterious substance "Coronium". We now know that it is emitted by iron atoms that have lost nine electrons (Fe X)". The equipment was: * Telescope: Schmidt Cassegrain F/6.3; Diameter: 250 mm * FIASCO Spectrograph: Fibre: 135 micron core diameter F = 100 mm collimator, f = 80 mm camera; Grating: 1300 gr/mm blazed at 500 nm; SBIG ST8E CCD camera; Exposure time was 20 sec. Eclipse Spectrum by Bob Fosbury Chromospheric Spectrum [JPEG: 120 x 549 pix - 20k] Chromospheric and Coronal Spectra (Bob Fosbury) "The 11 August 1999 total solar eclipse was seen from a small farm complex called Wolfersberg in open fields some 20km ESE of the centre of Munich. It was chosen to be within the 2min band of totality but likely to be relatively unpopulated". "There were intermittent views of the Sun between first and second contact with quite a heavy rainshower which stopped 9min before totality. A large clear patch of sky revealed a perfect view of the Sun just 2min before second contact and it remained clear for at least half an hour after third contact". "The principal project was to photograph the spectrum of the chromosphere during totality using a transmission grating in front of a moderate telephoto lens. The desire to do this was stimulated by a view of the 1976 eclipse in Australia when I held the same grating up to the eclipsed Sun and was thrilled by the view of the emission line spectrum. The trick now was to get the exposure right!". "A sequence of 13 H-alpha images was combined into a looping movie. The exposure times were different, but some attempt has been made to equalise the intensities. The last two frames show the low chromosphere and then the photosphere emerging at 3rd contact. The [FeX] coronal line can be seen on the left in the middle of the sequence. I used a Hasselblad camera and Agfa slide film (RSX II 100)".
Dynamics of Large-scale Coronal Structures as Imaged during the 2012 and 2013 Total Solar Eclipses
NASA Astrophysics Data System (ADS)
Alzate, Nathalia; Habbal, Shadia R.; Druckmüller, Miloslav; Emmanouilidis, Constantinos; Morgan, Huw
2017-10-01
White light images acquired at the peak of solar activity cycle 24, during the total solar eclipses of 2012 November 13 and 2013 November 3, serendipitously captured erupting prominences accompanied by CMEs. Application of state-of-the-art image processing techniques revealed the intricate details of two “atypical” large-scale structures, with strikingly sharp boundaries. By complementing the processed white light eclipse images with processed images from co-temporal Solar Dynamics Observatory/AIA and SOHO/LASCO observations, we show how the shape of these atypical structures matches the shape of faint CME shock fronts, which traversed the inner corona a few hours prior to the eclipse observations. The two events were not associated with any prominence eruption but were triggered by sudden brightening events on the solar surface accompanied by sprays and jets. The discovery of the indelible impact that frequent and innocuous transient events in the low corona can have on large-scale coronal structures was enabled by the radial span of the high-resolution white light eclipse images, starting from the solar surface out to several solar radii, currently unmatched by any coronagraphic instrumentation. These findings raise the interesting question as to whether large-scale coronal structures can ever be considered stationary. They also point to the existence of a much larger number of CMEs that goes undetected from the suite of instrumentation currently observing the Sun.
Solar Eclipse Effect on Shelter Air Temperature
NASA Technical Reports Server (NTRS)
Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.
1996-01-01
Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.
Predicting the Structure of the Solar Corona During the December 4, 2002 Total Solar Eclipse
NASA Technical Reports Server (NTRS)
Mikic, Zoran; Linker, Jon A.; Riley, Pete; Lionello, Roberto
2003-01-01
The solar magnetic field plays a key role in determining coronal. The principal input to MHD models is the observed solar magnetic field. 3D MHD models can be used to compare with eclipse and coronograph images, SOHO images (LOSCO, EIT), Ulysses and WIND spacecraft data, and interplanetary scintillation (IPS) measurements. MHD computations can tell us about the structure of the corona. Eclipses can help us to verify the accuracy of the models. 4 December, 2002 total eclipce: visible in the southern hemisphere (South Atlantic, southern Africa, Indian Ocean, and Australia). Total in center Angola is at 06:00 UT.
NASA Astrophysics Data System (ADS)
McInerney, J. M.; Liu, H.; Marsh, D. R.; Solomon, S. C.; Vitt, F.; Conley, A. J.
2017-12-01
The total solar eclipse of August 21, 2017 transited the entire continental United States. This presented an opportunity for model simulation of eclipse effects on the lower atmosphere, upper atmosphere, and ionosphere. The Community Earth System Model (CESM), v2.0, now includes a functional version of the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) that has a fully interactive ionosphere and thermosphere. WACCM-X, with a model top up to 700 kilometers, is an atmospheric component of CESM and is being developed at the National Center for Atmospheric Research in Boulder, Colorado. Here we present results from simulations using this model during a total solar eclipse. This not only gives insights into the effects of the eclipse through the entire atmosphere from the surface through the ionosphere/thermosphere, but also serves as a validation tool for the model.
STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasachoff, J. M.; Rusin, V.; Saniga, M.
The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loopsmore » and radial-oriented thin streamers, a coronal mass ejection, and a puzzling 'curtain-like' object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 Rs{sub un}, for this rising phase of the solar-activity cycle.« less
2017-08-21
On Monday, Aug. 21 NASA provided coast-to-coast coverage of the solar eclipse across America- featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during live broadcast seen on NASA Television and the agency’s website. Footage of the moon's shadow moving across the planet is captured from NASA's Gulfstream III aircraft as it flew in the skies off the coast of Oregon during the Aug. 21 solar eclipse
Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse
NASA Technical Reports Server (NTRS)
Mukai, Koji; Zietsman, E.; Still, M.
2008-01-01
V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.
Gravity waves produced by the total solar eclipse of 1 August 2008
NASA Astrophysics Data System (ADS)
Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu
2010-05-01
Gravity waves are a major component of atmospheric small scale dynamics because of their ability to transport energy and momentum over considerable distances and of their interactions with the mean circulation or other waves. They produce pressure variations which can be detected at the ground by microbarographs. The solar intensity reduction which occurs in the atmosphere during solar eclipses is known to act as a temporary source of large scale gravity waves. Despite decades of research, observational evidence for a characteristic bow-wave response of the atmosphere to eclipse passages remains elusive. A new versatile numerical model (Marty, J. and Dalaudier, F.: Linear spectral numerical model for internal gravity wave propagation. J. Atmos. Sci. (in press)) is presented and applied to the cooling of the atmosphere during a solar eclipse. Calculated solutions appear to be in good agreement with ground pressure fluctuations recorded during the total solar eclipse of 1 August 2008. To the knowledge of the authors, this is the first time that such a result is presented. A three-dimensional linear spectral numerical model is used to propagate internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully-compressible dispersion relation for inertia-gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources allowing to cover a broad range of physical situations. It is applied to the case of solar eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.
NASA Astrophysics Data System (ADS)
Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.
2017-12-01
The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.
Eclipse-induced wind changes over the British Isles on the 20 March 2015
2016-01-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office’s operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office’s land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20° under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilization during eclipse events. Wind direction changes have previously been attributed to a large-scale ‘eclipse-induced cold-cored cyclone’, mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550759
Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse
NASA Astrophysics Data System (ADS)
Gray, Suzanne L.; Harrison, R. Giles
2016-04-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.
NASA Astrophysics Data System (ADS)
Jensen, Logan; Citizen CATE Experiment 2017 Team
2018-01-01
The Citizen Continental America Telescopic Eclipse (CATE) Experiment was designed to fill in the current data gap for the solar corona from approximately 1 to 2.5 solar radii. Using the total solar eclipse, the project took advantage of the unique opportunity to study this region of the corona from 68 identical sites across the United States. Before the 2017 eclipse, image reduction pipelines and advanced processing techniques were researched and implemented using data that had been collected from the 2016 Indonesian eclipse as a test set. This would speed up the turnaround from data to science after the 2017 eclipse.When processing the 2016 eclipse data, cirrus clouds became apparent moving across the field of view. These would interfere with future processing goals for the data such as coronal filament tracing and polar plume measurements. As the clouds moved across the field they did not completely obscure any part of the image, instead they produced variable, moving absorption across the CATE field of view. This had the effect of creating a noisy signal for each pixel. A noise reduction procedure based on a Kalman filter was developed to effectively remove the clouds from the data. Initial results from the 2016 eclipse data are presented.
Addressing Students' Misconceptions about Eclipses
ERIC Educational Resources Information Center
Slater, Timothy F.; Gelderman, Richard
2017-01-01
The upcoming Aug. 21, 2017, total solar eclipse, with its 70-mile wide path of totality stretching across much of North America, provides us with a unique opportunity to teach students about eclipses. One might naturally assume that students have little difficulty understanding the nature of eclipses. After all, the notion that eclipses occur when…
St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor
NASA Astrophysics Data System (ADS)
Olson, Roberta J. M.; Pasachoff, Jay M.
During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the image that Asam invented to visualize St. Benedict's vision that it found reflection in the subsequent Bavarian Benedictine visual tradition. Total solar eclipses are among the most spectacular sights in Nature. Therefore, in an age obsessed with revealing the divine through natural idioms and making religious experiences direct - not to mention that light had long functioned as a symbol of divinity in the Christian tradition - it seems fitting that solar eclipses would be interpreted as a metaphor of a divine presence or a miracle.
Infrasonic Effect of Solar Eclipses
NASA Astrophysics Data System (ADS)
Pushin, V. F.; Chernogor, L. F.
2013-06-01
The relevance of this study is due to the need to understand, physical effects associated with rare phenomenon, solar eclipse. Until recently, the features of internal gravity wave generation, have been studied in the 10 -100 min period range, while in this, study an attempt is made to confirm the fact of generation, and estimate the general parameters of infrasound oscillations, associated with solar eclipses in the 1-10 min period range. The observations were made with the HF Doppler radar at vertical, incidence. The data were subjected to spectral analysis and, band-pass filtering. The solar eclipses that had occurred over, Kharkiv city (Ukraine) within 1999-2011 are determined to be, associated with Doppler shift of frequency oscillations in the, infrasound frequency band ( 5-8 min period range) and with, amplitude of 20 -100 mHz. The corresponding amplitude, of electron density oscillations was approximately equal to, 0.1- 0.5 %.
The Solar Eclipse Mural Series by Howard Russell Butler
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Olson, R. J. M.
2016-01-01
There is a rich trove of astronomical phenomena in works of art by artists from the greater New York area, a trend that is even more pronounced in the oeuvres of New York City residents through the present day. A case in point is the trio of oil paintings by artist (and former physics professor) Howard Russell Butler depicting total solar eclipses in 1918, 1923, and 1925 that are based on his own observations. They were long displayed in the former art-deco building of the Hayden Planetarium of the American Museum of Natural History, the location of this conference. (The Museum also has nine other Butler paintings, none of which are currently exhibited.) Since the eclipse paintings have been in storage for many years, these once famous works are now virtually forgotten. Based on our research as an astronomer who has seen sixty-two solar eclipses and an art historian who has written extensively about astronomical imagery, we will discuss Butler's Solar Eclipse Triptych to explore its place in the history of astronomical imaging.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Solar Dynamics Observatory)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from NASA’s Solar Dynamics Observatory.
Preparing a Nation for the Eclipse of a Generation -
NASA Astrophysics Data System (ADS)
Speck, Angela; Habbal, Shadia; Tresch Fienberg, Richard; Kentrianakis, Michael; Fraknoi, Andrew; Nordgren, Tyler; Penn, Matthew; Pasachoff, Jay M.; Bakich, Michael; Winter, Henry; Gay, Pamela; Motta, Mario
2018-01-01
On August 21st 2017, there was a total solar eclipse visible from a vast swath of the US.In preparation for that event, the American Astronomical society created a taskforce charged with planning for the eclipse for the entire nation. The preparations included interfacing with the public, the media, non-profit organizations and governmental organizations. Preliminary data suggests that nearly 90% of American adults watched the eclipse either directly or via live streams. Moreover, there were no major problems associated with the event, in spite of valiant attempts from, e.g. imprope solar viewing materials. The eclipse offered opportunities for many scientific experiments within and ebyond astronomy. Here we present on the work of the taskforce, and the lessons learned as well as lesser known science experiments undertaken during the eclipse.
Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse
NASA Astrophysics Data System (ADS)
Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare
2010-01-01
We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.
Impact Results From the Astronomers Without Borders Building on the Eclipse Education Program
NASA Astrophysics Data System (ADS)
Bartolone, L. M.; Simmons, M.; Nelson, A.; Kruse, B.
2017-12-01
Astronomers Without Borders "Building on the Eclipse Education Program" was its first to move beyond outreach, exploring how to impact science identity, attitudes towards STEM and inspire audiences to explore careers in STEM. Inspired by the eclipse, educators and scientists were brought together in an online community to support one another in learning about the Sun and light after audiences were inspired by the Total Solar Eclipse. The program also collected and analyzed data on participating groups in an attempt to have more information about audiences for the next total solar eclipse to cross the United States in 2024. Although we anticipate the program will be ongoing, preliminary results will be presented.
Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012
NASA Astrophysics Data System (ADS)
Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin
2015-04-01
The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.
Demonstrations to Teach Electricity and Safely Observe a Solar Eclipse
NASA Astrophysics Data System (ADS)
Reiff, P. H.
2016-12-01
Electricity and magnetism are often difficult to understand because they are invisible. We will demonstrate various ways to visualize electric fields. We will play music on a plasma discharge from a Tesla coil, create static charge on balloons with hair, and store charge using a Leyden jar. We will also show safe ways to observe a solar eclipse, which is critical for the upcoming August 21, 2017 eclipse.
ERIC Educational Resources Information Center
Carolino, Luis Miguel; Simoes, Ana
2012-01-01
This study offers a detailed analysis of an episode of the popularization of astronomy which took place in Portugal, a peripheral country of Europe, and occurring in the early twentieth century. The episode was driven by the 28 May 1900 total solar eclipse which was seen on the Iberian Peninsula (Portugal and Spain). Instead of focusing on one of…
Howard Russell Butler's Oil Paintings of Solar Eclipses and Prominences
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Olson, Roberta J. M.
2014-06-01
Howard Russell Butler (1856-1934) was invited to join the US Naval Observatory expedition to the total solar eclipse of 1918 because of his ability to paint astronomical phenomena based on quickly-made notes about spatial and color details. His giant triptych of the total eclipses of 1918, 1923, and 1925 was proposed for a never-built astronomical center at the American Museum of Natural History and wound up at their Hayden Planetarium when it was constructed in the mid-1930s. Half-size versions are installed at the Fels Planetarium at the Franklin Institute in Philadelphia and at the Firestone Library of Princeton University, whose newly conserved canvases were recently hung; the Buffalo Museum of Science has another half-size version in storage. We discuss not only the eclipse triptychs but also the series of large oil paintings he made of solar prominences (in storage at the American Museum of Natural History) and of his 1932-eclipse and other relevant works.JMP was supported for this work in part by Division III Discretionary Funds and the Brandi Fund of Williams College. His current eclipse research is supported by grants AGS-1047726 from the Solar Research Program of the Atmospheric and Geospace Sciences Division of NSF and 9327-13 from the Committee for Research and Exploration of the National Geographic Society.
Atmospheric Science Data Center
2013-04-16
... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...
NASA Astrophysics Data System (ADS)
Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan
2018-01-01
On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.
The Citizen CATE Experiment for the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Penn, M. J.
2015-12-01
The path of the total solar eclipse of 21 August 2017 passes over about 10 million homes in the USA. Tens of millions more people will travel to the path of totality to view the eclipse first-hand. Using TV and the internet broadcasts, hundreds of millions of people will watch the eclipse, making the event the most viewed astronomical event in the history of mankind. The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras positioned from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the highly leveraged CATE experiment are diverse and range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy. A key goal of this experiment is to donate the telescope and camera system to the volunteer who collects data with it during the total eclipse. The instrument will be then used for a variety of follow-up citizen science projects in astronomy, ranging from solar to cometary to variable star observations. For this reason no government funding is being sought for the equipment costs, but rather private and corporate sources are being developed. The data collected for the 2017 eclipse will be freely available to the scientific, education and amateur astronomy communities. Crowd sourcing the data collection is an essential part of this project, as there are not enough solar physicists in this country to collect these observations. Finally, each site is expected to collect about 10 Gbytes of science data and 10 Gbytes of calibration data, resulting in 1.2 Tbytes of data for the project.
Evaluating the Impact of the 2017 Solar Eclipse on U.S. Western Interconnection Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veda, Santosh; Zhang, Yingchen; Tan, Jin
With support from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), the National Renewable Energy Laboratory (NREL) partnered with Peak Reliability to evaluate the impact of the August 21, 2017 total solar eclipse on the reliability and grid operations in the Western Electricity Coordinating Council (WECC) territory.
Derivation of Heliophysical Scientific Data from Amateur Observations of Solar Eclipses
NASA Astrophysics Data System (ADS)
Stoev, A. D.; Stoeva, P. V.
2006-03-01
The basic scientific aims and observational experiments included in the complex observational program - Total Solar Eclipse '99 - are described in the work. Results from teaching and training students of total solar eclipse (TSE) observation in the Public Astronomical Observatory (PAO) in Stara Zagora and their selection for participation in different observational teams are also discussed. During the final stage, a special system of methods for investigation of the level of pretensions (the level of ambition as to what he/she feels capable of achieving in the context of problem solving/observation) of the students is applied. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse; Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that data processing, observational results and their interpretation, presentation and publishing in specialized and amateur editions is a peak in the independent creative activity of students and amateur astronomers. This enables students from the Astronomy schools at Public Astronomical Observatories and Planetariums (PAOP) to develop creative skills, emotional - volitional personal qualities, orientation towards scientific work, observations and experiments, and build an effective scientific style of thinking.
NASA Astrophysics Data System (ADS)
Kramer, Busaba Hutawarakorn; Kramer, Michael
In 1875 Sir Arthur Schuster of the University of Manchester led a Royal Society expedition to Siam (now Thailand) to observe a total solar eclipse. The expedition followed an invitation issued by the King of Siam, King Chulalongkorn (also known as King Rama V). Together with members of the Royal family, the British scientists undertook a number of experiments. Their success was later described by Schuster when he recalled that the importance of calcium in the chromosphere and prominences was first proven in the Siamese eclipse of 1875. This chapter is a revised version of Hutuwarakorn-Kramer and Kramer (The King Rama V total solar eclipse of 1875: Schuster's expedition to Siam 19-22, Chen et al. 2006).
Analysis of penumbral eclipse data
NASA Technical Reports Server (NTRS)
Garrett, H. B.
1977-01-01
Two days of data from the ATS-6 1976 eclipse season were analyzed to determine the effects of varying photoelectron flux on spacecraft potential. Particular emphasis was placed on the variation in potential as the satellite entered the earth's penumbra. Measurements from the AE-C satellite of the solar UV radiation were used to construct a model of atmospheric attenuation. This model was found to be consistent with direct measurements of the variations in photoelectron flux as Injun 5 passed into eclipse. Applying the model to the ATS-6 data gave the time dependency of the solar illumination/photoelectron flux as the satellite was eclipsed. This relationship, when combined with the ATS-6 measurements of satellite potential, revealed a nearly linear relation between the solar illumination/photoelectron flux and the logarithm of the satellite potential.
CATE 2016 Indonesia: Science goals and student training for 2017
NASA Astrophysics Data System (ADS)
Penn, M. J.; McKay, M. A.; Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; Bosh, R.; Watson, Z.; Baer, R.; Pierce, M.; Gelderman, R.; Walter, D. K.
2016-12-01
The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the CATE experiment range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy. Private funds are being raised for the CATE equipment, and so the telescopes will stay with the volunteers after the eclipse and be used in follow-on citizen science astronomy projects. The 2017 eclipse will be viewed by hundreds of millions of people. Four sets of undergraduate students in the path of the 2017 eclipse have become local experts for the eclipse and trainers for the CATE volunteers. These students traveled to the 2016 March eclipse in Indonesia and collected observations with prototype CATE telescopes; science results from these 2016 observations will be discussed. Training videos for use in 2017 were developed and tested on volunteers. Finally several high school groups along the path of totality have been engaged in the CATE project and will participate in the eclipse data collection. This work was supported by the NSO "Training for the 2017 Citizen CATE Experiment" funded by NASA (NASA NNX16AB92A). The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.
NASA Astrophysics Data System (ADS)
Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh
2016-11-01
In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.
NASA Astrophysics Data System (ADS)
Chakraborty, Suman; Palit, Sourav; Ray, Suman; Chakrabarti, Sandip K.
2016-02-01
The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth's atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. To tackle the uncertainty in the values of the recombination coefficients we explore a range of values in the chemical evolution model. We achieve two goals by this exercise: First, we have been able to reproduce the trends, if not the exact signal variation, of the VLF signal modulations during a solar eclipse at two different receiving stations with sufficient accuracy purely from theoretical modeling, and second our knowledge of some of the D-region ion-chemistry parameters is now improved.
NASA Astrophysics Data System (ADS)
Tayabali Jiwaji, Noorali
2015-08-01
Tanzania will witness a major astronomical spectacle of an annular eclipse on September 1, 2016. The central part of the eclipse will pass through southern Tanzania, crossing national parks and game reserves such as Katavi and the world famous Selous. For the rest of Tanzania and neighbouring countries it will be a memorable event with large of the proportion of the Sun being covered up. The climate in Tanzania during September is cool and dry which will provide ideal viewing conditions. Solar eclipse events attract "eclipse chasers" from around the globe.Scientific interest in measuring the properties of the Sun and the effects of the eclipse on the atmosphere will allow local scientists to partner with leading scientists to gain valuable experience and knowledge.Local population's wonder and interest in eclipses can be exploited through public-private partnerships by encouraging students and local people to travel to the central path or to observe from their backyards. Large number of eclipse glasses can be manufactured cheaply using safe solar filters for supplying to students and general population in Tanzania and neigbouring countries. This will raise science awareness about the wonders of our Universe.When combined with the attraction of Tanzania's treasures in the north and the 16 tonne Mbozi meteorite in southern Tanzania, the touristic potential of this event can be exploited through tour packages and worldwide advertisements during the coming year.
2017-08-21
On Monday, Aug. 21, First Daughter, Ivanka Trump participated in solar eclipse viewing and STEM (Science, Technology, Engineering, and Mathematics) educational activities hosted by the Smithsonian National Air and Space Museum in Washington, D.C.
Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse.
Latha, R; Murthy, B S
2013-07-01
Variations in CO(2) concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO(2) as a proxy for photosynthesis. CO(2) and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO(2) observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO(2) (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.
Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse
NASA Astrophysics Data System (ADS)
Latha, R.; Murthy, B. S.
2013-07-01
Variations in CO2 concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO2 as a proxy for photosynthesis. CO2 and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO2 observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO2 (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.
Structure and Dynamics of the 2009 July 22 Eclipse White-light Corona
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Rušin, V.; Saniga, M.; Druckmüllerová, H.; Babcock, B. A.
2011-11-01
The white-light corona (WLC) during the total solar eclipse of 2009 July 22 was observed by several teams in the Moon's shadow stretching from India and China across the Pacific Ocean with its many isolated islands. We present a comparison of the WLC as observed by eclipse teams located in China (Shanghai region) and on the Enewetak Atoll in the Marshall Islands, with observations taken 112 minutes apart, combined with near-simultaneous space observations. The eclipse was observed at the beginning of solar cycle 24, during a deep solar minimum (officially estimated as 2008 December according to the smoothed sunspot number, but very extended). The solar corona shows several different types of features (coronal holes, polar rays, helmet streamers, faint loops, voids, etc.), though it was extremely sparse in streamers as shown from Large-Angle Spectroscopic Coronagraph data. No large-scale dynamical phenomena were seen when comparing the observations from the two sites, confirming that the corona was quiescent. We measure a Ludendorff flattening coefficient of 0.238, typical of solar minimum.
Total solar eclipse effects on VLF signals: Observations and modeling
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.; Lichtenberger, János; Steinbach, Péter; Cannon, Paul; Angling, Matthew J.
During the total solar eclipse observed in Europe on August 11, 1999, measurements were made of the amplitude and phase of four VLF transmitters in the frequency range 16-24 kHz. Five receiver sites were set up, and significant variations in phase and amplitude are reported for 17 paths, more than any previously during an eclipse. Distances from transmitter to receiver ranged from 90 to 14,510 km, although the majority were <2000 km. Typically, positive amplitude changes were observed throughout the whole eclipse period on path lengths <2000 km, while negative amplitude changes were observed on paths >10,000 km. Negative phase changes were observed on most paths, independent of path length. Although there was significant variation from path to path, the typical changes observed were ~3 dB and ~50°. The changes observed were modeled using the Long Wave Propagation Capability waveguide code. Maximum eclipse effects occurred when the Wait inverse scale height parameter β was 0.5 km-1 and the effective ionospheric height parameter H' was 79 km, compared with β=0.43km-1 and H'=71km for normal daytime conditions. The resulting changes in modeled amplitude and phase show good agreement with the majority of the observations. The modeling undertaken provides an interpretation of why previous estimates of height change during eclipses have shown such a range of values. A D region gas-chemistry model was compared with electron concentration estimates inferred from the observations made during the solar eclipse. Quiet-day H' and β parameters were used to define the initial ionospheric profile. The gas-chemistry model was then driven only by eclipse-related solar radiation levels. The calculated electron concentration values at 77 km altitude throughout the period of the solar eclipse show good agreement with the values determined from observations at all times, which suggests that a linear variation in electron production rate with solar ionizing radiation is reasonable. At times of minimum electron concentration the chemical model predicts that the D region profile would be parameterized by the same β and H' as the LWPC model values, and rocket profiles, during totality and can be considered a validation of the chemical processes defined within the model.
Camera characterization for all-sky polarization measurements during the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Hashimoto, Taiga; Dahl, Laura M.; Laurie, Seth A.; Shaw, Joseph A.
2017-08-01
A solar eclipse provides a rare opportunity to observe skylight polarization during conditions that are fundamentally different than what we see every day. On 21 August 2017 we will measure the skylight polarization during a total solar eclipse in Rexburg, Idaho, USA. Previous research has shown that during totality the sky polarization pattern is altered significantly to become nominally symmetric about the zenith. However, there are still questions remaining about the details of how surface reflectance near the eclipse observation site and optical properties of aerosols in the atmosphere influence the totality sky polarization pattern. We will study how skylight polarization in a solar eclipse changes through each phase and how surface and atmospheric features affect the measured polarization signatures. To accomplish this, fully characterizing the cameras and fisheye lenses is critical. This paper reports measurements that include finding the camera sensitivity and its relationship to the required short exposure times, measuring the camera's spectral response function, mapping the angles of each camera pixel with the fisheye lens, and taking test measurements during daytime and twilight conditions. The daytime polarimetric images were compared to images from an existing all-sky polarization imager and a polarimetric radiative transfer model.
NASA's 2017 Solar Eclipse Coverage from 35,000 feet
2017-09-13
Robert Lightfoot, NASA’s acting administrator, and Thomas Zurbuchen, NASA science mission directorate’s associate administrator, discuss the importance and scientific value of capturing the 2017 Solar Eclipse from 35,000 feet above the coast of Oregon aboard the agency’s Gulfstream III aircraft.
Rocket observations of solar radiation during the eclipse of 26 February 1979
NASA Technical Reports Server (NTRS)
Bliss, H. M.; Smith, L. G.
1980-01-01
Three Nike Tomahawk rockets were launched in Red Lake, Ontario, one previous to, and two during, the total eclipse of the Sun, for the purpose of studying the atmosphere and its interaction with solar radiation. The method and preliminary results of three experiments that were used to measure solar radiation in the X-ray, Lyman-alpha, and visible parts of the spectrum are described. The instrumentation designed for this investigation is discussed as well as post-flight data processing techniques. The retrieved data were processed to some extent to verify that a valid representation of the solar radiation was obtained. The Lyman-alpha experiment yielded very good results, and preliminary data are included. The visible radiation experiment served as support for the other experiments and also functioned well. Due to a high level of energetic particles during the eclipse, the X-ray data were contaminated and are not presented. However, satellite observations indicate no appreciable level of X-rays from the Sun during the time of the eclipse.
Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam
NASA Astrophysics Data System (ADS)
Mayo, L.
2017-12-01
Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.
NASA Astrophysics Data System (ADS)
Marková, E.; Bělík, M.; Křivský, L.; Druckmüller, M.
2010-12-01
This work is focused on primary processing of the solar eclipse observations of July 22, 2009. As part of the "Shadow-tracking expedition" project several expeditions were organized to observe the phenomenon. Unfortunately, bad weather conditions prevented a successful observation in the China region. Pre-processing was carried out from images taken at Envetak Atoll in Marshall Islands. From the isophot evolution a corona flattening was found, and from the processed fine structure images a parameter called "source area radius", used mainly for calculations in models of the coronal magnetic fields, was determined. Both of these parameters supplement the data obtained during the previous eclipses, and the first conclusions on the state of the corona during an eclipse are deduced.
Interpretation of Historically Significant Solar and Lunar Eclipses
NASA Astrophysics Data System (ADS)
Muradyan, Armine; Mickaelian, A. M.
2016-12-01
Most of the ancient civilizations reacted with great awe and fear to the phenomena occurring in the sky and their changes. Periodically recurring movements of the Sun and the Moon attracting the attention of the astronomers, have given possibility to ancient civilizations to develop various calendars, including quite complicated ones. Since ancient times, Lunar and Solar eclipses were also among the forecasted phenomena, which have played an important role in human history. In the modern era, due to the cooperation of astronomers and historians, precise historical years and dates have been identified and the most important scientific discoveries of mankind have been proved with the help of eclipses. Most important historical Solar and Lunar eclipses, their impact on people, societies, history and science are presented and the interpretation of available to us historical events is given in this article.
