Science.gov

Sample records for partial wave decompositions

  1. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition. 2; Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2004-01-01

    The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.

  2. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  3. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  4. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  5. Direct numerical solution of the Lippmann-Schwinger equation in coordinate space without partial-wave decomposition

    NASA Astrophysics Data System (ADS)

    Kuruoǧlu, Zeki C.

    2016-11-01

    Direct numerical solution of the coordinate-space integral-equation version of the two-particle Lippmann-Schwinger (LS) equation is considered without invoking the traditional partial-wave decomposition. The singular kernel of the three-dimensional LS equation in coordinate space is regularized by a subtraction technique. The resulting nonsingular integral equation is then solved via the Nystrom method employing a direct-product quadrature rule for three variables. To reduce the computational burden of discretizing three variables, advantage is taken of the fact that, for central potentials, the azimuthal angle can be integrated out, leaving a two-variable reduced integral equation. A regularization method for the kernel of the two-variable integral equation is derived from the treatment of the singularity in the three-dimensional equation. A quadrature rule constructed as the direct product of single-variable quadrature rules for radial distance and polar angle is used to discretize the two-variable integral equation. These two- and three-variable methods are tested on the Hartree potential. The results show that the Nystrom method for the coordinate-space LS equation compares favorably in terms of its ease of implementation and effectiveness with the Nystrom method for the momentum-space version of the LS equation.

  6. Fictitious domain decomposition methods for a class of partially axisymmetric problems: Application to the scattering of acoustic waves

    NASA Astrophysics Data System (ADS)

    Hetmaniuk, Ulrich Ladislas

    Fast solvers are often designed for problems posed on simple domains. Unfortunately, engineering applications deal with arbitrary domains. To allow the use of fast solvers, fictitious domain methods have been developed. They usually define an auxiliary problem on a rectangle or a parallelepiped. In aerospace and military applications, many scatterers are composed of one major axisymmetric component and a few features. Therefore, the aim of this thesis is to define, for the scattering of acoustic waves, fictitious domain methods which exploit such local axisymmetry. The original exterior problem is first approximated by introducing an absorbing boundary condition on an artificial boundary. A family of absorbing conditions is reviewed. For some simple scatterers, numerical experiments on the position of the artificial boundary reveal that the error induced by the absorbing condition is bounded, as the wave number increases, when the artificial boundary is fixed. Then, for a class of partially axisymmetric scatterers, the truncated computational domain is embedded into an axisymmetric domain. Helmholtz problems are formulated inside this axisymmetric domain and inside each feature. Lagrange multipliers are introduced at the interfaces between the features and the axisymmetric domain to enforce a set of carefully constructed constraints. This formulation is analyzed at the continuous level and is shown to be equivalent to the original one. For the Helmholtz equation defined over the axisymmetric domain, the solution is approximated by truncated Fourier series and finite elements. Properties of this discretization method for the Helmholtz equation are also analyzed on a two-dimensional model problem. Numerical experiments are performed to illustrate the analytical results. For the auxiliary problem inside each feature, classical finite elements are used to approximate the solution. The constraints are enforced pointwise. The resulting algebraic system is solved either

  7. How to Compute the Partial Fraction Decomposition without Really Trying

    ERIC Educational Resources Information Center

    Brazier, Richard; Boman, Eugene

    2007-01-01

    For various reasons there has been a recent trend in college and high school calculus courses to de-emphasize teaching the Partial Fraction Decomposition (PFD) as an integration technique. This is regrettable because the Partial Fraction Decomposition is considerably more than an integration technique. It is, in fact, a general purpose tool which…

  8. About the Stokes decomposition theorem of waves

    NASA Astrophysics Data System (ADS)

    Lacaze, B.

    2011-06-01

    The Stokes decomposition theorem deals with the electrical field E→=X,Y of a light beam. The theorem asserts that a beam can be viewed as the sum of two differently polarized parts. This result was recently discussed for light in the frame of the unified theory of coherence. We study the general case of an electromagnetic wave which can be in radio, radar, communications, or light. We assume stationary components with any power spectrum and finite or infinite bandwidth. We show that an accurate definition of polarization and unpolarization is a key parameter which rules the set of solutions of the problem. When dealing with a "strong definition" of unpolarization, the problem is treated in the frame of stationary processes and linear invariant filters. When dealing with a "weak definition", solutions are given by elementary properties of bidimensional random variables.

  9. Pseudopotential Method for Higher Partial Wave Scattering

    SciTech Connect

    Idziaszek, Zbigniew; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  10. Lamb Waves Decomposition and Mode Identification Using Matching Pursuit Method

    DTIC Science & Technology

    2009-01-01

    an adaptive signal decomposition technique and can be applied to process Lamb waves, such as denoising , wave parameter estimation, and feature...transform (STFT), wavelet transform, Wigner-Ville distribution, matching pursuit decomposition, etc. 1 Report Documentation Page Form ApprovedOMB No...positions, but constant time widths. In contrast to the STFT, which uses a single analysis window, the wavelet transform offers a tradeoff between

  11. Dynamic mode decomposition analysis of detonation waves

    NASA Astrophysics Data System (ADS)

    Massa, L.; Kumar, R.; Ravindran, P.

    2012-06-01

    Dynamic mode decomposition is applied to study the self-excited fluctuations supported by transversely unstable detonations. The focus of this study is on the stability of the limit cycle solutions and their response to forcing. Floquet analysis of the unforced conditions reveals that the least stable perturbations are almost subharmonic with ratio between global mode and fundamental frequency λi/ωf = 0.47. This suggests the emergence of period doubling modes as the route to chaos observed in larger systems. The response to forcing is analyzed in terms of the coherency of the four fundamental energy modes: acoustic, entropic, kinetic, and chemical. Results of the modal decomposition suggest that the self-excited oscillations are quite insensitive to vortical forcing, and maintain their coherency up to a forcing turbulent Mach number of 0.3.

  12. Superconformal partial waves in Grassmannian field theories

    NASA Astrophysics Data System (ADS)

    Doobary, Reza; Heslop, Paul

    2015-12-01

    We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr( m| n, 2 m|2 n) for all m, n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM ( m = n = 2) and in N = 2 superconformal field theories in four dimensions ( m = 2 , n = 1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories ( m = 2 , n = 0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2 n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the <2222>, <2233> and <3333> cases in an SU( N) gauge theory at finite N. The <2233> correlator predicts a non-trivial protected twist four sector for <3333> which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.

  13. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  14. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  15. Partial Wave Analysis of Coupled Photonic Structures

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.

  16. The characteristic wave decomposition and imaging in VTI media

    NASA Astrophysics Data System (ADS)

    Liu, Shaoyong; Wang, Huazhong; Feng, Bo

    2015-04-01

    The characteristic wave decomposition (CWD) method is presented, which takes full advantages of the local linear characteristics of the original seismic data. The CWD is performed by double beam forming for a compressed seismic wavefield in the characteristic ray parameter domain. Based on the beam-formed wavefield in characteristic domain, a beam-based characteristic wave imaging method (CWI) is put forward. Due to the flexibility and efficiency to output angle gathers for velocity model building, the CWI is a useful alternative to Kirchhoff and wave-equation migrations. It alters the application of Kirchhoff migration which smears the seismic data in imaging domain along quasi-ellipsoid trajectories and it has the capacity for steep dip reflector imaging with turning waves. In this paper, the CWI method is applied to prestack depth migration in transverse isotropic with a vertical symmetry (VTI) media. Compared with the conventional Kirchhoff migration methods, the proposed CWI method has a theoretical speedup of 1-2 orders. Besides, it can handle low signal-to-noise-ratio (SNR) data and target oriented imaging conveniently, and angle gathers can be produced naturally by CWI. Consequently, the CWI is an efficient technique for large scale seismic imaging and angle gather outputting. The direct mapping scheme from data space to model space establishes the relation between the characteristic data and the subsurface reflector, which can be used for the subsequent tomography conveniently. Some benchmark tests demonstrate the effectiveness of this method.

  17. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-01

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH11 mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  18. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  19. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  20. Introducing the Improved Heaviside Approach to Partial Fraction Decomposition to Undergraduate Students: Results and Implications from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…

  1. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  2. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    SciTech Connect

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  3. Relativistic Magnetohydrodynamics: Renormalized Eigenvectors and Full Wave Decomposition Riemann Solver

    NASA Astrophysics Data System (ADS)

    Antón, Luis; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Aloy, Miguel A.; Mimica, Petar

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  4. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-01

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  5. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components.

    PubMed

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-05

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  6. Domain decomposition methods for a class of integro-partial differential equations

    NASA Astrophysics Data System (ADS)

    Califano, Giovanna; Conte, Dajana

    2016-10-01

    This paper deals with the construction of Schwarz Waveform Relaxation (SWR) methods for fractional diffusion-wave equations. SWR methods are a class of domain decomposition algorithms to solve evolution problems in parallel and have been mainly developed and analysed for several kinds of PDEs. We first analyse the convergence behaviour of the classical SWR method applied to fractional diffusion-wave equations, showing that Dirichlet boundary conditions at the artificial interfaces slow down the convergence of the method. Then, we construct optimal SWR methods, by providing the transmission conditions which assure convergence in two iterations.

  7. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  8. Partial Wave Dispersion Relations: Application to Electron-Atom Scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Drachman, Richard J.

    1999-01-01

    In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.

  9. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc E-mail: joseluis.ballester@uib.es

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  10. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    PubMed

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  11. Correlations of πN partial waves for multireaction analyses

    DOE PAGES

    Doring, M.; Revier, J.; Ronchen, D.; ...

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less

  12. Evanescent wave decomposition in a novel resonator comprising unmagnetized and magnetized plasma layers

    SciTech Connect

    Kong Xiangkun; Liu Shaobin; Bian Borui; Li Haiming; Zhao Xin; Zhang Haifeng

    2013-04-15

    A 4 Multiplication-Sign 4 transfer matrix method has been applied to study the decomposition of any elliptically polarized wave in a magnetized resonator. When the incident elliptically polarized wave passes through the structure, it is orthogonally decomposed into two circular polarizations at two resonance frequencies. Without changing the structure of the resonator, the positions of the resonant frequencies of the right- and left-handed circularly polarized waves can be modulated by changing the external magnetized field. The results show that the proposed magnetized structure can be used to design a novel resonator, which can be applied in the decomposition of polarized electromagnetic waves.

  13. Wave optics simulation approach for partial spatially coherent beams.

    PubMed

    Xiao, Xifeng; Voelz, David

    2006-08-07

    A numerical wave optics approach for simulating a partial spatially coherent beam is presented. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model beam. The approach can be used for modeling applications such as free space optical laser links that utilize partially coherent beams.

  14. Impact of Plunging Breaking Wave on a Partially Submerged Cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C. M.; Duncan, J. H.

    2012-11-01

    The impact of a plunging breaking wave on a partially submerged rigid cube (L = 30 . 5 cm) is studied experimentally in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.14 Hz) that is created with a programmable wave maker. The water surface profiles at the vertical center plane of the cube are measured with a cinematic LIF technique. The cube is centered in the width of the tank and mounted from above with the front face oriented with its normal in the vertical long center plane of the tank and tilted at angles of 0 and 20 degrees downward relative to horizontal. For the range of horizontal cube positions used here, during the wave impact, the water free surface forms a circular arc between the water contact point on the front face of the cube and the wave crest. As the wave impact continues, this arc converges to a point and a fast-moving vertical jet is formed. The effect of the submergence and tilt angle of the cube on the jet formation are explored. This work is supported by the Office of Naval Research.

  15. Advanced Insights into Functional Brain Connectivity by Combining Tensor Decomposition and Partial Directed Coherence

    PubMed Central

    Leistritz, Lutz; Witte, Herbert; Schiecke, Karin

    2015-01-01

    Quantification of functional connectivity in physiological networks is frequently performed by means of time-variant partial directed coherence (tvPDC), based on time-variant multivariate autoregressive models. The principle advantage of tvPDC lies in the combination of directionality, time variance and frequency selectivity simultaneously, offering a more differentiated view into complex brain networks. Yet the advantages specific to tvPDC also cause a large number of results, leading to serious problems in interpretability. To counter this issue, we propose the decomposition of multi-dimensional tvPDC results into a sum of rank-1 outer products. This leads to a data condensation which enables an advanced interpretation of results. Furthermore it is thereby possible to uncover inherent interaction patterns of induced neuronal subsystems by limiting the decomposition to several relevant channels, while retaining the global influence determined by the preceding multivariate AR estimation and tvPDC calculation of the entire scalp. Finally a comparison between several subjects is considerably easier, as individual tvPDC results are summarized within a comprehensive model equipped with subject-specific loading coefficients. A proof-of-principle of the approach is provided by means of simulated data; EEG data of an experiment concerning visual evoked potentials are used to demonstrate the applicability to real data. PMID:26046537

  16. Properties of Baryons from Bonn-Gatchina Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Sarantsev, Andrey

    The recent results from the Bonn-Gatchinal partial wave analysis are reported. The analysis includes a large number of new pseudoscalar meson photoproduction data taken with polarized beam and target. The analysis also includes the information about photoproduction of vector mesons, which reveals resonant signals at masses above 2 GeV. The impact of the new data on spectrum of baryons and their properties is discussed.