NASA Astrophysics Data System (ADS)
Chakraborty, Suman; Chakrabarti, Sandip Kumar; Palit, Sourav; Ray, Suman
2016-07-01
One of the major sources of ionospheric perturbations is variations in solar Extreme Ultraviolet (EUV) radiation flux. Solar eclipse is a phenomenon which is capable of producing significant effects on the physical and chemical properties of the ionospheric plasma. During a solar eclipse, the solar radiation flux reduces considerably for a limited period of time over specific locations on the Earth. This induces certain changes within the ionosphere or more precisely, in the D-region which can be studied with the observation of Very Low Frequency (VLF) radio signal modulations. The parameters which mainly govern the ion-chemistry, such as the recombination coefficients are poorly known till date. Solar eclipse provides us with an excellent opportunity to study these parameters as its time of occurrence is known beforehand and thus we can equip ourselves accordingly. In the present study we considered the Total Solar Eclipse (TSE) that occurred on 22nd July, 2009 within the Indian subcontinent. Indian Centre for Space Physics (ICSP) conducted a week long campaign during the eclipse and data were recorded from dozens of places within India and abroad. Both positive and negative changes in VLF signal amplitude were observed. In this paper, data for a propagation path between Indian Navy VLF transmitter named VTX3 and a pair of receivers in India, namely Malda and Kolkata are used. We start with calculating the obscuration function for these two places to find the variations in ionization flux within the period of the eclipse. After this, we incorporated the D region ion chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. We varied the values of recombination coefficients to achieve desired accuracy in our results. In doing so, we achieved two goals: First, we have been able to reproduce the trend of variation in VLF signal amplitude (both positive and negative) at both the receiving locations purely from theoretical modeling and second, our knowledge of some of the D-region ion chemistry parameters is now improved considerably.
Two Commemorative Expeditions to Celebrate the Return to Totality
NASA Astrophysics Data System (ADS)
Thompson, Kristen; English, Tom
2018-01-01
Throughout history, total solar eclipses have generated excitement across the scientific community, as they provide a unique opportunity to study the Sun’s corona. Occurrences of such events have prompted many American astronomy programs to organize expeditions aimed at studying and photographing the eclipse. Only two observing stations from any of the major 19th and early 20th century eclipse expeditions were once again found in the path of totality of the 21 August 2017 Great American Eclipse. These stations, one in Newberry, SC and the other in Winnsboro, SC, were located in the shadow of the 28 May 1900 eclipse that passed through the southeastern United States from New Orleans to Norfolk. To celebrate this unique opportunity, we organized two expeditions that travelled to these towns to commemorate their return to totality. In this talk, I will describe the circumstances of the 1900 solar eclipse, our modern expeditions, and our effort to bring this eclipse history to life for the community.
NASA Technical Reports Server (NTRS)
Fry, C. D.; Rawlins, L.; Krause, L. H.; Suggs, R. M.; McTernan, J. K.; Adams, M. L.; Gallagher, D. L.; Anderson, Scott; Allsbrooks, Robert IV
2017-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.
NASA Astrophysics Data System (ADS)
Crispino, Luís C. B.; de Lima, Marcelo C.
2016-12-01
In 1919, A. C. D. Crommelin and C. R. Davidson, British astronomers from the Greenwich Observatory in England, passed by Amazonia on their Brazilian journey aiming to measure the bending of stars' light rays during the total solar eclipse of May 29, 1919, and thereby put the theory of general relativity to the test. In the context of Crommelin's and Davidson's visit, we discuss how Amazonia was introduced to Einstein's theory of gravitation, and also the observations and repercussions of the May 29, 1919, solar eclipse in Belém, capital city of the North-Brazilian Pará state.
Solar Eclipse Education and Outreach Activities at APSU
NASA Astrophysics Data System (ADS)
Smith, J. Allyn; Buckner, Spencer L.; Adams, Mitzi; Meisch, Karen; Sudbrink, Don; Wright, Amy; Adams, Angela; Fagan, Ben
2018-01-01
The path of totality for the 21 August 2017 total solar eclipse passed directly over the APSU campus in north-central Tennessee. We discuss our public outreach and education efforts, both on campus and in the community, and present results and lessons learned from this event. We reached nearly 20,000 people via our efforts and hosted nearly 3000 viewers on campus on eclipse day. We also present our science activities and early results from those. On the whole, this event could be viewed as a large success for the university and the region, and the experiences will guide us in our efforts as we plan future eclipse activities.
Polarization Observations of the Total Solar Eclipse of August 21, 2017
NASA Astrophysics Data System (ADS)
Burkepile, J.; Boll, A.; Casini, R.; de Toma, G.; Elmore, D. F.; Gibson, K. L.; Judge, P. G.; Mitchell, A. M.; Penn, M.; Sewell, S. D.; Tomczyk, S.; Yanamandra-Fisher, P. A.
2017-12-01
A total solar eclipse offers ideal sky conditions for viewing the solar corona. Light from the corona is composed of three components: the E-corona, made up of spectral emission lines produced by ionized elements in the corona; the K-corona, produced by photospheric light that is Thomson scattered by coronal electrons; and the F-corona, produced by sunlight scattered from dust particles in the near Sun environment and in interplanetary space. Polarized white light observations of the corona provide a way of isolating the K-corona to determine its structure, brightness, and density. This work focuses on broadband white light polarization observations of the corona during the upcoming solar eclipse from three different instruments. We compare coronal polarization brightness observations of the August 21, 2017 total solar eclipse from the NCAR/High Altitude Observatory (HAO) Rosetta Stone experiment using the 4-D Technology PolarCam camera with the two Citizen PACA_CATE17Pol telescopes that will acquire linear polarization observations of the eclipse and the NCAR/HAO K-Cor white light coronagraph observations from the Mauna Loa Solar Observatory in Hawaii. This comparison includes a discussion of the cross-calibration of the different instruments and reports the results of the coronal polarization brightness and electron density of the corona. These observations will be compared with results from previous coronal measurements taken at different phases of the solar cycle. In addition, we report on the performance of the three different polarimeters. The 4-D PolarCam uses a linear polarizer array, PACA_CATE17Pol uses a nematic liquid crystal retarder in a single beam configuration and K-Cor uses a pair of ferroelectric liquid crystal retarders in a dual-beam configuration. The use of the 4-D PolarCam camera in the Rosetta Stone experiment is to demonstrate the technology for acquiring high cadence polarization measurements. The Rosetta Stone experiment is funded through the NASA award NNH16ZDA001N-ISE. The Citizen Science approach to measuring the polarized solar corona during the eclipse is funded through NASA award NNX17AH76G. The NCAR Mauna Loa Solar Observatory is funded by the National Science Foundation.
The eclipse of the Sun from 20 May 2015
NASA Astrophysics Data System (ADS)
Tiron, S. D.
2015-04-01
The interview of the Radio Moldova with astronomer about the coming Eclipse of the Sun, included the following topics: 1) The circumstances of the Total eclipse 2) The circumstances of the Partial Eclipse in the Republic of Moldova 3) Protection of eyes during Observations
Research on the Solar Eclipse Records in the Wuxingzhi of Both {Han} Dynasties
NASA Astrophysics Data System (ADS)
Li, Y.
2015-09-01
In this paper, we investigate the paper Lianghan Rishi Kao (inspect the solar-eclipse records in Both {Han} dynasties) written by {Zhu Wenxin} when compared the solar-eclipse records with those in the book Zhongguo Gudai Tianxiang Jilu Zong ji (collection of Chinese ancient astronomical records), and find 38 (61) records with the same dates in Western (Eastern) {Han} dynasty, equal to 70% (85%) of total. Our results have 42 (61) with the same dates in Western (Eastern) {Han} dynasty as just 78% (85%) of the total. There are totally 126 solar-eclipse records in the Wuxingzhi of both {Han} Dynasties. We confirm that there are 21 no occurred, 7 invisible in the capital then, 9 occurred before sunrise, 1 after sunset, and the left 88 are seen, occupying 70% as usually occurred in the capital area. With the help of our transformation platform as from Chinese ancient 60-day-cycle style dates to Gregorian calendar dates, we check the date records of solar eclipses in the Wuxingzhi of both {Han} dynasties, and then review the accuracy of the calendar. The standard errors of month and day are respectively 0.31 month (0.17 month) and 0.97 day (0.74 day) in the Western (Eastern) {Han} dynasty. At the same time, the standard errors of solar location of the records are determined, they are 11.08° (6.63°) in Western (Eastern) {Han} dynasty, and after excluding the possible misrecords the accuracy changes to 9.30° (3.59°). If the Juxing (key star of this constellation) was the same in both {Han} dynasties, the average value of observation error of solar location in Eastern {Han} dynasty is 2.8°, far better than 8.2° in Western {Han} dynasty. Otherwise, they most likely appear in some constellations with larger deviation. We try to determine the Δ T (ET-UT) value of solar-eclipse records with the magnitude descriptions, and at the same time, it is concluded that the magnitude of Ji (total eclipse) is 0.969-1.0, Jijin (the sun is covered almost all) is 0.829-0.985, and Bujinrugou (the sun is not covered all and left like a hook) is 0.861-0.926, respectively.
A Glimpse of the Solar Eclipse from NREL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-08-22
On August 21, the NREL campus in Golden, Colorado experience a near-complete eclipse of the sun. This video, recorded from NREL’s Solar Radiation Research Laboratory, where researchers carefully measure the sun’s energy, captures the moon crossing the sun before clouds move in and cover the sun.
Configuration of and Motions in the Solar Corona at the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Rusin, Vojtech; Vanur, Roman; Economou, Thanasis; Voulgaris, Aristeidis; Seiradakis, John H.; Seaton, Daniel; Dantowitz, Ronald; Lockwood, Christian A.; Nagle-McNaughton, Timothy; Perez, Cielo; Meadors, Erin N.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Ide, Charles A.; Daly, Declan M.; Davis, Allen Bradford; Lu, Muzhou; Steele, Amy; Lee, Duane; Freeman, Marcus J.; Sliski, David; Rousseva, Ana; Greek Salem (Oregon) Team; Voulgaris, Aristeidis; Seiradakis, John Hugh; Koukioglou, Stavros; Kyriakou, Nikos; Vasileiadou, Anna; Greek Carbondale (Illinois) Team; Economou, Thanasis; Kanouras, Spyros; Irakleous, Christina; Golemis, Adrianos; Tsioumpanika, Nikoleta; Plexidas, Nikos; Tzimkas, Nikos; Kokkinidou, Ourania
2018-06-01
We report on high-contrast data reduction of white-light images from the August 21, 2017, total solar eclipse. We show the configuration of the solar corona at this declining phase of the solar-activity cycle, with the projection onto the plane of the sky of the three-dimensional coronal streamers plus extensive polar plumes. We discuss the relation of the white-light coronal loops visible in our observations with extreme-ultraviolet observations from NASA’s Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and NOAA’s GOES-16 Solar Ultraviolet Imager (SUVI). We show differences and motions over a 65-minute interval between observations from our main site at Willamette University in Salem, Oregon, and a subsidiary site in Carbondale, Illinois. We discuss, in particular, a giant demarcation about 1 solar radius outward in the southwest that crosses the radial streamers.Our observations of the eclipse were sponsored in large part by the Committee for Research and Exploration of the National Geographic Society and by the Solar Terrestrial Program of the National Geographic Society. Additional support was received from the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the University of Pennsylvania (for DS), the Slovak Academy of Sciences VEGA project 2/0003/16, and the Freeman Foote Expeditionary and Brandi funds at Williams College. We thank Stephen Thorsett, Rick Watkins, and Honey Wilson of Willamette University for their hospitality. See http://totalsolareclipse.org or http://sites.williams.edu/eclipse/2017-usa/.
Daylight levels during the solar eclipse of 11 August 1999
NASA Astrophysics Data System (ADS)
Darula, S.; Kambezidis, H. D.; Kittler, R.
Solar eclipses are unique phenomena not only for astronomical and space observations but also for terrestrial; they create unique conditions of sunbeam blockage which cause not only the reduction of direct sunlight but also the dimming of skylight from the whole sky vault. Very favorable conditions were met during the recent August 1999 solar eclipse in Athens, Greece and Bratislava, Slovakia. General class daylight stations operate within the International Daylight Measurements Program in the two cities. One-minute data of global/diffuse illuminance and zenith luminance from those stations have been used to provide information about their levels and the daylight reduction rate during the eclipse. An approximate formula for the estimation of sunlight and skylight illuminance levels as well as zenith luminance using relative luminance sky patterns is also presented in this work. To achieve this, recently developed sky standards together with their parameterizations are utilized.
CATE 2016 Indonesia: Image Calibration, Intensity Calibration, and Drift Scan
NASA Astrophysics Data System (ADS)
Hare, H. S.; Kovac, S. A.; Jensen, L.; McKay, M. A.; Bosh, R.; Watson, Z.; Mitchell, A. M.; Penn, M. J.
2016-12-01
The citizen Continental America Telescopic Eclipse (CATE) experiment aims to provide equipment for 60 sites across the path of totality for the United States August 21st, 2017 total solar eclipse. The opportunity to gather ninety minutes of continuous images of the solar corona is unmatched by any other previous eclipse event. In March of 2016, 5 teams were sent to Indonesia to test CATE equipment and procedures on the March 9th, 2016 total solar eclipse. Also, a goal of the trip was practice and gathering data to use in testing data reduction methods. Of the five teams, four collected data. While in Indonesia, each group participated in community outreach in the location of their site. The 2016 eclipse allowed CATE to test the calibration techniques for the 2017 eclipse. Calibration dark current and flat field images were collected to remove variation across the cameras. Drift scan observations provided information to rotationally align the images from each site. These image's intensity values allowed for intensity calibration for each of the sites. A GPS at each site corrected for major computer errors in time measurement of images. Further refinement of these processes is required before the 2017 eclipse. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).
NASA's Solar Eclipse Composite Image July 11, 2010
2017-12-08
Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
NASA Astrophysics Data System (ADS)
Matthaiou, Alexis
2010-05-01
Astronomical Activities for students Motivating students interest in Physical Science through Astronomy Alexis Matthaiou Philekpaideftiki Etaireia, Arsakeio Lyceum Patron, Patras, Greece,(alexiosmat@yahoo.gr) School education aims not only to providing the necessary knowledge to the students but also to inspire and motivate them to realize their special abilities and inclinations and use their potential for making a joyful future for their lives. In this direction we present some activities held in the Arsakeio School of Patras during the years 2005-2008 in the field of Astronomy and Astrophysics, in order to share our experience with the teachers' community. Students from all grades of primary and secondary education participated with enthusiasm. In particular, they observed the Partial Solar Eclipse of October 3rd, 2005,and the Total Solar Eclipse of March 29th, 2006. They took part in observing and registering Solar Spots, using Astronomical equipments like different types of telescopes with filters and solar scopes. Students studied further the nature of Solar Phenomena and their effects on life, participating in the Environmental Program "Sun and Life"(2006-2007). Moreover, students took part in the International Program for measuring the Light Pollution "Globe at Night" (2006-2007) with observing and registering the luminosity of the Orion constellation in the night sky above their residence. Finally, the students participated in the European program "Hands on Universe" (HOU) (2005-2008) working on a project, which was the Greek contribution to HOU, developed from "Philekpaideftiki Etaireia". In particular, they studied the stars' spectrum and acquired information about the stars' life and age of stellar systems, using interactive multimedia technology.
NASA Astrophysics Data System (ADS)
Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.
2014-09-01
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h‧) in km and inverse scale height parameter (β) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.
STRUCTURE AND DYNAMICS OF THE 2012 NOVEMBER 13/14 ECLIPSE WHITE-LIGHT CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasachoff, J. M.; Rušin, V.; Saniga, M.
2015-02-20
Continuing our series of observations of coronal motion and dynamics over the solar-activity cycle, we observed from sites in Queensland, Australia, during the 2012 November 13 (UT)/14 (local time) total solar eclipse. The corona took the low-ellipticity shape typical of solar maximum (flattening index ε = 0.01), a change from the composite coronal images we observed and analyzed in this journal and elsewhere for the 2006 and 2008-2010 eclipses. After crossing the northeast Australian coast, the path of totality was over the ocean, so further totality was seen only by shipborne observers. Our results include velocities of a coronal massmore » ejection (CME; during the 36 minutes of passage from the Queensland coast to a ship north of New Zealand, we measured 413 km s{sup –1}) and we analyze its dynamics. We discuss the shapes and positions of several types of coronal features seen on our higher-resolution composite Queensland coronal images, including many helmet streamers, very faint bright and dark loops at the bases of helmet streamers, voids, and radially oriented thin streamers. We compare our eclipse observations with models of the magnetic field, confirming the validity of the predictions, and relate the eclipse phenomenology seen with the near-simultaneous images from NASA's Solar Dynamics Observatory (SDO/AIA), NASA's Extreme Ultraviolet Imager on Solar Terrestrial Relations Observatory, ESA/Royal Observatory of Belgium's Sun Watcher with Active Pixels and Image Processing (SWAP) on PROBA2, and Naval Research Laboratory's Large Angle and Spectrometric Coronagraph Experiment on ESA's Solar and Heliospheric Observatory. For example, the southeastern CME is related to the solar flare whose origin we trace with a SWAP series of images.« less
The earliest known solar eclipse record redated
NASA Astrophysics Data System (ADS)
de Jong, T.; van Soldt, W. H.
1989-03-01
An astronomical event recorded on a clay tablet found in 1948 among the ruins of the acient city of Ugarit, in what is now Syria, was identified 20 years ago as a description of a total solar eclipse that occurred on May 3, 1375 B.C. A new historical dating of the tablet, and mention in the text of the visibility of the planet Mars during the eclipse as well as the month it which it occurred, are used here to show that the recorded eclipse in fact occurred on March 5, 1223 B.C. This new date implies that the secular deceleration of the earth's rotation has changed very little during the past 3000 years.
Plans to Observe the 2017 Total Solar Eclipse from near the Path Edges
NASA Astrophysics Data System (ADS)
Waring Dunham, David; Nugent, Richard; Guhl, Konrad; Bode, Hans-Joachim
2015-08-01
The August 21st, 2017 solar eclipse provides a good opportunity, to time the totality contacts, other Baily’s bead phenomena, and observe other dynamic edge phenomena, from locations near the edges of the path of totality. A good network of roads and generally favorable weather prospects means that more observers will likely be able to deploy more equipment than during most previous eclipses. The value of contact and Baily’s bead timings of total solar eclipses, for determining solar diameter and intensity variations, was described in an earlier presentation in Focus Meeting 13. This presentation will concentrate on how observations of different types that have been used during past eclipses can be made by different observers, to obtain better information about the accuracy of the different types of observations for determining the mean solar diameter, and the systematic differences between them. A problem has been that the few observers who have attempted recording Baily’s beads from path edge locations have wanted to use the latest technology, to try to record the observations better, rather than try to make the observations in the same ways that were used for many past eclipses. Several observers trying different techniques at the same location, and doing that at several locations at different places along the path, is needed. Past techniques that we would like to compare include direct visual observation (but keeping eye safety in mind); visual observation of telescopically projected images; direct filtered video telescopic observations; and recording the flash spectrum. There are several towns that straddle the path edges. The International Occultation Timing Association would like to mobilize people in those towns to observe the eclipse from many places, to say whether or not the eclipse happened, and if it did, time it. A suitable cell phone app could be designed to report observations, including the observer’s location, as was attempted for an occultation of Regulus by the asteroid Erigone in the northeastern USA in 2014, but which unfortunately was clouded out everywhere.
Solar Eclipse-Induced Changes in the Ionosphere over the Continental US
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.
2017-12-01
For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT Haystack Madrigal system. Alongside a summary of observations, we will also present preliminary quantitative comparisons with several ongoing modeling efforts.
Solar radius change between 1925 and 1979
NASA Technical Reports Server (NTRS)
Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.
1983-01-01
From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.
Total Solar Eclipse: “Through The Eyes of NASA,” Part 2
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America - featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency's website.
Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse
NASA Technical Reports Server (NTRS)
Fritts, David C.; Luo, Zhangai
1993-01-01
We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.
The NASA 2017 Eclipse Education Program: Through the Eyes of NASA to the Hearts of a Nation
NASA Astrophysics Data System (ADS)
Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy D.; Lewis, Elaine; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Bleacher, Lora; Kirk, Michael S.; jones, andrea
2016-05-01
The August 21, 2017, eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships from across the country being leveraged to enhance our reach and impact. We also discuss the observations and science of current and future NASA missions such as SDO, Hinode and Solar Probe Plus along with their relationship to such a unique celestial event as a total solar eclipse.
Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Katz, J. D.; Gunning, S. W.; Vega, J. S.; Gerrard, A. J.; Earle, G. D.; Moses, M. L.; West, M. L.; Huba, J. D.; Erickson, P. J.; Miller, E. S.; Gerzoff, R. B.; Liles, W.; Silver, H. W.
2018-05-01
On 21 August 2017, a total solar eclipse traversed the continental United States and caused large-scale changes in ionospheric densities. These were detected as changes in medium- and high-frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse-ionospheric study to make use of measurements from a citizen-operated, global-scale HF propagation network and develop tools for comparison to a physics-based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse-induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h < 125 km with elevation angles θ < 10°.
2017-06-11
Sylvester Dorsey III, avionics lead for the Europa Deorbit Stage Team in Marshall's Engineering Directorate, is joined during Marshall's eclipse-viewing event by his three children, from left, Sylvester IV, Sidney and Sakari. Though Huntsville was south of the path of totality, the Dorseys were among those awestruck by the natural phenomenon. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
NASA in Silicon Valley Uses Eclipses to Study Our Galaxy
2017-08-11
The August 2017 total solar eclipse seen across the United States was an epic event. However, scientists and researchers at NASA's Ames Research Center use different types of eclipses every day to learn about the mysteries of our sun and our galaxy!
Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.
2017-12-01
Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.
Penman, John; Jónsson, Trausti; Bigg, Grant R.; Björnsson, Halldór; Sjúrðarson, Sølvi; Hansen, Mads A.; Cappelen, John; Bryant, Robert G.
2016-01-01
Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550769
NASA Astrophysics Data System (ADS)
McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li; Solomon, Stanley C.; Conley, Andrew J.; Drob, Douglas P.
2018-05-01
We performed simulations of the atmosphere-ionosphere response to the solar eclipse of 21 August 2017 using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X v. 2.0) with a fully interactive ionosphere and thermosphere. Eclipse simulations show temperature changes in the path of totality up to -3 K near the surface, -1 K at the stratopause, ±4 K in the mesosphere, and -40 K in the thermosphere. In the F region ionosphere, electron density is depleted by about 55%. Both the temperature and electron density exhibit global effects in the hours following the eclipse. There are also significant effects on stratosphere-mesosphere chemistry, including an increase in ozone by nearly a factor of 2 at 65 km. Dynamical impacts of the eclipse in the lower atmosphere appear to propagate to the upper atmosphere. This study provides insight into coupled eclipse effects through the entire atmosphere from the surface through the ionosphere.
Solar Diameter Measurements from Eclipses as a Solar Variability Proxy
NASA Astrophysics Data System (ADS)
Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell
2015-08-01
Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.
The Trojan war dated by two solar eclipses.
NASA Astrophysics Data System (ADS)
Henriksson, Goran
The Trojan War was very significant for the ancient Greeks and they dated historical events according to the number of years after the fall of Troy. However, there was already in antiquity no consensus as to the exact date of the war when compared with different epochs. Even after the modern discovery of the ancient city, there has been disagreement among different excavators as to which layer corresponds to the city mentioned in the Iliad attributed to Homer. In this paper an attempt is made to identify the strange obscuration of the sun that occurred during the final battle of the Iliad as a total solar eclipse close to the southern border of the zone of totality. There exists only one solar eclipse that corresponds to the description in the text and this is the total solar eclipse of June 11, in 1312 BC. When I first presented this date in 1986, there was a difference of about 60 years compared with the most common archaeological dating at that time. My date is now fully supported by the latest results from the German-American excavation that identifies the fall of Homer's Troy with the destruction of the archaeological layer Troy VIh, dated to about 1300 BC. Further independent support is provided by another solar eclipse that dates the reign of the Hittite king Muwatalli II. This king wrote a letter to king Alaksandu in Wilusa, identified as the Hittite name for Ilios, the most frequently used name for Troy in the Iliad. Alexander was another name for Paris who abducted Helen, the crime that resulted in the war. Muwatalli II was king 1315-1297 BC, according to the chronology for the Hittite Kingdom based on a solar eclipse in 1335 BC, during the tenth year of King Mursili II (1345- 1315 BC), the father of Muwatalli II.
NASA Astrophysics Data System (ADS)
Habbal, Shadia Rifai; Ding, Adalbert; Druckmuller, Miloslav; Solar Wind Sherpas
2018-01-01
The visible wavelength range, encompassing forbidden coronal emission lines, offers unique diagnostic tools for exploring the physics of the solar corona, such as its chemical composition and the dynamics of its major and minor constituents. These tools are best exploited during total solar eclipses, when the field of view spans several solar radii, starting from the solar surface. This spatial span is currently untenable from any observing platform. Imaging and spectroscopic eclipse observations, including the 2017 August 21 event, are shown to be the first to yield the temperature distribution in the corona as a function of solar cycle. They are also the first to lead to the discovery of cool prominence material at less than 10,000 to 50,000 K, within more than a radius above the solar surface, streaming away from the Sun, while maintaining its compositional identity. These data underscore the importance of capturing emission from coronal forbidden lines with the next generation space-based instrumentation to address the general problem of coronal heating.
Lighting Condition Analysis for Mars Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy
2016-01-01
A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.
ERIC Educational Resources Information Center
Hurst, Anna; Plummer, Julia; Gurton, Suzanne; Schatz, Dennis
2017-01-01
On August 21, 2017, sky gazers all across North America will experience a total solar eclipse, arguably the most breathtaking of all astronomical phenomena. The August eclipse is an ideal astronomical event to observe with young children because it allows them to observe a powerful and easily accessible astronomical phenomenon. Observing…
March 7, 1970 solar eclipse investigation
NASA Technical Reports Server (NTRS)
Accardo, C. A.
1972-01-01
Studies from rockets directed toward establishing the solar X-ray fluxes during the 7 March 1970 total eclipse over the North American continent are reported. A map of the eclipse path is presented. The measured absorption profiles for the residual X-rays are useful in establishing their contribution to the D and E region ionization during the eclipse. The studies were performed with two Nike-Apache payloads launched over Wallops Island, Virginia. In addition to three X-ray detectors in the 1 to 8A, 8 to 20A and 44 to 60A bands, there was included in the payloads two additional experiments. These were an electric field experiment and an epithermal photoelectron experiment. The X-ray instrumentation, payload description, flight circumstances and finally, the X-ray results obtained are described. The various computer codes employed for the purpose of reducing the telemetered data as well as the eclipse codes are included.
NASA Astrophysics Data System (ADS)
Gaines, E. E.; Imhof, W. L.; Voss, H. D.; Reagan, J. B.
1983-07-01
During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of about 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area.
2017-08-21
The diamond-ring effect occurred at the beginning and end of totality during a total solar eclipse. As the last bits of sunlight pass through the valleys on the moon's limb, and the faint corona around the sun is just becoming visible, it looks like a ring with glittering diamonds on it. Credit: (NASA/Carla Thomas)
Lockyer, Joseph Norman (1836-1920)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Civil servant, professor at the Solar Physics Observatory, Kensington (later moved to Cambridge), born in Rugby, Warwickshire, England. Attracted to astronomy by an observation of the annular solar eclipse of 1858, erected an observatory at his home in Hampstead, observed Mars. Lockyer showed spectroscopically that phenomena seen during a total eclipse (such as the prominences) could be seen in d...
NASA Astrophysics Data System (ADS)
McClelland, Keri; Glazer, Kelsey Samantha; Overduin, James; Miskiewicz, Chris; Eney, Brian; Mouette, Jean
2018-01-01
We describe a student-led project to image two seventh-magnitude stars on either side of the Sun during the solar eclipse of August 21, 2017. Both stars were within one solar radius of the Sun, and according to Einstein’s theory of General Relativity, their positions would have been shifted away from the Sun by 1 arcsec. We observed the eclipse from three different sites along the path of totality (Lexington, South Carolina; Indian Valley, Idaho; Madras, Oregon). All three sites were clear, but the brightness of the solar corona has complicated the analysis. We present preliminary results using our best images from the site in Idaho.
The X-ray eclipse of the LMC binary CAL 87
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.
1993-01-01
ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.
NASA Astrophysics Data System (ADS)
Pang, Alex Soojung-Kim
Scientific expeditions have played an important role in the development of Western Science, but have received far less attention than theory-making or experiment. This is a cultural and social history of British solar eclipse expeditions and observing practices. An introductory chapter outlines the historiography of scientific practice, imperialism and science, and scientific expeditions, and explains the importance of solar eclipses to nineteenth-century science. The chapters follow expeditions from their planning, through their execution, and into the publication of results. Chapter 2 is an institutional and social history of British and American eclipse planning. British expeditions were organized by national societies, while American expeditions were planned by individual observatories and colleges. Chapters 3 and 4 move into the field. They show how the evolution of tourist culture, the expansion of imperial spheres of political control, the transfer of Western technological systems to colonial territories shaped the experience of going on an expedition, and even made accurate astrophysical observation possible. They also examine the roles women played on eclipse expeditions. Chapters 5 and 6 examine spectroscopic and visual observation. They study the effects of intellectual shifts, the introduction of photography, and the scaling up of instruments on observing practices. Chapter 6 shows how visual and photographic observations of the solar corona were made. Chapter 7 follows those pictures out of the field, and examines how they were copied and shared with other astronomers.
Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.
2017-12-01
The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.
2017-06-11
Former Spacelab 1 mission scientist Rick Chappell addresses Marshall team members during the Aug. 21 eclipse-watching event in Activities Building 4316. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.
Ionospheric response to the total solar eclipse in India on 22 July, 2009
NASA Astrophysics Data System (ADS)
Chauhan, Vishal; Agrawal, Shikah; Singh, O. P.; Singh, Birbal
2010-05-01
The variations in total electron content (TEC) and amplitude of the fixed frequency VLF transmitter signals (f =19.8 kHz, NWC, Australia) are studied at Agra (Geographic lat. 27.20N, long. 780E), India during the total solar eclipse of 22 July, 2009 which was longest seen in India ever since 18 August, 1968. The equipments used for the study are a dual frequency GPS receiver (GSV 4004V). The data for a period of fifteen days (±7 days from the date of the event) are analysed and it is found that the TEC decreased by about 30% from normal days during the total solar eclipse. The period of the data analysis is characterised by a low level of geomagnetic activity, hence the decrease in TEC s is unlikely to be influenced by geomagnetic disturbances. The results are interpreted in terms of depression in electron densities at all ionospheric heights and are consistent with those obtained by earlier workers during similar eclipse events.
Annular and Total Solar Eclipses of 2003
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2002-01-01
On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.
Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)
NASA Astrophysics Data System (ADS)
Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.
2017-12-01
We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.
Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807
NASA Technical Reports Server (NTRS)
Markwardt, C. B.; Stromhmayer, T. E.
2010-01-01
We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .
The 2017 Solar Eclipse Community Impacts through Public Library Engagement
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.
2017-12-01
More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.
Is an eclipse described in the Odyssey?
Baikouzis, Constantino; Magnasco, Marcelo O
2008-07-01
Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.
Brown, Robin G.; Nichols, William D.
1990-01-01
Meteorological data were collected over bare soil at a site for low-level radioactive-waste burial near Beatty, Nevada, from November 1977 to May 1980. The data include precipitation, windspeed, wind direction, incident solar radiation, reflected solar radiation, net radiation, dry- and wet-bulb air temperatures at three heights, soil temperature at five depths, and soil-heat flux at three depths. Mean relative humidity was computed for each day of the collection period for which data are available.A discussion is presented of the study site and the instrumentation and procedures used for collecting and processing the data. Selected data from November 1977 to May 1980 are presented in tabular form. Diurnal fluctuations of selected meteorological variables for representative summer and winter periods are graphically presented. The effects on selected variables of a partial solar eclipse are also discussed
Boise State's Idaho Eclipse Outreach Program
NASA Astrophysics Data System (ADS)
Davis, Karan; Jackson, Brian
2017-10-01
The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.
2017-06-11
Brad Addona views the beginning of the August 21, 2017 at a viewing event for Marshall Space Flight Center’s activities building for Marshall employees. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Beatrice, NE)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Beatrice, Nebraska.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Salem, OR)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Salem, Oregon.
VICE PRESIDENT PENCE VIEWS SOLAR ECLIPSE WITH STUDENTS AT U.S. NAVAL OBSERVATORY
2017-08-21
On Monday, Aug. 21, Vice President Mike Pence welcomed students from a Washington area school to the U.S. Naval Observatory, to view the 2017 solar eclipse and learn about heliophysics – the study of our sun. The event was also attended by former NASA astronaut Pam Melroy, NASA scientist Brad Bailey, and education specialist Evelina Felicite-Maurice.
July 22, 2009 ALP Total Solar Eclipse Expedition to Wuhan, China
NASA Astrophysics Data System (ADS)
Ty, J. K.; Lao, F., Jr.
2009-12-01
On July 22, 2009, the Astronomical League of the Philippines sent a contingent of astronomers to Wuhan, China to observe and record the longest total solar eclipse of the century. Other Filipino astronomers were stationed at Shanghai and Jiaxing, China, and a group of society members also made observations in the Philippines - mainly engaged in public outreach and scientific observation.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41594 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:17 GMT. One of the space station’s solar array panels appears at the top of the frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitan, David; Groot, Paul J.; Prince, Thomas A.
2014-04-20
We report on PTF1 J191905.19+481506.2, a newly discovered, partially eclipsing, outbursting AM CVn system found in the Palomar Transient Factory synoptic survey. This is only the second known eclipsing AM CVn system. We use high-speed photometric observations and phase-resolved spectroscopy to establish an orbital period of 22.4559(3) minutes. We also present a long-term light curve and report on the normal and super-outbursts regularly seen in this system, including a super-outburst recurrence time of 36.8(4) days. We use the presence of the eclipse to place upper and lower limits on the inclination of the system and discuss the number of knownmore » eclipsing AM CVn systems versus what would be expected.« less
NASA Astrophysics Data System (ADS)
Jensen, L.; Kovac, S. A.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.
2016-12-01
An area of the solar corona from 1 out to approximately 2.5 solar radii is currently poorly sampled in astronomy. This is largely due to difficulties inherent in observing the sun from space and from the ground. Specifically focusing on ground based observations, the main problem is scattered light in the Earth's atmosphere and in the telescopes themselves. A total solar eclipse solves this problem by blocking the light from the photosphere of the sun before it enters the atmosphere, reducing the scattered light in the atmosphere by a factor of 10,000. However, using a total solar eclipse introduces another challenge due to the small window of time it provides. At any given location in 2017, the totality will last for only about 2.5 minutes and such a small data set limits the studies that can be done on the inner corona. The Citizen Continental-America Telescopic Eclipse Experiment plans to overcome this issue by taking advantage of America's infrastructure and using 60 identical telescopes to collect continuous data of the solar eclipse as the shadow travels from Oregon to South Carolina. By splicing these data together 90 minutes of one-of-a-kind data can be collected, revealing the dynamics of the inner corona as never seen before. For the 2016 Indonesian total solar eclipse the CATE project collected data using 5 sites along the eclipse path. These data were then used to develop processing programs to use on future data. These processes included site-to-site image registration as well as normalized radial graded filtering of the images. Programs were also developed to begin performing studies on the data including overlapping CATE and LASCO space telescope data for a total coronal image as well as thread tracing routines to quantify direction in the coronal filaments. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.
On the Naming and Dscovery of the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Reardon, Kevin P.
2014-06-01
The chromosphere was discovered by Lockyer and Janssen in 1868, and named by Lockyer. It is often stated that his motivation for associating this region of the solar atmosphere with "color" was because of its bright red appearance at eclipses due to the predominance of H-alpha. However, Lockyer had never seen a total solar eclipse at the time he gave the name and does not appear to have provided this justification himself. It is more likely that the "color" refers to the plethora of different colored emission lines he saw and identified with his spectrograph.I also discuss the Padre Angelo Secchi's observation of the 1860 eclipse in Spain, His accurate description of the chromosphere as a complete, theretofore unseen layer enveloping the Sun predates Lockyer and Janssen by eight years.
1991-02-01
January 4d 23 h 14 42’.825 Julian Date = 2448626.4685512127 It mn s s R.A. of Sun and Moon 1900 11.850 Hourly motions 10.995 and 126.011 AT 58.577...geocentric conjunction in right ascension, June 3 0 d 12 h 23m 21’.929 Julian Date = 2448804.0162260344 h m s s s R.A. of Sun and Moon 6 38 57.402 Hourly...98.6 0.983 A 60 -31 45.0 - 52 20.0 Pelotas 10 59 38.6 97.7 0.974 5 59 -30 03.2 - 51 07.6 Porto Alegre (Morro Santana Obs.) 10 58 42.3 94.3 0.946 6 59
2017 Total Eclipse Viewing Tips - Narrated by George Takei
2017-08-09
On Monday, August 21, 2017, all of North America will be treated to an eclipse of the sun. Anyone within the path of totality can see one of nature’s most awe inspiring sights - a total solar eclipse. This video, narrated by actor George Takei, provides a few viewing tips for the public.
High precision ground-based measurements of solar diameter in support of PICARD mission
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2011-12-01
The measurement of the solar diameter is introduced in the wider framework of solar variability and of the influences of the Sun upon the Earth's climate. Ancient eclipses and planetary transits would permit to extend the knowledge of the solar irradiance back to three centuries, through the parameter W=dLogR/dLogL. The method of Baily's beads timing during eclipses is discussed, and a significant improvement with respect to the last 40 years has been obtained by reconstructing the Limb Darkening Function's inflexion point from their light curve and the corresponding lunar valleys' profiles. The case of the Jan 15, 2010 annular eclipse has been studied in detail, as well as the last two transits of Venus. The atlas of Baily's beads, realized with worldwide contributions by IOTA members is presented along with the solar diameter during the eclipse of 2006. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-altimeter map made by the Kaguya lunar probe in 2009 has been followed. The other method for the accurate measurement of the solar diameter alternative to the PICARD / PICARD-sol mission is the drift-scan method used either by the solar astrolabes either by larger telescopes. The observatories of Locarno and Paris have started an observational program of the Sun with this method with encouraging results. For the first time an image motion of the whole Sun has been detected at frequencies of 1/100 Hz. This may start explain the puzzling results of the observational campaigns made in Greenwich and Rome from 1850 to 1955. The meridian line of Santa Maria degli Angeli in Rome is a giant pinhole telescope and it permits to introduce didactically almost all the arguments of classical astrometry here presented. The support to the PICARD mission continues with the analyses of the transit of Venus and the total eclipse of 2012.
Go Dark Charleston 2017: Preparing the Lowcountry of Charleston, SC for a Unique Celestial Event
NASA Astrophysics Data System (ADS)
Hall, C.; Runyon, C. R.; Royle, M. L.
2017-12-01
The August 2017 total solar eclipse will cross the United States, from Oregon to South Carolina, for the first time in almost 100 years. This awe-inspiring event occurs when the moon crosses between the Sun and the Earth, casting a shadow on Earth. Charleston, SC is the final point in this path before the eclipse heads offshore. As such, it provides an opportunity for Charlestonians to witness the grand finale of such an extraordinary celestial event. In collaboration, the Lowcountry Hall of Science and Math (LHSM) and the SC NASA Space Grant Consortium (SCSG) are working with entities across the state to help raise awareness among the general public to the uniqueness of this total solar eclipse. The team is delivering content-rich, hands-on professional development statewide to formal and informal educators, park rangers and city/county government personnel to ensure an understanding behind why we have eclipses as well as safety when viewing eclipses. Our team is working with community organizations, such as sports teams (i.e., Charleston Riverdogs Baseball, Charleston Battery Soccer), museums, aquariums, state and national parks, etc. to bring NASA scientists, engineers and educators together to deliver exciting community demonstrations before, during and after the day of the eclipse. The LHSM, working directly with the Aquarium and Charlestowne Landing State Park, are capturing animal behavior, specifically marine birds and wolves, during the eclipse. In addition, the team is working directly with College of Charleston undergraduates and two local high schools to launch high-altitude balloons to capture video and pictures, as well as, perform science experiments focusing on the eclipse. And finally, the LHSM through SCSG funding, is determining and documenting the extent of knowledge and cultural misconceptions surrounding solar eclipses within the greater Charleston community. In our session, the team will share the outcomes of these varied endeavors.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Exploratorium, Madras, OR)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Exploratorium in Madras, Oregon.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Carbondale, IL)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Southern Illinois University in Carbondale, Illinois.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (The International Space Station)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from The International Space Station.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Hopkinsville_KY)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Homestead National Monument in Hopkinsville, Kentucky.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Jefferson City, MO)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Jefferson City, Missouri.
Solar corona during the 1994 and 1999 eclipses
NASA Astrophysics Data System (ADS)
Badalyan, O. G.; Sýkora, J.
2008-06-01
The lower and middle layers of the corona are studied analyzing the ground-based observations carried out during the November 3, 1994 and August 11, 1999 total solar eclipses. While the 1994 eclipse took place nearby the solar activity minimum, the 1999 eclipse occurred closer to the solar cycle maximum. Structures, isolines of brightness and polarization, and topology of the magnetic field lines of force (calculated under a potential approximation) of these two coronae are mutually compared. It is confirmed that the brightness distribution in the corona corresponds to the hydrostatic distribution of density at the distances 1.2-1.8R⊙. Temperature 1.4 MK and density n0 = 3.3 × 108cm-3 are found for the equatorial coronal regions of the 1999 corona. Physical conditions in the polar coronal regions are investigated analyzing the brightness and polarization of the 1994 eclipse. We have found that the degree of polarization in polar plumes is about 10% higher than that in the inter-plumes space. Consideration of the brightness in plumes and in the adjacent background space allowed us to conclude that the temperatures there are close to 1 MK. The density in the individual plumes is near n0 = 2.7 × 108cm-3, while it decreases to about n0 = 2.0 × 108cm-3 in the inter-plumes space. It is pointed out that the simultaneous interpretation of the measured brightness and polarization struggles with some difficulties.
The Citizen CATE Experiment: Techniques to Determine Totality Coverage and Clouded Data Removal.
NASA Astrophysics Data System (ADS)
McKay, Myles A.; Ursache, Andrei; Penn, Matthew; Citizen CATE Experiment 2017 Team
2018-01-01
August 21, 2017, the Citizen Continental-America Telescopic Eclipse(CATE) Experiment observed the 2017 total solar eclipse using a network of 68 identical telescopes and camera systems along the path of totality. The result from the observation was over 90% of all sites collected totality data on the day of the eclipse. Since the volunteers had to remove the solar filter manually, there is an uncertainty between the time of totality and data acquired during totality. Some sites also experienced cloudy weather which obscured the eclipse in some of the exposures but had small breaks in the clouds during the observation, collecting clear totality data. Before we can process and analyze the eclipse data, we must carefully determine which frames cover the time of totality for each site and remove exposures with clouds blocking the FOV. In this poster, we will discuss the techniques we used to determine the extent of totality from each location using the logged GPS data and the removal of totality exposure with clouds.
NASA Astrophysics Data System (ADS)
Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.
2017-12-01
Early experiments to study the effects of a solar eclipse on radio wave propagation were done with either a limited number of sites before any theory of the ionosphere had been confirmed or involved collecting data that proved to be unusable because submissions were missing critical information such as date, time or location. This study used the 2017 solar eclipse over the continental U.S. to conduct the first wide-area (across the U.S.) low-frequency (LF) propagation study. The data collection process was crowdsourced through the engagement of students/educators, citizens, ham radio enthusiasts, and the scientific community. In order to accomplish data collection by geographically dispersed citizen scientists, the EclipseMob team designed and shared a low cost, low tool/skill DIY receiver system to collect LF data that leveraged existing cell phone technology and made the experiment more accessible to students and people with no prior experience constructing electronic systems. To support engagement, in addition to web guides (eclipsemob..org), EclipseMob supplied 150 DIY kits and provided build/Q&A webinars and events. For the experiment, participants constructed a simple receiver system consisting of a homemade antenna, a simple homemade receiver to convert the radio frequency (RF) signals to audio frequencies, and a smart phone app. Before, during, and after the eclipse, participants used their receiver systems to record transmitter signal data from WWVB located near Fort Collins, Colorado on 60.000 kHz (a U.S. frequency standard that is operated by NIST and transmits time codes). A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA was also used. By using the time, date and location features of the smart phone, the problems experienced in earlier experiments could be minimized. By crowdsourcing the observation sites across the U.S., data from a number of different short, medium and long- paths could be obtained as the total eclipse crossed the continental U.S. Here we will report out on lessons learned about organizing and leading a nation-wide citizen science experiment during the 2017 total solar eclipse and preliminary results from the analysis of low frequency signals and geospatial patterns.
Get Ready for the Great American Eclipse!
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
This year marks 38 years since any part of the continental United States was darkened by the Moon's umbral shadow. During this "eclipse drought," no U.S. residents except those on Hawaii's Big Island in 1991 have had the opportunity to observe totality without traveling abroad. The 2017 Total Solar Eclipse (TSE2017, August 21, 2017) is…
NASA Astrophysics Data System (ADS)
Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa
2017-08-01
Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.
Building on the US Eclipse Experience in Schools, with the Public, and Beyond the US
NASA Astrophysics Data System (ADS)
Simmons, Mike; Chee, Zoe; Bartolone, Lindsay
2018-01-01
Astronomers Without Borders (AWB) organized several programs for the August 21, 2017 total solar eclipse, both before and after the event, to increase participation, build on the inspiration of the eclipse, share the eclipse experience, and prepare for the eclipse in 2024.AWB focused on preparing institutions that were least likely to receive resources despite extensive nationwide efforts. AWB distributed more than 100,000 donated glasses, to isolated schools, children's cancer hospitals, abused women’s shelters, and other institutions without access to other resource providers.AWB’s Building on the Eclipse Education Program builds on the inspiration of the eclipse for STEM education. The program uses a small, personal spectroscope kit to study sunlight in different scientific fields and includes free classroom activities that meet NGSS standards.A program to collect eclipse observing glasses for schools in developing countries for future eclipses was announced around the time of the eclipse and quickly went viral, with coverage by national and innumerable local media outlets. This effort builds on AWB’s earlier programs for schools in Africa and in South America for past eclipses. Well over one million pairs are expected, as compared to the tens of thousands AWB provided through crowdfunding for previous efforts. Nearly 1000 glasses collection centers were created spontaneously, without a public call. Factors leading to widespread and diverse public participation will be presented.A program calling for first-time eclipse observers to share their experiences addresses a major issue in encouraging people to travel to the path of totality. Expert and eclipse-enthusiast testimony often fails to convince people of the value of the experience of totality as “a few minutes of darkness.” This program will share the disconnect between expectation and experience from first-time “ordinary” observers to encourage others to travel to the path of totality for the total solar eclipse in 2024.Analysis and planned follow-up and expanded programs will also be described.
Is an eclipse described in the Odyssey?
Baikouzis, Constantino; Magnasco, Marcelo O.
2008-01-01
Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey (“Theoclymenus's prophecy”) to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192–1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250–1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse. PMID:18577587
Martian Eclipses: Deimos and Phobos
2004-03-08
The panoramic camera on NASA Opportunity combines the first photographs of solar eclipses by Mars two moons, Deimos and Phobos. Deimos appears as a speck in front of the Sun and Phobos grazes its edge.
NASA Astrophysics Data System (ADS)
Cohen, M. B.; Gross, N. C.; Higginson-Rollins, M. A.; Marshall, R. A.; Gołkowski, M.; Liles, W.; Rodriguez, D.; Rockway, J.
2018-04-01
We present observations from 11 very low frequency (VLF)/low-frequency (LF) receivers across the continental United States during the 21 August 2017 "Great American Solar Eclipse." All receivers detected transmissions from VLF/LF beacons below 50 kHz, while seven also recorded LF beacons above 50 kHz, yielding dozens of individual transmitter-receiver radio links. Our observations show two separable superimposed signatures: (1) a gradual rise and fall in signal levels visible on almost all paths as the eclipse advances and then declines, as VLF attenuation is reduced by the changing ionosphere under an eclipsed Sun, and (2) direct reflective scattering off the narrow 100-km-wide totality spot, observed more uniquely when the transmitter or receiver, if not both, are relatively close to the totality spot.
Use of the Nebraska Mesonet to Engage the Public in the 2017 Eclipse Event
NASA Astrophysics Data System (ADS)
Cooper, S. R.; Richter-Ryerson, S.; Shulski, M.; Roebke, G.
2017-12-01
The 21 August 2017 Solar Eclipse promises to be the best observable solar eclipse for the Great Plains of the United States in recent history. The Nebraska State Climate Office has embarked upon a campaign of combining real-time Nebraska Mesonet observations, specifically shortwave downward radiation, with GOES-16 multispectral imagery, and social media solicited citizen images of the event to provide a multiple faceted record of the event. Providing a real-time view of the eclipse via satellite imagery and pyranometer output for web users will act as a hook to solicit images and testimonial from observers in the Great Plains to help enhance the record. The desired result is to provide excitement in the science of what is happening, along with promotion of the Nebraska State Climate Office and the services it provides.
Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha
2017-12-01
During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.
STEREO-IMPACT E/PO at NASA's Sun-Earth Day Event: Participation in Total Eclipse 2006 Webcast
NASA Astrophysics Data System (ADS)
Craig, N.; Peticolas, L. M.; Mendez, B. J.; Luhmann, J. G.; Higdon, R.
2006-05-01
The Solar Terrestrial Relations Observatory (STEREO) is planned for launch in late Summer 2006. STEREO will study the Sun with two spacecraft in orbit around the Sun moving on opposite sides of Earth. The primary science goal is to understand the nature of Coronal Mass Ejections (CMEs). This presentation will focus on one of the informal education efforts of our E/PO program for the IMPACT instrument suite aboard STEREO. We will share our participation in NASA's Sun-Earth Day event which is scheduled to coincide with a total solar eclipse in March and is titled In a Different Light. We will show how this live eclipse Webcast, which reaches thousands of science center attendees, can inspire the public to observe, understand and be part of the Sun-Earth-Moon system. We will present video clips of STEREO-IMPACT team members Janet Luhmann and Nahide Craig participating in the Exploratorium's live Webcast of the 2006 solar eclipse on location from Side, Turkey, and the experiences and remarks of the other STEREO scientist from the path of totality from Africa.
Predicting the Structure of the Solar Corona for the Total Solar Eclipse of March 29,2006
NASA Technical Reports Server (NTRS)
Mikic, Z.; Linker, J. a.; Lionello, R.; Riley, P.; TItov, V.
2007-01-01
We describe the use of a three-dimensional MHD model to predict the s tructure of the corona prior to the total solar eclipse of March 29, 2006. The calculation uses the observed photospheric radial magnetic f ield as a boundary condition. We use a new version of our model that has an improved description of energy transport in the corona. The mo del allows us to predict the emission of X-ray and EUV radiation in t he corona. We compare the predicted polarization brightness in the co rona with four observations of the eclipse from Greece, Egypt, and Li bya, and we demonstrate that the model accurately predicts the largescale structure of the corona. We also compare X-ray emission from the model with GOES/SXI images.
NASA Astrophysics Data System (ADS)
Caspi, A.; Tsang, C.; DeForest, C. E.; Seaton, D. B.; Bryans, P.; Burkepile, J.; Casey, T. A.; Collier, J.; Darrow, D.; DeLuca, E.; Durda, D. D.; Gallagher, P.; Golub, L.; Judge, P. G.; Laurent, G. T.; Lewis, J.; Mallini, C.; Parent, T.; Propp, T.; Steffl, A.; Tomczyk, S.; Warner, J.; West, M. J.; Wiseman, J.; Zhukov, A.
2017-12-01
Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations. Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near- IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more. We present results of solar coronal measurements from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 high-altitude research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and medium-wave IR (3-5 μm) cameras operating at high cadence (30 Hz) with 3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft flew along the eclipse path, separated by 110 km, to observe a summed 7.5 minutes of totality in both visible and NIR, enabling groundbreaking studies of high-speed wave motions and nanojets in the lower corona, the structure and extent of coronal fans, and constraints on a potential primordial dust ring around the Sun. We review the mission, and the results of analysis on the visible and IR coronal measurements.
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Yashiro, Seiji; Reginald, Nelson; Thakur, Neeharika; Thompson, Barbara J.; Gong, Qian
2018-01-01
We present preliminary results obtained by observing the solar corona during the 2017 August 21 total solar eclipse using a polarization camera mounted on an eight-inch Schmidt-Cassegrain telescope. The observations were made from Madras Oregon during 17:19 to 17:21 UT. Total and polarized brightness images were obtained at four wavelengths (385, 398.5, 410, and 423 nm). The polarization camera had a polarization mask mounted on a 2048x2048 pixel CCD with a pixel size of 7.4 microns. The resulting images had a size of 975x975 pixels because four neighboring pixels were summed to yield the polarization and total brightness images. The ratio of 410 and 385 nm images is a measure of the coronal temperature, while that at 423 and 398.5 nm images is a measure of the coronal flow speed. We compared the temperature map from the eclipse observations with that obtained from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly images at six EUV wavelengths, yielding consistent temperature information of the corona.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41622 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:36:45 GMT. One of the space station’s solar array panels appears at the top of the frame.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41595 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:36 GMT. One of the space station’s solar array panels appears at the top of the frame.
NASA Astrophysics Data System (ADS)
Pang, K. D.; Yau, K. K.
2000-12-01
Like returns of Halley's comet the Olympic games occur periodically, though not as regularly in antiquity. Dates were also imprecise due to the chaotic calendars in use. Reported sightings of comets and eclipses can be used with game dates to help fix ancient events. However some reported darkening of the sun, e.g., after Julius Caesar's murder in 44 BC, was due to volcanic eruptions. A red comet, visible in daylight, first appeared during the games that year. It was also seen from China and Korea (Pang, Sciences 31, 30). Phlegon's ``Olympiads" (2nd century) says that Christ's crucifixion was in the 4th year of the 202nd Olympiad (AD 29-33), when a total solar eclipse occurred in the 6th hour. Only the Nov. 24, AD 29 eclipse over Asia Minor can match that, and Joel's prophecy (Acts 2, 14-21) that ``the sun will be turned to darkness and moon to blood." However it conflicts with ``the first day of Passover," as recorded by Mathew, Mark and Luke, i.e., full moon in early spring. Humphreys and Waddington (Nature 306, 743) have suggested meteorological darkening and the April 3, AD 33 lunar eclipse instead. Schaefer has questioned the eclipse's visibility from Jerusalem (31.46N, 35.14E). The six computations he cited gave dissimilar answers due to the imprecise rates of the secular lunar acceleration, and lengthening of the day used (Q.Jl.R.astr.Soc. 31, 53). Lunar laser ranging has since fixed the former at -26"/cen2. Analysis of ancient Chinese solar eclipse records, e.g., the April 21, 899 BC and April 4, AD 368 ``double dawns" over Zheng, has given us a delta T (in sec) = 30t2, where t is centuries before 1800 (Pang, Yau and Chou, in ``Dynamics of Ice Age Earth: A Modern Perspective," 1998). Our computations show that the moon rose over Jerusalem, with 1/3 still in the umbra and the rest in penumbra. Holdover meteorological darkening with long absorption air mass could have help reddened the moon also. Finally the first ``eclipse season" (the Aug. 21 lunar, and Sept. 6 solar, eclipses) were recorded in China in 776 BC, the year of the first Olympiad. A total solar eclipse (August 1, 2008) will occur during the 29th modern Olympiad (July 25-Aug. 10), with its path of totality ending in a spectacular ``double sunset" over Zheng, China (34.5N, 110E).
The mid 19th and early 20th Century Pull of a Nearby Eclipse Shadow Path
NASA Astrophysics Data System (ADS)
Bonifácio, Vitor
2012-09-01
The unique observing conditions allowed by total solar eclipses made them a highly desirable target of 19th and early 20th century astronomical expeditions, particularly after 1842. Due to the narrowness of the lunar shadow at the Earth's surface this usually implied traveling to faraway locations with all the subsequent inconveniences, in particular, high costs and complex logistics. A situation that improved as travel became faster, cheaper and more reliable. The possibility to observe an eclipse in one's own country implied no customs, no language barriers, usually shorter travelling distances and the likely support of local and central authorities. The eclipse proximity also provided a strong argument to pressure the government to support the eclipse observation. Sometimes the scientific elite would use such high profile events to rhetorically promote broader goals. In this paper we will analyse the motivation, goals, negotiating strategies and outcomes of the Portuguese eclipse expeditions made between 1860 and 1914. We will focus, in particular, on the observation of the solar eclipses of 22 December 1870 and 17 April 1912. The former allowed the start-up of astrophysical studies in the country while the movie obtained at the latter led Francisco da Costa Lobo to unexpectedly propose a polar flattening of the Moon.
2017-12-08
NASA TV video from yesterday's total solar eclipse, when the moon pass directly in front of the sun. It happened from 8:38 to 8:42 p.m. EST March 8. As the moon passed precisely between the sun and Earth – a relatively rare occurrence that happens only about once a year because of the fact that the moon and the sun do not orbit in the exact same plane – it blocked the sun’s bright face, revealing the tenuous and comparatively faint solar atmosphere, the corona. The total eclipse was only visible in parts of Southeast Asia Learn more about this event: youtu.be/MQjPFwcjh9c NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Rocky Mountains)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Great Smoky Mountains National Park (North Carolina and Tennessee).
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Idaho Falls, ID)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Museum of Idaho, in Idaho Falls.
NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Clarksville, TN – Austin Peay)
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Austin Peay State University, in Clarksville, TN.
The magnificent African eclipse
NASA Astrophysics Data System (ADS)
McGee, H. W.; James, N. D.
2001-08-01
The first total solar eclipse of the new millennium swept across central Africa on 2001 June 21, darkening the sky in a track which took in Angola, Zambia, Zimbabwe, Mozambique and Madagascar. Thousands of visitors from Europe, many of whom were disappointed at home in 1999, converged on the continent to view the event and were rewarded with a magnificent solar-maximum corona, seen for the most part in perfectly clear, dry transparent skies.
NASA Astrophysics Data System (ADS)
Reginald, Nelson L.; Davila, Joseph M.; St. Cyr, Orville C.; Rabin, Douglas M.
2017-06-01
We conducted an experiment in conjunction with the total solar eclipse of 1 August 2008 in China to determine the thermal electron temperature in the low solar corona close to the solar limb. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an 8 inch f/10 Schmidt Cassegrain telescope with a thermoelectrically cooled CCD camera at the focal plane. Results are electron temperatures of 1 MK at 1.08 R⊙ and 1.13 R⊙ from the Sun center in the polar and equatorial regions, respectively. This experiment confirms the results of an earlier experiment conducted in conjunction with the total eclipse of 29 March 2006 in Libya, and results are that at a given coronal height the electron temperature in the polar region is larger than at the equatorial region. In this paper we show the importance of using the correct photospheric spectrum pertinent to the solar activity phase at the time of the experiment, which is a required parameter for modeling the underlying theoretical concept for temperature interpretation of the measured intensity ratios using color filters.
Fifty Year Canon of Lunar Eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1989-01-01
A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035.
Mass motion in upper solar chromosphere detected from solar eclipse observation
NASA Astrophysics Data System (ADS)
Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang
2016-05-01
The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.
A Coral Sea Rehearsal for the Eclipse Megamovie
NASA Astrophysics Data System (ADS)
Hudson, H. S.; Davey, A. R.; Ireland, J.; Jones, L.; Mcintosh, S. W.; Paglierani, R.; Pasachoff, J. M.; Peticolas, L. M.; Russell, R. M.; Suarez Sola, F. I.; Sutherland, L.; Thompson, M. J.
2012-12-01
The "Eclipse on the Coral Sea" - 13/14 November 2012 (GMT/Australia) - will have happened already. Our intention is to have used this opportunity as a trial run for the eclipse in 2017, which features 1.5 hours of totality across the whole width of the continental US. Conceived first and foremost as an education and public outreach activity, the plan is to engage the public in solar science and technology by providing a way for them to include images they have taken of the solar eclipse, into a movie representation of coronal evolution in time. This project will assimilate as much eclipse photography as possible from the public. The resulting movie(s) will cover all ranges of expertise, and at the basic smartphone or hand-held digital camera level, we expect to have obtained a huge number of images in the case of good weather conditions. The capability of modern digital technology to handle such a data flow is new. The basic purpose of this and the 2017 Megamovie observations is to explore this capability and its ability to engage people from many different communities in the solar science, astronomy, mathematics, and technology. The movie in 2017, especially, may also have important science impact because of the uniqueness of the corona as seen under eclipse conditions. In this presentation we will describe our smartphone application development (see the "Transit of Venus" app for a role model here). We will also summarize data acquisition via both the app and more traditional web interfaces. Although for the Coral Sea eclipse event we don't expect to have a movie product by the time of the AGU, for the 2017 event we do intend to assemble the heterogenous data into beautiful movies within a short space of time after the eclipse. These movies may have relatively low resolution but would extend to the base of the corona. We encourage participation in the 2012 observations, noting that no total eclipse, prior to 2017, will occur in a region with good infrastructure for extended observations. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The Megamovie project is supported by NSF grant AGS-1247226, and JMP's eclipse work about the eclipses of 2012 is supported by NSF grant AGS-1047726.