  17. Impact of plunging breaking waves on a partially submerged cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C.; Duncan, J. H.

    2013-11-01

    The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.

  18. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  19. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.es

    2009-07-10

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10{sup 4} K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  20. Teaching a New Method of Partial Fraction Decomposition to Senior Secondary Students: Results and Analysis from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong; Leung, Allen

    2012-01-01

    In this paper, we introduce a new approach to compute the partial fraction decompositions of rational functions and describe the results of its trials at three secondary schools in Hong Kong. The data were collected via quizzes, questionnaire and interviews. In general, according to the responses from the teachers and students concerned, this new…

  1. Shear Wave Generation by Decoupled and Partially Coupled Explosions

    NASA Astrophysics Data System (ADS)

    Baker, G. E.; Xu, H.; Stevens, J. L.

    2008-12-01

    Decoupling is a means of evading detection by detonation of an explosion within a large cavity, which reduces the amplitude of the seismic waves. Such explosions are however still detectable with the current global seismic network, so their discrimination is important. A fully decoupled explosion detonated in the center of a spherical cavity will be a purely compressional seismic source, and so its discrimination should be straightforward. In practice however, decoupled explosions generate S waves, often identical to and sometimes even larger (relative to P) than S waves from comparable tamped explosions. If the source were purely compressional, the S waves must be the result of conversion from P and/or Rg. Asymmetries however, such as asphericity of the cavity or offset or asymmetry of the explosion, can lead to the direct generation of S waves even from a fully decoupled explosion. Fracturing or asymmetry of the nonlinear region about the cavity of a partially decoupled explosion could also result in direct generation of S waves. Most historical decoupling data have been studied extensively, but usually with the goal of quantifying P-wave decoupling. We identify S waves in the historical records, identify observations that can be used to distinguish their genesis, and model the observations to test the proposed mechanisms. Travel times and a bubble pulse peak in the P but not S spectra of water-filled cavity explosions in salt at the Soviet Azgir test site indicate that the S is generated at the source. The observed nearfield S radiation pattern of the US decoupled explosion Sterling is matched by source modeling that includes the flat floor (due to melted and recrystallized salt) of the cavity. The similarity of the Sterling coda waveforms with distance indicates their source is at or very near the cavity. Calculations of the extent and orientation of fracturing by both the Azgir and Sterling explosions predict minimal effects on the resulting waveforms. Both

  2. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  3. Laboratory monitoring of P-waves in partially saturated sand

    NASA Astrophysics Data System (ADS)

    Barrière, J.; Bordes, C.; Brito, D.; Sénéchal, P.; Perroud, H.

    2011-12-01

    Seismic data depends on a variety of hydrogeological properties of the prospected porous media such as porosity, permeability and fluid saturation. We have performed a laboratory experiment in the kiloHertz range in order to analyze the role of partial saturation on direct propagating P-waves phase velocity and attenuation. The experiment consists of a sand-filled tank 107 cm x 34 cm x 35cm equipped with accelerometers and water capacitance probes. The P-waves seismic propagation is generated by hitting a steel ball on a granite plate on the one lateral side of the container. Several imbibition/drainage cycles are performed between the water residual saturation and the gas residual saturation. The laboratory seismic data are processed by two Continuous Wavelet Transforms using one real mother wavelet (Mexican hat) and one complex (Morlet) to recover velocity and attenuation as a function of frequency. Phase velocity of direct P-wave decreases with an increase of water content and is quite consistent with the low frequency limit of the Biot's theory both for imbibition and drainage. The interpretation of the P-waves attenuation needs to go beyond the macroscopic fluid flow of Biot's theory and to introduce a viscoelastic contribution linked to the grain to grain overall losses which are described by a constant Q-model. A strong hysteresis between imbibition and drainage is observed and explained by introducing an effective permeability depending on water and gas relative permeabilities (Van Genuchten model).

  4. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  5. Spherical Harmonic Decomposition of Gravitational Waves Across Mesh Refinement Boundaries

    NASA Technical Reports Server (NTRS)

    Fiske, David R.; Baker, John; vanMeter, James R.; Centrella, Joan M.

    2005-01-01

    We evolve a linearized (Teukolsky) solution of the Einstein equations with a non-linear Einstein solver. Using this testbed, we are able to show that such gravitational waves, defined by the Weyl scalars in the Newman-Penrose formalism, propagate faithfully across mesh refinement boundaries, and use, for the first time to our knowledge, a novel algorithm due to Misner to compute spherical harmonic components of our waveforms. We show that the algorithm performs extremely well, even when the extraction sphere intersects refinement boundaries.

  6. The Thomas and Effimov Effects for General Partial Waves

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Macek, Joseph

    2006-05-01

    Description of the two-body interactions between particles is a fundamental step in modeling many-body systems. Because s-wave scattering dominates at ultra-cold temperatures, zero-range potentials (ZRPs) have been a popular way to describe the two-body interactions. Recent experiments enhance higher partial waves and this has led to interest in extending the zero-range model beyond l=0Stock:2005. In this work we use a ZRP model to examine three body systems. Of particular importance in these systems is the Thomas effect, which is the divergence of the wave function when all three particles are close together. The Thomas effect is known for spin zero particles when l=0. In addition there is the Effimov effect, in which there are an infinite number of three body bound states if the zero-range potential boundary conditions separate in hyperspherical coordinates as the scattering length al->∞. We show that the Effimov effect occurs for not only the well-known l=0 case, but for spin 1/2 fermions via the l=1 pseudopotential of ref. [1] This research is supported by Department of Energy Grant DE-FG02-02ER15283 [1] Ren'e Stock, Andrew Silberfarb, Eric. L. Bolda, and Ivan H. Deutsch, Phys Rev. Lett. 94 023202 (2005)

  7. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  8. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  9. Partial information decomposition as a unified approach to the specification of neural goal functions.

    PubMed

    Wibral, Michael; Priesemann, Viola; Kay, Jim W; Lizier, Joseph T; Phillips, William A

    2017-03-01

    In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a 'goal function', of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. 'edge filtering', 'working memory'). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon's mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called 'coding with synergy', which builds on combining external input and prior knowledge in a synergistic manner. We suggest that

  10. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    SciTech Connect

    Manley, D. Mark

    2016-09-08

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.

  11. Search for Higher Flavor Multiplets in Partial Wave Analyses

    SciTech Connect

    Yakov Azimov; Richard Arndt; I.I. Strakovsky; Ron Workman; K. Goeke

    2005-04-01

    The possible existence of higher multi-quark flavor multiplets of baryons is investigated. We argue that the S-matrix should have poles with any quantum numbers, including those which are exotic. This argument provides a novel justification for the existence of hadrons with arbitrary exotic structure. Though it does not constitute a proof, there are still no theoretical arguments against exotics. We then consider KN and piN scattering. Conventional and modified partial-wave analyses provide several sets of candidates for correlated pairs (Theta1, Delta), each of which could label a related 27-plet. Properties of the pairs (masses, mass orderings, spin-parity quantum numbers) do not quite correspond to the current theoretical expectations. Decay widths of the candidates are either wider or narrower than expected. Possible reasons for such disagreements are briefly discussed.

  12. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.

    PubMed

    Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying

    2016-04-01

    Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications.

  13. Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on Rh.

    PubMed

    Mhadeshwar, A B; Vlachos, D G

    2005-09-08

    A thermodynamically consistent C1 microkinetic model is developed for methane partial oxidation and reforming and for oxygenate (methanol and formaldehyde) decomposition on Rh via a hierarchical multiscale methodology. Sensitivity analysis is employed to identify the important parameters of the semiempirical unity bond index quadratic exponential potential (UBI-QEP) method and these parameters are refined using quantum mechanical density functional theory. With adjustment of only two pre-exponentials in the CH4 oxidation subset, the C1 mechanism captures a multitude of catalytic partial oxidation (CPOX) and reforming experimental data as well as thermal decomposition of methanol and formaldehyde. We validate the microkinetic model against high-pressure, spatially resolved CPOX experimental data. Distinct oxidation and reforming zones are predicted to exist, in agreement with experiments, suggesting that hydrogen is produced from reforming of methane by H2O formed in the oxidation zone. CO is produced catalytically by partial oxidation up to moderately high pressures, with water-gas shift taking place in the gas-phase at sufficiently high pressures resulting in reduction of CO selectivity.

  14. H-He elastic scattering at low energies: Contribution of nonzero partial waves

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A.S.

    2005-01-01

    The present study reports the nonzero partial wave elastic cross sections together with s-wave results for the scattering of an antihydrogen atom off a gaseous helium target at thermal energies (up to 10{sup -2} a.u.). We have used a nonadiabatic atomic orbital method having different basis sets to investigate the system. The consideration of all the significant partial waves (up to J=24) reduces the oscillatory nature present in the individual partial wave cross section. The added elastic cross section is almost constant up to 10{sup -7} a.u. and then decreases steadily and very slowly with increasing energy.

  15. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  16. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation.

    PubMed

    Zheng, Rencheng; Nakano, Kimihiko; Ohashi, Rui; Okabe, Yoji; Shimazaki, Mamoru; Nakamura, Hiroki; Wu, Qi

    2015-07-07

    Ultrasonic wave-sensing technology has been applied for the health monitoring of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, researchers are required to average thousands of repeated measurements to distinguish significant signals. To resolve this bottleneck problem, this study established a signal-processing strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic waves, by application of parallel factor analysis (PARAFAC) technology that produces unique multiway decomposition without additional orthogonal or independent constraints. Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting atom can be chosen and then restored to three-way profiles as a final result. An experimental study has revealed that the final result is consistent with the conventional 1024-data averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of ultrasonic waves can be significantly improved.

  17. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation

    PubMed Central

    Zheng, Rencheng; Nakano, Kimihiko; Ohashi, Rui; Okabe, Yoji; Shimazaki, Mamoru; Nakamura, Hiroki; Wu, Qi

    2015-01-01

    Ultrasonic wave-sensing technology has been applied for the health monitoring of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, researchers are required to average thousands of repeated measurements to distinguish significant signals. To resolve this bottleneck problem, this study established a signal-processing strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic waves, by application of parallel factor analysis (PARAFAC) technology that produces unique multiway decomposition without additional orthogonal or independent constraints. Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting atom can be chosen and then restored to three-way profiles as a final result. An experimental study has revealed that the final result is consistent with the conventional 1024-data averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of ultrasonic waves can be significantly improved. PMID:26198232

  18. Dimethyl methylphosphonate Decomposition on fully Oxidized and Partially Reduced ceria Thin Films

    SciTech Connect

    Chen, D.; Ratliff, J; Hu, X; Gordon, W; Senanayake, S; Mullins, D

    2010-01-01

    The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the P{double_bond}O bond converts to a bridging O{single_bond}P{single_bond}O species at 300 K. DMMP decomposition initially occurs via P{_}OCH{sub 3} bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable P{_}CH{sub 3} bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be PO{sub x}. Although the presence of PO{sub x} decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce{sup +4} content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H{sub 2} are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.

  19. Wave Directional Characteristics on a Partially Sheltered Coast.

    DTIC Science & Technology

    1982-01-01

    California Sea Grant Program, IMR Ref. 78-102. Pawka, S. S., V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1978, "Comparison of wave directional spectra...Pawka, S. S., S. V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1980, "Com- parisons between wave directional spectra from SAR and pressure sensor arrays...effects of wave induced airflow, are under 77 active investigation (Evans and Shemdin ,1980). Previous ground truth experiments, reported in Mcleish et al

  20. Partial sound field decomposition in multireference near-field acoustical holography by using optimally located virtual references

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Joe; Bolton, J. Stuart; Kwon, Hyu-Sang

    2004-04-01

    It has been shown previously that the multiple reference and field signals recorded during a scanning acoustical holography measurement can be used to decompose the sound field radiated by a composite sound source into mutually incoherent partial fields. To obtain physically meaningful partial fields, i.e., fields closely related to particular component sources, the reference microphones should be positioned as close as possible to the component physical sources that together comprise the complete source. However, it is not always possible either to identify the optimal reference microphone locations prior to performing a holographic measurement, or to place reference microphones at those optimal locations, even if known, owing to physical constraints. Here, post-processing procedures are described that make it possible both to identify the optimal reference microphone locations and to place virtual references at those locations after performing a holographic measurement. The optimal reference microphone locations are defined to be those at which the MUSIC power is maximized in a three-dimensional space reconstructed by holographic projection. The acoustic pressure signals at the locations thus identified can then be used as optimal ``virtual'' reference signals. It is shown through an experiment and numerical simulation that the optimal virtual reference signals can be successfully used to identify physically meaningful partial sound fields, particularly when used in conjunction with partial coherence decomposition procedures.