Eclipse Across America on This Week @NASA – August 25, 2017
2017-08-25
The Aug. 21 eclipse across America generated interest and excitement far and wide. Our coverage of the historic eclipse – the first coast-to-coast total solar eclipse for the U.S. in 99 years – was widespread … Anchored from the College of Charleston, in South Carolina – we showed you views of the eclipse that only NASA could. Views from space, from Earth’s atmosphere and from the ground – with expert observation and analysis provided from many of the 14 states around the country, situated along the path of totality. That’s where thousands of people flocked – for the ultimate eclipse experience – total darkness in the middle of the day!
NASA Astrophysics Data System (ADS)
Habbal, Shadia Rifai; Morgan, Huw; Johnson, Judd; Arndt, Martina Belz; Daw, Adrian; Jaeggli, Sarah; Kuhn, Jeff; Mickey, Don
2007-12-01
The eclipse image of Figure 3 was provided to the authors by Jackob Strikis of the Elizabeth Observatory, Athens, who claimed authorship. However, shortly after publication the authors discovered that this eclipse image was in fact a preliminary version of an image belonging to Prof. Miloslav Druckmüller, taken during the 2006 total solar eclipse from Libya at 30°56.946' N, 24°14.301' E, and at an altitude of 158 m. This image can be found at ApJ, 663, 598 [2007]. We extend our gratitude to Prof. Druckmüller, from Brno University of Technology, Czech Republic, who brought this incident to our attention, and who has graciously accepted our apology for this unintentional mishap. A forthcoming article in collaboration with Prof. Druckmüller is in preparation.
Eclipse-Like Events on This Week @NASA – August 18, 2017
2017-08-18
ena such as the Aug. 21, 2017 solar eclipse can inspire awe, but scientists can also use eclipse-like events to learn more about the universe. For instance, a total eclipse, or an occultation in scientific terms – happens when a celestial body completely blocks light from a star, like our sun. This type of event can help astronomers learn more about an object’s atmosphere, including whether it might be surrounded by rings or other planetary matter. During a similar event, called a transit, variations in light that result when a closer object passes in front of a star, but only blocks a small part of the star, have been used by missions such as our Kepler space telescope, to discover new planets outside our solar system. Also, SpaceX Launches Science, Supplies to Space Station, New Communications Satellite Launched, Cassini Begins Final Five Orbits around Saturn and Spacewalk aboard the Space Station!
NASA Astrophysics Data System (ADS)
Livingston, W.
The occasion of a total eclipse impacts the human observer with a bewildering rapid sequence of phenomena: mid-day cooling, failing light without accustomed color change, shadow-bands transiting the ground, cessation of bird sounds, possible frantic beating of jungle drums, Baily's beads, appearance of flame-like prominences, and most fantastic of all the solar corona. The author considers that although the corona is known to be 2 - 20(106)K, there is a lack of consensus on the heating mechanism, except the energy must be non-thermal and derived from surface and sub-surface convective motions. Theoreticians invoke the Joule dissipation of magnetic fields by Alfvén waves, electric currents in loop structures, or MHD turbulence. Although eclipse experiments to discriminate between these ideas generally fail, the sighting of 'plasmoids' was reported from the CFHT on Mauna Kea at the 1991 eclipse. Future experiments include: IR mapping of the coronal spectrum, spectroscopic velocity measurements, and the continued search for waves, nanoflares, and plasmoids.
The solar diameter on 9 March 2016, from the total eclipse in Micronesia: at its standard value
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino; Castiglioni, Francesco; Cicogna, Domenico; Cardoso, Felipe
2016-05-01
The total eclipse of 9 March 2016 has been observed in Woleai atoll (Micronesia) by the Exploratorium team and posted in youtube. Exploiting the ghost images of that video we overcome the overexposition problems when dealing with the transition photosphere/chromosphere, dealing with Baily's beads around totality comparable with the intensity of the corona. A correction to the standard value of the solar radius R=959.63" of ΔR=+0.01"±0.02" has been found, contrarily to the recent values near 960.0" with the last eclipses and transit of Venus. Perspectives for the measures to be done during the forthcoming transit of Mercury are drafted.
Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse
NASA Astrophysics Data System (ADS)
Turner, D. D.; Wulfmeyer, V.; Behrendt, A.; Bonin, T. A.; Choukulkar, A.; Newsom, R. K.; Brewer, W. A.; Cook, D. R.
2018-02-01
On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse's effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease in turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.
First Report on the 2016 March 9 Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2016-06-01
Totality swept across Indonesia and into the Pacific on 2016 March 9, lasting up to 2 min 45 s on Ternate in the Spice Islands (Malukus). I provide a first report on our observations. Our scientific goal is to follow changes in the corona over the solar-activity cycle, now past its 2012 and 2014 double peak, and to measure temporal changes in the corona on the scale of minutes or hours by comparing eclipse observations made at several sites along the path. I also discuss the near-simultaneous coronal observations made with SOHO/LASCO, SDO/AIA, STEREO/SECCHI, PROBA2/SWAP, and Hinode XRT.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.
NHQ_2017_0804_This Week at NASA
2017-08-04
Scientists are studying our closest Earth-size exoplanet neighbor – Proxima b – to determine if it’s habitable. A NASA book is helping many people learn more about the total solar eclipse across the U.S. on Aug. 21st. "Getting a Feel for Eclipses," is a tactile guide designed to help illustrate basic concepts about the alignment of the Sun, Moon and Earth during a solar eclipse. After 40 years of searching, scientists have finally found evidence of g-mode gravity waves in our Sun – using data from our and the European Space Agency’s Solar and Heliospheric Observatory, or SOHO, spacecraft. Aug. 5 is the five-year anniversary of our Curiosity rover’s landing on Mars. At NASA Headquarters, young research professionals discussed the summer projects they completed – using NASA Earth observations and modelling data – to address a range of environmental issues around the globe.
Surveying the IR corona during the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Bryans, P.; Hannigan, J. W.; Sewell, S. D.; Judge, P. G.
2017-12-01
The spectral emission of the infrared solar corona is the most promising direct diagnostic of the coronal magnetic field, and yet remains poorly measured. During the 2017 total solar eclipse, we will perform the first spectral survey of the IR corona using the NCAR Airborne Interferometer. This Fourier Transform Infrared Spectrometer is configured to observe the coronal spectrum from 1.5 to 5.5 microns at R 10,000 from a ground-based site. The location is atop Casper Mountain, Wyoming (42.73ºN, 106.32ºW, 2400 masl), 8 km from the center-line of totality. In this presentation, we will outline the need for such measurements, describe the instrument design and adaptation for the eclipse measurement, observation scheme, and present preliminary results. We will also discuss implications for observing infrared coronal lines from the ground, for example with the upcoming DKIST facility.
Little Eyes on Large Solar Motions
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Images taken during the solar eclipse in 2012. The central color composite of the eclipsed solar surface was captured by SDO, the white-light view of the solar corona around it was taken by the authors, and the background, wide-field black-and-white view is from LASCO. The white arrows mark the atypical structure. [Alzate et al. 2017]It seems like science is increasingly being done with advanced detectors on enormous ground- and space-based telescopes. One might wonder: is there anything left to learn from observations made with digital cameras mounted on 10-cm telescopes?The answer is yes plenty! Illustrating this point, a new study using such equipment recently reports on the structure and dynamics of the Suns corona during two solar eclipses.A Full View of the CoronaThe solar corona is the upper part of the Suns atmosphere, extending millions of kilometers into space. This plasma is dynamic, with changing structures that arise in response to activity on the Suns surface such as enormous ejections of energy known as coronal mass ejections (CMEs). Studying the corona is therefore important for understanding what drives its structure and how energy is released from the Sun.Though there exist a number of space-based telescopes that observe the Suns corona, they often have limited fields of view. The Solar Dynamics Observatory AIA, for instance, has spectacular resolution but only images out to 1/3 of a solar radius above the Suns limb. The space-based coronagraph LASCO C2, on the other hand, provides a broad view of the outer regions of the corona, but it only images down to 2.2 solar radii above the Suns limb. Piecing together observations from these telescopes therefore leaves a gap that prevents a full picture of the large-scale corona and how it connects to activity at the solar surface.Same as the previous figure, but for the eclipse in 2013. [Alzate et al. 2017]To provide this broad, continuous picture, a team of scientists used digital cameras mounted on 10-cm telescopes to capture white-light images from the solar surface out to several solar radii using a natural coronagraph: a solar eclipse. The team made two sets of observations: one during an eclipse in 2012 in Australia, and one during an eclipse in 2013 in Gabon, Africa. In a recent publication led by Nathalia Alzate (Honolulu Community College), the team now reports what they learned from these observations.Building Atypical StructuresThe authors image processing revealed two atypical large-scale structures with sharp edges, somewhat similar in appearance to what is seen near the boundaries of rapidly expanding polar coronal holes. But these structures, visible in the southeast quadrant of the images taken during both eclipses, were not located near the poles.By analyzing their images along with space-based images taken at the same time, Alzate and collaborators were able to determine that the shape the structures took was instead a direct consequence of a series of sudden brightenings due to low-level flaring events on the solar surface. These events were followed by small jets, and then very faint, puff-like CMEs that might otherwise have gone unnoticed.Impact of the passage of a series of puff-like CMEs (shown in the LASCO time sequence in the bottom panels) on coronal structures. [Alzate et al. 2017]The fact that such innocuous transient events in the Suns lower atmosphere can be enough to influence the coronas large-scale structure for timescales of 1248 hours is a significant discovery. There are roughly 3 CMEs per day during solar maximum, suggesting that atypical structures like the ones discovered in these images are likely very common. These results therefore have a significant impact on our understanding of the solar corona which goes to show that theres still a lot we can learn with small telescopes!CitationNathalia Alzate et al 2017 ApJ 848 84. doi:10.3847/1538-4357/aa8cd2
Nightside Detection of a Large-Scale Thermospheric Wave Generated by a Solar Eclipse
NASA Astrophysics Data System (ADS)
Harding, B. J.; Drob, D. P.; Buriti, R. A.; Makela, J. J.
2018-04-01
The generation of a large-scale wave in the upper atmosphere caused by a solar eclipse was first predicted in the 1970s, but the experimental evidence remains sparse and comprises mostly indirect observations. This study presents observations of the wind component of a large-scale thermospheric wave generated by the 21 August 2017 total solar eclipse. In contrast with previous studies, the observations are made on the nightside, after the eclipse ended. A ground-based interferometer located in northeastern Brazil is used to monitor the Doppler shift of the 630.0-nm airglow emission, providing direct measurements of the wind and temperature in the thermosphere, where eclipse effects are expected to be the largest. A disturbance is seen in the zonal and meridional wind which is at or above the 90% significance level based on the measured 30-day variability. These observations are compared with a first principles numerical model calculation from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, which predicted the propagation of a large-scale wave well into the nightside. The modeled disturbance matches well the difference between the wind measurements and the 30-day median, though the measured perturbation (˜60 m/s) is larger than the prediction (38 m/s) for the meridional wind. No clear evidence for the wave is seen in the temperature data, however.
Modeling the 21 August 2017 Total Solar Eclipse: Prediction Results and New Techniques
NASA Astrophysics Data System (ADS)
Downs, C.; Mikic, Z.; Caplan, R. M.; Linker, J.; Lionello, R.; Torok, T.; Titov, V. S.; Riley, P.; MacKay, D.; Upton, L.
2017-12-01
As has been our tradition for past solar eclipses, we conducted a high resolution magnetohydrodynamic (MHD) simulation of the corona to predict the appearance of the 21 August 2017 solar eclipse. In this presentation, we discuss our model setup and our forward modeled predictions for the corona's appearance, including images of polarized brightness and EUV/soft X-Ray emission. We show how the combination of forward modeled observables and knowledge of the underlying magnetic field from the model can be used to interpret the structures seen during the eclipse. We also discuss two new features added to this year's prediction. First, in an attempt to improve the morphological shape of streamers in the low corona, we energize the large-scale magnetic field by emerging shear and canceling flux within filament channels. The handedness of the shear is deduced from a magnetofrictional model, which is driven by the evolving photospheric field produced by the Advective Flux Transport model. Second, we apply our new wave-turbulence-driven (WTD) model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the magnetic field--a key property for modeling the thermal-magnetic structure of the corona. We examine the effect of these considerations on forward modeled observables, and present them in the context of our final 2017 eclipse prediction (www.predsci.com/corona/aug2017eclipse). Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico
NASA Astrophysics Data System (ADS)
Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel
2017-06-01
Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.
2017 Solar Eclipse, Ames Research Center
2017-08-21
Taking a break from their duties at the Ames Vertical Gun Range to look up at the eclipse over Ames Research Center in Mountain View are from left to right are Alfredo "Freddie" Perez, Chuck Cornelison, Don Bowling, Adam Parish
CATE 2016 Indonesia: Optics and Focus Strategy
NASA Astrophysics Data System (ADS)
McKay, M. A.; Jenson, L.; Kovac, S. A.; Bosh, R.; Mitchell, A. M.; Hare, H. S.; Watson, Z.; Penn, M. J.
2016-12-01
The 2017 solar eclipse will be a natural phenomenon that will sweep across the United State would provide an excellent opportunity to observe and study the solar corona. The Citizens Continental Astronomical Telescopic Eclipse (CATE) Experiment directed my Matt Penn, intends to take advantage of this scientific opportunity by organizing 60 sites along the path of totality from Oregon to South Carolina to observe the eclipse and make a 90 min continuous video of the solar corona. The preliminary observation was done with the 2016 eclipse in Indonesia, with 5 sites along the path of totality. The sites were provided with an 80mm diameter Telescope with a 480mm focal length with an extension tube, Celestron equatorial mount, a CMOS camera, a Dell dual processor running Windows, GPS and an Arduino box, more details will be provided. I observed at the furthest east site in Ternate, Indonesia, with Dr. Donald Walter. The day of the eclipse we had clouds but still had a successful observation. The observation was successful with 4 out of the 5 sites collected eclipse data, due to weather the other site was not able to observe. The data was then collected and processed over the summer. To prepare for the observation in 2017, the 60 sites will be provided with the equipment, software and training. The groups will then practice by doing solar and lunar observations, where they will follow an almost identical procedure for the eclipse to do their observations. These test will increase our chances to have a successful observation among all sites. The focus will play a crucial role in this observation to provide a high quality image. Currently, a new focusing method using an image derivative method to provide quantitative feedback to the user is being developed. Finally, a Graphical User Interface is also being developed using the codes produces from the summer 2016 data analysis, to process the images from each site with minimal effort and produce quality scientific images. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).
NASA Astrophysics Data System (ADS)
Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.
2017-12-01
The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep searches have been conducted. Our observations will only be the second time ever a search for Vulcanoids will have been conducted in the NIR. In this presentation, I will review our NASA flight program, and focus on the planetary science observations that came from the Great American Eclipse of 2017.
Observations of a probable change in the solar radius between 1715 and 1979
NASA Technical Reports Server (NTRS)
Dunham, D. W.; Sofia, S.; Fiala, A. D.; Muller, P. M.; Herald, D.
1980-01-01
A decrease in the solar radius is determined using the technique of Dunham and Dunham (1973), in which timed observations are made just inside the path edges. When the method is applied to the solar eclipses of 1715, 1976, and 1979, the solar radius for 1715 is 0.34 + or - 0.2 arc second larger than the recent values, with no significant change between 1976 and 1979. The duration of totality is examined as a function of distance from the edges of the path. Corrections to the radius of the sun derived from observations of the 1976 and 1979 eclipses by the International Occultation Timing Association are also presented.
NASA Astrophysics Data System (ADS)
Caspi, Amir; Tsang, Constantine; DeForest, Craig; Seaton, Daniel B.; Bryans, Paul; Tomczyk, Steven; Burkepile, Joan; Judge, Phil; DeLuca, Edward E.; Golub, Leon; Gallagher, Peter T.; Zhukov, Andrei; West, Matthew; Durda, Daniel D.; Steffl, Andrew J.
2017-08-01
Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations.Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near-IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more.We present the first results from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and near-IR (3-5 µm) cameras operating at high cadence (30 Hz) with ~3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft will fly along the eclipse path, separated by ~90 km, to observe a summed ~8 minutes of totality in both visible and NIR, enabling groundbreaking studies of high-speed wave motions and nanojets in the lower corona, the structure and extent of coronal fans, and constraints on a potential primordial dust ring around the Sun.
Ionospheric response to the total solar eclipse in India on 22 July, 2009
NASA Astrophysics Data System (ADS)
Chauhan, Vishal; Agrawal, Shikha; Singh, O. P.; Singh, Birbal
2010-10-01
Since The variations of Total Electron Content (TEC) and amplitude of the fixed frequency VLF transmitter signal (f = 19.8 kHz, NWC, Australia) are studied at Agra (Geographic Lat. 27.2°N, Long. 78°E), India during the total solar eclipse of 22 July, 2009 which was longest seen in India ever since 18 August, 1968. The equipment used for the study are a dual frequency GPS receiver (GSV 4004V) and a Soft PAL (Software based phase and amplitude logger) receiver. The data for a period of fifteen days (+/-7 days from the date of the event) are analysed and it is found that the TEC decreased by about 30% from normal days during the total solar eclipse, and the amplitude of the VLF signal also decreased likewise. The period of the data analysis is characterised by a low level of geomagnetic activity, hence the decrease in TEC and amplitude of the VLF signal is unlikely to be influenced by geomagnetic disturbances. The results are interpreted in terms of depression in electron densities at all ionospheric heights and are consistent with those obtained by earlier workers during similar eclipse events.
Reliability of astronomical records in the Nihongi
NASA Astrophysics Data System (ADS)
Kawabata, Kin-Aki; Tanikawa, Kiyotaka; Soma, Mitsuru
2002-03-01
Records of solar and lunar eclipses and occultations of stars in the Nihongi have been investigated to show their usefulness in answering questions about the long term variability of the Earth's rate of rotation. Results show that reliability of these records depend on the volume of the Nihongi and records in β group of volumes in the classification by H. Mori based on Chinese characters employed as phonetic letters, i.e. Vol. 22 (Empress Suiko), Vol. 23 (Emperor Jomei), and Vol. 29 (Emperor Tenmu), are highly reliable for these studies. Studies of solar eclipses recorded as total eclipses in the Nihongi and the Suishu and an occultation of Mars recorded in the Nihongi show that good agreements can be obtained between descriptions in these Japanese and Chinese historical books and calculations when we adopt TT-UT=3000 sec with correction for tidal term -2.0"/cy2 in the 7th century. Descriptions of solar and lunar eclipses recorded in Vol. 24 (Empress Kogyoku) and Vol. 30 (Empress Jito) are not based on observations but on theoretical predictions. All records of comets, aurorae, volcanic explosions, earthquakes, and tsunami in the Nihongi are described in β group volumes.
Investigating the Impact of a Solar Eclipse on Atmospheric Radiation
NASA Astrophysics Data System (ADS)
Fender, Josh; Morse, Justin; Ringler, John; Galovich, Cynthia; Kuehn, Charles A.; Semak, Matthew
2018-06-01
We present a project that measured atmospheric muon flux as a function of altitude during a total solar eclipse. An auxiliary goal was to design and build a cost-effective muon detection device that is simple enough for those with minimal training to build. The detector is part of a self-contained autonomous payload that is carried to altitude aboard a weather balloon. The detection system consists of three Geiger counters connected to a coincidence circuit. This system, along with internal and external temperature sensors and an altimeter, are controlled by an onboard Arduino Mega microcontroller. An internal frame was constructed to house and protect the payload components using modular 3D-printed parts. The payload was launched during the 2017 solar eclipse from Guernsey, Wyoming, along the path of totality. Initial data analysis indicates that line-of-sight blockage of the sun due to a total eclipse produces a negligible difference in muon flux when compared to the results of previous daytime flights. The successful performance of the payload, its low overall cost, and its ease of use suggest that this project would be well-suited for individuals or groups such as high school or undergraduate science students to reproduce and enhance.
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from NASA’s Gulfstream III research aircraft, flying off the Coast of Oregon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artac, E.; Tulunay, Y.K.
1977-12-31
Total ionospheric electron content (TEC) has been determined from the measurements of the Faraday rotation of a plane polarized wave that have been returned from the geostationary satellite ATS 6 transmitting at a frequency of 140 MHz. The results of the computations have been presented in the form of diurnal curves in order to investigate the effect of the solar eclipse of 29 April 1976 on the TEC over Ankara longitudes.
NASA Astrophysics Data System (ADS)
Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Dwi Ardi, Nanang; Abdurrohman, Arman; Aria Utama, Judhistira; Sutiadi, Asep; Hikmat; Ramlan Ramalis, Taufik; Suyardi, Bintang
2016-11-01
The Assembled Solar Eclipse Package (ASEP) is not only an integrated apparatus constructed to obtain imaging data during solar eclipse, but also it involved sky brightness and live streaming requirement. Main four parts of ASEP are composed by two imaging data recorders, one high definition video streaming camera, and a sky quality meter instrument (SQM) linked by a personal computer and motorized mounting. The parts are common instruments which are used for education or personal use. The first part is used to capture corona and prominence image during totality. For the second part, video is powerful data in order to educate public through web streaming lively. The last part, SQM is used to confirm our imaging data during obscuration. The perfect prominence picture was obtained by one of the data capture using William-Optics F=388mm with Nikon DSLR D3100. In addition, the diamond ring and corona were recorded by the second imaging tool using Sky Watcher F=910mm with Canon DSLR 60D. The third instrument is the Sony HXR MC5 streaming set to be able to broadcast to public domain area via official website. From the SQM, the value of the darkness during totality is quiet similar as a dawn condition. Finally, ASEP was entirely successful and be able to fulfil our competency as educational researcher in university.
Lightcurve Analysis for Two Near-Earth Asteroids Eclipsed by the Earth's Shadow
NASA Astrophysics Data System (ADS)
Birtwhistle, Peter
2018-07-01
Photometry was obtained from Great Shefford Observatory of near-Earth asteroids 2012 XE54 in 2012 and 2016 VA in 2016 during close approaches. A superfast rotation period has been determined for 2012 XE54 and H-G magnitude system coefficients have been estimated for 2016 VA. While under observation, 2012 XE54 underwent a deep penumbral eclipse by the Earth's shadow and 2016 VA also experienced a total eclipse by the Earth's shadow. The dimming due to the eclipses is modeled taking into account solar limb darkening.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three images, Phobos was in sunlight, moving toward the upper right. After a 100-second delay while Spirit's computer processed the first three images, the rover then took the fourth image, showing Phobos just starting to enter the darkness of the martian shadow. At that point, an observer sitting on Phobos and looking back toward the Sun would have seen a spectacular sunset! In the fifth image, Phobos appeared like a crescent, almost completely shrouded in darkness. In the last three images, Phobos had slipped entirely into the shadow of Mars. However, as with our own Moon during lunar eclipses on Earth, it was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. Rover scientists took some images later in the sequence to try to figure out if this 'Mars-shine' made Phobos colorful while in eclipse, but they'll need more time to complete the analysis because the signal levels are so low. Meanwhile, they will use the information on the timing of the eclipse to refine the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface. In the near future it might be possible for one of the rovers to take images of a 'Deimal' eclipse to learn more about Mars' other enigmatic satellite, Deimos, as well.NASA Astrophysics Data System (ADS)
Ruzhitskaya, Lanika; Speck, A.; Baldridge, S.; Briggs, J.
2014-01-01
The 2017 solar eclipse will pass over the Midwest and right over the University of Missouri in Columbia. This event presents us with a wonderful opportunity for science outreach and education programs. In preparation for this event, we use our Coronado solar telescope as a portable solar viewing observatory roving all over our campus. During these solar viewing events, students, faculty and staff have a chance to look through the telescope to discover for themselves-- and learn about-- the most prominent features of the Sun: limb darkening, sunspots, granulations, flares, prominences and filaments. Astronomy undergraduate and graduate students are on hand to answer questions and to hand out leaflets explaining the science behind these solar features. These solar observations represent excellent opportunities for those who want to know more about the Sun and its role in our lives: from solar activity to global warming; from the formation of the Sun, our planet and the entire Solar System down to the end of our Sun’s life. These events also benefit the volunteering students who learn how to explain complicated science concepts in a simple way to the general public. In addition, the portable solar observatory makes people aware about other science talks and events on our campus. These events are a great way to make people on campus aware about the upcoming solar eclipse. Over the course of the next four years we expect to have generated enough interest to be able to accomplish our goal of hosting solar eclipse festivities in August of 2017 in our football stadium in front of a massive crowd of interested observers and potential astronomy students.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA Goddard Heliophysics Education Consortium
2017-10-01
The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hekker, S.; Debosscher, J.; De Ridder, J.
2010-04-20
Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less
ERIC Educational Resources Information Center
Thornburgh, William R.; Tretter, Thomas R.
2017-01-01
This article describes a unit in which students investigate total solar eclipses, such as the one coming August 21, from several perspectives. It incorporates mathematical thinking and aligns with the "Next Generation Science Standard." This article refers to physical, virtual, and mathematical modeling. Various models and perspectives…
Communicating Solar System as experienced on March 29 TSE
NASA Astrophysics Data System (ADS)
Stavinschi, M.
The Earth becomes increasingly known as we explore the Solar System. The more answers we find on exoplanets, for instance, the better we know our planet. We discover many enigmas in the outer space and, surprisingly, solving them may lead to a higher perception of the land we are pacing. We must be aware of science news that means communicating valuable information to the public. As a consequence, a higher level of collaboration between scientists and science journalists is necessary. An informed and clever audience depends on their results. Our comment is focused on outreach of the last Total Solar Eclipse, from March 29 2006, an astronomical event that gathered around the same idea professional astronomers, and science journalists. Furthermore, even a cake shop has been involved and made for commercialization mini-eclipses cakes. If we cannot deliver the taste of the pastry, the free download soundtrack `Nobody Steals the Sun' may give the general public a sense of what is happening before, during, and after a solar eclipse. The Romanians witnessed different spectacular astronomical events such as the 1999 total solar eclipse and Venus transit. However, the latest TSE gives us a greater opportunity to find new ways of communicating the beauty of science to the public and to inform people about the Solar System. Even the eclipse doesn't happened on the Romanian territory, we managed to form mixed groups of professional and amateur astronomers, ordinary people and journalists, which traveled to Turkey for watching the eclipse. Most of them traveled by coach and had the opportunity to meet beautiful landscapes and know their history, and last but not in the least, to make friends. There were discussions from the scientific point of view that mixed with the curiosity of the participants. Moreover, sessions of popularizing the Sun and phenomenon among locals in different towns were such successful that the Turkish media - newspaper and TV - mentioned it. Scientists lectured at the national conference of Turkish physics teachers. Among the interviews, newspaper articles and radio programs given by professional astronomers there was an interesting musical experiment. It brought together a scientist, a composer and a science journalist. A young and talented composer wrote `Nobody Steals the Sun' soundtrack on the supervision of a professional astronomer. Based on an idea of a science journalist, C? t? lin Mosoia, and supervised by a professional astronomer, PhD Magda Stavinschi, the work of the Romanian composer Cristian Matei was produced taking into account the most important moments of a total eclipse of the Sun and its duration. Composed for non-commercial purposes only, it may be downloaded from the Astronomical Institute of the Romanian Academy website www.astro.ro. 2
Atmospheric Responses from Radiosonde Observations of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Fowler, J.
2017-12-01
The Atmospheric Responses from Radiosonde Observations project during the August 21st, 2017 Total Solar Eclipse was to observe the atmospheric response under the shadow of the Moon using both research and operational earth science instruments run primarily by undergraduate students not formally trained in atmospheric science. During the eclipse, approximately 15 teams across the path of totality launched radiosonde balloon platforms in very rapid, serial sonde deployment. Our strategy was to combine a dense ground observation network with multiple radiosonde sites, located within and along the margins of the path of totality. This can demonstrate how dense observation networks leveraged among various programs can "fill the gaps" in data sparse regions allowing research ideas and questions that previously could not be approached with courser resolution data and improving the scientific understanding and prediction of geophysical and hazardous phenomenon. The core scientific objectives are (1) to make high-resolution surface and upper air observations in several sites along the eclipse path (2) to quantitatively study atmospheric responses to the rapid disappearance of the Sun across the United States, and (3) to assess the performance of high-resolution weather forecasting models in simulating the observed response. Such a scientific campaign, especially unique during a total solar eclipse, provides a rare but life-altering opportunity to attract and enable next-generation of observational scientists. It was an ideal "laboratory" for graduate, undergraduate, citizen scientists and k-12 students and staff to learn, explore and research in STEM.
NASA Astrophysics Data System (ADS)
Lumsden, N. A.; Lukes, L.; Nelson, J.; Liles, W. C.; Kerby, K. C.; Crowov, F.; Rockway, J.
2015-12-01
The first experiments to study the effects of a solar eclipse on radio wave propagation were done in 1912 utilizing Low Frequency (LF; 30 - 300 kHz) radio waves at a handful of sites across Europe before any theory of the ionosphere had been confirmed and even before the word "ionosphere" existed. In the 1920s, a large cooperative experiment was promoted in the U.S. by Scientific American magazine. They collected over 2000 reports of AM broadcast stations from throughout the U.S. Unfortunately, many of the submissions were unusable because they lacked critical information such as date, time or location. We propose to use the 2017 solar eclipse over the continental U.S. to conduct the first wide-area LF propagation study. To perform this study, we plan to crowdsource the collection of the data by engaging student groups, citizens, and the scientific community. The tools for the different collection stations will consist of a simple homemade antenna, a simple receiver to convert the radio frequency (RF) signals to audio frequencies and a smart phone app. By using the time, date and location features of the smart phone, the problems experienced in the Scientific American experiment will be minimized. By crowdsourcing the observation sites, a number of different short, medium and long-paths studies can be obtained as the total eclipse crosses the continental U.S. The transmitter for this experiment will be WWVB located near Fort Collins, Colorado on 60.000 kHz. This is a U.S. frequency standard that is operated by NIST and transmits time codes. A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA is also being considered for this experiment. We will present an overall strategy for recruiting participants/crowdsourcing the RF collections during the 2017 total solar eclipse. Preliminary coverage calculations will be presented for WWVB and Dixon, as well as path loss calculations that can be expected during the solar eclipse condition. We will also present the 2016 plan to pilot/refine the design of the RF collection system (e.g., antenna, app) with multiple teams to help ensure project success during the eclipse. Also, we wish to solicit input from AGU attendees on how to increase participation and improve the experiment. Lastly, we will announce social media, website, and standards-based curriculum resources.