  1. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  2. Directional decomposition of the acoustic wave equation for fluids and metafluids in spherical geometries, with application to transformational acoustics

    NASA Astrophysics Data System (ADS)

    Olsson, Peter

    2016-03-01

    A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.

  3. Complex space source theory of partially coherent light wave.

    PubMed

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  4. Quantitative infrared spectroscopic analysis of SF 6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations

    NASA Astrophysics Data System (ADS)

    Kurte, R.; Heise, H. M.; Klockow, D.

    2001-05-01

    Infrared spectroscopy is a powerful tool for the analysis of gaseous by-products in sulfur hexafluoride gas used as an insulator in high-voltage equipment. Sparks and electrical partial discharges were generated between different point-plane configurations within a custom-made discharge chamber constructed from stainless steel and Teflon ®. Various electrode materials were used such as stainless steel, copper, aluminium, silver, tungsten and tungsten/copper alloy. Owing to the different electrical conditions, a wide concentration range of the decomposition products existed. The main-products found were the sulfuroxyfluorides SOF 4 and SOF 2, as well as HF following experiments with partial discharges and sparking with energies around 1.0 J/spark. All infrared spectra were recorded using an FTIR-spectrometer equipped with a 10 cm gas cell. Quantification was carried out using classical least-squares and partial least-squares (PLS) with multivariate spectral data from selected intervals. PLS calibration models were also optimised under the constraint of a minimum number of spectral variables with a view to developing simple photometers based on a restricted number of laser wavelengths. Standard errors of prediction obtained by cross-validation of different PLS calibration models are reported for the compounds mentioned, as well as for SF 4, SO 2F 2 and SiF 4.

  5. Amplitude reconstruction from complete photoproduction experiments and truncated partial-wave expansions

    DOE PAGES

    Workman, R. L.; Tiator, L.; Wunderlich, Y.; ...

    2017-01-19

    Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).

  6. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  7. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    SciTech Connect

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  8. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  9. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  10. The Method of Decomposition in Invariant Structures: Exact Solutions for N Internal Waves in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Victor

    2015-11-01

    The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.

  11. Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Margot, X.; García-Tíscar, J.

    2016-08-01

    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.

  12. Premerger localization of gravitational-wave standard sirens with LISA: Harmonic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Haiman, Zoltán; Menou, Kristen; Frei, Zsolt

    2007-07-01

    The continuous improvement in localization errors (sky position and distance) in real time as LISA observes the gradual inspiral of a supermassive black hole binary can be of great help in identifying any prompt electromagnetic counterpart associated with the merger. We develop a new method, based on a Fourier decomposition of the time-dependent, LISA-modulated gravitational-wave signal, to study this intricate problem. The method is faster than standard Monte Carlo simulations by orders of magnitude. By surveying the parameter space of potential LISA sources, we find that counterparts to supermassive black hole binary mergers with total mass M˜105 107M⊙ and redshifts z≲3 can be localized to within the field of view of astronomical instruments (˜deg2) typically hours to weeks prior to coalescence. This will allow a triggered search for variable electromagnetic counterparts as the merger proceeds, as well as monitoring of the most energetic coalescence phase. A rich set of astrophysical and cosmological applications would emerge from the identification of electromagnetic counterparts to these gravitational-wave standard sirens.

  13. Probing disturbances over canadian ionosphere using advance data analysis of wave decomposition

    NASA Astrophysics Data System (ADS)

    Kherani, Esfhan

    2016-07-01

    Using CHAIN network of GPS receivers, we present disturbances in total electron content (TEC) of the ionosphere on magnetically quiet day of 8 December 2009 and construct travel-time diagram to understand the propagation characteristics of these disturbances. We employ the wave decomposition method to identify the TEC disturbances. We found N-shaped amplified TEC disturbances at higher latitude around 80 N that appear during intensification of ionospheric current at ˜11 UT, suggesting them to be associated with energy input from magnetosphere. These TEC disturbances have spectral peak in between 55-65 minutes, originate in the vicnity of (80N,270W), propagate both southeastward and southwestward with similar velocity ˜80 m/s and arrives at latitude ˜55N around 20 UT. These propagation characteristcs classify them as medium-scale Traveling ionospheric disturbances (MSTIDs) and possibly of gravity wave origin. Noteworthy results of our study are following: (1) presence of dayside MSTIDs whose nightside counterpart is recently reported by Shiokawa et al (2012), (2) long-distance ˜2500 km propagation of dayside MSTIDs that is not reported for the nightside counterpart, (3) dayside MSIDs acquire largest amplitudes in 65-75 during 15-17 UT, similar to the nightside MSTIDs, (4) amplification of amplitudes of MSTIDs in the auroral oval latitudes and (5) identification of driving sources in two latitudes that enable them to propagate long distance.

  14. Evaluation of partial widths and branching ratios from resonance wave functions

    SciTech Connect

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2010-11-15

    A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of the partial widths from the solution of a time-dependent Schroedinger equation with outgoing boundary conditions. We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width. The difference with respect to previous studies on partial widths and branching ratios is discussed.

  15. Analysis of non linear partially standing waves from 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.

    2003-04-01

    Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.

  16. New results on the Roper resonance and the P11 partial wave

    NASA Astrophysics Data System (ADS)

    Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.; CB-ELSA; A2-TAPS Collaborations

    2008-01-01

    Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P11 partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at { (1371 ± 7) - i (92 ± 10) } MeV and an elasticity of 0.61 ± 0.03. The largest decay coupling is found for the Nσ (σ = (ππ)-S-wave). The analysis is based on new data on γp → pπ0π0 for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.

  17. New results on the Roper resonance and the P partial wave

    NASA Astrophysics Data System (ADS)

    Cb-Elsa; A2-Taps Collaborations; Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.

    2008-01-01

    Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {(1371±7)-i(92±10)} MeV and an elasticity of 0.61±0.03. The largest decay coupling is found for the Nσ (σ=(ππ)-S-wave). The analysis is based on new data on γp→pππ for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.

  18. Partial-wave analysis of nucleon-nucleon elastic scattering data

    NASA Astrophysics Data System (ADS)

    Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.

    2016-12-01

    Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.

  19. Simulation of waves of partial discharges in a chain of gas inclusions located in condensed dielectrics

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.; Karpov, D. I.

    2016-10-01

    A stochastic model of partial discharges inside gas inclusions in condensed dielectrics was developed. The possibility of a "relay-race" wave propagation mechanism of partial discharges in a linear chain of gas inclusions is shown. The lattice Boltzmann method is successfully implemented for three-dimensional computer simulations of flows of dielectric fluid with bubbles. Growth and elongation of bubbles in a liquid dielectric under the action of a strong electric field are simulated. The physical model of propagation of partial discharges along a chain of gas bubbles in a liquid is formulated.

  20. Attenuation measurements of ultrasonic P-wave and S-wave in partially frozen unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Matsushima, J.; Suzuki, M.; Kato, Y.; Rokugawa, S.; Kato, A.

    2012-12-01

    Seismic attenuation which controls both the amplitude decay of seismic waves and the accompanying frequency change is a signature of the wave-rock interaction. Seismic attenuation in rocks is a highly variable parameter, which depends on the confining pressure, porosity, degree of fluid saturation, and fluid type. Although seismic attenuation has been widely used to estimate physical conditions and rock properties in various fields, the loss mechanisms responsible for seismic attenuation often are unclear and controversial. To elucidate a plausible mechanism for seismic attenuation, the joint use of both P- and S-waves will provide more helpful information because these two types of waves respond differently to fluid and solid combinations. We have conducted ultrasonic P- and S-wave transmission measurements to examine the influence of ice-brine coexisting system grown in the pore space of unconsolidated sands on ultrasonic P- and S-waves. We observed the variations of a transmitted wave with a frequency content of 100-1000 kHz , changing its temperature from 20°C to -15°C. We use not only impulse-type signals but also sweep-type signals to prevent from the spectral leakage effect caused by the effect of windowing. We concern with attenuation at ultrasonic frequencies of 500-1000 kHz for P-waves and 100-400 kHz for S-waves. Our observation of the variation of the Poisson's ratio and the ratio of P- to S-wave attenuation with changing temperature indicates the possibilities of the joint use of both P- and S-waves to elucidate a plausible mechanism for seismic attenuation.

  1. The use of Poynting vector in wave-field decomposition imaging condition for reverse-time migration

    NASA Astrophysics Data System (ADS)

    Ren, Chiyuan; Song, Guojie; Tian, Xin

    2015-01-01

    An imaging condition based on cross-correlation is developed for prestack reverse-time migration. The imaging condition integrates the advantage of wave-field decomposition and Poynting vector and has powerful ability in artifacts removal. A truncation parameter is employed to balance imaging ability and artifacts removal in the imaging condition. The detail discussion has been done to verify the proposed imaging condition by lots of numerical simulation in a velocity model with vertical velocity gradient and Hess 2004 P-wave velocity model. The results show the proposed imaging condition works well to remove artifacts and improve imaging quality in these tests effectively.

  2. Extension of the Temkin-Poet model to L>0 partial waves: The generalized exchange approximation

    NASA Astrophysics Data System (ADS)

    Temkin, A.; Shertzer, J.; Bhatia, A. K.

    1998-02-01

    The Temkin-Poet (TP) model of electron-hydrogen scattering is here generalized to L>0 partial waves in such a way as to be a clear generalization of the exchange approximation (EA). This generalized exchange approximation (GEA) leads to a pair of coupled partial differential equations (PDE's). Boundary conditions are formulated, and the PDE's are solved by a finite element method program adapted from a previous partial wave calculation of the full problem [Shertzer and Botero, Phys. Rev. A 49, 3673 (1994)]. Calculations are carried out for 1,3P and 1,3D partial waves in the elastic region. Phase shifts are bounded from below, as is rigorously required, by exchange approximate phase shifts. But the GEA can yield resonances: in the elastic region, in addition to the 1S resonance of the TP model, there is a 3P resonance whose position and width are in close proximity to the lowest 3P resonance of the full theory. The GEA distinguishes between singlet and triplet scattering for all L, and it contains inelastic and ionization channels in the appropriate energy regions. It is expected that the GEA will have its greatest utility in the ionization domain, as a nontrivial test of the many recent methods being developed.

  3. MR imaging of heterogeneity in partially frozen brine and their effect on ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Matsushima, J.; Suzuki, M.

    2012-12-01

    Methane hydrate bearing sediment possesses unique seismic wave propagation properties. Both high seismic wave velocity and high wave attenuation are observed in methane hydrate bearing sediment. We used brine with salinity 2% in analogous to methane hydrate for conducting laboratory waveform measurement and characterization by using nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technique. When brine undergoes freezing, only pure water freezes into ice and salt remains in solution with successively increasing salinity and decreasing freezing point of the solution. Unfrozen brine is enclosed inside micro pores in ice, with exhibiting solid-liquid coexisting system. We used conventional pulse transmission technique to measure compressional wave velocity in partially frozen brine when brine is subjected cooling down to -12oC. Waveform measurement shows sudden increase in compressional wave velocity at temperature -3oC. Below -3oC, velocity increases slightly. Largest wave attenuation is observed at around -3oC. We conducted MRI experiment by using instrument Varian Unity Inova 4.7T. T1 weighted and diffusion weighted (DW) MR images were prepared by applying magnetic field gradient of 0.3 gauss/cm. We observe the spatial distribution of pores, microstructures and heterogeneity in partially frozen brine sample slices. Two dimensional apparent diffusion coefficient (ADC) maps are prepared from DW images with b-values 0 and 81 s/mm2 respectively. We estimate porosity quantitatively from each MR slices at temperature -3, -5, -7 and -12oC by using image analysis technique. Gassmann equation is applied to calculate compressional wave velocity from the porosity data and compared with the measured velocity obtained by waveform analysis technique. The NMR results show the existence of high and low mobility unfrozen brine in the pore space. MR imaging shows the heterogeneously distributed porosity values within a single slice with low porosity and high

  4. PARTIAL REFLECTION AND TRAPPING OF A FAST-MODE WAVE IN SOLAR CORONAL ARCADE LOOPS

    SciTech Connect

    Kumar, Pankaj; Innes, D. E.

    2015-04-20

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s{sup −1} within ∼3–4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s{sup −1}, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  5. Raman rogue waves in a partially mode-locked fiber laser.

    PubMed

    Runge, Antoine F J; Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro

    2014-01-15

    We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics.

  6. The Construction of Implicit and Explicit Solitary Wave Solutions of Nonlinear Partial Differential Equations.

    DTIC Science & Technology

    1987-08-01

    solution of the Korteweg-de Vries equation ( KdV ), working our way up to the derivation of the multi-soliton solution of the sine-Gordon equation (sG...SOLITARY WAVE SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS j DiS~~Uj~l. _’UDistribution/Willy Hereman AvaiiLi -itY Codes Technical Summary Report...Key Words: soliton theory, solitary waves, coupled KdV , evolution equations , direct methods, Harry Dym, sine-Gordon Mathematics Department, University

  7. Space-time analogy for partially coherent plane-wave-type pulses.

    PubMed

    Lancis, Jesús; Torres-Company, Víctor; Silvestre, Enrique; Andrés, Pedro

    2005-11-15

    In this Letter we extend the well-known space-time duality to partially coherent wave fields and, as a limit case, to incoherent sources. We show that there is a general analogy between the paraxial diffraction of quasi-monochromatic beams of limited spatial coherence and the temporal distortion of partially coherent plane-wave pulses in parabolic dispersive media. Next, coherence-dependent effects in the propagation of Gaussian Schell-model pulses are retrieved from that of their spatial counterpart, the Gaussian Schell-model beam. Finally, the last result allows us to present a source linewidth analysis in an optical fiber communication system operating around the 1.55 microm wavelength window.

  8. Non-partial wave treatment of reactive and non-reactive scattering Coupled integral equation formalism.

    NASA Technical Reports Server (NTRS)

    Hayes, E. F.; Kouri, D. J.

    1971-01-01

    Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.

  9. A Rosetta Stone relating conventions in photo-meson partial wave analyses

    NASA Astrophysics Data System (ADS)

    Sandorfi, A. M.; Dey, B.; Sarantsev, A.; Tiator, L.; Workman, R.

    2012-04-01

    A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.

  10. A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses

    SciTech Connect

    A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman

    2012-04-01

    A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.

  11. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  12. HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES

    SciTech Connect

    Shelyag, S.; Przybylski, D.; Khomenko, E.; Vicente, A. de

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  13. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  14. Multi-level quantum Monte Carlo wave functions for complex reactions: the decomposition of α-hydroxy-dimethylnitrosamine.

    PubMed

    Fracchia, Francesco; Filippi, Claudia; Amovilli, Claudio

    2014-01-05

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction. We compute a reliable reaction path with the quadratic configuration interaction method and employ QMC for the calculation of the electronic energies. We show that the use of multideterminantal wave functions is very important to correctly describe the critical points of this PES within QMC, and that our multilevel J-LGVB approach is an effective tool to significantly reduce the cost of QMC calculations without loss of accuracy. As regards the complex PES of α-hydroxy-dimethylnitrosamine, the accurate energies computed with our approach allows us to confirm the validity of the two-step reaction mechanism of decomposition originally proposed within density functional theory, but with some important differences in the barrier heights of the individual steps.

  15. RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.e

    2009-12-10

    Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2-10 minutes) and being damped after a few periods. The observations are interpreted as kink magnetohydrodynamic (MHD) wave modes, whereas resonant absorption in the Alfven continuum and ion-neutral collisions are candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma.

  16. Investigation of guided wave propagation in pipes fully and partially embedded in concrete.

    PubMed

    Leinov, Eli; Lowe, Michael J S; Cawley, Peter

    2016-12-01

    The application of long-range guided-wave testing to pipes embedded in concrete results in unpredictable test-ranges. The influence of the circumferential extent of the embedding-concrete around a steel pipe on the guided wave propagation is investigated. An analytical model is used to study the axisymmetric fully embedded pipe case, while explicit finite-element and semi-analytical finite-element simulations are utilised to investigate a partially embedded pipe. Model predictions and simulations are compared with full-scale guided-wave tests. The transmission-loss of the T(0,1)-mode in an 8 in. steel pipe fully embedded over an axial length of 0.4 m is found to be in the range of 32-36 dB while it reduces by a factor of 5 when only 50% of the circumference is embedded. The transmission-loss in a fully embedded pipe is mainly due to attenuation in the embedded section while in a partially embedded pipe it depend strongly on the extent of mode-conversion at entry to the embedded-section; low loss modes with energy concentrated in the region of the circumference not-covered with concrete have been identified. The results show that in a fully embedded pipe, inspection beyond a short distance will not be possible, whereas when the concrete is debonded over a fraction of the pipe circumference, inspection of substantially longer lengths may be possible.

  17. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: a high density EEG investigation

    PubMed Central

    Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.

    2015-01-01

    Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212

  18. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    SciTech Connect

    Lorente-Crespo, M.; Mateo-Segura, C.

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  19. Partial wave analysis of 3 π with pion and photon beams

    NASA Astrophysics Data System (ADS)

    Jackura, Andrew; Mikhasenko, Mikhail; Szczepaniak, Adam; Ketzer, Bernhard; Joint Physics Analysis Center Collaboration

    2016-09-01

    We present some results on the analysis of 3 π resonances from peripheral scattering of pions off of nuclear targets. The analysis is motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. The model emphasizes the 3 π production process and their final state interactions which satisfy S-matrix principles. We apply our model to fit partial wave intensities and relative phases from COMPASS in the JPC =2-+ sector and search for resonances. We then discuss the extension of our formalism to photon beams to be used in the GlueX experiment.

  20. Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.

    2016-03-01

    Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.

  1. Wave optics simulation of spatially partially coherent beams: Applications to free space laser communications

    NASA Astrophysics Data System (ADS)

    Xiao, Xifeng

    One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial

  2. Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-02-01

    Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.

  3. SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)

    DOE Data Explorer

    George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm

  4. Two-nucleon higher partial-wave scattering from lattice QCD

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; Joó, Bálint; Rinaldi, Enrico; Strother, Mark; Vranas, Pavlos M.; Walker-Loud, André

    2017-02-01

    We present a determination of nucleon-nucleon scattering phase shifts for ℓ ≥ 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ > 0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU (3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ =mK ≈ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ≈(3.5 fm) 3 and V ≈(4.6 fm) 3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.

  5. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    SciTech Connect

    Feng, Xiaobing

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  6. Study of insect succession and rate of decomposition on a partially burned pig carcass in an oil palm plantation in Malaysia.

    PubMed

    Heo, Chong Chin; Mohamad, Abdullah Marwi; Ahmad, Firdaus Mohd Salleh; Jeffery, John; Kurahashi, Hiromu; Omar, Baharudin

    2008-12-01

    Insects found associated with corpse can be used as one of the indicators in estimating postmortem interval (PMI). The objective of this study was to compare the stages of decomposition and faunal succession between a partially burnt pig (Sus scrofa Linnaeus) and natural pig (as control). The burning simulated a real crime whereby the victim was burnt by murderer. Two young pigs weighed approximately 10 kg were used in this study. Both pigs died from pneumonia and immediately placed in an oil palm plantation near a pig farm in Tanjung Sepat, Selangor, Malaysia. One pig was partially burnt by 1-liter petrol while the other served as control. Both carcasses were visited twice per day for the first week and once thereafter. Adult flies and larvae on the carcasses were collected and later processed in a forensic entomology laboratory. Results showed that there was no significant difference between the rate of decomposition and sequence of faunal succession on both pig carcasses. Both carcasses were completely decomposed to remain stage after nine days. The species of flies visiting the pig carcasses consisted of blow flies (Chrysomya megacephala, Chrysomya rufifacies, Hemipyrellia ligurriens), flesh fly (Sarcophagidae.), muscid fly (Ophyra spinigera), soldier fly (Hermetia illucens), coffin fly (Phoridae) and scavenger fly (Sepsidae). The only difference noted was in the number of adult flies, whereby more flies were seen in the control carcass. Faunal succession on both pig carcasses was in the following sequence: Calliphoridae, Sarcophagidae, Muscidae, Phoridae and lastly Stratiomyidae. However, there was overlap in the appearance of members of these families. Blowflies continued to oviposit on both carcasses. Hence postmortem interval (PMI) can still be estimated from the partially burnt pig carcass.

  7. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well.

  8. Research on Loran-C Sky Wave Delay Estimation Using Eigen-decomposition Algorithm

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Hu, Y. H.; Liang, Q.

    2009-04-01

    A novel signal processing technique using the Eigenvector algorithm for estimating sky wave delays in Loran - C receiver has been presented in this paper. This provides the basis on which to design a Loran-C receiver capable of adjusting its sampling point adaptively to the optimal value. The performance of this sky wave delay on the estimation accuracy of the algorithm is studied and compared with IFFT technique. Simulation results show that this algorithm clearly provides better resolution and sharper peaks than the IFFT. Finally, experiment results using off-air data confirm these conclusions.

  9. Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2016-04-01

    We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media

  10. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  11. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  12. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-11-11

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  13. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  14. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  15. Correlations of πN partial waves for multireaction analyses

    SciTech Connect

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. Lastly, the influence of systematic errors is also considered.

  16. On the partial wave method for self energy calculations for non-hydrogenic electrons

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    1994-07-01

    A method for computing the self-energy correction for highly-ionized and high-Z many electron atoms is proposed and developed. The method is based on a partical wave analysis, and is immediately applicable to general potentials and many-electron wavefunctions. In this work we discuss the general approach, develop a formalism amenable to practical anal- ysis, provide the angular momentum reduction for arbitrary one-electron orbitals, and describe the computation of the twdimensional integrals and their kernels required for the partial wave analysis. Analytical results allowing for a practical renormalization scheme are discussed. This work is exploratory and developmental, and the present document provides a status report of our eforts. To date we have obtained numerical evidence that the method successfully handles the renormalization, and we report on significant progress in numerical methods for evaluating and approximating the two-dimensional integrals which occur in the method. We believe that this method can ultimately achieve an accuracy which is competitive with that of modern Brown's method calculations. The methods discussed within this work for approximating the two-dimensional radial matrix eIements including the full retarded couIomb interaction can be applied to other relativistic atomic physics calculations as a practical way to obtain improvements over the coulomb and Breit approximations.

  17. A Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the FQHE

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2000-03-01

    It is well known that the 2/5 FQH state can have two translationally invariant ground states, one of which is a singlet and the other fully polarized. A quantum phase transition occurs between these two as a function of the Zeeman field. This can be simply explained in terms of the crossing of Composite Fermion Landau levels. However, recently Kukushkin et al (PRL 82, 3665 (99)) have seen plateaus of half the maximal polarization in the 2/5 fraction at intermediate Zeeman fields. Similar plateaus, which are not allowed for translationally invariant CF states, are seen in other fractions as well. I propose a class of novel partially polarized spin/charge density wave states which display the co-existence of density wave and quantum Hall order (the Hall crystal state). The physical properties of the states, including gaps and collective excitations are computed using the formalism for the FQHE developed recently by Shankar and myself (for details see Murthy and Shankar in "Composite Fermions", Olle Heinonen, Editor).

  18. X-ray standing wave analysis of nanostructures using partially coherent radiation

    SciTech Connect

    Tiwari, M. K. Das, Gangadhar; Bedzyk, M. J.

    2015-09-07

    The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.

  19. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  20. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  1. Single-component single-partial acoustic surface waves in cubic crystals with surface distortion taken into account

    NASA Astrophysics Data System (ADS)

    Klochko, M. S.

    2014-06-01

    The surface waves and bulk acoustic bands were studied taking into account the interaction between the nearest and next-nearest neighbors in a cubic crystal. Expressions for the dispersion relations, the frequencies at which the surface waves split off the bulk spectrum, and the parameters of the amplitude attenuation have been obtained for the crystalline systems in which the surface waves are single-component and single-partial. The calculations were conducted taking into account the discrete nature of crystal lattice for arbitrary values of the two-dimensional wave vector. The analysis has demonstrated that the results obtained in the long-wavelength limit are in full agreement with those calculated in the framework of linear nonlocal elasticity theory. The influence of an adsorbed surface monolayer on the characteristics of the surface waves was studied.

  2. Integrability and conservation laws for the nonlinear evolution equations of partially coherent waves in noninstantaneous Kerr media.