Fall 2011 Eclipse Season Begins
2017-12-08
The Fall 2011 eclipse season started on September 11. Here is an AIA 171 image from 0657 UT with the first eclipse! SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Eclipse 2017: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA Heliophysics Education Consortium
2017-10-01
The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.
Listening to the solar eclipse with an educational tool for the blind and visually impaired
NASA Astrophysics Data System (ADS)
Bieryla, Allyson; Diaz-Merced, Wanda; Davis, Daniel; Hart, Robert
2018-01-01
The Great American Solar Eclipse took place on August 21, 2017 and swept through 14 of the United States. This was a highly publicized event and much of the world took notice. We live in a time where everything is accessible via the internet as it is happening. Many people, even those outside of the eclipse path, wanted to experience the event in real-time. We built a device, using an Arduino compatible microcontroller, that converts sunlight to sound so that the blind and visually impaired community could experience the eclipse live with the rest of the world. The device has a high dynamic range light sensor and an audio output that connects to a webcam and a computer. The event was successfully streamed to YouTube from Jackson Hole, Wyoming and people from all around the world connected to listen as the sun was temporarily dimmed by the eclipse of the moon. This device is inexpensive to reproduce (< $40 per device) and can be used as a teaching tool in a lab or classroom setting. Students can learn to build and write code for these devices as well. This is a tool with great potential for human development.
Images From Comet’s Mars Flyby On This Week @NASA - October 24, 2014
2014-10-24
Several Mars-based NASA spacecraft had prime viewing positions for comet Siding Spring’s October 19 close flyby of the Red Planet. Early images included a composite photo from NASA’s Hubble Space Telescope that combined shots of Mars, the comet, and a star background to illustrate Siding Spring’s distance from Mars at closest approach. Also, images from the Mars Reconnaissance Orbiter’s HiRISE camera, which represent the highest-resolution views ever acquired of a comet that came from the Oort Cloud, at the outer fringe of the solar system. The comet flyby – only about 87,000 miles from Mars – was much closer than any other known comet flyby of a planet. Also, Partial solar eclipse, Space station spacewalk, Preparing to release Dragon, Cygnus launch update, Welding begins on SLS, Astronaut class visits Glenn and more!
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana; Vasileva, Doroteya
2018-01-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.
Lessons from Distributing Eclipse Glasses: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer Lynn; Wilson, Teresa; Chizek Frouard, Malynda R.; Phlips, Alan
2018-01-01
In preparation for the 2017 August 21 total solar eclipse across the continental United States, a multifaceted effort encouraged safe public observation of this spectacular event. However, we experienced mixed results distributing free ISO 12312-2 compliant eclipse glasses.On the positive side, we successfully dispensed several hundred in Virginia through in-school programs about the eclipse. We created a 2017-eclipse information sheet to accompany a safe-viewing handout. To facilitate sending glasses home in student backpacks, we wrapped each pair in a double-sided flyer and sealed the bundle in an individual envelope. We also passed out glasses during evening and weekend activities at a planetarium. Religious, business, and educational groups were all excited to receive them as were co-workers, family, and friends.On the negative side, planetarium staff declined to give eclipse glasses to students without a parent due to safety and liability concerns. Then, a day camp returned 200 pairs less than 72 hours before the event for the same reasons. However, we also received several requests from groups that had waited until too late to be accommodated easily.During the week before the eclipse, demand for eclipse glasses in New York, Michigan, Indiana, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, and Missouri was less than anticipated. While many people were well prepared, the recalls and reported counterfeiting made others suspicious. Concurrently, vendors were offering their remaining stock for $1–10 each.The experiences of the 2017 total solar eclipse, both good and bad, will not completely fade before preparations for 2024 begin. We look forward enthusiastically to sharing that event with as many people as possible and hope that the overall distribution of eclipse glasses goes more smoothly.We thank the AAS for providing 1,000+ of the eclipse glasses we shared, which were donated to them by Google to promote the Eclipse Megamovie project; Rainbow Symphony was the manufacturer. The authors supplemented these with a few personal purchases. AAS, NASA, NSF, American Academies of Ophthalmology and Optometry, and the American Optometric Association jointly disseminated the safe-viewing handout.
NASA Astrophysics Data System (ADS)
Soonthornthum, Boonrucksar; Orchiston, Wayne; Komonjinda, Siramas
2012-09-01
The first great Thai ruler to encourage the adoption of Western culture and technology was King Narai, and his enlightened attitude led to the rapid development of Thailand. King Narai also had a passion for astronomy, and he pursued this interest by allowing French Jesuit missionaries to set up a large modern well-equipped astronomical observatory in Lopburi Province between AD 1685 and 1687. This was known as the Wat San Paolo Observatory, and King Narai and the missionaries observed a total lunar eclipse on 10 December 1685 and a partial solar eclipse on 30 April 1688. These observations and others made at Wat San Paolo Observatory during the 1680s marked the start of modern scientific astronomy in Thailand. In this paper we discuss King Narai's scientific and other interests, the founding of the Wat San Paolo Observatory, the missionaries who conducted the astronomical programs, their instruments and their observations. We also describe the surviving ruins of the Observatory and their interpretation as a site of national scientific importance in Thailand.
Update on the Citizen CATE Experiment: Indonesia to 2017
NASA Astrophysics Data System (ADS)
McKay, Myles; Penn, Matt; Baer, Robert; Bosh, Robert; Garrison, David; Gelderman, Richard; Hare, Honor; Isberner, Fred; Jensen, Logan; Kovac, Sarah; Mitchell, Adriana; Pierce, Michael; Thompson, Patricia; Ursache, Andrei; Varsik, John R.; Walter, Donald K.; Watson, Zachary; Young, David T.; Citizen CATE Team
2017-01-01
The Citizen Continental-America Telescopic Eclipse (CATE) Experiment is a team of students, citizen scientists and professional astronomers who will operate 60 identical telescopes distributed across the country in the path of totality from Oregon to South Carolina during the 21 August 2017 solar eclipse. The project goal is to produce a 90-minute time sequence of calibrated white light images of the solar corona. This unprecedented, continuous, temporal coverage during totality will allow us to address questions related to the dynamics in the inner 2.5 Rsun of the corona.Field testing of the equipment began with one setup located on the Faroe Islands during the March 2015 total solar eclipse. Here we report on the more recent March 2016 eclipse where five CATE teams were sent to Indonesia. This group included university undergraduate students, their faculty mentors and other professional scientists. CATE completed a successful field testing of multiple sites near the equator that were distributed over 20 degrees in longitude. We conclude our discussion with how the experience gained over the past two years is being put to use as we prepare for the full implementation of the CATE Network in August 2017.This work was supported in part by funding from NASA SMD grant NNX16AB92A and the NSF REU program through AST-1460743.
Results from the Modern Eddington Experiment
NASA Astrophysics Data System (ADS)
Schaefer, Bradley E.; Hynes, Robert I.
2018-01-01
The original Eddington Eclipse Experiment (for the 29 May 1919 total solar eclipse) was a test of Einstein's General Relativity, which predicted that the apparent positions of stars near the eclipsed Sun would be shifted outward by up to 1.7". Their results were from 7 stars on 7 plates, with the measured shift at the solar limb of 1.98±0.12". On 6 November 1919, Eddington announced the triumph of Einstein, with many far-reaching effects. To further test General Relativity, the basic 'Eddington eclipse experiment' was run successfully at six later eclipses (the last in 1973), all with only ~10% accuracy.Over the last few years it has become possible to move past the old technology of photographic plates, due to the production of large-scale monochromatic CCD chips. A large number of pixels across is required so that a large field-of-view can go along with adequate resolution. These chips are now commercially available. The perfect opportunity arose with the 21 August 2017 total solar eclipse. Suddenly, it was possible for ordinary astronomers to test Einstein with simple off-the-shelf equipment.We ran a Modern Eddington Experiment from Casper Wyoming. We used the SBIG STX 16803 CCD camera (4096X4096, 9 micron pixels), along with a TeleVue NP101is APO refractor (4.0" aperture, F=540 mm). After experiments, it was decided to run without any filter. The plate scale was near 382 "/mm, the pixel size was 3.4", and the field-of-view was 3.9°X3.9°. We obtained 39 1-second images of star fields centered (with substantial shifts between images) in the dark sky 7 hours before the eclipse, for the purpose of mapping out optical distortions and CCD imperfections. The system was untouched even until the eclipse was over. During the 146-second totality, with slight cirrus clouds, we obtained 11 eclipse images, with 1.0 and 0.5 second exposures, showing over 60 stars (to SNR=10) from 53"-155" from the Sun-center.The analysis is currently underway. Effects to be corrected for include differential refraction, differential aberration, proper motion, parallax, optical distortions, and the tangent plane. Final results should be completed by the time of our AAS meeting.
NASA Astrophysics Data System (ADS)
Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.
2017-12-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.
A spectrum synthesis program for binary stars
NASA Technical Reports Server (NTRS)
Linnell, Albert P.; Hubeny, Ivan
1994-01-01
A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.
Solar Eclipse Video Captured by STEREO-B
NASA Technical Reports Server (NTRS)
2007-01-01
No human has ever witnessed a solar eclipse quite like the one captured on this video. The NASA STEREO-B spacecraft, managed by the Goddard Space Center, was about a million miles from Earth , February 25, 2007, when it photographed the Moon passing in front of the sun. The resulting movie looks like it came from an alien solar system. The fantastically-colored star is our own sun as STEREO sees it in four wavelengths of extreme ultraviolet light. The black disk is the Moon. When we observe a lunar transit from Earth, the Moon appears to be the same size as the sun, a coincidence that produces intoxicatingly beautiful solar eclipses. The silhouette STEREO-B saw, on the other hand, was only a fraction of the Sun. The Moon seems small because of the STEREO-B location. The spacecraft circles the sun in an Earth-like orbit, but it lags behind Earth by one million miles. This means STEREO-B is 4.4 times further from the Moon than we are, and so the Moon looks 4.4 times smaller. This version of the STEREO-B eclipse movie is a composite of data from the coronagraph and extreme ultraviolet imager of the spacecraft. STEREO-B has a sister ship named STEREO-A. Both are on a mission to study the sun. While STEREO-B lags behind Earth, STEREO-A orbits one million miles ahead ('B' for behind, 'A' for ahead). The gap is deliberate as it allows the two spacecraft to capture offset views of the sun. Researchers can then combine the images to produce 3D stereo movies of solar storms. The two spacecraft were launched in Oct. 2006 and reached their stations on either side of Earth in January 2007.
Crowd-Sourced Radio Science at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.
2018-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.
Belrose, J S; McNamara, A G; Hall, J E
1970-06-20
Ground-based radio investigations and four rocket launches were carried out in Canada to study the effect of the eclipse on the solar radiation and electron densities in the lower ionosphere (below about 150 km). The following four articles describe the experiment.
Choosing Wisely When It Comes to Eye Care: Punctal Plugs for Dry Eye
... Wisely campaign is available at Choosing Wisely . Related Stories Solar Eclipse Inflicts Damage in the Shape of the Eclipse Itself Dec 08, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, 2017 New Technology Helps the Legally Blind Be More Independent Oct ...
NASA Astrophysics Data System (ADS)
Basak, T.; Hobara, Y.
2015-12-01
A major part of the path of the annular solar eclipse of May 20, 2012 (magnitude 0.9439) was over southern Japan. The D-region ionospheric changes associated with that eclipse, led to several degree of observable perturbations of sub-ionospheric very low frequency (VLF) radio signal. The University of Electro-Communications (UEC) operates VLF observation network over Japan. The solar eclipse associated signal changes were recorded in several receiving stations (Rx) simultaneously for the VLF signals coming from NWC/19.8kHz, JJI/22.2kHz, JJY/40.0kHz, NLK/24.8kHz and other VLF transmitters (Tx). These temporal dependences of VLF signal perturbation have been analyzed and the spatio-temporal characteristics of respective sub-ionospheric perturbations has already been studied by earlier workers using 2D-Finite Difference Time Domain method of simulation. In this work, we determine the spatial scale, depth and temporal dependence of lower ionospheric perturbation in consistence with umbral and penumbral motion. We considered the 2-parameter D-region ionospheric model with exponential electron density profile. To model the solar obscuration effect over it, we assumed a generalized space-time dependent 2-dimensional elliptical Gaussian distribution for ionospheric parameters, such as, effective reflection height (h') and sharpness factor (β). The depth (△hmax, △βmax), center of shadow (lato(t), lono(t)) and spatial scale (σlat,lon) of that Gaussian distribution are used as model parameters. In the vicinity of the eclipse zone, we compute the VLF signal perturbations using Long Wave Propagation Capability (LWPC) code for several signal propagation paths. The propagation path characteristics, such as, ground and water conductivity and geomagnetic effect on ionosphere are considered from standard LWPC prescriptions. The model parameters are tuned to set an optimum agreement between our computation and observed positive and negative type of VLF perturbations. Thus, appropriate set of parameters lead us to the possible determination of spatial scale, depth and temporal dependence of eclipse associated D-region electron density perturbation solely from the VLF-network observations coupled with theoretical modeling.
A search at two eclipses for short-period waves that heat the corona
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Babcock, Bryce A.; Russell, Kevin D.; McConnochie, Timothy H.; Diaz, J. Sebastian
2000-08-01
As part of a study of the cause of solar coronal heating, we searched for high-frequency (~1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.
Astronomy in Denver: Centenary of the 1918 total solar eclipse across Denver
NASA Astrophysics Data System (ADS)
Stencel, Robert E.
2018-06-01
Totality during the 2017 August 21 solar eclipse (Saros 145) traveled along a path across the United States similar to that which occurred for the eclipse on 1918 June 8 (Saros 126), but with a less west-northerly track. This placed Denver and its then new Chamberlin Observatory in the path of totality. Denver University astronomy Professor Herbert Howe offered use of the Chamberlin Observatory 20-inch f/15 refractor, with its Clark doublet lens and Saegmueller mounting, in service of eclipse-related research. In preparation for the eclipse, Professor Howe and assistants had spent the last three months of 1917, refurbishing mechanical aspects of the telescope. Edwin Frost, then Director of Yerkes Observatory expressed interest and made a reconnaissance visit to the area in September 1917, reporting results in the Feb. 1918 issue of Popular Astronomy ( http://adsabs.harvard.edu/abs/1918PA.....26R.103F ). Frank Schlesinger, then director of Allegheny Observatory, asked if he might attach a special camera for star photography to the telescope at the eclipse, to test displacement of stars, in order to test a prediction of relativity theory. Among the additional visiting astronomical luminaries present on that June day in 1918 were Annie J. Cannon (Harvard), John Duncan (Wellesley), Herbert R. Morgan (U.S. Naval Observatory) and Robert Trumpler (Berkeley). To learn the results of all this eclipse preparedness, you will need to attend my talk in order to get “the rest of the story” or visit our twitter feed at: https://twitter.com/Chamberlin_Obs .
Can the date of Moses' death be determined astronomically?
NASA Astrophysics Data System (ADS)
Manetsch, T. J.; Osborn, W. H.
2011-08-01
There is an early Jewish tradition that the sun darkened on the day of Moses' death. The possibility of this being a reference to a solar eclipse has been investigated. If such were to be the case, identification of the eclipse could be used to derive dates for events recorded in the Bible. A likely candidate eclipse has been found that fits well with Hebrew calendar dates and timelines that are recorded in the biblical books of Deuteronomy and Joshua.
Eclipse Megamovie 2017: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Johnson, C.; Koh, J.; Konerding, D.; Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Zevin, D.
2017-12-01
The 2017 total solar eclipse presents an amazing opportunity for education and science outreach due to the breadth and reach of this astronomical event. The Eclipse Megamovie project looks to create organize a citizen science effort to capture images of the eclipse as it crosses the US and stitch these photos together into a continuous look at the corona. A collaboration between Google, UC Berkeley, and many other universities and amateur astronomy networks, this project looks to leverage the different strenghts of these organizations and capitalize on this rare outreach opportunity. We're excited to present the results of the project and a review of how things went.
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Vasileva, Doroteya L.
2018-02-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.
SDO Sees Spring Eclipse April, 3
2017-12-08
NASA image captured April 3, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
SDO Sees Spring Eclipse, April 2
2017-12-08
NASA image captured April 2, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
SDO Sees Spring Eclipse, April 1
2017-12-08
NASA image captured April 1, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Technical Reports Server (NTRS)
Maier, E. J.; Narasinga Rao, B. C.
1972-01-01
Results of measurements made with a retarding potential analyzer on a Nike-Tomahawk rocket during the totality of the solar eclipse, showing definite evidence for the existence of photoelectrons from the conjugate hemisphere. Photoelectrons are observed in the altitude range from 120 to 260 km. The observed flux in the energy range from 2 to 30 eV is relatively constant above about 200 km, but decreased below that altitude. The flux of 5-eV energy electrons above 200 km altitude is about 10 to the 7th power electrons/cm/sec/eV. Higher-energy electrons were also observed, and it is possible that the energy content of these observed fluxes of conjugate-point photoelectrons is sufficient to maintain the observed electron densities and temperatures during the total eclipse.
Living matter: the "lunar eclipse" phenomena.
Korpan, Nikolai N
2010-01-01
The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use anti-angiogenesis with an immediately following cryoaponecrosis and cryoapoptosis in the treatment of malignant tumor. Both the "lunar eclipse" in vivo as well as the similar phenomena, namely the total moon and total solar lunar eclipses, are is part of living nature.
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.
2016-12-01
Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.
Gravitation is Retarded:Theory and Evidence
NASA Astrophysics Data System (ADS)
Tang, K.
2009-12-01
Gravitation is Retarded:Theory and Evidence There were more than twenty times of observations about gravity anomalies during the solar eclipses since Maurice Allais’s pendulum test during the total solar eclipse of 1954 in Paris. All the theoretical modes are calculated according to Newton’s gravitation law. But due to the observation environments and conditions during above observations were not quite well, the platform for mounting the gravimeters were quite simple, so that the environment and human’s disturbance were unavoidable, therefore the data obtained from above observation where questionable. It is very hard to give a conclusion to say the gravity anomalies during the eclipses were really existing or not. The more important issue is that none of the suggested external factors could account for the magnitude and timing of observed anomalies, according to Chris Duif of University of Technology of Netherland. Since the total solar eclipse of Mohe, 1997, I have been working on a theory to explain the gravity anomalies. At Mohe, I was watching the image of the eclipse, and led a scientific term to conduct a comprehensive geophysical observation, including the gravity observation. The two kinds of observations were conducted at same location and same time. We noticed that solar light of the eclipse was emitted 500 seconds before the image reached to our eyes and cameras. It was reasonable to have similar idea that the gravitation emitted from the sun is also 500 seconds before our gravimeter received and recorded it; it means that gravitation is retarded. Based on either the Special Relativity or Leinard-Wiechert retarded potential, I have deduced the expressions for retarded gravitation; it is vector modification on Newton’s universal gravitation law. The retarded gravitation is gRT=-GM(R-Rβ)(1-β2)/R3(1-βr)3 For common cases, bodies move in a weak gravitation field along a quasi-straight light or with a slow speed, such as planets move around the sun or the moon/satellites moves around the earth, I have deduced a very useful expression gRT=gNT[1+(βθ2-2βr2)/2c2] where,β=v/c,βr=vr/c,βθ=vθ/c, gNT=-GMr/r3. I would like to stress that the approximate solution from the general relativity is only of a scalar modification, as a comparison. The Great Total Soar Eclipse along Yangzi River of July 22 of 2009 provided us a great opportunity to clean up the doubts for last 50 years. Consider that solar gravitation is retarded and the earth’s response is delayed, moon’s retarded factor is negligible, all the theoretical amplitudes and the frequencies for each components of solar tide and moon tide can be calculated, the amplitudes and delay factor of earth tide, the frequencies for each components of solar tide, moon tide and earth tide can been separated and measured from the observation data: AsinωS(t-tS+tE)+BsinωM(t+tE)=Csinωtot(t+ttot). Taking t=t1 and t=t2, we can get two equations with only two variables, solve the two equations, we can get the retarded factor of the solar gravitation and the delay factor of earth response for each compoenets. The retarded factor obtained will be strong evidence that gravitation is retarded.
Fall 2011 Eclipse Season Begins
2011-09-13
The Fall 2011 eclipse season started on September 11, 2011. Here is an AIA 304 image from 0658 UT. SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Poster 16: Eclipse-induced changes of Titan's meteorology at equinox
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya
2016-06-01
Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.
The Eclipse of the Moon from 16-17 August 2008 in Romania
NASA Astrophysics Data System (ADS)
Alimpie, Laurentiu; Gaina, Alex; Stanescu, Octavian
2008-08-01
The web page presents a number of photographs and a discussion of the cicumstances of the Partial Eclipse of the Moon from 16-17 August 2008 observed from the city of Timisoara in Romania and Chisinau in the Republic of Moldova
Confirming Variability in the Secondary Eclipse Depth of the Rocky Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tamburo, Patrick; Mandell, Avi; Deming, Drake; Garhart, Emily
2017-01-01
We present a reanalysis of Spitzer transit and secondary eclipse observations of the rocky super Earth 55 Cancri e using Pixel Level Decorrelation (Deming et al. 2015). Secondary eclipses of this planet were found to be significantly variable by Demory et al. (2016), implying a changing brightness temperature which could be evidence of volcanic activity due to tidal forces. If genuine, this result would represent the first evidence for such a process outside of bodies in our own solar system, and would further expand our understanding of the huge variety of planetary systems that can develop in our universe. Spitzer eclipse observations, however, are subject to strong systematic effects which can heavily impact the retrieved eclipse model. A reanalysis of this result with an independent method is therefore needed to confirm eclipse depth variability. We tentatively confirm variability, finding a shallower increase in eclipse depth over the course of observations compared to Demory et al. (2015).
Preparing for Eclipse 2017 on This Week @NASA – August 11, 2017
2017-08-11
The Aug. 21 total solar eclipse across America is generating a lot of interest – and a lot of questions. You’ll find answers to many of your eclipse questions at NASA’s Eclipse 2017 website -- eclipse2017.nasa.gov. The site is full of information to help you prepare for this rare celestial event – including eclipse-related activities, events, viewing safety tips, and other resources. Then, on the day of the eclipse, you can see the event “Through the Eyes of NASA” – during a special NASA TV broadcast that includes coast-to-coast coverage from the ground, from the air and from space. Coverage begins with a special pre-show at noon eastern – followed by in-depth coverage at 1pm. You can also watch on Aug. 21 at www.nasa.gov/eclipselive. Also, TDRS-M Update, Webb’s Sunshield Layers Installed, RS-25 Engine Testing Rolls On, and Chief Technologist Visits Industry Partner!
[Survey of ocular injury by solar eclipse 2009].
Obana, Akira; Takahashi, Jun; Ohnishi, Kouji; Shinohara, Hideo; Matsuo, Atsushi; Saito, Izumi; Ohkawa, Takuya; Ono, Tomoko
2011-07-01
Incidence of ocular injury caused by the solar eclipse of 2009 has been investigated using the questionnaire of the Japan Committee of the International Year of Astronomy 2009. The questionnaire was available to the public on the website. Answers were obtained from 14 people (12 men, 2 women), aged from sixteen to fifty-four. All had looked at the sun either with the naked eye or through some shading device (plastic sheet, plastic bag, compact disc, etc.) the safty of which is unknown. Reported symptoms included a sense of incongruity, heat, pain, central scotoma or visual disturbance, classified into four periods of duration. Three people with transient symptoms watched the eclipse with the naked eye for one minute in cloudy weather. Three people with symptoms lasting for one day and three people with symptoms lasting for one week had watched it with the naked eye and some shading device for 10 minutes in cloudy weather. Five people with symptoms lasting for more than one week watched the eclipse with the naked eye and through some sort of device in fine or slightly cloudy weather. Three people consulted their ophthalmologist. Those who reported adverse symptoms did not comply with the instructions for safe watching of the eclipse and the duration of the symptoms depended on the weather and the type of device used.
NASA's Lesa Roe Talks Eclipse with Thomas Zurbuchen
2017-09-13
Lesa Roe, acting NASA deputy administrator, and Thomas Zurbuchen, NASA science mission directorate’s associate administrator, discuss their most notable experiences from the 2017 Solar Eclipse. Roe and Zurbuchen were passengers aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft, which flew 35,000 feet above the coast of Oregon during this phenomenal event.
First results of eclipse induced pressure and turbulence changes in South Carolina
NASA Astrophysics Data System (ADS)
Hiscox, A.; McCombs, A. G.; Stewart, M. J.
2017-12-01
Total solar eclipses supply both visual captivation and a controlled meteorological experiment by reason of a sudden decrease in radiation from the Sun. This presentation will provide first results from a field experiment focused on the atmospheric surface layer changes before, during, and after a total solar eclipse. A suite of instruments including radiosondes, aerosol lidar, sonic anemometers, and microbarographs will be deployed one mile from the total eclipse centerline outside Columbia, South Carolina. The results should not only confirm the commonly expected changes in sensible weather, but also provide insight into the generation and propagation of internal gravity waves. These waves propagate and transfer both energy and momentum vertically to and from the upper levels of the atmosphere. Early scientific results are expected to provide IGW vertical propagation speeds from succesive radiosonde measurements, while triangulated surface pressure measurements will provide timing of wave activity. Other anticipated results to be presented are changes in turbulence turbulence stationarity and pressure pertubations. Finally, the sucess of a major outreach event held in tandem with the scientific experiement will be discussed.
GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Coster, Anthea J.; Goncharenko, Larisa; Zhang, Shun-Rong; Erickson, Philip J.; Rideout, William; Vierinen, Juha
2017-12-01
On 21 August 2017, during daytime hours, a total solar eclipse with a narrow ˜160 km wide umbral shadow occurred across the continental United States. Totality was observed from the Oregon coast at ˜9:15 local standard time (LST) (17:20 UT) to the South Carolina coast at ˜13:27 LST (18:47 UT). A dense network of Global Navigation Satellite Systems (GNSS) receivers was utilized to produce total electron content (TEC) and differential TEC. These data were analyzed for the latitudinal and longitudinal response of the TEC and for the presence of traveling ionospheric disturbances (TIDs) during eclipse passage. A significant TEC depletion, in some cases greater than 60%, was observed associated with the eclipse shadow, exceeding initial model predictions of 35%. Evidence of enhanced large-scale TID activity was detected over the United States prior to and following the large TEC depletion observed near the time of totality. Signatures of enhanced TEC structures were observed over the Rocky Mountain chain during the main period of TEC depletion.
L'Astronomia del Venerdí Santo, l'eclissi di Luna e l'ora della Sindone
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2014-05-01
Dating the crucifixion on friday 3 April 33, when, at sunset a partially eclipsed Moon rised allows to interprete the speech of Saint Peter (Acts 2:20=Joel 3:4) on the day of Pentecost as including an account of this eclipse, as fulfillment of the Scriptures. Few minutes later the apparition of a third star of medium magnitude stated the beginning of the sabbatical rest: before that time Jesus has been buried, wrapped into the shroud. The observations of the equinoctial moonrise from the Mount of Olives on September 2013 are strongly in favour of the hypotehsis of possible observation of the lunar eclipse of 33 AD by Jewish people, as well as the sunrises observed from the Temple Institute terrace in Southern-East Jerusalem demonstrated that this eclipse could have been seen from Jerusalem. The depression of the horizon and the refraction allow to see Sun and Moon more than 1 degree below the geometrical horizon in the azimuthal direction ranging from 90 to 116, prologing to 16 minutes the duration of the partial lunar eclipse observed in 33AD. Texts of Matthew, Mark and Cyrillus of Jerusalem are also commented.
A Practical Guide To Solar Array Simulation And PCDU Test
NASA Astrophysics Data System (ADS)
Schmitz, Noah; Carroll, Greg; Clegg, Russell
2011-10-01
Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.
2017-12-08
NASA's Solar Dynamics Observatory captured this image of the moon crossing in front of its view of the sun on Jan. 30, 2014, at 9:00 a.m. EST. -- On Jan 30, 2014, beginning at 8:31 a.m EST, the moon moved between NASA’s Solar Dynamics Observatory, or SDO, and the sun, giving the observatory a view of a partial solar eclipse from space. Such a lunar transit happens two to three times each year. This one lasted two and one half hours, which is the longest ever recorded. When the next one will occur is as of yet unknown due to planned adjustments in SDO's orbit. Note in the picture how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Earth rotation derived from occultation records
NASA Astrophysics Data System (ADS)
Sôma, Mitsuru; Tanikawa, Kiyotaka
2016-04-01
We determined the values of the Earth's rotation parameter, ΔT = T T - UT, around AD 500 after confirming that the value of the tidal acceleration, dot{n}, of the lunar motion remained unchanged during the period between ancient times and the present. For determining of ΔT, we used contemporaneous occultations of planets by the Moon. In general, occultation records are not useful. However, there are some records that give us a stringent condition for the range of ΔT. Records of the lunar occultations in AD 503 and AD 513 are such examples. In order to assure the usefulness of this occultation data, we used contemporaneous annular and total solar eclipses, which have not been used in the preceding work. This is the first work in which the lunar occultation data have been used as primary data to determine the value of ΔT together with auxiliary contemporaneous annular and total solar eclipses. Our ΔT value is less than a smoothed value (Stephenson 1997) by at least 450 s. The result is consistent with our earlier results obtained from solar eclipses.
Rocket observations of solar UV radiation during the eclipse of 7 March 1970.
NASA Technical Reports Server (NTRS)
Smith, L. G.
1972-01-01
Results of observations of the solar eclipse of Mar. 7, 1970, with photometers sensitive to narrow bands of radiation at Lyman-alpha (1216 A) and at 2600 A included in the payloads of four Nike Apache rockets flown before and during the eclipse. At the center of totality, the flux of Lyman-alpha from the solar corona is 0.15% of the flux from the unobscured sun. The flux at second contact is 0.64%; at third contact, two observations give 0.52 and 0.59%. The brightness of the chromosphere in Lyman-alpha decreases exponentially over the range from 5 to 30 arc-sec from the limb with a scale height of 3835 plus or minus 70 km. In addition to the coronal and chromospheric Lyman-alpha a diffuse source is found. This is restricted to within 20 deg of the earth's horizon and is nearly uniform in azimuth at 170 km, the flux is about 3% of that from the unobscured sun. The flux of Lyman-alpha during the eclipse is considered in relation to the observed variation in electron density. It is concluded that, in totality, the ionosphere near 80 km is not in equilibrium with the ionizing radiation and that the production rate for electrons is not negligible if the loss process is recombination; it is negligible if the loss process is attachment-like.