    PubMed

    Hansson, T; Lisak, M; Anderson, D

    2012-02-10

    It is shown that the evolution equations describing partially coherent wave propagation in noninstantaneous Kerr media are integrable and have an infinite number of invariants. A recursion relation for generating these invariants is presented, and it is demonstrated how to express them in the coherent density, self-consistent multimode, mutual coherence, and Wigner formalisms.

  3. A reconfigurable digital filterbank for hearing-aid systems with a variety of sound wave decomposition plans.

    PubMed

    Wei, Ying; Liu, Debao

    2013-06-01

    Current hearing-aid systems have fixed sound wave decomposition plans due to the use of fixed filterbanks, thus cannot provide enough flexibility for the compensation of different hearing impairment cases. In this paper, a reconfigurable filterbank that consists of a multiband-generation block and a subband-selection block is proposed. Different subbands can be produced according to the control parameters without changing the structure of the filterbank system. The use of interpolation, decimation, and frequency-response masking enables us to reduce the computational complexity by realizing the entire system with only three prototype filters. Reconfigurability of the proposed filterbank enables hearing-impaired people to customize hearing aids based on their own specific conditions to improve their hearing ability. We show, by means of examples, that the proposed filterbank can achieve a better matching to the audiogram and has smaller complexity compared with the fixed filterbank. The drawback of the proposed method is that the throughput delay is relatively long (>20 ms), which needs to be further reduced before it can be used in a real hearing-aid application.

  4. Fast wavefield decomposition of volcano-tectonic earthquakes into polarized P and S waves by Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S.

    2016-10-01

    In the present work a new approach for the analysis of polarization of seismic signals is proposed. The method is based on Independent Component Analysis and allows the identification and separation of the basic sources, which are naturally polarized into the vertical and horizontal planes. The results from the case study of a swarm of volcano-tectonic earthquakes occurred at Campi Flegrei in October 2015 are impressive: a clear separation of the P- and S-wave seismic phases in the time domain is obtained. In addition, the efficiency of the method in retrieving the polarization parameters is demonstrated by the comparison with other standard techniques. The presented approach provides wavefield decomposition and polarization analysis in a single step, thus avoiding a priori cumbersome filtering procedures and segmentation of the signals. It is useful for discriminating and analysing different seismic phases and can be applied to a variety of volcanic and tectonic signals, therefore it can strongly support all the studies on propagation and source mechanism. Moreover, due to its fastness and robustness this stand-alone tool can be routinely used in the volcano monitoring practice.

  5. An experimental Method to Determine Photoelectron Partial Wave Probabilities and the Implications for Quantum Mechanically Complete Experiments

    NASA Astrophysics Data System (ADS)

    Yenen, Orhan

    2003-05-01

    Recent trends in AMO physics is to move from being a passive observer to an active controller of the outcome of quantum phenomena. Full controls of quantum processes require complete information about the quantum system; experiments which measure all the information allowed by quantum mechanics are called "Quantum Mechanically Complete Experiments". For example, when an isolated atom is photoionized, conservation laws limit the allowed partial waves of the photoelectron to a maximum of three. A quantum mechanically complete photoionization experiment then will have to determine all three partial wave probabilities and the two independent phases between the partial waves as a function of ionizing photon energy. From these five parameters all the quantities quantum mechanics allows one to measure can be determined for the "Residual Ion + Photoelectron" system. We have developed experimental methods [1, 2] to determine all three partial wave probabilities of photoelectrons when the residual ion is left in an excited state. Experimentally, Ar atoms are photoionized by circularly polarized synchrotron radiation produced by a unique VUV (vacuum ultraviolet) phase retarder we have installed at the Advanced Light Source (ALS) in Berkeley, CA. We measure the linear and circular polarization of the fine-structure-resolved fluorescent photons from the excited residual ions at specific directions. From the measurements one obtains the relativistic partial wave probabilities of the photoelectron. Our measurements highlight the significance of multielectron processes in photoionization dynamics and provide stringent tests of theory. The results indicate significant spin-dependent relativistic interactions during photoionization. [1] O. Yenen et al., Phys. Rev. Lett. 86, 979 (2001). [2] K. W. McLaughlin et al., Phys. Rev. Lett. 88, 123003 (2002).

  6. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.

    PubMed

    Rostami, Javad; Chen, Jingming; Tse, Peter W

    2017-02-07

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the

  7. Spreading speed and travelling wave solutions of a partially sedentary population

    NASA Astrophysics Data System (ADS)

    Volkov, Darko; Lui, Roger

    2007-12-01

    In this paper, we extend the population genetics model of Weinberger (1978, Asymptotic behavior of a model in population genetics. Nonlinear Partial Differential Equations and Applications (J. Chadam ed.). Lecture Notes in Mathematics, vol. 648. New York: Springer, pp. 47-98.) to the case where a fraction of the population does not migrate after the selection process. Mathematically, we study the asymptotic behaviour of solutions to the recursion un+1 = Qg[un], where ... In the above definition of Qg, K is a probability density function and f behaves qualitatively like the Beverton-Holt function. Under some appropriate conditions on K and f, we show that for each unit vector{xi} [isin] Rd, there exists a c*g({xi}) which has an explicit formula and is the spreading speed of Qg in the direction{xi} . We also show that for each c [≥] c*g({xi}), there exists a travelling wave solution in the direction{xi} which is continuous if gf '(0) [≤] 1.

  8. Partial wave analyses of J/ψ→γππ and γππ

    NASA Astrophysics Data System (ADS)

    BES Collaboration; Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.

    2006-11-01

    Results are presented on J/ψ radiative decays to ππ and ππ based on a sample of 58M J/ψ events taken with the BES II detector. Partial wave analyses are carried out using the relativistic covariant tensor amplitude method in the 1.0 to 2.3GeV/cππ mass range. There are conspicuous peaks due to the f(1270) and two 0 states in the 1.45 and 1.75 GeV/c mass regions. The first 0 state has a mass of 1466±6±20MeV/c, a width of 108-11+14±25MeV/c, and a branching fraction B(J/ψ→γf(1500)→γππ)=(0.67±0.02±0.30)×10. Spin 0 is strongly preferred over spin 2. The second 0 state peaks at 1765-3+4±13MeV/c with a width of 145±8±69MeV/c. If this 0 is interpreted as coming from f(1710), the ratio of its branching fractions to ππ and KK¯ is 0.41-0.17+0.11.

  9. Calculation of scattering amplitude without partial wave analysis: Inclusion of exchange

    NASA Astrophysics Data System (ADS)

    Temkin, Aaron; Shertzer, Janine

    2002-05-01

    In Ref. [1], a method is given for calculating the scattering amplitude f(Ω) directly. The idea is to calculate the complete wave function Ψ_k( r) numerically and use it in an integral expression for f(Ω). The original application was for electron scattering from static hydrogen without exchange. The Schrödinger equation (SE) reduces to a 2D partial differential equation (PDE), which is solved using the finite element method (FEM) [2]. The integral over dφr is done analytically, reducing the integral expression for f(Ω_k) to a 2D integral. Here we extend the method to include the effects of exchange. The SE can be reduced to a pair of 2D coupled PDE's which are again solved by the FEM. The formal expression for f(Ω) consists of two integrals, f^=fd f_e; fd is formally the same integral as the no-exchange f. We have also succeeded in reducing fe to a 2D integral. Results will be presented at the meeting. [1] J. Shertzer and A. Temkin, Phys. Rev. A 63, 062714 (2001). [2] J. Shertzer and J. Botero, Phys. Rev. A 49, 3673 (1994).

  10. Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: anisotropic response.

    PubMed

    Dang, Nhan C; Dreger, Zbigniew A; Gupta, Yogendra M; Hooks, Daniel E

    2010-11-04

    Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar.

  11. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  12. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes

    PubMed Central

    Rostami, Javad; Chen, Jingming; Tse, Peter W.

    2017-01-01

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the

  13. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples.

  14. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.

    PubMed

    Almassalha, Luay M; Bauer, Greta M; Chandler, John E; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K; Subramanian, Hariharan; Chandel, Navdeep S; Szleifer, Igal; Backman, Vadim

    2016-10-18

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.

  15. Partial wave spectroscopic microscopy can predict prostate cancer progression and mitigate over-treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim

    2016-02-01

    Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.

  16. Resolving Difficulties of a Single-Channel Partial-Wave Analysis

    NASA Astrophysics Data System (ADS)

    Hunt, Brian; Manley, D. Mark

    2016-03-01

    The goal of our research is to determine better the properties of nucleon resonances using techniques of a global multichannel partial-wave analysis. Currently, many predicted resonances have not been found, while the properties of several known resonances are relatively uncertain. To resolve these issues, one must analyze many different reactions in a multichannel fit. Other groups generally approach this problem by generating an energy-dependent fit from the start. This is a fit where all channels are analyzed together. The method is powerful, but due to the complex nature of resonances, certain model-dependent assumptions have to be introduced from the start. The current work tries to resolve these issues by first generating single-energy solutions in which experimental data are analyzed in narrow energy bins. The single-energy solutions can then be used to constrain the energy-dependent solution in a comparatively unbiased manner. Our work focuses on adding three new single-energy solutions into the global fit. These reactions are γp --> ηp , γn --> ηn , and γp -->K+ Λ . During this talk, I will discuss the difficulties of this approach, our methods to overcome these difficulties, and a few preliminary results. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award Nos. DE-FG02-01ER41194 and DE-SC0014323 and by the Kent State University Department of Physics.

  17. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  18. Correlation between intensity fluctuations induced by scattering of a partially coherent, electromagnetic wave from a quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chang, Liping; Chen, Feinan

    2016-12-01

    Based on the first-order Born approximation, the correlation between intensity fluctuations is derived for a partially coherent, electromagnetic plane wave scattering from a spatially quasi-homogeneous medium. Young's pinholes are utilized to control the degree of coherence of the incident field. For the electromagnetic scattering case, it is shown that the CIF of the scattered field strongly depends on the degree of polarization of the incident wave, Young's pinhole parameter, effective radius and correlation length of the medium. The influences of these parameters on the CIF distributions are revealed by numerical calculations.

  19. A Partial Wave Analysis of Proton-Antiproton Annihilation Above Threshold for ΦΦ Production in the JETSET Experiment

    SciTech Connect

    Marie, James John

    2006-05-01

    The JETSET experiment (PS202) conducted at CERN was designed to search for gluonic resonances in the mass range between 2.14 and 2.43 GeV/c2 using the channel, p$\\bar{p}$→ΦΦ→4K+/-. This channel is OZI suppressed, thus any observed enhancement of the cross section above a level consistent with the OZI rule could indicate possible resonating gluonic degrees of freedom. In fact, the measured cross section is two orders of magnitude larger than the OZI prediction and shows an enhancement centered near 2.2 GeV/c2 of width 50-100 MeV/c2. A partial wave analysis (PWA) has been conducted in order to search for the dominant partial waves. The formalism and methods of this PWA will be fully developed. This analysis has revealed the dominance of Jpc = 2++ together with a significant Jpc = 4++ component. Because the Φ resonance is only 4 MeV wide, the PWA is relatively insensitive to the presence of competing channels coupling to the 4K± final state. The partial wave analysis was

  20. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  1. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    NASA Astrophysics Data System (ADS)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  2. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute

  3. Two-dimensional stationary Schroedinger equation via the {partial_derivative}-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.

    2010-09-15

    The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.

  4. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  5. Partially coherent fundamental Gaussian wave generated by a fluctuating planar current source.

    PubMed

    Seshadri, S R

    2010-06-01

    The propagation characteristics of a spatially localized electromagnetic wave produced by a planar current source of different states of spatial coherence are analyzed by the use of a Gaussian Schell-model source. A linearly polarized fundamental electromagnetic Gaussian wave with the electric field perpendicular to the direction of propagation is treated. The effects of the degree of coherence of the source distribution on the radiation intensity distribution and the total radiated power are determined.

  6. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  7. Effect of Extracorporeal Shock Wave Treatment on Deep Partial-Thickness Burn Injury in Rats: A Pilot Study

    PubMed Central

    Kamelger, Florian Stefan; Jeschke, Johannes; Piza-Katzer, Hildegunde

    2014-01-01

    Extracorporeal shock wave therapy (ESWT) enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N = 15), but not to group 2 (N = 15). On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P < 0.05). The reepithelialization rate was improved significantly on day 15 (P < 0.05). The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future. PMID:25431664

  8. Resolution of quaternary mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares method.

    PubMed

    Henao-Escobar, W; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2015-10-01

    This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method.

  9. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, T. V.; Carbonell, M.; Ballester, J. L.; Khodachenko, M. L.