Current Sheets in the Corona and the Complexity of Slow Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro
2010-01-01
The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Shaner, Andy; Wenger, Matthew; Bakerman, Maya; Joseph, Emily; Day, Brian; White, Vivian; InOMN Coordinating Committee
2017-01-01
2017 marks the eighth International Observe the Moon Night (InOMN), which will be held on July 15, 2017. We will present findings from the first seven years, including the most recent figures from the October 2016 event, and provide an overview of the 2017 events which will support the Great American Eclipse which occurs about five weeks later, on August 21, 2017.InOMN is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. This year InOMN’s event will support broad efforts to promote the eclipse by providing resources to help InOMN hosts highlight lunar science that will influence the eclipse, such as the topography of the Moon, which affects the edges of the eclipse path and the location and duration of Baily’s beads. The InOMN team will host webinars to discuss the Moon, lunar science, and lunar and solar eclipses.Each year, thousands of visitors take part in hundreds of events across the world. In the first seven years (2010 to 2016) over 3,700 events were registered worldwide and hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and held at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and homes. Evaluation of InOMN reveals that events are raising visitors’ awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so.InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more and register to host an event at http://observethemoonnight.org/.
The Great American Eclipse Glasses Debacle of 2017
NASA Astrophysics Data System (ADS)
Tresch Fienberg, Richard; AAS Solar Eclipse Task Force
2018-01-01
In 2014, looking ahead to the “Great American” solar eclipse of 21 August 2017, the American Astronomical Society established the AAS Solar Eclipse Task Force to help prepare the public for a safe and enjoyable experience. We worked with NASA and several associations of eye-care professionals to come up a safety message that we could all stand behind. The gist of it was that it is perfectly safe to view totality without protection, but when any part of the Sun’s bright face is exposed, you must view through eclipse glasses or handheld viewers that meet the ISO 12312-2 international safety standard for filters for direct viewing of the Sun. We compiled a list of manufacturers whose products we knew to meet the standard (because we examined their test data) and posted it on our website. These manufacturers were all based in the US or Europe. A few weeks before the eclipse, reports surfaced of viewers purchased on Amazon.com labeled “Made in China” or that were obvious knock-offs of US manufacturers’ products. Amazon responded by suspending virtually all sales of eclipse viewers and recalling many of units already sold and shipped. Millions of people who’d bought eclipse glasses online, whether from legitimate sources or from bad actors, were unsure whether they could trust their purchases. We had to change our safety messaging: it was no longer sufficient to tell people to look for the ISO 12312-2 label, because that was being printed on Chinese-made glasses that hadn’t actually been shown to meet the standard. Instead, the only way to know that you had safe viewers was to know that you got them from a legitimate source — which meant we had to expand the list on our website to include every legitimate seller we could identify. Doing so required a monumental effort under intense time pressure. Thankfully there were few reports of eye injuries following the eclipse, but apparently many people who otherwise would have viewed the eclipse chose to skip it rather than risk observing through possibly unsafe filters. Could this unfortunate situation have been avoided? How can we prevent it from happening at future eclipses?
The Sun and solar eclipses in traditional Romanian ornamental patterns
NASA Astrophysics Data System (ADS)
Olenici, Dimitrie; Olenici, Maria
2011-06-01
Various ornamental shapes, such as the wheel, the rhombus, the broken cross, and the radiant triangle, which can be seen on popular costumes, domestic objects as well as in architecture, represent solar symbols with a clear apotropaic function whose origins may be detected on the Neolithic clay plates from Jevdet Nasr (Iraq), Knosos (Greece) and Tartaria (Romania). In the North-East of Romania the occurrence of such motifs is extremely frequent especially in traditional architecture. The Triple-Rayed Sun intersected by two lateral arcs is a remarkable adornment of this kind that seems to suggest the representation of an eclipse.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Scheiman, David A.
2005-01-01
This paper documents testing and analyses to quantify International Space Station (ISS) Solar Array Wing (SAW) string electrical performance under highly off-nominal, low-temperature-low-intensity (LILT) operating conditions with nonsolar light sources. This work is relevant for assessing feasibility and risks associated with a Sequential Shunt Unit (SSU) remove and replace (R&R) Extravehicular Activity (EVA). During eclipse, SAW strings can be energized by moonlight, EVA suit helmet lights or video camera lights. To quantify SAW performance under these off-nominal conditions, solar cell performance testing was performed using full moon, solar simulator and Video Camera Luminaire (VCL) light sources. Test conditions included 25 to 110 C temperatures and 1- to 0.0001-Sun illumination intensities. Electrical performance data and calculated eclipse lighting intensities were combined to predict SAW current-voltage output for comparison with electrical hazard thresholds. Worst case predictions show there is no connector pin molten metal hazard but crew shock hazard limits are exceeded due to VCL illumination. Assessment uncertainties and limitations are discussed along with operational solutions to mitigate SAW electrical hazards from VCL illumination. Results from a preliminary assessment of SAW arcing are also discussed. The authors recommend further analyses once SSU, R&R, and EVA procedures are better defined.
NASA Astrophysics Data System (ADS)
Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.
2017-12-01
As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.
Super Blood Moon Lunar Eclipse
2017-12-08
CLOUDY with a chance of NOT SEEING the Super Blood Moon Lunar Eclipse? WATCH Live here: bit.ly/1LfspfW No worries, we've got you've covered. Click on over to the live stream starting at 8:00 p.m. until at least 11:30 p.m. EDT broadcast from NASA's Marshall Space Flight Center in Huntsville, Ala., with a live feed from the Griffith Observatory, Los Angeles, Calif. Mitzi Adams, a NASA solar physicist at Marshall will discuss the eclipse and answer questions on Twitter. To ask a question, use #askNASA. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Twice a year, NASA’s Solar Dynamics Observatory, or SDO, has an eclipse season — a weeks-long period in which Earth blocks SDO’s view of the sun for part of each day. This footage captured by SDO on Feb. 15, 2017, shows one such eclipse. Earth’s edge appears fuzzy, rather than crisp, because the sun’s light is able to shine through Earth’s atmosphere in some places. These images were captured in wavelengths of extreme ultraviolet light, which is typically invisible to our eyes, but is colorized here in gold. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's EPIC View of 2017 Eclipse Across America
2017-08-22
From a million miles out in space, NASA’s Earth Polychromatic Imaging Camera (EPIC) captured natural color images of the moon’s shadow crossing over North America on Aug. 21, 2017. EPIC is aboard NOAA’s Deep Space Climate Observatory (DSCOVR), where it photographs the full sunlit side of Earth every day, giving it a unique view of total solar eclipses. EPIC normally takes about 20 to 22 images of Earth per day, so this animation appears to speed up the progression of the eclipse. To see the images of Earth every day, go to: epic.gsfc.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Real-World Word Learning: Exploring Children's Developing Semantic Representations of a Science Term
ERIC Educational Resources Information Center
Best, Rachel M.; Dockrell, Julie E.; Braisby, Nick R.
2006-01-01
Assessments of lexical acquisition are often limited to preschool children on forced-choice comprehension measures. This study assessed the nature of the understandings 30 school-age children (mean age = 6;7) acquired about the science term eclipse following a naturalistic exposure to a solar eclipse. The knowledge children acquired about eclipses…
Video File - Eclipse Event At Stennis Space Center
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Stennis Space Center.
ERIC Educational Resources Information Center
Hughes, Stephen; Wimmer, Jason; Towsey, Michael; Fahmi, Marco; Winslett, Greg; Dubler, Gabriel; Le Prou, Angela; Loose, David
2014-01-01
In a total solar eclipse, the Moon completely covers the Sun, casting a shadow several hundred km wide across the face of the Earth. This paper describes observations of the 14 November 2012 total eclipse of the Sun visible from north Queensland, Australia. The edge of the umbra was captured on video during totality, and this video is provided for…
NASA Astrophysics Data System (ADS)
Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason
2016-01-01
Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.
Spectro-Imaging Polarimetry of the Local Corona During Solar Eclipse
NASA Astrophysics Data System (ADS)
Qu, Z. Q.; Dun, G. T.; Chang, L.; Murray, G.; Cheng, X. M.; Zhang, X. Y.; Deng, L. H.
2017-02-01
Results are presented from spectro-imaging polarimetry of radiation from the local solar corona during the 2013 total solar eclipse in Gabon. This polarimetric observation was performed from 516.3 nm to 532.6 nm using a prototype Fiber Arrayed Solar Optical Telescope (FASOT). A polarimetric noise level on the order of 10^{-3} results from a reduced polarimetric optical switching demodulation (RPOSD) procedure for data reduction. It is revealed that the modality of fractional linear polarization profiles of the green coronal line shows a diversity, which may indicate complex mechanisms. The polarization degree can approach 3.2 % above the continuum polarization level on a scale of 1500 km, and the nonuniform spatial distribution in amplitude and polarization direction is found even within a small field of view of 7500 km. All of this implies that the coronal polarization is highly structured and complex even on a small scale.
Development of the User Interface for AIR-Spec
NASA Astrophysics Data System (ADS)
Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.
2016-12-01
The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.
Investigation of the Electron Density Variation During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Reinisch, B. W.; Dandenault, P. B.; Galkin, I. A.; Hamel, R.; Richards, P. G.
2018-02-01
This paper presents a comparison of modeled and measured electron densities for the 21 August 2017 solar eclipse across the USA. The location of the instrument was (43.81°N, 247.32°E) where the maximum obscuration of 99.6% occurred at 17.53 hr UT on 21 August. The solar apparent time was 9.96 hr, and the duration of the eclipse was 2.7 hr. It was found that if it is assumed that there are no chromosphere emissions at totality, 30% coronal emission remaining at totality gave the best fit to the electron density variation at 150 km. The 30% coronal emission estimate has uncertainties associated with respect to uncertainties in the solar spectrum, the measured electron density, and the amount of chromosphere emissions remaining at totality. The agreement between the modeled and measured electron densities is excellent at 150 km with the assumed 30% coronal emission at totality. At other altitudes, the agreement is very good, but the altitude profile would be improved if the model peak electron density (
NASA Astrophysics Data System (ADS)
Semper, R.; Higdon, R.
2017-12-01
The 2017 total solar eclipse provided unique opportunity to provide public outreach about astronomy, heliophysics, and scientific discovery. The Navigating the Path of Totality project was designed to produce eclipse related educational resources including live video feeds and distribute them to museums, schools, libraries and the public through online and broadcast media. Using special telescope video camera setups, five feeds were produced including a live one hour English program and in parallel a live one hour Spanish program from Casper, WY with a cutaway to Madras, OR, complete (C1-C4) telescope only feeds from both Madras, OR and Casper, Wy, and a complete (C1-C4) telescope only feed with live musical sonification and accompaniment by the Kronos Quartet. Images from the live feeds were made available on the NASA Website, NASA TV, Exploratorium website, Exploratorium Solar Eclipse mobile app, local television and in museums, libraries and schools worldwide. Associated educational video material including images from the 2016 total eclipse from Micronesia was produced and disseminated. In this talk we will discuss the evaluation results including an examination of the effectiveness of the digital strategy of many mobile channels and mobile apps using different analytics including IBM Watson social media analytics services. We will also present the lessons learned from the project.
NASA Astrophysics Data System (ADS)
Guzik, T. G.
2017-12-01
On August 21, 2017 approximately 55 teams across the path of totality of the eclipse across America will use sounding balloon platforms to transmit, in real-time from an altitude of 90,000 feet, HD video of the moon's shadow as it crosses the U.S. from Oregon to South Carolina. This unprecedented activity was originally organized by the Montana Space Grant Consortium in order to 1) use the rare total eclipse event to captivate the imagination of students and encourage the development of new ballooning teams across the United States, 2) provide an inexpensive high bandwidth data telemetry system for real-time video streaming, and 3) establish the basic infrastructure at multiple institutions enabling advanced "new generation" student ballooning projects following the eclipse event. A ballooning leadership group consisting of Space Grant Consortia in Montana, Colorado, Louisiana, and Minnesota was established to support further development and testing of the systems, as well as to assist in training the ballooning teams. This presentation will describe the high bandwidth telemetry system used for the never before attempted live streaming of HD video from the edge of space, the results of this highly collaborative science campaign stretching from coast-to-coast, potential uses of the data telemetry system for other student science projects, and lessons learned that can be applied to the 2024 total solar eclipse.
NASA Astrophysics Data System (ADS)
Koechlin, L.
2015-12-01
We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.
Flight experience of solar mesosphere explorer's power system over high temperatures ranges
NASA Technical Reports Server (NTRS)
Faber, Jack; Hurley, Daniel
1987-01-01
The performance of the power system on the Solar Mesosphere Explorer (SME) satellite for the life of the mission and the techniques used to ensure power system health are summarized. Early in the mission high cell imbalances in one of the batteries resulted in a loading scheme which attempted to minimize the cell imbalances without causing an undervoltage condition. A short term model of the power system allowed planners to predict depth of discharge using the latest available data. Due to expected orbital shifts the solar arrays experience extended periods of no eclipse. This has required special conditioning schemes to keep the batteries healthy when the eclipses return. Analysis of the SME data indicates long term health of the SME power system as long as the conditioning scheme is continued.
An Airborne Infrared Spectrometer for Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge
2016-05-01
The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.
Implications of the Deep Minimum for Slow Solar Wind Origin
NASA Astrophysics Data System (ADS)
Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.
2009-12-01
The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.
2002-12-04
International Space Station (ISS) crew members were able to document a rare occurrence. The dark area near the center of the frame is actually a shadow cast by the moon during the total solar eclipse of December 4, 2002. The shadow obscures an area of cloud cover. The Station, with three Expedition Six crew members aboard, was over the Indian Ocean at the time of the eclipse.
Eclipses across the Curriculum
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
On Monday, August 21, 2017 there will be a Total Solar Eclipse. This will be the first time the Moon's umbra has touched the continental United States since 1979 and the first totality to span the country coast-to-coast since 1918. From within parts of Oregon and through 14 states to South Carolina, the Moon will completely hide the Sun for a few…
Eclipse Megamovie 2017: How did we do?
NASA Astrophysics Data System (ADS)
Hudson, Hugh; Bender, Mark; Collier, Braxton; Johnson, Calvin; Koh, Justin; Konerding, David; Martinez Oliveros, Juan Carlos; Peticolas, Laura; White, Vivian; Zevin, Dan
2018-01-01
The Eclipse Megamovie program, as set up for the Great American Eclipse of 21 August 2017, achived a massive volunteer participation, making maximal use existing equipment but with coordinated training. Everything worked fine, and the archive entered the public domain on Friday, October 6. It comprises about 800 GB of data from DSLR cameras and telescopes. An additional 200 GB of data were obtained by smartphone cameras operating a dedicated free app. The massive oversampling made possible by the many (about 2500) volunteer observers has opened new parameter space for tracking coronal and chromospheric time development. Fortuitously some solar activity appeared during the 90-minute period of totality, including a C-class flare and an ongoing CME. At the smartphone level, with the advantage of precise GPS timing, we have data on solar structure via the timing of Baily's Beads at the 2nd and 3rd contacts. The Megamovie archive is an historical first, and we hope that it has already been a springboard for citizen-science projects. We discuss the execution of the program, presenting some of the 2017 science plans and results. We expect that the eclipse of 2024 will be better still.
UNAWE Indonesia project: raising total solar eclipse 2016 awareness through educational packages
NASA Astrophysics Data System (ADS)
Handini, A. T.; Yulianty, Y.; Premadi, P. W.; Annafi, A.
2016-11-01
On March 9th 2016, some regions in Indonesia witnessed the Total Solar Eclipse (TSE). At that time, Indonesia was the only mainland in the world that could observe TSE. This moment is extraordinary because its probability of being observed at the same point happens every 350 years. On a purpose of raising public awareness and engaging more participations, UNAWE Indonesia developed a handy material and sent the so called educational packages which provided essential information about eclipse, especially TSE. Each package contains of modul of TSE study and materials for simple TSE activity so people who received the package could observe TSE safely. In the delivery of this program, we established a collaboration partner, whom are teachers, as an 'eclipse ambassador'. The local partners were responsible for socializing the information for school or their community. We encouraged them to conduct an observation activity and ask them to fill an evaluation report. As a result, 48 out of 59 partners or equal to 81.3% of all partners has sent the evaluation of the package and documentation of the activity during TSE. They responded positively as it was easy to understand, functional, and convenient.
1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk
NASA Technical Reports Server (NTRS)
Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.
1994-01-01
We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.
Spectroscopic observations of the detached binary PG 1413 + 015
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Liebert, James; Bergeron, P.; Green, Richard
1993-01-01
We present improved estimates of the stellar parameters of the eclipsing, precataclysmic binary system PG 1413 + 015 (GH Vir), which has an orbital period of only 8h16m. Model atmosphere fits a Balmer line profiles yield T(eff) = 48,800 +/- 1200 K and log g = 7.70 +/- 0.11 for the DAO white dwarf primary star, from which a mass of 0.51 +/- 0.04 solar mass is inferred using evolutionary models. An ultraviolet spectrum obtained with the IUE Observatory has a slope consistent with this temperature and the assumption of no interstellar extinction. A red CCD spectrum of the secondary star during the 12-minute total eclipse indicates a spectral type of M3 V-M5 V. Reanalysis of the eclipse light curve leads to an inferred radius of 0.15 solar radius and a mass of 0.10 solar mass for the secondary, the latter being marginally consistent with the spectral type. Reprocessing on the facing side of the secondary produces phase-dependent Balmer line emission and detectable variations in the continuum from 6500-9000 A. The observed levels of reprocessing are consistent with expectations based on the above stellar parameters.
Eclipse 2017: Partnering with NASA MSFC to Inspire Students
NASA Technical Reports Server (NTRS)
Fry, Craig " Ghee"
2017-01-01
NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.
Chasing the shadows, a trip to spice island
NASA Astrophysics Data System (ADS)
Yamani, A.; Soegijoko, W.; Baskoro, A. A.; Satyaningsih, R.; Simatupang, F. M.; Maulana, F.; Suherli, J.; Syamara, R.; Canas, L.; Stevenson, T.; Oktariani, F.; Santosa, I.; Ariadi, F.; Carvalho, N.; Soegijoko, K.
2016-11-01
The 2016 Total Solar Eclipse provided us an opportunity to introduce astronomy to a much wider audience. The path of totality crossed the Indonesia from Sumatra to the Maluku Islands and ended its journey in the Pacific Ocean. Its path crossed over 4 major islands, 12 provinces and many cities. Most of the cities have minimum exposure to astronomy. langitselatan travelled to observe the eclipse and to do astronomy outreach at the eastern most island under the eclipse path. We chose Maba, a small village in East Halmahera, North Maluku as our site to observe the eclipse as well as conduct a workshop for teachers and students. The aim of the workshop is to introduce astronomy taking advantage of the eclipse as well as raise awareness and curiosity among students. In this paper, we will share a short report regarding the whole trip and event in Maba.
The Planetary and Eclipse Oil Paintings of Howard Russell Butler
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Olson, R. M.
2013-10-01
The physics-trained artist Howard Russell Butler (1856-1934) has inspired many astronomy students through his planetary and eclipse paintings that were long displayed at the Hayden Planetarium in New York, the Fels Planetarium at the Franklin Institute in Philadelphia, and the Buffalo Museum of Science. We discuss not only the eclipse triptychs (1918, 1923, and 1925) at each of those institutions but also his paintings of Mars as seen from Phobos and from Deimos (with landscapes of those moons in the foreground depicted in additional oils hung at Princeton University) and the Earth from our Moon. We also describe his involvement with astronomy and his unique methodology that allowed him to surpass the effects then obtainable with photography, as well as his inclusion in a U.S. Naval Observatory eclipse expedition in 1918, as well as his auroral, solar-prominence, and 1932-eclipse paintings.
Research of propagation the high frequency signals during total solar eclipses
NASA Astrophysics Data System (ADS)
Ryabova, Mariya; Ivanov, Vladimir; Ivanov, Dmitrii; Riabova, Natalia; Elsukov, Aleksei
Vertical-oblique sounding methods are special importance for the study; they provide data on the electron concentration. In panoramic sounders, the mean frequencies of sounding signals vary consequently in the range of apriori uncertainty of the conditions of their reflection from the ionosphere. The aim of this work is the experimental study of the variations in the MUFs along one-hop HF lines during the total solar eclipses, and their application for the estimation of the effective recombination coefficient. To solve the above problem, experiments were carried out with the use of a chirp sounder manufactured at the Volga State University of Technology. The main advantages of chirp sounder are connected with the use of continuous chirps, which allow for the use of methods of optimal reception when deciphering in a frequency region, which provides for a signal-to-noise ratio acceptable for obtaining reliable results. We carried out experiments on oblique chirp sounding of the ionosphere during the total solar eclipse of March 29, 2006, and on the reference days of March 28 and 30, 2006, as well as during the total solar eclipse of August 1, 2008, and the reference days of July 31 and August 2, 2008. The ionosonde transmitters were located in Great Britain (the town of Inskip), Cyprus, and Irkutsk, and the receiver was located in Yoshkar-Ola. The maximal phases of the eclipse of March 29 at the target sounding point (TSP) were 0.89 for Cyprus-Yoshkar-Ola (observed at 11:15 UT) and 0.49 for Inskip-Yoshkar-Ola (observed at 11:03 UT); for the eclipse of August 1, 1 for Irkutsk-Yoshkar-Ola (observed at 11:36 UT). Based on the primary data (ionograms), the secondary data were determined in automatic mode. In particular, diurnal variations in the MUF of the 1F2 and 2F2 modes were calculated for the eclipse periods and the reference days along different radio paths. Variation in the MUF on the reference days required the use of a smoothing procedure, which was carried out using the IRI international ionospheric model. Based on the obtained data on the profile of the electron concentration for the TSP along a path, ionograms of oblique sounding were synthesized. This allowed for model adaptations and, as a result, smoothed diurnal variations in the MUF for the reference days, as well as for an estimation of the difference frequencies. The data obtained allows for the estimation of the effective recombination coefficient in the ionospheric F layer with the use of the ionospheric balance equation. Calculations have shown that the effective recombination coefficient of the ionospheric F region increases by 24% at an increase in the maximum eclipse phase from 0.49 to 1.0. The authors gratefully acknowledge financial support from the Russian Foundation for Basic Research (grants 13-07-00371-a, 13-02-00524-a, 13-07-97041).
Transits, Spots, and Eclipses: The SunÃs Role in Pedagogy and Outreach (Abstract)
NASA Astrophysics Data System (ADS)
Larsen, K.
2018-06-01
(Abstract only) While most people observe variable stars at night, the observers of the AAVSO Solar Section make a single observation per day, but only if it is sunny, because our variable is the Sun itself. While the Sun can play an important role in astronomy outreach and pedagogy in general, as demonstrated by the recent 2017 eclipse, it can also serve as an ambassador for variable stars. This talk will examine how our sun can be used as a tool to explain several types of variable star behaviors, including transits, spots, and eclipses.
Total solar eclipse of 1995 October 24
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1994-01-01
A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.
2017-02-21
Several times a day for a few days the Earth completely blocked the Sun for about an hour due to NASA's Solar Dynamics Observatory's orbital path (Feb. 15, 2017). The edge of the Earth is not crisp, but kind of fuzzy due to Earth's atmosphere. This frame from a video shows the ending of one such eclipse over -- just seven minutes. The sun is shown in a wavelength of extreme ultraviolet light. These eclipses re-occur about every six months. The Moon blocks SDO's view of the sun on occasion as well. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21461
Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland
NASA Astrophysics Data System (ADS)
Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David
2017-12-01
The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower elevations of the Swiss Plateau. This contrasts with an earlier theory that the anticyclonic outflow should reach as far as ≈ 2400 km from the center of the eclipse, which would have included all of Switzerland during the 2015 eclipse. Thus, measurable effects of penumbral shading on the local wind system could be even found at ≈ 2000 km from the path of the eclipse (that is, Switzerland during the 2015 eclipse), and our results tend to lend support to a newer theory that the anticyclonic cold-air outflow from the center of the eclipse only extends ≈ 1600 km outwards, with cyclonic flow beyond that distance.
Ep7_Total Eclipse over America
2017-08-18
>> Houston, we have a podcast. Welcome to the official podcast of the nasa johnson space center, episode 7: total eclipse over america. I m gary jordan and i ll be your host today. So this is the podcast where we bring in the experts-- nasa scientists, engineers, astronauts-- all to tell you the coolest stuff about nasa. So today we re talking about eclipses with mark matney. He s a space debris scientist here at the nasa johnson space center in houston texas, and he also has degrees in astronomy and space physics, and is an avid eclipse aficionado. We had a great discussion about what an eclipse is, some of the history of eclipses, and some of the science that we ve learned and continue to learn from them. This is an exciting conversation, especially because on august 21, 2017, a total solar eclipse will sweep across america. Mark and i talked about where the eclipse will pass through and how you ll be able to see it. They don t happen very often-- the last time a total solar eclipse happened over the states was back in 1991, and we won t see another until 2024. Anyway, we ll get into all that good stuff during this episode. So with no further delay, let s go light speed and jump right ahead to our talk with dr. Mark matney. Enjoy. [ Music ] >> t minus five seconds and counting. Mark. [ Indistinct radio chatter ] >> houston, we have a podcast. [ Music ] >> all right, well, mark, thank you for coming on the podcast today. Perfect timing, because very soon we re going to have a total solar eclipse that s going to pass over the united states. And so i think this is a good chance for us to sit down and talk about eclipses. And you went above and beyond for this one, mark, because you have a lot of different things. I mean, we re talking a lot of science, we re talking a long and detailed history of eclipses. You know, this is not just a, ooh, look at that. Pretty eclipse. No, nasa s going all out for this-- is that fair to say? >> Well, i think this is-- i mean, eclipses have been part of human history as far back as we can record. People have been fascinated, scared, terrified by eclipses. >> Oh, sure. >> And a lot of important scientific discoveries have been driven by eclipses. I think today-- we re doing some science today, but much of the important science was done in the past. But this kind of links us in some sort of way to those early scientists who were trying to puzzle out the mysteries of the universe by using this amazing sight in the sky. So we have some science that s going on, we have some citizen science that s going on, and there s going to be a whole lot of people traveling to see this eclipse. In fact, i was reading that this eclipse is the first cross continent eclipse across the united states since the interstate system was built. >> Oh, wow. >> And so we might see one of the largest migrations of americans in a short period of time that we ve ever seen. [ Laughter ] because there s going to be a lot of people, perhaps tens of millions of people, traveling to see this eclipse. >> That s very true, and they re all going to be, i mean, closer to that nice, thin line-- we re talking about that path of totality, and we ll get into that really shortly, but you know, let s go and start at the very beginning, right? So we re talking about a total solar eclipse-- this is great-- passing over the united states. But what is that? What is a total solar eclipse? >> So a total eclipse is when the disk of the sun is completely covered by the moon. So the moon s size is maybe slightly larger than the sun, so we can get complete coverage. This particular eclipse is going to be about two and a half minutes of totality. Some eclipses are as high as seven minutes. Some of them are just a few seconds. >> And it s just the way things are aligning? >> Well, it turns out that the moon is actually not on a perfectly circular orbit. It s in a slightly elliptical orbit. So sometimes it s a little closer, and sometimes it s a little farther. >> Oh, i see. >> And so [ indistinct ] a little farther, it doesn t quite cover the surface of the sun. And what you end up with is a narrow ring all around. That s called an annular eclipse. And if the moon s a little larger-- in other words, a little closer, it appears a little larger in the sky, you get a total eclipse. And sometimes we actually have what s called a hybrid eclipse where you get an annular eclipse, but the mountains on the moon make it so it s actually a broken ring in the sky. It s so close, because actually, the mountains peeking up cover part of that sun ring. >> So can you see some of the sun peeking through those alleys, i guess? >> That s right, yes. >> Oh, interesting. >> And then that one, turns out if you could get higher in the altitude, in a balloon or plane, you might see a total eclipse in those kinds. But that s a special kind of eclipse that s actually quite rare. >> Wow. >> And then we also have a partial eclipse, and that s what-- it turns out this eclipse is interesting-- as far as i can tell, anyone in any of the 50 united states-- weather permitting-- should be able to see a partial eclipse, including alaska and hawaii. The partial eclipse is where the disk of the moon covers part of the sun but doesn t actually get to-- it s off to one side. >> Okay. >> And so you-- we re going to get a pretty good partial eclipse here from houston, but i think everybody, like i said, somewhere in the united states, one of the 50 states, should be able to see a partial eclipse. >> That ll be cool. >> So by the way, it s august 21st-- we didn t say the date. >> Yeah, so august 21st. And this will come out august 18th, so this ll be like-- >> oh, okay-- perfect. >> This ll be right next to it, yeah, absolutely. So a partial eclipse-- is there-- how-- is there a way that is very apparent to observe that? Like, will the sky get a little bit darker, or-- >> it depends on the percentage. When it s like about 50%, it s hard to notice. But once you get on to 60, 70, 80, 90%, the sky takes on an unusual color. And in fact, that s one of the things i m going to recommend eclipse observers-- just kind of note how the sky changes color, because it s a very interesting phenomenon. >> Yeah. >> But unless it s really-- in ancient times, people did not even notice a partial eclipse unless it was like 80, 90% because they started to see the sun dim, and they would look up at the sun and see there was no longer a disk in the sky. >> Wow. Okay, so from here in houston, what are we expecting percentage-wise? >> Well, i tried-- it s about somewhere around 70%. I don t know the exact area, but there s several tables. Also, that s another thing, is where you are, where the maximum eclipse changes on the clock. So there are computer resources where you can look and put in your location or your city and find out when the maximum eclipse is and how much. >> Oh, okay. Very cool. That s a lot of good stuff. All right, so that s 70%. We ll be able to see-- >> something like 70, yeah. >> A somewhat noticeable change in the sky, then, at least here from houston. That s really cool. So yeah, you said total versus partial. This is the solar eclipse, though, right? >> Right. >> This is when the moon is going in between the earth and the sun. >> Right. >> Like you said, they re relatively the same size in the sky, just based on distance and size, and so it only blocks off this tiny little strip of shadow that s going to go across the united states. And it goes-- you said it happens quite often, but just i guess at different parts of the world. >> Correct. >> It just so happens that it s going to line up this time going from coast to coast. >> And sometimes it s an annular, and sometimes-- but it turns out we get from three to five eclipses, solar eclipses, every year. >> Oh, okay. >> Which is actually kind of surprising. >> We meaning the earth. >> Someone on the earth, in other words, can see an eclipse. We actually have fewer-- there s another kind of eclipse called a lunar eclipse, and the lunar eclipse is when the earth gets between the moon and the sun. >> Right. >> And so as the moon moves into the shadow, it starts to turn dark, and sometimes has an interesting red color. >> Yeah. >> It turns out there are actually fewer of those than solar eclipses. >> Really? >> But because a whole hemisphere can see it, they re much-- you can see them much more often than solar eclipses. >> Oh, that-- okay. >> Because you re looking up in the sky and seeing the moon eclipse, so anybody on that side of the earth can see it-- weather permitting, of course. >> Wow. Why is it that color, though? >> Well, that s an interesting phenomenon. As you know, the sky is blue from the scattering of particles in the atmosphere-- it scatters the blue light. But the red is transmitted just like we see in a red sunset. Well, the earth s atmosphere actually refracts the red light, and so if you were standing on the moon during a lunar eclipse, the earth, of course, would block the sun, but you would see this red ring around the earth, which is the atmosphere refracting the light of the sun. >> So that s the red ring of the earth refracting off the surface of the moon? >> No, no, it s-- the light is coming through the atmosphere and refracting slightly to your position on the moon. >> Oh. >> So you would see this narrow, narrow red glowing ring around the earth. >> Oh, wow. >> So it s-- but of course, no one s ever seen that. >> Yeah. >> Maybe someday when we have a base on the moon. >> Oh, and so wait-- okay, so this is assuming that-- yeah, you re assuming that you are an observer on the moon. >> You re an astronaut standing on the moon, right. >> I see, and there s a red ring. So what about the lunar eclipse-- the perception from the earth? Doesn t a lunar eclipse-- the moon looks a little orange? >> Yeah, it s orange-ish, sometimes. It actually depends on-- it depends on what s happening in the atmosphere. >> Oh, okay. >> For instance, i saw an eclipse in 1982. We were expecting the red moon, but in fact, the moon looked charcoal gray. And that was right after the el chichon volcano in mexico erupted. And so the dust from the volcano had changed the dust in the atmosphere, so we didn t get much red. >> Oh. >> So it actually-- you never know what you re going to see when you see a lunar eclipse, but they re often red. And again, that s the red light that is bent by the earth s atmosphere and shines on the moon. >> Yeah, and it s reflecting-- interesting. So it s all entirely about perception, then, it s about the-- so you re a person on the earth, and this is what you perceive from the perspective of earth. If you were outside floating millions of miles away just observing it from afar, it would just look like the earth and the moon-- the moon wouldn t look a certain color. >> Well, you could see the color, because it s lit up with that color. Let me-- let s change it around. Let s say you were on the moon looking at the earth during a solar eclipse. And we have some photographs from the iss of previous eclipses, and you actually see a-- you can actually see the dark shadow. You can t see the sharp edge of the shadow, but you see this fuzzy black thing on the surface of the earth. And so you would see-- but instead of being the whole earth swallowed up, you just see this black fuzzy spot moving across the earth from space. >> Interesting. >> So hopefully-- it depends on where the iss will be at the time of the eclipse, but hopefully they ll be able to photograph it from-- they probably will not be in the eclipse path, but they could look down on the earth and see the shadow, hopefully, of the eclipse. >> Yeah, i think-- i think they are predicting that the iss is going to be somewhere over canada but will have a nice view of the states whenever it s actually the solar eclipse. >> It would be very, very coincidental if we happened to fly through the shadow, because the shadow is very narrow. It could happen, but i mean-- >> the odds are against us. >> The odds are against us. So a lunar eclipse happens at the full moon. >> Okay. >> When, of course, the sun is on the other side of the earth and the moon is-- if you re standing on the earth, the sun is behind you, because it s nighttime, and you see the-- and a solar eclipse happens at a new moon, when the moon is-- you can t really see it in the sky, because you re seeing the dark side of the moon. >> So you ll never see a crescent moon in a lunar eclipse? >> No, no, it s definitely a full moon, so as full as it gets. Another thing is lunar and solar eclipses are often paired, because that tilt of the moon s orbit, the point when it crosses the earth-sun orbit plane, is on both sides. And so usually we get an accompanying lunar eclipse with a solar eclipse. And in fact, the accompanying lunar eclipse for this eclipse is on august 7th, and will be visible from europe, africa, asia, and australia. >> Oh, okay. Well, there you go. >> Or was visible, i guess. >> August 7th, yeah. I guess-- aw. >> You want me to say that again? [ Laughter ] >> if we could go back in time okay, so i mean, that s kind of from the perspective of earth, right? We ve got solar eclipses, and when the moon is in between us here on earth and the sun, and then the opposite for the lunar eclipse. In general, if you had to give like a general overview, where else in the universe do eclipses happen? >> Everywhere. >> How about that. >> Anywhere where you have bodies moving around, one will often eclipse the view of another. But usually, what you-- you won t get to see the amazing sight on earth, because it s very rare that the object eclipsing looks in the sky the same size as the sun. >> Oh. >> So we know, for instance, there are eclipses caused by jupiter s moons as it orbits jupiter, and you can see the shadow on the surface of jupiter-- or the clouds, actually, of jupiter. >> Right. >> And in fact, there was a fellow named ole r mer-- if i m pronouncing correctly-- back in the 1600s that first detected the finite speed of light by looking at the timing of those eclipses on jupiter. So that s one of those science things that eclipses have allowed us to do. >> That s amazing-- just by looking at shadows across the universe, you can get all this crazy science. >> And sometimes-- i know we ve done occultations of stars, where a planet moves between us and the starlight of a star, and by measuring that star, we ve seen, like-- we ve found the rings of uranus, as the star would twinkle or would blink out just before uranus crossed the star. >> Oh. >> So you can actually do things like look for difficult to see rings, or also, as the light comes through the atmosphere, sometimes you can see the absorption of different chemicals in the atmosphere of the planet. >> And then understand the composition of the planet itself. >> Exactly. >> That s amazing. >> Let me add one thing we hadn t talked about. >> Yeah, sure. >> I found an interesting statistic, and it said that if you picked a random spot on the earth and you just stayed right there, you would see a solar eclipse about once every 375 years, on average. >> Okay, so you should move a little bit. >> Yeah, well-- you re not following. [ Laughter ] so during a normal person s long lifetime-- say, 70 years-- we re looking at a 20-25% chance that you would sometime in your lifetime see an eclipse, a total eclipse of the sun. So yes, it s rare, but not totally unknown. >> Yeah. >> So i just know that one never comes by my house, so i have to go chase it down. [ Laughter ] >> well, that s the great thing, is we have nasa-- we folks at nasa are actually looking at this stuff and making predictions. We know exactly where it s going to be on august 21st. >> That s correct, that s right. >> Yeah, so that kind of will help you see it a little bit, too. [ Laughter ] i think one of my favorites, though, when it comes to eclipses across the universe, is kepler, right? So if you think about-- you said occultations as one of them. That s when something passes in front of a star and changes the light that we re receiving. >> Right. >> That s how we are detecting planets outside of our solar system, correct? >> That s correct, yeah. The kepler mission is looking at a large group of stars and monitoring them constantly. And it has very, very sensitive instruments, so they can look at very small dips in the light as a planet-- a previously unknown planet-- transits the face of that star. And we ve been able-- and when they see them repeating, they can work out the relative sizes of the planets and their period, and work out where they are in orbit around that star. And we ve seen-- i don t know what the count is-- a thousand? >> Yeah, yeah. We keep finding more and more. >> There s a bunch of them. So this is actually one of the most interesting discoveries, i think, astronomers have made in the last several years, is that our galaxy is full of stars with planets. And it s pretty exciting-- it s kind of star trek stuff. >> It is! Especially just recently, the discovery of the trappist-1 system. >> Yes, indeed. >> And those-- we re talking about earth-like planets, and some of which are in what we like to call the goldilocks zone, right? >> That s right. >> And that s-- you know, water doesn t freeze, it doesn t-- >> that s right, it s not too hot, not too cold. >> Not too cold, right, and liquid water can exist. And that s conditions for life, and it s very exciting. >> It is. >> That s what we re looking for, right-- life outside of the universe. >> And i ll also mention we also have transits here, just like what we see with kepler, of the planets mercury and venus, which are inside the orbit of earth. And we recently had a venus transit visible from the us. >> Yeah, 2012, right?? >> That s right, i think it was 2012. And i ve also seen mercury transits as well. Those have an interesting history, because scientists in the 18th century were trying-- they d figured out the relative distance to the different planets, but they didn t know an absolute distance. And they were actually going to use different observers on the earth to measure the transit of venus to try and get an absolute scale. And so that was the cutting edge science in the 18th century. >> Wow. [ Laughter ] >> but so that s another point where transits and eclipses have been an important part of the history of science. >> Amazing. I mean, that s kind of a big theme here, right, especially for eclipses, is the science that we can get from observing these phenomena. >> That s right. >> So i mean, from here on the ground, what are some of the things that we can learn-- and i guess in the instance of a solar eclipse, but you know, eclipses in general-- what are some of the things that we can learn from studying these? >> Well, let s kind of go through some of the discoveries that were made with eclipses. >> Sure. >> So from ecl-- we all look up at the sun and see a bright disk. That s called the photosphere. It s very, very bright, and we ll talk about that a little bit. That s the part we re familiar with. It s about 10,000 degrees fahrenheit-- it s nice and hot. But during eclipses, astronomers notice some red layer-- a thin red layer around the sun. And that s known as the chromosphere. And that was discovered by eclipses, and it turns out chromosphere is due to emissions from atomic hydrogen in the sun s atmosphere. >> Okay. >> And so if you-- the soho spacecraft sometimes show-- i mean-- the soho spacecraft show-- is constantly monitoring the sun. And one of its instruments is a hydrogen alpha filter, and you can see what that chromosphere looks like. It s a very thin layer of the sun, again, that we discovered by looking at eclipses. The next section-- oh, by the way, some scientists-- in 1868, there was a new instrument that was developed called the spectroscope. And the spectroscope splits light into its component colors. And they had discovered that there were specific lines, almost like a fingerprint, that defined-- that were unique to each chemical, to each chemical element. >> Okay. >> And so there were-- some scientists were very excited to use the spectroscope to look at the eclipse. And in the chromosphere, they saw some lines from an element that they had never seen before. And they couldn t figure out what it was. So one of the scientists named it after the greek word for the sun-- helios. They named it helium. >> Oh! [ Laughter ] >> and it was several decades before helium was finally isolated and studied on the earth, but it was first discovered in the sun s atmosphere. >> How about that. That s-- is it called spectroscopy? >> Spectroscopy, yeah. They use a spectroscope for spectroscopy. >> Yeah, yeah, and studying the-- i guess there s little gaps in the light, and they look like gaps in the-- >> sometimes there s bright lines, sometimes there s dark lines. >> Okay. >> It depends on the situation. But the point is these lines are like a fingerprint. And that s how we understand the components of stars millions of lightyears away. We can-- >> so you said photosphere, and then you discovered the chromosphere, right? >> Chromosphere. >> So what s the difference between those? >> Well, the chromosphere is actually a very thin layer-- it s actually-- starts as cooler than the photosphere, and then it heats up again. >> Ooh. >> Solar astronomers are always trying to figure out the exact details, but what gets interesting is when you look up at the eclipse when it s total eclipse, there s what looks like a halo, or a garland, or a crown around it, and that s called the corona. So the chromosphere s a transition between the hot photosphere and the much hotter corona. And the corona is up to-- it s more than 100 times hotter than the photosphere. It s very, very hot. >> Wow. >> And that s, like i said, this halo that you see around the sun. That is actually very important-- to monitor that part of the sun-- in predicting solar storms. >> Oh. >> And solar storms affect things like satellites and our communication and our power systems. And so there are solar astronomers who are constantly monitoring the sun looking for these types of solar storms. But the corona was discovered by looking at eclipses. >> Wow. >> And in fact, it s so important that we ve launched satellites that create artificial eclipses. They put a little obstacle in the way so that we can monitor the chromosphere-- i m sorry, the corona-- at all times. >> So i guess, are they hard to predict, solar storms? >> They re getting better at it. The big thing is they need to be able to see on the far side of the sun. So we ve actually launched a couple of spacecraft called stereo, and they re now on the far side of the sun-- not totally-- they re part way around the earth s orbit, but they can see the other parts of the sun, and we can see storms developing as the sun rotates around. The sun actually rotates, also. >> Wow. So what happens if-- say there s an instance, if there s a solar storm, and it does disrupt satellite communications coverage, whatever it is. What can we expect if that were to happen? Are you talking about cell phones? Are you talking about-- what would happen here on earth? >> Well, one of the worst things we re worried about is a really, really big solar storm which could knock out power grids in certain areas. >> Wow. >> And so you could actually have power outages. >> That s heavy. >> But usually satellites, they put them in safe mode. But it can damage satellites. And as you know, telecommunications is a multi-million dollar business. >> Right. >> So there s a lot of interest in solar storms. >> But they have a safe mode to-- >> yep, that s right. >> That s amazing, okay. So they just put it in there if they see something bad coming. >> It s still dangerous, but they can put it in a safer mode. [ Laughter ] one other thing that was observed during eclipses is there s sometimes these little arcs-- they re not little-- they re bigger than the earth, but these little arcs of plasma jutting off the sun. And you ve probably seen pictures of them. They look like arches or flames coming off the sun. >> Yeah. >> They re called prominences, and they re plasma in the strong magnetic field of the sun moving through the atmosphere. And they re really quite spectacular. >> Yeah, i ve seen some images and videos of them-- they really are. It s amazing. >> Again, those were discovered by eclipses. And i ll tell you another set of experiments. It turned out that by the mid 1800s, scientists had started working out the mathematics of planets, and had noticed when a planet gets perturbed and sort of gets nudged a little bit, they said, well, that must mean another planet that s tugging on it with its gravity. And that s how neptune was discovered. They saw the perturbation in the motion of uranus. And they noticed that there was a slight perturbation in the orbit of mercury. So scientists began speculating that that was due to another planet even closer in to the sun, which they nicknamed vulcan. So what happened was they then sent-- in the 1860s and 1870s, scientists deployed around the world for some eclipses to try and look for vulcan. And they didn t find anything, which puzzled them. They looked at multiple eclipses, multiple times-- no vulcan. But in 1915, albert einstein began publishing-- began communicating his work on the general theory of relativity. And einstein had postulated that gravity is caused by the bending of spacetime. And one of his-- one of his-- one of the predictions of his theory was that you would see this perturbation of the orbit of mercury. So he explained that with his general theory of relativity. But another prediction was that this bending of spacetime would actually bend light. So he showed why there wasn t a vulcan, but then he said, if you look at an eclipse of the sun, and look at the light of stars very, very close to the disk of the sun, you should be able to see the light bent in a way that it displaces the apparent position of the star. In 1919, arthur eddington, the british astronomer, deployed for an eclipse out on an island in the atlantic ocean. And they actually measured this slight change in the apparent position of the stars. And it was a huge event, because when einstein postulated his theory of general relativity, it was crazy. It was overturning newton. And here they actually-- his prediction turned true, and that s sort of what propelled einstein into his fame, was that discovery. So that was perhaps the most important scientific discovery ever during an eclipse, was showing how the light of stars is bent by the presence of the mass of the sun. >> And that-- so it was just the mass of the sun. >> That's right. >> And there was no vulcan. >> No vulcan. [ Laughter ] although, there are two eclipse stories related, sort of quasi-related to the same thing there. >> But everything comes together, right? That s why we re-- like, going back to the general theme here, a lot of science to learn from eclipses. >> A lot of science. Let me talk about a couple things that are going on with the science this time around. >> Okay. >> We have one group that s going to have a series of telescopic cameras set up along the eclipse path. And they re going to try and take video of the inner corona, which is very difficult to see except during the eclipse. And the idea is one camera will record a little segment of the inner corona, and the next camera will record the next segment, and they can stitch them together and have a rather extended video of the corona. >> Oh. >> So for scientists who study the interaction of the corona. Another one is some other scientists are going to be studying the polarization. Some light is polarized in different directions that tells us information about the magnetic fields and other things. But they re going to be looking at the spectrum and the polarization of the-- again, the inner corona, which is difficult to measure in other ways, because it s difficult to get so close-- to measure such dim phenomena so close to the disk of the sun. >> And this is-- going back, i m sorry-- you might ve already addressed this, but these are nasa telescopes, or these are others? >> It s a variety of-- nasa s cooperating on some of these, and some of them are universities, and some of them are amateur. So it s actually a whole team of different kinds of people. >> Wow, okay. >> Nasa s helping to coordinate some of these. >> Yeah, all working together, okay. Cool. >> We ve got another group that are actually going to repeat the general theory of relativity experiment with some more modern digital equipment with more sensitive cameras to look for some very dim stars, again, to try and fine tune those measurements to see how close einstein got to the prediction. >> Wow. >> And then, we also have some radio enthusiasts who are-- during the daylight, the sun ionizes gas in the upper atmosphere and we have an ionosphere. And it, both enhances and sometimes interferes with radio communications. So these scientists are going to look at how the ionosphere changes as the sun gets eclipsed, and the sunlight starts to drop off, and then go back up again. So, they re going to observe how the ionosphere changes. >> Interesting. >> So lots of interesting experiments. And of course-- and many of these are by these amatuer citizen scientists, which is kind of a fun thing, too. >> Yeah, absolutely. So, we re measuring the earth s atmosphere, we re measuring a lot of about the sun. >> Mm-hmm. >> I know out of here, the wb-57, those high altitude planes, they re going to be flying above most of the atmosphere, about 90% of it, and they re going to take a look at the sun and study the sun s corona. >> Yeah, a bit. >> And measure how energy goes through the sun s atmosphere, but then also take a look at mercury. >> Oh, that s right. >> Yeah. >> I wanted to tell you, when you see the eclipse you will see a number of planets visible in the sky. >> Oh. >> So, if you get a chance, you ll see stars. Venus is off to the west, mars is even closer. It s-- venus is about 35 degrees to the west, mars is about 10 degrees to the west, mercury s about 10 degrees to the east, and jupiter s way over on the other side of the sky at 60 degrees to the east. And the star, regulus, which is a bright star, will be about 5 degrees to the east of the sun, so you can see if you can see that. >> And this will happen during totality, right? >> During totality, because the stars will come out. >> Wow, amazing. So you ll be able to see all of these, and you re talking about from the perspective if you re looking up and-- the sun-- >> right. >> Once it goes to totality-- and we can get to safety in a minute, but i do know, once it gets to totality you can take off your glasses for about that two minutes, right? >> That s right. Yeah. >> And then, that s when you ll be able to see all those different parts. >> Yes. >> That s really cool. >> Yeah, that s it. Let s talk a little about the history, because there s some interesting history, of course. >> Sure, yeah. >> The most famous story, which is probably legendary, but the story about a chinese astronomer, or possibly two chinese astronomers, named xi he, who was hired by the king. He was the high astronomer, the head astronomer. >> Mm-hmm. >> To make predictions about primarily with astrology to make sure that nothing bad was going to happen to the king. Well, apparently there was a solar eclipse he did not predict. >> Oh. >> And apparently, he had had a little too much to drink and he wasn t on the job when the time came. >> Oh. >> And the chinese actually thought, and a lot of ancient cultures thought, that something bad was happening. The chinese thought a dragon was swallowing the sun, and they would bang on pots and pans to scare the dragon away. And that s actually still practiced in many parts of the world, the bang on pots and pans. >> Yeah, they don t know the-- like, the science behind this total solar eclipse, so they re-- >> that s right. >> Yeah, right, go ahead. >> I think part of this tradition is passed on. >> Yeah, tradition, yeah. >> Well, unfortunately, this poor chinese astronomer that didn t do his job, he got executed. >> Oh. >> So, fortunately, we don t hold our scientists to this same level there. >> I m very thankful of that. >> Yes. >> I m sure we are. Yeah. >> But, lots of ancient people were scared of eclipses because they thought they-- i mean, it s a very amazing thing to happen in the sky and they were worried about it. It s warning of some tragedy. >> Mm-hmm. >> So early scientists in multiple cultures-- the mayans, the babylonians, the chinese-- studied eclipses and tried to understand and predict when they would occur. It turned out there was a greek by the name of thales who predicted an eclipse in 585 b.c. And this was recorded and the greek historian, herodotus, there was a big battle going on between two countries. There were the medes and the lydians, in what s now turkey. >> Hmm. >> And there was a war going on and they had lined up for battle. And they were about to do battle and suddenly there was a solar eclipse. >> Oh. >> Os, needless to say, the two generals met in the middle of the field and said, maybe we ought not to fight today. And so they drew up a peace treaty and those two countries never fought again. So just a-- >> all right. So an example of solar eclipse saving lives. >> That s right. Indeed, indeed. And so, but what happened was, a lot of these-- as people began to learn to write things down-- the babylonians on clay tablets, and the chinese court records, and the greek historians-- people began to pull together this information to understand how to predict eclipses and understand how the cycles occur. And that helped the-- that sort of spawned the whole science of astronomy. How do you-- how d the mathematics occur on these objects. >> Hmm. >> And one of the things they discovered was called the saros cycle, and this actually-- edmond halley named it the saros cycle. They didn t-- they had different names in ancient times. But what they discovered was that an eclipse will recur approximately every 6,585.3 days, which is 18 years, 11 days, and 8 hours. So it turns out that the eclipse we re about to have is part of a saros cycle that occurred-- the last one was in europe in august 11, 1999, and the next one will be in asia and the pacific one september 2nd, 2035. And it looks almost exactly the same except shifted by 8 hours around the other, 123 degrees in longitude. >> Oh. >> So these repeating cycles were how the ancients were able to predict eclipses. >> How about that. Wow. >> And it s just all the different cycles of the sun and the moon add up to this repeating cycle of eclipses. >> Interesting. >> Another thing that science that was done in ancient times was the greeks looked up at a lunar eclipse-- when we re talking about how the moon moves into the shadow of the earth. And what they discovered is when the moon is near the horizon and eclipsed the shadow of the earth is not a line, if the earth were flat. It s still round. So the greeks realized that the earth must be a sphere based on-- based on the shadow of the earth on the moon under an eclipse. >> Oh, wow. >> So that was the first scientific discovery that the earth was indeed a sphere. >> Back in the mayan-- wow, okay. >> Back in the greek times, that was. >> Oh, that was greek times. >> Yeah, it was. >> Okay, okay. Interesting. Wow! >> There s a lot of interesting history associated with eclipses. >> Absolutely. >> That-- so we ve learned a lot through history. I mean, we re talking about, yeah, the shape of the earth. We re talking about-- it stopped a battle. >> Nature of the sun, yeah. >> The nature of the sun. >> Yup. The earliest eclipse that was-- that, as far as we know, was recorded, that chinese eclipse was probably about 2000 b.c. And there was maybe the one in 2137 b.c. But, the one we re sure about was there was an eclipse recorded in the town of ugerit, or ugarit, on-- in what is now, i believe, syria. >> Hmm. >> It was may 3rd, 1375 b.c. It was recorded that the sun grew dark. >> Oh. >> So there s a number of those recorded in ancient texts and tablets. >> Okay. So, wait, so the chinese one was not recorded? It was just-- >> well, just know it s actually probably semi legendary. We re not sure. >> Got it, okay. >> But this is the one we know for sure we can date the eclipse. >> Yeah. >> And actually-- oh, that was what i was going to tell you, is we have a number of these dated eclipses-- eclipse of thales, we talked about. >> Mm-hmm. >> Eclipse in ugarit. And what happens if you just run-- if you just take your computer models and putting gravity and everything and just run the sun and moon backwards in time, it turns out the eclipse is in the wrong place. So, from that, what we ve learned is that the earth rotation very, very gradually starting to slow down. >> Hmm. >> Starting to, it s been a long time. It s mainly due to the tidal effects of the moon. It s actually dragging the earth slightly down. So it s actually in those several thousand years the earth has slowed down a little bit, a fraction of an-- a fraction of a rotation. >> Oh. >> But, keep in mind, we re talking about-- we re talking about 800,000 rotations or something like that since those times. And so, we ve-- the earth s rotation has changed just a little bit in those times. But, that s another discovery we ve made that you need that long time scale to see this very gradual slowing down of the earth s rotation. >> So, over that long period of time, you said a fraction of a day, is it like an hour? Couple of hours? >> A couple of hours i think, yeah. >> Wow. >> But, and recently, some scientists have gone back and looked at chinese records, and again, been able to fine tune that. So that s a-- that s using ancient records to fine tune some modern science, so. >> All right. Cool. Okay, so let s go to this eclipse coming up on the 21st. >> All right, do you want to talk about safety or what to expect? >> All of it. Let s do it. >> All right. All right, let s talk about-- >> however you want to start. >> Let s talk about safety a little bit. >> Okay, safety. >> Okay, everybody has heard, don t look at an eclipse, you ll go blind, right? We ve all heard that. >> Yeah. >> And i remember as a boy, puzzling and puzzling over that. What is it about an eclipse that makes it so dangerous? >> Mm-hmm. >> Well, it turns out, you don t want to stare at the sun ever. It s bad for your eyes. Your eyes are not designed to be-- handle direct sunlight for any length of time. >> I feel like it s a good general rule. >> It s a good general rule. And when our kids go outside, we say, now, kids, don t look at the sun, you ll go blind. It s true, you don t want them looking at the sun. >> Yeah, yeah. >> The reason why-- the eclipse is not any different. It s just you're more likely to stare at the sun during an eclipse because you want to see what s happening. >> Oh. >> So, this really-- there s people that think there is some sort of mysterious rays coming off the sun. The only thing is just the sun like we're normally familiar with, you just don t want to stare at it. Okay. >> Okay. >> All right, so that s the first thing. So any time the bright disk, that photosphere of the sun, any time the bright disk is visible, even just a little sliver, you really don t want to look at the sun with your unaided eye. It s dangerous. You want to keep your eye for a long -- your eyes for a long time, right? >> Yeah, i would hope so. >> But we have special-- nowadays, we have special eclipse glasses that you can get in museums and different places. >> Yeah. >> That are-- it s perfectly safe to put those on and look. By the way, don t do what i did. I was checking my eclipse glasses the other day. I looked up at the sun, i said, yeah. And i pulled the eclipse glasses off before i stopped looking at the sun, so then i had a bright blob. Just for a second, i had a bright blob in my eyes for a little while. So be careful with them. They re often made of aluminized mylar and they look-- they re kind of silvery. >> Okay. >> And also, don t put any pinholes or anything in them. That-- you want to-- you want to keep them like they are. >> Keep them-- so what are the special eclipse glasses? They have-- they re just like really intense sunglasses? Is that kind of what i think? >> Yeah, it s kind of super sunglasses. >> Okay. >> Which here s the thing, you want to avoid any homemade glasses. >> Oh. >> Don t put on multiple sunglasses or something. Don t use smoked glass, or photographic film, or neutral density filters, or anything like that. You re not sure there s enough there to block the light to make it safe. >> Okay. >> So stick with the-- with the-- with the kind that you can get. They re not very expensive and you can-- you can get them online and other places. >> Okay. >> One exception is number 14 welder s glass is safe, because that s designed also for very bright. Like the welders use. >> Oh, okay. >> All right, so that s okay. And the-- and even more important