    2012-08-01

    Context. Alfvén wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfvén waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. Aims: The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Methods: Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description. We solved the dispersion relation of linear Alfvén waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. Results: We have found that neglecting inertial terms significantly reduces the real part of the Alfvén frequency although it never becomes zero. Therefore, the cut-off wavenumber does not exist at this stage. However, when the inertial terms together with the Hall term in the induction equation are neglected, the real part of the Alfvén frequency becomes zero. Conclusions: The appearance of a cut-off wavenumber, when Alfvén waves in partially ionized regions of the solar atmosphere are studied, is the result of neglecting inertial and Hall terms, therefore it has no physical origin.

  10. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    SciTech Connect

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  11. Wave simulation in partially frozen porous media with fractal freezing conditions

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Santos, Juan E.; Ravazzoli, Claudia L.; Helle, Hans B.

    2003-12-01

    A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.

  12. Analysis of Shear Wave Generation by Decoupled and Partially Coupled Explosions

    DTIC Science & Technology

    2009-07-31

    solution for the seismic waves generated by an explosion in an arbitrarily prestressed elastic medium. In this paper, we generalize the solution to allow... prestress does not change, but will be non-zero for a tamped explosion with tectonic strain release. The third integral therefore represents the...response of the medium to a change in prestress , the second integral represents the response of the medium to the applied stress from the explosion, and

  13. Improved Two-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection Through Partial Fourier Sampling

    NASA Astrophysics Data System (ADS)

    Farsaei, Amir Ashkan; Mokhtari-Koushyar, Farzad; Javad Seyed-Talebi, Seyed Mohammad; Kavehvash, Zahra; Shabany, Mahdi

    2016-03-01

    Active millimeter-wave imaging based on synthetic aperture focusing offers certain unique and practical advantages in nondestructive testing applications. Traditionally, the imaging for this purpose is performed through a long procedure of raster scanning with a single antenna across a two-dimensional grid, leading to a slow, bulky, and expensive scanning platform. In this paper, an improved bistatic structure based on radial compressive sensing is proposed, where one fixed transmitter antenna and a linear array of receiving antennas are used. The main contributions of this paper are (a) reducing the scanning time, (b) improving the output quality, and (c) designing an inexpensive setup. These improvements are the result of the underlying proposed simpler scanning structure and faster reconstruction process.

  14. Magnetic and elastic wave anisotropy in partially molten rocks: insight from experimental melting of synthetic quartz-mica schist (Invited)

    NASA Astrophysics Data System (ADS)

    Almqvist, B.; Misra, S.; Biedermann, A. R.; Mainprice, D.

    2013-12-01

    We studied the magnetic and elastic wave speed anisotropy of a synthetically prepared quartz-mica schist, prior to, during and after experimental melting. The synthetic rock was manufactured from a mixture of powders with equal volumes of quartz and muscovite. The powders were initially compacted with 200 MPa uniaxial stress at room temperature and sealed in a stainless steel canister. Subsequently the sealed canister was isostatically pressed at 180 MPa and 580 °C for 24 hours. This produced a solid medium with ~25 % porosity. Mica developed a preferred grain-shape alignment due to the initial compaction with differential load, where mica flakes tend to orient perpendicular to the applied stress and hence define a synthetic foliation plane. In the last stage we used a Paterson gas-medium apparatus, to pressurize and heat the specimens up to 300 MPa and 750 °C for a six hour duration. This stage initially compacted the rock, followed by generation of melt, and finally crystallization of new minerals from the melt. Elastic wave speed measurements were performed in situ at pressure and temperature, with a transducer assembly mounted next to the sample. Magnetic measurements were performed before and after the partial melt experiments. Anisotropy was measured in low- and high-field, using a susceptibility bridge and torsion magnetometer, respectively. Additionally we performed measurements of hysteresis, isothermal remanent magnetization (IRM) and susceptibility as a function of temperature, to investigate the magnetic properties of the rock. The elastic wave speed, before the melting-stage of the experiment, exhibits a distinct anisotropy with velocities parallel to the foliation being about 15 % higher than normal to the foliation plane. Measurements of the magnetic anisotropy in the bulk sample show that anisotropy is originating from the preferred orientation of muscovite, with a prominent flattening fabric. In contrast, specimens that underwent partial melting

  15. Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface.

    PubMed

    Hyde, Milo W; Basu, Santasri; Spencer, Mark F; Cusumano, Salvatore J; Fiorino, Steven T

    2013-03-25

    The scattering of a partially-coherent wave from a statistically rough material surface is investigated via derivation of the scattered field cross-spectral density function. Two forms of the cross-spectral density are derived using the physical optics approximation. The first is applicable to smooth-to-moderately rough surfaces and is a complicated expression of source and surface parameters. Physical insight is gleaned from its analytical form and presented in this work. The second form of the cross-spectral density function is applicable to very rough surfaces and is remarkably physical. Its form is discussed at length and closed-form expressions are derived for the angular spectral degree of coherence and spectral density radii. Furthermore, it is found that, under certain circumstances, the cross-spectral density function maintains a Gaussian Schell-model form. This is consistent with published results applicable only in the paraxial regime. Lastly, the closed-form cross-spectral density functions derived here are rigorously validated with scatterometer measurements and full-wave electromagnetic and physical optics simulations. Good agreement is noted between the analytical predictions and the measured and simulated results.

  16. A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies.

    PubMed

    Zhao, Dan

    2011-03-01

    Perforated liners with a narrow frequency range are widely used as acoustic dampers to stabilize combustion systems. When the frequency of unstable modes present in the combustion system is within the effective frequency range, the liners can efficiently dissipate acoustic waves. The fraction of the incident waves being absorbed (known as power absorption coefficient) is generally used to characterize the liners damping. To estimate it, plane waves either side of the liners need to be decomposed and characterized. For this, a real-time algorithm is developed. Emphasis is being placed on its ability to online decompose plane waves at multiple mode frequencies. The performance of the algorithm is evaluated first in a numerical model with two unstable modes. It is then experimentally implemented in an acoustically driven pipe system with a lined section attached. The acoustic damping of perforated liners is continuously characterized in real-time. Comparison is then made between the results from the algorithm and those from the short-time fast Fourier transform (FFT)-based techniques, which are typically used in industry. It was found that the real-time algorithm allows faster tracking of the liners damping, even when the forcing frequency was suddenly changed.

  17. Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion

    NASA Astrophysics Data System (ADS)

    Caldwell, Warren B.; Klemperer, Simon L.; Rai, Shyam S.; Lawrence, Jesse F.

    2009-11-01

    Seismic shear-wave velocities are sensitive to the partial melts that should be present in the Himalayan orogen if low-viscosity channel flow is active at the present day. We analyzed regional earthquakes in the western Himalaya and Tibet recorded on 16 broadband seismometers deployed across the NW Indian Himalaya, from the Indian platform to the Karakoram Range. We used a multiple filter technique to calculate the group velocity dispersion of fundamental-mode Rayleigh waves, and then inverted the dispersion records to obtain separate one-dimensional shear-wave velocity models for five geologic provinces: the Tibetan plateau, Ladakh arc complex, Indus Tsangpo suture zone, Tethyan Himalaya, and Himalayan thrust belt. Our velocity models show a low-velocity layer (LVL) with 7-17% velocity reduction centered at ~ 30 km depth and apparently continuous from the Tethyan Himalaya to the Tibetan plateau. This LVL shows good spatial correspondence with observations of low resistivity from magnetotelluric studies along the same profile. Of the possible explanations for low velocity and low resistivity in the mid-crust, only the presence of melts or aqueous fluids (or both) satisfactorily explains both sets of observations. Elevated heat flow observed in the NW Himalaya implies that if aqueous fluids are present in the mid-crust, then the mid-crust is well above its solidus. Comparison of our results with laboratory measurements and theoretical models suggests 3-7% melt is present in a channel in the upper-middle crust of the NW Himalaya at the present day, and the physical conditions to enable active channel flow may be present.

  18. Quantization of wave equations and hermitian structures in partial differential varieties.

    PubMed

    Paneitz, S M; Segal, I E

    1980-12-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation-e.g., of the form squarevarphi + m(2)varphi + gvarphi(p) = 0-admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments.

  19. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  20. Analysis of partial-reflection data from the solar eclipse of 10 Jul. 1972. [ground-based experiment using vertical incident radio waves partially reflected from D region

    NASA Technical Reports Server (NTRS)

    Bean, T. A.; Bowhill, S. A.

    1973-01-01

    Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

  1. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  2. Anomalous Signal Detection in ELF Band Electromagnetic Wave using Multi-layer Neural Network with Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi; Takumi, Ichi; Hata, Masayasu

    It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.

  3. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  4. Physics-based RF/microwave characterization of wave interactions within electrical connectors with partial insertion faults

    NASA Astrophysics Data System (ADS)

    Tokgöz, Çaǧatay; Dardona, Sameh

    2016-09-01

    Electrical failures in avionics systems may result from connector faults. If fault precursors are not detected in advance, they may lead to hard failures such as open and short circuits that could ultimately result in fire or loss of flight critical systems. Therefore, It is crucial to detect, locate, and characterize fault precursors for timely preventive maintenance and mitigation before hard failures occur. In this paper, a physics-based connector model consisting of multiple coaxial line sections with different characteristic impedances and lengths is proposed. Method of Moments (MoM) analyses were performed using commercial electromagnetic simulation software, FEKO, for transverse electric and magnetic (TEM) wave propagation through a connector. The physical parameters of the connector were optimized to match the measured S parameters for multiple insertion depths. The proposed models represent the connector for multiple insertion depths by varying only two length parameters at a time while other parameters are fixed. Insertion depth-dependent resonant frequency shifts observed during measurement are also captured by the model over the full range of fully inserted to barely touching contacts. Hence, the models provide accurate representations of the connector and properly detect precursors to partial insertion faults.

  5. Partial wave analysis of the reaction {gamma}p{yields}p{omega} and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-12-15

    An event-based partial wave analysis (PWA) of the reaction {gamma}p{yields}p{omega} has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of {omega}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The data confirm the dominance of the t-channel {pi}{sup 0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F{sub 15}(1680) and D{sub 13}(1700) near threshold, as well as the G{sub 17}(2190) at higher energies. Suggestive evidence for the presence of a J{sup P}=5/2{sup +} state around 2 GeV, a ''missing'' state, has also been found. Evidence for other states is inconclusive.

  6. Partial wave analysis of the reaction γp→pω and the search for nucleon resonances

    DOE PAGES

    Williams, M.; Applegate, D.; Bellis, M.; ...

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as wellmore » as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.« less

  7. Formation of Fe-Os, Fe-Ru, and Fe-Co bimetallic particles by thermal decomposition of heteropolynuclear clusters supported on a partially dehydroxylated magnesia

    SciTech Connect

    Choplin, A.; Huang, L.; Theolier, A.; Gallezot, P.; Basset, J.M.; Siriwardane, U.; Shore, S.G.; Mathieu, R.

    1986-07-09

    The authors wish to report here that with H/sub 2/FeOs/sub 3/(CO)/sub 13/, H/sub 2/FeRu/sub 3/(VO)/sub 13/, and HFeCo/sub 3/(CO)/sub 12/ supported on a partially hydroxylated magnesia, it is possible to obtain, after H/sub 2/ treatment at 400/sup 0/C, very small bimetallic particles, having the same bulk composition as that of the starting heteropolynuclear precursor cluster. This conclusion is based on high spatial resolution analytical microscopy.

  8. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates.

  9. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  10. Classification and modeling of human activities using empirical mode decomposition with S-band and millimeter-wave micro-Doppler radars

    NASA Astrophysics Data System (ADS)

    Fairchild, Dustin P.; Narayanan, Ram M.

    2012-06-01

    The ability to identify human movements can be an important tool in many different applications such as surveillance, military combat situations, search and rescue operations, and patient monitoring in hospitals. This information can provide soldiers, security personnel, and search and rescue workers with critical knowledge that can be used to potentially save lives and/or avoid a dangerous situation. Most research involving human activity recognition is focused on using the Short-Time Fourier Transform (STFT) as a method of analyzing the micro-Doppler signatures. Because of the time-frequency resolution limitations of the STFT and because Fourier transform-based methods are not well-suited for use with non-stationary and nonlinear signals, we have chosen a different approach. Empirical Mode Decomposition (EMD) has been shown to be a valuable time-frequency method for processing non-stationary and nonlinear data such as micro-Doppler signatures and EMD readily provides a feature vector that can be utilized for classification. For classification, the method of a Support Vector Machine (SVMs) was chosen. SVMs have been widely used as a method of pattern recognition due to their ability to generalize well and also because of their moderately simple implementation. In this paper, we discuss the ability of these methods to accurately identify human movements based on their micro-Doppler signatures obtained from S-band and millimeter-wave radar systems. Comparisons will also be made based on experimental results from each of these radar systems. Furthermore, we will present simulations of micro-Doppler movements for stationary subjects that will enable us to compare our experimental Doppler data to what we would expect from an "ideal" movement.

  11. An Evaluation of the Parallel Ensemble Empirical Mode Decomposition Method in Revealing the Role of Downscaling Processes Associated with African Easterly Waves in Tropical Cyclone Genesis

    NASA Astrophysics Data System (ADS)

    Shen, B. W.; Wu, Y.

    2015-12-01

    In this study, we applied the parallel version of the Ensemble Empirical Mode Decomposition (PEEMD) for an analysis of 10-year (2004-2013) ERA-Interim global reanalysis data in order to explore multiscale interaction of tropical cyclone genesis associated with African Easterly Waves (AEWs) in sheared flows. Our focus was aimed at understanding the downscaling process in multiscale flows during storm intensification. To represent the various length scales of atmospheric systems, we extracted Intrinsic Function Modes (IMFs) from raw data using the PEEMD and found that the non-oscillatory trend mode can be used to represent large scale environmental flow and the third oscillatory mode (IMF3) is to represent AEW/TC scale systems. Our results: 1) identified 42 developing cases from 272 AEWs, with 25 eventually developing into hurricanes; 2) indicated that maximum shear largely occurs over the ocean for the IMF3 mode and over land near the coast for the trend mode for developing cases, suggesting shear transfer between the trend mode and the IMF3; 3) displayed opposite wind shear tendencies for the trend mode and the IMF3 during storm intensification, signifying the downscaling process in 13 hurricane cases along their tracks; 4) showed that among the 42 developing cases, only 13 of the 25 hurricanes were found with significant downscaling transfer features, so other processes such as upscaling processes may play an important role in the other developing cases, especially the remaining 12 hurricane cases. Investigating the upscaling process between the convection scale and the AEW/TC requires data from the finer grid resolution and will be the subject of a future study.

  12. Two-body scattering without angular-momentum decomposition

    SciTech Connect

    Rodriguez-Gallardo, M.; Deltuva, A.; Cravo, E.; Fonseca, A. C.; Crespo, R.

    2008-09-15

    Two-body scattering is studied by solving the Lippmann-Schwinger equation in momentum space without angular-momentum decomposition for a local spin-dependent short-range interaction plus Coulomb. The screening and renormalization approach is employed to treat the Coulomb interaction. Benchmark calculations are performed by comparing our procedure with partial-wave calculations in configuration space for p-{sup 10}Be,p-{sup 16}O, and {sup 12}C-{sup 10}Be elastic scattering, using a simple optical potential model.

  13. Collision-induced Raman scattering from a pair of dissimilar particles: An intriguing mathematical model predicting the suppression of the odd-numbered partial waves

    NASA Astrophysics Data System (ADS)

    Chrysos, Michael

    2016-03-01

    Relying on a simple analytic two-atom model in which the anisotropy of the interaction dipole polarizability obeys an inverse power law as a function of separation, we offer mathematical and numerical evidence that, in a monoatomic gas, the free-free Raman spectrum for a collisional pair of two different isotopes, a-a', may vastly differ from that for a-a. This result is obtained even if a and a' are assumed to have the same mass and zero nuclear spin and even if a-a and a-a' are subject to the same interaction polarizability and potential. The mechanism responsible for this effect is inherent in the parity of the partial-wave rotational quantum number J: given that the contribution of each partial wave to the Raman cross section is controlled by a polarizability-transition matrix-element and that each of those matrix-elements has a radial component with a magnitude slightly smaller than that of the preceding partial wave, a deficit which disfavors the odd-numbered waves is accumulated upon summing over J. In the far high-frequency wing, this deficit tends to generate spectral intensities for a-a' about half as great as the a-a ones, a tendency which becomes all the more effective as temperature is decreased. We show for instance that, for the spectral branch ΔJ = 2, the fractional difference between the free-free differential cross sections for a-a and a-a' is /1 2 /( 1 - x2 ) 3 1 + 3 x 4 , with x = √{ E / E ' } (E (E') being the initial (final) state energy of the pair and E' - E = hcν (ν > 0)). Remarkably, this quantity is zero at ν ≈ 0 but goes to /1 2 for ν ≫ 0. For ΔJ = 0, analogous conclusions may be drawn from the expression ( 1 + /ln ( 1+x/1-x ) 2 arctan x ) - 1 .

  14. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  15. Some nonlinear space decomposition algorithms

    SciTech Connect

    Tai, Xue-Cheng; Espedal, M.

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  16. Partial wave analysis of scattering with the nonlocal Aharonov-Bohm effect and the anomalous cross section induced by quantum interference

    SciTech Connect

    Lin, D.-H.

    2004-05-01

    Partial wave theory of a three dimensional scattering problem for an arbitrary short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a 'hard sphere'-like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in understanding some other phenomena in mesoscopic physics.

  17. Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement-local Schrödinger equation method

    SciTech Connect

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2013-07-28

    We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N{sup 3}), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.

  18. Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement-local Schrödinger equation method.

    PubMed

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2013-07-28

    We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N(3)), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.

  19. Partial-Discharge Tests of Multiwinding High-Voltage Transformers for Space TWTAs (Traveling-Wave Tube Amplifiers).

    DTIC Science & Technology

    1985-09-23

    6420 5697 26898 0 0 10:18:30 1.06 4420 18019 11092 0 0 10:20:07 1.06 3420 14879 1115 0 0 10:21:4 1.06 2700 5674 0 0 0 10:23:21 1.08 2300 5739 1264 0 0...for Detection and Measurement of Discharge (Corona) Pulses in Evaluation of Insulation Systems," ASTM D1868-73. 5. R. J. Densley, "Partial Discharge...under Direct-Voltage Conditions," Ch. 11 in Engineering Dielectrics, Vol. 1: Corona Measurement and Interpretation, ASTM 669, eds. R. Bartnikas and E. J

  20. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2007-06-01

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.

  1. Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the ν = 2/5 Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2000-01-01

    It is well known that the ν = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for ν = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.

  2. Composite fermion hofstadter problem: partially polarized density wave states in the nu = 2/5 fractional quantum hall effect

    PubMed

    Murthy

    2000-01-10

    It is well known that the nu = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for nu = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.

  3. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet

    SciTech Connect

    Bliokh, K. Yu.; Bliokh, Yu. P.

    2007-06-15

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda et al. Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh et al. Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.

  4. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  5. Compound chondrule formation in the shock-wave heating model: Three-dimensional hydrodynamics simulation of the disruption of a partially-molten dust particle

    NASA Astrophysics Data System (ADS)

    Yasuda, Seiji; Miura, Hitoshi; Nakamoto, Taishi

    2009-11-01

    We carried out three-dimensional hydrodynamics simulations of the disruption of a partially-molten dust particle exposed to high-speed gas flow to examine the compound chondrule formation due to mutual collisions between the fragments (fragment-collision model; [Miura, H., Yasuda, S., Nakamoto, T., 2008a. Icarus194, 811-821]). In the shock-wave heating model, which is one of the most plausible models for chondrule formation, the gas friction heats and melts the surface of the cm-sized dust particle (parent particle) and then the strong gas ram pressure causes the disruption of the molten surface layer. The hydrodynamics simulation shows details of the disruptive motion of the molten surface, production of many fragments and their trajectories parting from the parent particle, and mutual collisions among them. In our simulation, we identified 32 isolated fragments extracted from the parent particle. The size distribution of the fragments was similar to that obtained from the aerodynamic experiment in which a liquid layer was attached to a solid core and it was exposed to a gas flow. We detected 12 collisions between the fragments, which may result in the compound chondrule formation. We also analyzed the paths of all the fragments in detail and found the importance of the shadow effect in which a fragment extracted later blocks the gas flow toward a fragment extracted earlier. We examined the collision velocity and impact parameter of each collision and found that 11 collisions should result in coalescence. It means that the ratio of coalescent bodies to single bodies formed in this disruption of a parent particle is R=11/(32-11)=0.52. We concluded that compound chondrule formation can occur just after the disruption of a cm-sized molten dust particle in shock-wave heating.

  6. A complex Noether approach for variational partial differential equations

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.

    2015-10-01

    Scalar complex partial differential equations which admit variational formulations are studied. Such a complex partial differential equation, via a complex dependent variable, splits into a system of two real partial differential equations. The decomposition of the Lagrangian of the complex partial differential equation in the real domain is shown to yield two real Lagrangians for the split system. The complex Maxwellian distribution, transonic gas flow, Maxwellian tails, dissipative wave and Klein-Gordon equations are considered. The Noether symmetries and gauge terms of the split system that correspond to both the Lagrangians are constructed by the Noether approach. In the case of coupled split systems, the same Noether symmetries are obtained. The Noether symmetries for the uncoupled split systems are different. The conserved vectors of the split system which correspond to both the Lagrangians are compared to the split conserved vectors of the complex partial differential equation for the examples. The split conserved vectors of the complex partial differential equation are the same as the conserved vectors of the split system of real partial differential equations in the case of coupled systems. Moreover a Noether-like theorem for the split system is proved which provides the Noether-like conserved quantities of the split system from knowledge of the Noether-like operators. An interesting result on the split characteristics and the conservation laws is shown as well. The Noether symmetries and gauge terms of the Lagrangian of the split system with the split Noether-like operators and gauge terms of the Lagrangian of the given complex partial differential equation are compared. Folklore suggests that the split Noether-like operators of a Lagrangian of a complex Euler-Lagrange partial differential equation are symmetries of the Lagrangian of the split system of real partial differential equations. This is not the case. They are proved to be the same if the

  7. Partial wave analysis of the reaction p (3.5 GeV) + p → pK+ Λ to search for the " ppK-" bound state

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

    2015-03-01

    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p (3.5 GeV) + p → pK+ Λ. This reaction might contain information about the kaonic cluster " ppK-" (with quantum numbers JP =0- and total isospin I = 1 / 2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ‾ NN (or, specifically " ppK-") cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ‾ NN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2-12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  8. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK–" bound state

    DOE PAGES

    Agakishiev, G.; Arnold, O.; Belver, D.; ...

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore » description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less

  9. Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas.

    PubMed

    Andreev, Pavel A; Iqbal, Z

    2016-03-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n(0) ∼ 10(27) cm(-3) and high-magnetic-field B(0)=10(10) G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.

  10. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  11. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  12. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  13. Decomposition synthesis strategy directed to FPGA with special MTBDD representation

    NASA Astrophysics Data System (ADS)

    Opara, Adam; Kubica, Marcin

    2016-12-01

    This paper presents the decompositional techniques to obtain partial logical resource sharing between logical structures associated with the respective single functions belonging to a multioutput function. In the case of the BDD function representation the decomposition is associated with the problem of single or multiple cutting diagram. In the paper, the authors focus on the problem of searching for functions for the joint implementation of the decomposition implemented by multiple cutting of SMTBDD diagrams. During the decomposition process the key is to develop effective methods of splitting and merging MTBDD diagrams. This problem was solved by introducing a new type of diagrams PMTBDD. The effectiveness of the developed methods has been confirmed experimentally.

  14. Circulant states with positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2007-09-15

    We construct a large class of quantum dxd states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure - that is why we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. This class contains many well-known examples of PPT states from the literature and gives rise to a huge family of completely new states.

  15. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  16. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  17. Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves

    NASA Astrophysics Data System (ADS)

    Askari, E.; Daneshmand, F.; Amabili, M.

    2011-10-01

    Internal bodies (baffles) are used as damping devices to suppress the fluid sloshing motion in fluid-structure interaction systems. An analytical method is developed in the present article to investigate the effects of a rigid internal body on bulging and sloshing frequencies and modes of a cylindrical container partially filled with a fluid. The internal body is a thin-walled and open-ended cylindrical shell that is coaxially and partially submerged inside the container. The interaction between the fluid and the structure is taken into account to calculate the sloshing and bulging frequencies and modes of the coupled system using the Rayleigh quotient, Ritz expansion and Galerkin method. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy. The effects of fluid level, number of nodal diameters, internal body radius and submergence ratio on the dynamic characteristics of the coupled system are also investigated.