part is don t look at the sun-- don t look at the bright disk of the sun with any instruments, with telescopes or binoculars without proper filters on them, because those things actually magnify the strength of the sun. >> Ooh. They ll your-- >> and just like when i was a boy, i used to use the magnifying glass on the ants, you know? That could do that to your eye, so you need to be very, very careful. >> Yeah. >> So i would avoid-- i would avoid those, unless you have properly designed equipment. Now, don t like take your binoculars and put your sunglasses at the eyepiece, because it s so intense it could burn right through your special glasses. So there s-- be very, very careful unless you know what you re doing with binoculars and telescopes. Don t even use those. >> Right, and that s, again, that s only a two minute eclipse. >> It s only a two and a half minute at the most. >> Yeah. >> So, that s-- that little window of time during totality, after the moon has completely covered the disk of the sun-- >> mm-hmm. >> --That is the only time you can look safely without glasses. >> Okay. >> And it-- and the brightness of the-- of the eclipsed sun and the corona-- it s like the brightness of a full moon, so there s no dangerous rays. You just don t want to be staring at the sun when the sun re-emerges. So, okay. So, just good rules of thumb. >> So, when you re looking at it-- say you have the glasses on. >> Mm-hmm. >> Is there a specific amount of time that we can say is safe to have the glasses on and be looking at the moon about to cover the sun? >> Well, what s going to happen-- >> you don t want to stare at it for hours. >> No, no. Well, what you re probably looking for is as the sun-- as the very last piece of the sun starts to disappear, you ll see actually little dots that form, and those are called baily s beads. >> Hmm. >> And it s an interesting phenomena of what-- it has to do with the different brightnesses on the edge of the sun, and also the mountains on the moon. >> Mm-hmm. >> When those disappear, that s the time you can take your glasses off and-- so you don t want to be-- because that s actually tiny little pieces of the photosphere of the sun. >> Right. >> Oh, there s the other way-- if you don t have the glasses, there s some other ways you can look at-- and it s-- by the way, if you re seeing a partial eclipse, you just want to use the glasses. You don t want to look at the sun directly. >> Will you be able to see the moon partially covering the sun with the glasses? >> Yes, it ll look like a cookie with a bite taken out of it. >> How about that. That s cool. >> That s pretty cool. One method you probably heard of is a pinhole projector, and it s very easy to make. You need some opaque material, like cardboard, and you make a pinhole, and then you project onto like a white sheet of paper an image of the sun. A pinhole acts like a lens. And i think it s important, don t actually look through the pinhole with your eye. It s not intended to look inside. It s a projector. It s a little projector. >> You look at the paper. >> You look at the paper and you ll see a little image of the sun with that. And you can see the progress of the eclipse. Another method i used to do when i was in high school, is if you take a very small mirror or a large mirror with a piece of paper with a circular hole cut out, and you can reflect the image on the sun-- of the sun onto a shaded wall, and you can watch the eclipse that way. >> Oh. >> And i tell the story, i was in-- i was in history class when there was an eclipse of the sun when i was in high school, and i asked the teacher, i said, is it okay if i put this in the window and we can watch the eclipse during class time? The teacher said, okay. So we put it in the window and it put an image of the sun during the eclipse up on the ceiling. We just went along with class and you could watch the progress of the eclipse. >> All right. >> So those are-- so the mirror, there s the projector, or your glasses are the three ways to watch the eclipse. And then, the only time, again, to watch the sun-- watch the eclipse unaided is during totality, that little short period of time. >> Okay, and totality is by far the most narrow section of the u.s. >> That s right. >> So you really have to be in that spot and we-- you can go to the website eclipse2017.nasa.gov and find out exactly where that s going to be passing through. >> That s right. And it starts-- i think i started this, but it comes on the west coast. >> Oh, right. >> It arrives in oregon, it goes across oregon, idaho, wyoming, nebraska, missouri, kentucky, tennessee, south carolina. It s a nice path that goes right through the middle of the united states. >> All right. >> And it s a relatively narrow-- relatively narrow path and, of course, it s actually moving. It s a round shadow that s moving across the surface of the earth. >> Mm-hmm. >> And if you re actually anywhere in that band you will see a total eclipse. The closer you are to the center, the longer it will last. Up to a max of two and a half minutes. >> All right. >> The other thing though is the weather. >> Oh, yeah. >> Yeah. So, it turns out that what eclipse aficionados like to do is they ll look at the historical weather at that point in the u.s. At that time of year and it turns out some of the areas are more likely to have-- to have clouds than others. So it turns out, eastern oregon is a really good place. They tend to have nice clear weather at that time of year. >> Okay. >> Wyoming, nebraska, missouri, all the way to tennessee, tend to be pretty cloud free at that time of year. And then, there s another-- as it goes over the appalachians, they tend to be cloudier. And then the little section of south carolina will also have, hopefully, less clouds than other places. But again, you never know. It;s the weather. >> Yeah. Oh, yeah. >> All you can do is roll the dice and figure-- and hope that you re lucky, because if-- there have been many eclipses that people have gone-- scientists have gone specific trips to see and it s been interfered-- the weather interferes. >> Yeah, that s just-- yeah, poor luck. But that s based on data of this day over time at this place. >> That s right. How often has it been cloudy on this day at this place. >> Yeah, and so you re really rolling the dice, but playing the odds. But those based on statistical data are better off than others. >> Right. >> Very cool. Is there any particular spot during the path of totality that may be would be better? Like, for example, is it better to go to like a state park and be away from city lights or anything? Or is being in the city just as fine? >> It s just as fine. >> Okay. >> It doesn t get totality dark during an eclipse. >> Okay. >> It gets dark, but i don t think that s-- i don t think that part of it is particularly important. >> Okay. >> The main thing, it s actually much more practical, you want to be somewhere where you re close to restrooms. >> Okay. >> The eclipse itself lasts three hours and there may be a lot of traffic, so the ability to get around maybe limited. >> Ooh, yeah. >> So, just very practical things-- are you close to food> are you close to supplies? Things like that. >> Mm-hmm. >> So let s talk a little bit about what to expect. >> Yeah. >> As i said, there may be a lot of heavy traffic so you want to get to where you want to go early. >> Okay. >> And bring things that you re going to need-- your glasses-- your eclipse glasses, a camera if you re going to bring a camera, chairs, sunscreen, water, food, toilet paper, anything that you think you might need while you re on the road. >> Wow, yeah. >> I once had to evacuate here in houston during hurricane rita, and it s maybe a little bit like that and may be stuck on the road with heavy traffic if you re not careful. >> Wow! Are you talking about people stopping on the highway just to-- >> no, just talking about large numbers of people moving to see the eclipse. >> To see-- to be in the path of totality. >> If you re traveling-- for instance, i m going to be in the carolinas. >> Mm-hmm. >> And every eclipse watched on the atlantic coast is going to be headed for south carolina. >> Yeah. >> So the interstates are going to be pretty full. >> Wow. >> So just allow plenty of time. The total eclipse-- i mean, the entire eclipse lasts about three hours, so it s about an hour and a half leading up to totality and an hour and a half until the moon completely uncovers the sun. >> Okay, okay. >> But again, i-- and one of the things i thought was interesting was the eclipse veterans gave some very sage advice. They said, if this is your first eclipse, don t try to photograph it. Don t try to take telephotos of it. You ll be so worried about your camera, you ll miss the spectacular nature of the eclipse. So i think that s good advice. And so, if you re a veteran eclipse guy and you want to-- and you want to make photographs of things, that s fine. >> Yeah. >> Let the professionals do it. Just enjoy the experience. >> Yeah. >> I think that s a good idea. >> I m sure there s going to be plenty of imagery coming out from all over the u.s. >> Oh, there will. I bet there s going to be lots of selfies with people with the moon and the eclipsed sun behind them. But that s fine. >> Do you think selfies will come out, at least during totality? Maybe when it s dark enough it ll be okay. >> You may need a flash on yourself. >> Oh, okay. A flash on yourself, okay. >> A couple of suggestions to do, so a little citizen science you can do. >> Okay. >> One of them is, notice how the sky colors change. >> Hmm. >> They re very unusual colors that you don t normally see, so that s an interesting thing. Also, when there s a tree casting shadows, there are lots of little tiny holes between the leaves that act like pinhole cameras. So sometimes you can see little crescent suns during the partial eclipse on the ground. So you can look for that. It s kind of fun to take pictures of that. >> Oh, that s really cool. >> Does the temperature change? Does it feel cooler during the eclipse? Does the wind pick up or calm down during the eclipse? Just some kind of scientific things you can observe. >> Just is there-- are there things that we know of that-- what atmospheric changes in the earth? Like-- >> it will-- it does change the heating of the earth from the sun. >> Oh, it does? >> Yeah, and you will feel colder. And people actually have noticed it feels considerably cooler, which will be pleasant probably on august 21st, especially in south carolina. So just things to notice. Again, the other thing is as totality approaches observers have sometimes noticed what s called shadow bands, and these are alternating light and dark bands that quickly move across the ground, especially where you have light colored surfaces. >> Hmm. >> They occur just before totality and after totality. They re-- actually, we don t fully understand how they work. They probably have something to do with the atmosphere, the same reason the stars twinkle. But if you can see them-- sometimes they re seen, and sometimes they re not. Something to look for. >> Hmm. >> Another thing to observe is right a s the totality is beginning, there s just a tiny little sliver of the sun, and it looks very much like a diamond ring in the sky, and it s called the diamond ring effect. And that s definitely when the diamond ring occurs at the end of the eclipse. So the baily s beads-- that s the time to put your sunglasses-- your special eclipse glasses back on. >> Oh, okay. >> But, as the eclipse is about to happen you ll see the diamond ring effect, and then the diamond will go away, the baily s beads will go away, and then you ll see the full totality. And again, you can take your eclipse glasses off during totality, but be ready to put them back on. >> Yeah. >> And another thing you can look around is take a moment-- while you re enjoying the eclipse, take a moment to observe people around you. See how people react to it. >> Yeah. >> The expressions on their face. Another thing, is sometimes animals behave strangely during eclipses. >> Chicken shave been known to roost, birds behave differently. Even wasps and bees sometimes behave strangely. >> Wow. >> Cows, insect-- dogs, insects, anything you can think of that s close by, just for fun, observe and see if you notice anything. >> It is a strange and rare phenomenon to them. >> It is strange and they re confused by it. >> Yeah, yeah. >> And by the way, after totality, the whole sequence will reverse it. So you have all those sequence of things, the partial eclipse, the diamond ring, the baily s beads. >> Mm-hmm. >> And that will reverse as the moon uncovers the sun. >> Wow. Amazing. >> So if you miss this eclipse, or the weather doesn t cooperate, we have another chance in 7 years from now. >> All right. >> In 2024, there will be an eclipse that will move through texas and up through new england, and it will be another total eclipse of the sun. So we have two in a very short period of time, but it s been a long time since we ve had an eclipse. >> All right, yeah. >> So, we re due. We re due. We get two-- so, two chances, and my wife said, well, why don t we just go to the one in 7 years? And i said, well, we don t know what our lives are going to be like in 7 years. >> Yeah. >> So i said, carpe eclipsum. Seize the eclipse. So this is your chance. >> Fantastic. Yeah, no, i mean, i m-- if anything, why not both, right? >> Well, why not? We can try both. I may become an eclipse junkie, i guess. >> Yeah, yeah. No, i mean, it s so cool. And the fact that we re able to predict them, and we can go and-- we have a bunch of best practices on how you can observe the eclipse, the best that you can possibly do it. >> Yeah. >> I know, going back, just one quick thing. Well, you said early. Arrive to your destination early. >> Yeah, if you can, yes. >> How early are you-- are you talking about like days, or day, or hours? >> Well, it s difficult to arrive days early now, because virtually every hotel is booked along the eclipse path. >> Oh. >> We re going to be some distance away from the eclipse, so we re going to have to start early. The eclipse is maximum in south carolina about 2:30, so i figure if we get off at 8:00 in the morning that gives us about 6 hours to get there. And that may or may not be enough time. We ll just have to do the best we can. That was just where we-- i m staying with relatives, so that s-- >> okay. >> But, a lot of people i know have their hotel rooms booked in the-- at-- underneath the eclipse, so they can just step outside and watch it. >> Yeah, that s the-- oh, i wish i planned ahead there. That would ve been nice just get a nice, like, resort or something and just lay by the pool, watch the eclipse go by. That d be pretty cool. >> Actually, what i had originally planned-- i ve been planning for this eclipse since i was in graduate school many, many years ago. >> Wow. >> And i noticed that it would actually go through grand teton national park. And i thought, that s what i ll do. I ll go to the grand tetons and see the eclipse. But it turns out, the weather s not so-- it s a higher probability of clouds there, so i backed away from that. >> Wow. >> Good luck to those of you that-- the tetons. But that would be a beautiful photograph, actually, to see the eclipse over the grand tetons. >> Oh, absolutely. Let s keep our fingers crossed for that good weather all across the board. >> Hopefully it ll be clear all across the united states. >> Yeah. >> And everybody will be able to enjoy the eclipse. >> That would be fantastic. Well, i think that s all the time we have, unless you have one more story. But-- anything? >> I have other stories, but-- there are lots of good stories. >> Well, hey, yeah. Actually, we have a website and if you stay tuned until after the music here, we ll tell you where you can go and check out some more info on the eclipse and learn a little bit more about the history, the science, and all kinds of cool stuff, including the citizen science that mark was talking about here and how you can-- what you can do to observe some phenomena about this eclipse. So stay tuned for after the music there. Mark, thank you so much for coming on the podcast today. >> You re welcome. >> I feel like that was-- i m not going to say everything about the eclipse, because like you said, there s definitely more. But that s the-- i feel like i have a good understanding about eclipses and the science that goes behind it. So there s a lot about eclipses and a lot that we can learn just from shadows, and it s just amazing that there s so much behind it. So thanks for coming on the podcast and talking all about it. And everyone, i hope you enjoy the eclipse on the august 21st. So thanks again, mark. >> Thank you. [ Music ] >> houston, go ahead. >> I m on the space shuttle. >> Roger, zero-g and i feel fine. >> Shuttle has cleared the tower. >> We came in peace for all mankind. >> It s actually a huge honor to break the record like this. >> Not because they are easy, but because they are hard. >> Houston, welcome to space. >> Hey, thanks for sticking around. So, once again, this monday, august 21st, a total solar eclipse will sweep across america. If you want to know all the information that we have, if this podcast was not enough for you, go to eclipse2017.nasa.gov. You can find out all the science of eclipses, even more than we talked about with mark matney today, where it will be, and then how to safely view it from the ground. Just be sure to make sure that you check the glasses and make sure that they are nasa certified. After talking with mark matney after the show, we found out that the shadow itself is going to be 68 miles wide, and then that shadow travels faster than 1,000 miles per hour. So, he went back and he was trying to find the width of the shadow. It s actually a little bit smaller than you would imagine, but how fast it travels-- i mean, we re talking about some of those planes that are going to be following the shadow and studying it, they re only going to get only a few extra minutes out of it because the shadow s traveling so fast. But, if you think about it, it s the moon going around the earth, so it s probably going to be a little bit faster than you would think. Anyway, you can find out more about the eclipse by following us on social media. Obviously, our nasa accounts will be talking about this, but also here at the nasa johnson space center you can follow our accounts there. We ll be talking about it. If you follow international space station you can see some of the imagery. You ll get from there 250 miles above the earth. And then also, aries astral materials research, you ll find them on multiple accounts and you can talk-- they will be talking mostly about the science of eclipses, and they are also based here in the johnson space center. All of these are on either facebook, twitter, and instagram. If you want to join the conversation for-- and maybe submit some pictures that you are taking from wherever you re going to be observing the eclipse, and then also sort of see what everyone else is doing, the official hashtag for this event is #eclipse2017. Just use that on your favorite platform and share your experience and maybe ask a couple questions in case all of the information we told you today and anything you can t find on the website we can still answer even more questions that you have. So this podcast was recorded on july 19th, 2017. Thanks to alex perryman, john stoll, and tracy calhoun. And thanks again to dr. Mark matney for coming on the show. We ll be back next week.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon's node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon’s node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era. PMID:25075747
2017-08-21
On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Kennedy Space Center Visitor Complex, KARS Park at Kennedy, and the Vehicle Assembly Building.
The (Almost) Unseen Total Eclipse of 1831
NASA Astrophysics Data System (ADS)
Bartky, Ian R.
2008-03-01
The total eclipse of August 1831 began at sunrise in Australia, swept across the western South Pacific Ocean, and ended at sunset in the central South Pacific. As a result of the eclipse's path over mostly uninhabited ocean, the region's sparse European (British) population, and near-useless local predictions of the event at Hobart and Sydney in almanacs sold to the general public, almost no one witnessed its passage. In an attempt to document the eclipse, journals of naive observers - those having no access to a prediction - were examined. Thus far, the sole record is in the Pitcairn Island Register Book. Considering the Pitcairners' extreme isolation and the rather modest partial eclipse that occurred there, the entry is a surprising one; however, it can be explained in terms of events associated with their initial removal to Tahiti in March 1831 followed by their return home in June. Further, an authoritative means to identify any issues associated with eclipse predictions compiled for private-sector almanacs came in 1833 when sweeping changes in the British Nautical Almanac's section on eclipses were instituted.
Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse
NASA Astrophysics Data System (ADS)
Bruns, Donald G.
2018-04-01
Precise star positions near the Sun were measured during the 21 August 2017 total solar eclipse in order to measure their gravitational deflections. The equipment, procedures, and analysis are described in detail. A portable refractor, a CCD camera, and a computerized mount were set up in Wyoming. Detailed calibrations were necessary to improve accuracy and precision. Nighttime measurements taken just before the eclipse provided cubic optical distortion corrections. Calibrations based on star field images 7.4° on both sides of the Sun taken during totality gave linear and quadratic plate constants. A total of 45 images of the sky surrounding the Sun were acquired during the middle part of totality, with an integrated exposure of 22 s. The deflection analysis depended on accurate star positions from the USNO’s UCAC5 star catalog. The final result was a deflection coefficient L = 1.7512 arcsec, in perfect agreement with the theoretical value, with an uncertainty of only 3%.
Selling the Great American Eclipse: An Education and Public Outreach Retrospective
NASA Astrophysics Data System (ADS)
Nordgren, T.
2017-12-01
The August 21, 2017 total solar eclipse was the single largest public scientific outreach event of the last several decades. The astronomical community, from organizations like to the American Astronomical Society, to government agencies such as NASA, to the nation-wide amateur astronomy community all worked to raise awareness of this unique event that would be visible to every single inhabitant of the United States. This outreach, like the event itself, was unique in requiring education on not just the science of the event, but the societal nature as well. This included such variety of subjects as: 1) eye safety for millions of individuals, 2) the importance of traveling to totality, 3) transportation issues over mass travel to regions in totality, 3) lodging, food, and logistics information for communities in totality, 4) governmental emergency response, and much more. I interview a number of communities, city managers, event planners, and national park rangers after the eclipse to identify what were the most important education and outreach information they received leading up to the event to assess what we in the astronomical community did that was most effective and what could have been done better in retrospect. In particular, I look at the use of the solar eclipse "travel poster" campaign I designed for event organizers, chambers of commerce, universities, and national and state parks in the four years leading up to the eclipse. How were they used and were they effective in raising the public's awareness of community events across the country? The lessons learned will be important for planning for the next eclipse that touches the U.S. in less than seven years from now on April 8, 2024.
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi
2011-01-01
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.
2018-05-01
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Geginald, Nelson L.; Gashut, Hadi; Guhathakurta, Madhulika; Hassler, Donald M.
2008-01-01
An experiment to measure the electron temperature and flow speed in the solar corona by observing the visible K-coronal spectrum was conducted during the total solar eclipse on 29 March 2006 in Libya. New corona1 models accounting for the effect of electron temperature and flow on the resulting K-corona spectrum were used to interpret the observations. Results show electron temperatures of 1.10 +/- 0.05, 0.98 +/- 0.12, and 0.70 +/- 0.08 MK, at l.l{\\it R)$-{\\odot)$ in the solar north, east and west, respectively, and 0.93 +/- 0.12 MK, at 1.2 R(sub sun) in the solar east. The corresponding outflow speeds obtained from the spectral fit are 103 +/- 92, 0 + 10, 0 + 10, and 0 + 10 km/s. Since the observations are taken only at 1.1 and 1.2 R(sub sun) these velocities , consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working.
Coronal and chromospheric physics
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Landman, D. A.; Orrall, F. Q.
1983-01-01
Achievements and completed results are discussed for investigations covering solar activity during the solar maximum mission and the solar maximum year; other studies of solar activity and variability; infrared and submillimeter photometry; solar-related atomic physics; coronal and transition region studies; prominence research; chromospheric research in quiet and active regions; solar dynamics; eclipse studies; and polarimetry and magnetic field measurements. Contributions were also made in defining the photometric filterograph instrument for the solar optical telescope, designing the combined filter spectrograph, and in expressing the scientific aims and implementation of the solar corona diagnostic mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habbal, Shadia Rifai; Morgan, Huw; Druckmüller, Miloslav, E-mail: shadia@ifa.hawaii.edu
Prominences constitute the most complex magnetic structures in the solar corona. The ubiquitous presence of their seemingly confined dense and cool plasma in an otherwise million-degree environment remains a puzzle. Using a decade of white light total solar eclipse observations, we show how these images reveal an intricate relationship between prominences and coronal structures both in their immediate vicinity, known as coronal cavities, and in the extended corona out to several solar radii. Observations of suspended prominences and twisted helical structures spanning several solar radii are central to these findings. The different manifestations of the prominence-corona interface that emerge frommore » this study underscore the fundamental role played by prominences in defining and controlling the complex expansion and dynamic behavior of the solar magnetic field in the neighborhood of magnetic polarity reversal regions. This study suggests that the unraveling of prominences and the outward expansion of the helical twisted field lines linked to them could be the solar origin of twisted magnetic flux ropes detected in interplanetary space, and of the mechanism by which the Sun sheds its magnetic helicity. This work also underscores the likely role of the prominence-corona interface as a source of the slow solar wind.« less
PREFACE: Eclipse on the Coral Sea: Cycle 24 Ascending
NASA Astrophysics Data System (ADS)
Cally, Paul; Erdélyi, Robert; Norton
2013-06-01
A total solar eclipse is the most spectacular and awe-inspiring astronomical phenomenon most people will ever see in their lifetimes. Even hardened solar scientists draw inspiration from it. The eclipse with 2 minutes totality in the early morning of 14 November 2012 (local time) drew over 120 solar researchers (and untold thousands of the general public) to the small and picturesque resort town of Palm Cove just north of Cairns in tropical north Queensland, Australia, and they were rewarded when the clouds parted just before totality to reveal a stunning solar display. Eclipse photograph The eclipse was also the catalyst for an unusually broad and exciting conference held in Palm Cove over the week 12--16 November. Eclipse on the Coral Sea: Cycle 24 Ascending served as GONG 2012, LWS/SDO-5, and SOHO 27, indicating how widely it drew on the various sub-communities within solar physics. Indeed, as we neared the end of the ascending phase of the peculiar Solar Cycle 24, it was the perfect time to bring the whole community together to discuss our Sun's errant recent behaviour, especially as Cycle 24 is the first to be fully observed by the Solar Dynamics Observatory (SDO). The whole-Sun perspective was a driving theme of the conference, with the cycle probed from interior (helioseismology), to atmosphere (the various lines observed by the Atmospheric Imaging Assemble (AIA) aboard SDO, the several instruments on Hinode, and other modern observatories), and beyond (CMEs etc). The quality of the presentations was exceptional, and the many speakers are to be commended for pitching their talks to the broad community present. These proceedings draw from the invited and contributed oral presentations and the posters exhibited in Palm Cove. They give an (incomplete) snapshot of the meeting, illustrating its broad vistas. The published contributions are organized along the lines of the conference sessions, as set out in the Contents, leading off with a provocative view of Cycle 24 thus far from Sarbani Basu. Other invited papers presented here include an appreciation of Hinode's view of solar activity as the cycle rises by Toshifumi Shimizu; a first taxonomy of magnetic tornadoes and chromospheric swirls by Sven Wedemeyer {\\it et al}; an analysis of Hinode/EIS observations of transient heating events; a timely re-examination of solar dynamo theory by Paul Charbonneau; an exciting teaser for the solar potential of the Murchison Widefield Array now operating in Western Australia by Steven Tingay {\\it et al}; an overview and critique of the state of nonlinear force-free magnetic field extrapolation theory and practice by Mike Wheatland and Stuart Gilchrist; and a masterful review of atmospheric MHD wave coupling to the Sun's internal p-mode oscillations by Elena Khomenko and Irantzu Calvo Santamaria. The many contributed papers published here are no less exciting. All papers have been refereed to a high standard. The editors thank all the referees, drawn both from conference attendees and the wider community, who have taken their tasks very seriously and provided very detailed and helpful reports. Nearly all contributions have been substantially improved by the process. We must also thank our financial sponsors. Both the Global Oscillations Network Group (GONG) and LWS/SDO were generous in their support, as were the School of Mathematical Sciences and the Monash Centre for Astrophysics (MoCA) at Monash University, Melbourne, and the Centre for Astronomy at James Cook University, Townsville. The Local Organizing Committee and the many students who assisted before and during the conference also deserve high praise for facilitating such a memorable meeting. Paul Cally, Robert Erdélyi and Aimee Norton Conference photograph
Observations of Comets and Eclipses in the Andes
NASA Astrophysics Data System (ADS)
Ziółkowski, Mariusz
There is no doubt that the Incas possessed a system for observing and interpreting unusual astronomical phenomena, such as eclipses or comets. References to it, however, are scarce, often of anecdotal nature and are not collected into any coherent "Inca observation catalog". The best documented of such events is the "Ataw Wallpa's comet", seen in Cajamarca in July of 1533 and the solar eclipse, that in 1543, prevented conquistador Lucas Martínez from discovering the rich silver mines in northern Chile. Archived descriptions of the Andean population's reaction to these phenomena indicate that they were treated as extremely important omens, that should not, under any circumstances, be ignored.
Using Stellarium to cyber-observe the Great American Eclipse
NASA Astrophysics Data System (ADS)
Prim, Ellie R.; Sitar, David J.
2017-09-01
The Great American Eclipse is over. Somewhat sad, is it not? Individuals who were unable to experience the event on August 21, 2017, can now cyber-observe the eclipse with Stellarium (http://www.stellarium.org). In the authors' opinion, it is fun and has many great applications in the classroom. In addition it is open source and available for Android, iOS, and Linux users. We here at Appalachian use it in our introductory astronomy labs for specific activities such as investigating coordinate systems, discovering differences between solar and sidereal days, as well as determining why your "astrological sign" is most often not your "astronomical sign."
ERIC Educational Resources Information Center
DeVore, Edna; Gould, Alan
2017-01-01
The solar eclipse coming August 21 offers students the opportunity not only to explore the geometry of the solar system but also to learn about exoplanets transiting distant stars. Students can glimpse a great frontier of science: the search for other worlds and life. This article presents information on exoplanets, discovering planets around…
NASA Astrophysics Data System (ADS)
Hernandez, E.; Mathur, S.; Fenton, A.; Behrend, C. C.; Bering, E., III
2017-12-01
As part of the Undergraduate Student Instrumentation Project (USIP) at the University of Houston, multiple Very Low Frequency (VLF) Radio Receivers will be set up during the 2017 solar eclipse. They will be taking data from Omaha, Nebraska and Casper, Wyoming. The receiver, using an air loop antenna, will record magnetic field fluctuations caused by VLF waves. The purpose of this experiment is to study the effects of the sudden change in electromagnetic radiation from the sun on the D-region of the ionosphere. VLF waves were chosen for measurement because naturally occurring VLF waves propagate through the Earth-ionosphere waveguide, which can be used to remotely observe the ionosphere. The D-region reduces the energy in propagating waves due to absorption. This means that any fluctuations in the D-region are inversely correlated to the strength of VLF waves being received. The experiment will focus on receiving waves transmitted from specific stations that are on the other side of totality. The amplitude and phase of the received waves will be measured and analyzed. It is hoped that this experiment will help us gain a better understanding of VLFs from the D-region during the solar eclipse, as well as increasing the overall data available for use by the community.
NASA Astrophysics Data System (ADS)
Pal, Sujay; Chakrabarti, Sandip K.; Mondal, Sushanta K.
2012-07-01
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h'=+3.0 km for the VTX-Malda path and h'=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.
The First Thousand Exoplanets: Twenty Years of Excitement and Discovery
NASA Astrophysics Data System (ADS)
Impey, Chris
The recent "explosion" in the number of extrasolar planets, or exoplanets, is perhaps the most exciting phenomenon in all of science. Two decades ago, no planets were known beyond the Solar System, and now there are more than 770 confirmed exoplanets and several thousand more candidates, while the mass detection limit has marched steadily downwards from Jupiter mass in 1995 to Neptune mass in the early 2000s to Earth mass now. The vast majority of these exoplanets are detected indirectly, by their gravitational influence on the parent star or the partial eclipse they cause when they periodically pass in front of it. Doppler detection of the planet's reflex motion yields a period and an estimate of the mass, while transits or eclipses yield the size. Exoplanet detection taxes the best observatories in space, yet useful contributions can be made by amateur astronomers armed with 6-inch telescopes. The early discoveries were surprising; no one predicted "hot Jupiters" or the wild diversity of exoplanet properties that has been seen. It is still unclear if the Solar System is "typical" or not, but at current detection limits at least 10 % of Sun-like stars harbor planets and architectures similar to the Solar System are now being found. Over a hundred multiple planet systems are known and the data are consistent with every star in the Milky Way having at least one planet, with an implication of millions of habitable, Earth-like planets, and of which could harbor life. Doppler and transit data can be combined to give average density, and additional methods are beginning to give diagnostics of atmospheric composition. When this work can be extended to rocky and low mass exoplanets, and the imprint of biology on a global atmosphere can be measured, this might be the way that life beyond Earth is finally detected for the first time.
Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team
2017-11-01
Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
Digital Compositing Techniques for Coronal Imaging (Invited review)
NASA Astrophysics Data System (ADS)
Espenak, F.
2000-04-01
The solar corona exhibits a huge range in brightness which cannot be captured in any single photographic exposure. Short exposures show the bright inner corona and prominences, while long exposures reveal faint details in equatorial streamers and polar brushes. For many years, radial gradient filters and other analog techniques have been used to compress the corona's dynamic range in order to study its morphology. Such techniques demand perfect pointing and tracking during the eclipse, and can be difficult to calibrate. In the past decade, the speed, memory and hard disk capacity of personal computers have rapidly increased as prices continue to drop. It is now possible to perform sophisticated image processing of eclipse photographs on commercially available CPU's. Software programs such as Adobe Photoshop permit combining multiple eclipse photographs into a composite image which compresses the corona's dynamic range and can reveal subtle features and structures. Algorithms and digital techniques used for processing 1998 eclipse photographs will be discussed which are equally applicable to the recent eclipse of 1999 August 11.
Bringing the Great American Eclipse of 2017 to Audiences across the Nation
NASA Astrophysics Data System (ADS)
Young, C. A.; Mayo, L.; Cline, T. D.; Ng, C.; Stephenson, B. E.
2015-12-01
The August 21, 2017 eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships being leveraged to enhance our reach and impact.
Engage All Americans with Eclipse 2017 Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Ng, C.; Young, C. A.; Mayo, L.; Cline, T. D.; Stephenson, B. E.; Debebe, A.; Lewis, E. M.; Odenwald, S. F.; Hill, S. W.
2016-12-01
Join NASA and millions in the U.S. and around the world in observing the August 21, 2017 solar eclipse. This presentation will discuss NASA's education and communication plans for the 2017 eclipse, highlighting some programs, resources, and citizen science activities that will engage and educate many across the country and beyond. NASA will offer unique observations of this celestial event from the ground to space. Additionally, there are do-it-yourself (DIY) science, lunar and math challenges, art contests, Makerspace ideas, and various activities for learners of all ages. Education resources and tool kits may be of particular interest to formal and informal educators. Find out what events are happening in your neighborhood, and plan your own eclipse parties with resources and activities. Last but not the least, experience the eclipse on August 21 and learn more through NASA broadcast programming that will include telescopic views from multiple locations, simple measurements, and live and taped interviews.
Eclipse and noneclipse differential photoelectron flux.
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Sharp, G. W.
1972-01-01
Differential photoelectron flux in the energy range of 3 to 50 eV has been measured in the lower ionosphere both during the March 7, 1970, solar eclipse and during a period 24 hours earlier. The two measurements were made with identical retarding potential analyzers carried on Nike-Apache rocket flights to a peak altitude of approximately 180 km. The differential electron flux spectrum within totality on the eclipse flight had the same shape but was a factor of 10 smaller in magnitude than that measured on the control day at altitudes between 120 and 180 km, an expected result for an eclipse function decreasing to 1/10 at totality. The differential flux spectrum measured in full sun has the same general energy dependence as that reported by Doering et al. (1970) but is larger by a factor of 2 to 10, depending on altitude.
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.
2015-05-01
A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.