  18. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: Implications for the properties of an underplated lower continental crust

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Jackson, Ian

    1995-06-01

    Ultrasonic compressional wave velocities measured at 1.0 GPa and room temperature are compared with calculated velocities (based on single-crystal data and modal mineralogy) for a suite of mafic granulite xenoliths from the Chudleigh volcanic province, north Queensland, Australia. The xenoliths have nearly constant major element compositions but widely variable modal mineralogy, reflecting recrystallization under variable pressure-temperature conditions at depth in the continental crust (20-45 km). They thus provide an excellent opportunity to investigate velocity variation with depth in a mafic lower crust. Measured P wave velocities, corrected for the decompression-induced breakdown of garnet, range from 6.9 to 7.6 km/sec and correlate with derivation depth. These velocities are 5-12% lower than the calculated velocities (7.5-8.0 km/sec), apparently as a result of grain boundary alteration as well as irreversible changes that occurred in the xenoliths during rapid decompression. Calculated P wave velocities are similar to those estimated by Furlong and Fountain (1986) and Sobolev and Babeyko (1989) for mafic granulites formed through basaltic underplating of the continental crust. Depending upon in situ temperature, P wave velocities in the deepest samples may be interpreted as crustal (e.g., 7.3-7.6 km/sec, if heat flow is high) or mantle (7.7-7.8 km/sec, in areas of low heat flow). The range of velocities in the xenolith suite is larger than predicted for a fully equilibrated underplated basaltic layer, highlighting the importance of kinetic effects in determining the ultimate velocity profile of magmatically underplated crust. Comparison of our results with seismic profiles illustrates that the lower crust rarely reaches such high velocities, suggesting quartz-bearing rocks (country rocks?) are present within magmatically underplated layers of the deep crust.

  19. Decomposing Nekrasov decomposition

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  20. Analysis of a Methanol Decomposition Process by a Nonthermal Plasma Flow

    NASA Astrophysics Data System (ADS)

    Sato, Takehiko; Kambe, Makoto; Nishiyama, Hideya

    In the present study, experimental and numerical analyses were adopted to clarify key reactive species for methanol decomposition processes using a nonthermal plasma flow. The nonthermal plasma flow was generated by a dielectric barrier discharge (DBD) as a radical production source. The experimental methods were as follows. Working gas was air of 1-10Sl/min. The peak-to-peak applied voltage was 16-20kV with sine wave of 1Hz-7kHz. The characteristics of gas velocity, gas temperature, ozone concentration and methanol decomposition efficiency were measured. Those characteristics were also numerically analyzed using conservation equations of mass, chemical component, momentum and energy, and state of equation. The simulation model takes into account reactive species, which have chemical reaction with the methanol. The detailed reaction mechanism used in this model consists of 108 elementary reactions and 41 chemical species. Inlet conditions are partially given by experimental results. Finally, effects of reactive species such as O, OH, H, NO, etc. on methanol decomposition characteristics are numerically analyzed. The results obtained in this study are summarized as follows. (1) Existence of excited atoms of O, N and excited molecular of OH, N2(B3Πg), N2(A3Σu+), NO are implied in the discharge region. (2) The methanol below 50ppm is decomposed completely by using DBD at discharge conditions as V=16kVpp and f=100Hz. (3) The reactive species are most important factor to decompose methanol, as the full decomposition is obtained under all injection positions. (4) In numerical analysis, it is clarified that OH is the important radical to decompose the methanol.

  1. The generalized triangular decomposition

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Hager, William W.; Li, Jian

    2008-06-01

    Given a complex matrix mathbf{H} , we consider the decomposition mathbf{H} = mathbf{QRP}^* , where mathbf{R} is upper triangular and mathbf{Q} and mathbf{P} have orthonormal columns. Special instances of this decomposition include the singular value decomposition (SVD) and the Schur decomposition where mathbf{R} is an upper triangular matrix with the eigenvalues of mathbf{H} on the diagonal. We show that any diagonal for mathbf{R} can be achieved that satisfies Weyl's multiplicative majorization conditions: prod_{iD1}^k \\vert r_{i}\\vert le prod_{iD1}^k sigma_i, ; ; 1 le k < K, quad prod_{iD1}^K \\vert r_{i}\\vert = prod_{iD1}^K sigma_i, where K is the rank of mathbf{H} , sigma_i is the i -th largest singular value of mathbf{H} , and r_{i} is the i -th largest (in magnitude) diagonal element of mathbf{R} . Given a vector mathbf{r} which satisfies Weyl's conditions, we call the decomposition mathbf{H} = mathbf{QRP}^* , where mathbf{R} is upper triangular with prescribed diagonal mathbf{r} , the generalized triangular decomposition (GTD). A direct (nonrecursive) algorithm is developed for computing the GTD. This algorithm starts with the SVD and applies a series of permutations and Givens rotations to obtain the GTD. The numerical stability of the GTD update step is established. The GTD can be used to optimize the power utilization of a communication channel, while taking into account quality of service requirements for subchannels. Another application of the GTD is to inverse eigenvalue problems where the goal is to construct matrices with prescribed eigenvalues and singular values.

  2. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  3. P-wave velocity structure beneath Mt. Melbourne in northern Victoria Land, Antarctica: Evidence of partial melting and volcanic magma sources

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Yoo, Hyun Jae; Lee, Won Sang; Lee, Choon-Ki; Lee, Joohan; Park, Hadong; Kim, Jinseok; Kim, Yeadong

    2015-12-01

    Mt. Melbourne is a late Cenozoic intraplate volcano located ∼30 km northeast of Jang Bogo Station in Antarctica. The volcano is quiescent with fumarolic activity at the summit. To monitor volcanic activity and glacial movements near Jang Bogo Station, a seismic network was installed during the 2010-11 Antarctic summer field season. The network is maintained during the summer field season every year, and the number of stations has been increased. We used continuous seismic data recorded by the network and an Italian seismic station (TNV) at Mario Zucchelli Station to develop a 3-D P-wave velocity model for the Mt. Melbourne area based on the teleseismic P-wave tomographic method. The new 3-D model presented a relative velocity structure for the lower part of the crust and upper mantle between depths of 30 and 160 km and revealed the presence of two low-velocity anomalies beneath Mt. Melbourne and the Priestley Fault. The low-velocity anomaly beneath Mt. Melbourne may be caused by the edge flow of hot mantle material at the lithospheric step between the thick East Antarctic Craton and thin Ross Sea crust. The other low-velocity anomaly along the Priestley Fault may have been beneath Mt. Melbourne and moved to the southern tip of the Deep Freeze Range, where the crustal thickness is relatively thin. The anomaly was trapped on the fault line and laterally flowed along the fault line in the northwest direction.

  4. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group

    PubMed Central

    2017-01-01

    We present a second-order N-electron valence state perturbation theory (NEVPT2) based on a density matrix renormalization group (DMRG) reference wave function that exploits a Cholesky decomposition of the two-electron repulsion integrals (CD-DMRG-NEVPT2). With a parameter-free multireference perturbation theory approach at hand, the latter allows us to efficiently describe static and dynamic correlation in large molecular systems. We demonstrate the applicability of CD-DMRG-NEVPT2 for spin-state energetics of spin-crossover complexes involving calculations with more than 1000 atomic basis functions. We first assess, in a study of a heme model, the accuracy of the strongly and partially contracted variant of CD-DMRG-NEVPT2 before embarking on resolving a controversy about the spin ground state of a cobalt tropocoronand complex. PMID:28094988

  5. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group.

    PubMed

    Freitag, Leon; Knecht, Stefan; Angeli, Celestino; Reiher, Markus

    2017-02-14

    We present a second-order N-electron valence state perturbation theory (NEVPT2) based on a density matrix renormalization group (DMRG) reference wave function that exploits a Cholesky decomposition of the two-electron repulsion integrals (CD-DMRG-NEVPT2). With a parameter-free multireference perturbation theory approach at hand, the latter allows us to efficiently describe static and dynamic correlation in large molecular systems. We demonstrate the applicability of CD-DMRG-NEVPT2 for spin-state energetics of spin-crossover complexes involving calculations with more than 1000 atomic basis functions. We first assess, in a study of a heme model, the accuracy of the strongly and partially contracted variant of CD-DMRG-NEVPT2 before embarking on resolving a controversy about the spin ground state of a cobalt tropocoronand complex.

  6. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  7. An Alternative Method to the Classical Partial Fraction Decomposition

    ERIC Educational Resources Information Center

    Cherif, Chokri

    2007-01-01

    PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…

  8. Odd and even partial waves of ηπ- and η‧π- in π- p →η (‧)π- p at 191 GeV / c

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    Exclusive production of ηπ- and η‧π- has been studied with a 191 GeV / cπ- beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum (L) characteristics in the inspected invariant mass range up to 3 GeV /c2. A striking similarity between the two systems is observed for the L = 2 , 4 , 6 intensities (scaled by kinematical factors) and the relative phases. The known resonances a2 (1320) and a4 (2040) are in line with this similarity. In contrast, a strong enhancement of η‧π- over ηπ- is found for the L = 1 , 3 , 5 waves, which carry non- q q bar quantum numbers. The L = 1 intensity peaks at 1.7 GeV /c2 in η‧π- and at 1.4 GeV /c2 in ηπ-, the corresponding phase motions with respect to L = 2 are different.

  9. Domain decomposition: A bridge between nature and parallel computers

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1992-01-01

    Domain decomposition is an intuitive organizing principle for a partial differential equation (PDE) computation, both physically and architecturally. However, its significance extends beyond the readily apparent issues of geometry and discretization, on one hand, and of modular software and distributed hardware, on the other. Engineering and computer science aspects are bridged by an old but recently enriched mathematical theory that offers the subject not only unity, but also tools for analysis and generalization. Domain decomposition induces function-space and operator decompositions with valuable properties. Function-space bases and operator splittings that are not derived from domain decompositions generally lack one or more of these properties. The evolution of domain decomposition methods for elliptically dominated problems has linked two major algorithmic developments of the last 15 years: multilevel and Krylov methods. Domain decomposition methods may be considered descendants of both classes with an inheritance from each: they are nearly optimal and at the same time efficiently parallelizable. Many computationally driven application areas are ripe for these developments. A progression is made from a mathematically informal motivation for domain decomposition methods to a specific focus on fluid dynamics applications. To be introductory rather than comprehensive, simple examples are provided while convergence proofs and algorithmic details are left to the original references; however, an attempt is made to convey their most salient features, especially where this leads to algorithmic insight.

  10. The thermal decomposition of methane in a tubular reactor

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

  11. Wave Gradiometry for the Central U.S

    NASA Astrophysics Data System (ADS)

    liu, Y.; Holt, W. E.

    2013-12-01

    Wave gradiometry is a new technique utilizing the shape of seismic wave fields captured by USArray transportable stations to determine fundamental wave propagation characteristics. The horizontal and vertical wave displacements, spatial gradients and time derivatives of displacement are linearly linked by two coefficients which can be used to infer wave slowness, back azimuth, radiation pattern and geometrical spreading. The reducing velocity method from Langston [2007] is applied to pre-process our data. Spatial gradients of the shifted displacement fields are estimated using bi-cubic splines [Beavan and Haines, 2001]. Using singular value decomposition, the spatial gradients are then inverted to iteratively solve for wave parameters mentioned above. Numerical experiments with synthetic data sets provided by Princeton University's Neal Real Time Global Seismicity Portal are conducted to test the algorithm stability and evaluate errors. Our results based on real records in the central U.S. show that, the average Rayleigh wave phase velocity ranges from 3.8 to 4.2 km/s for periods from 60-125s, and 3.6 to 4.0 km/s for periods from 25-60s, which is consistent with earth model. Geometrical spreading and radiation pattern show similar features between different frequency bands. Azimuth variations are partially correlated with phase velocity change. Finally, we calculated waveform amplitude and spatial gradient uncertainties to determine formal errors in the estimated wave parameters. Further effort will be put into calculating shear wave velocity structure with respect to depth in the studied area. The wave gradiometry method is now being employed across the USArray using real observations and results obtained to date are for stations in eastern portion of the U.S. Rayleigh wave phase velocity derived from Aug, 20th, 2011 Vanuatu earthquake for periods from 100 - 125 s.

  12. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  13. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  14. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  15. Electrical field-assisted thermal decomposition of boron nitride nanotube: Experiments and first principle calculations

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Golberg, Dmitri; Bando, Yoshio

    2009-09-01

    We directly observed the Joule-heating-induced decomposition of multiwalled BN nanotubes using a transmission electron microscope equipped with a scanning tunneling microscope unit. The decomposition temperature is found to be dependent on an applied electrical field. We propose a model that due to the partially ionic nature of the B-N bond, the decomposition energy is both temperature- and electrical field-related: it is named as electrical field-assisted thermal decomposition. The model fits the experimental data very well and is considered to be general for all nanostructures with polar bonds.

  16. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  17. Tensor decomposition of EEG signals: a brief review.

    PubMed

    Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani

    2015-06-15

    Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously.

  18. Systems of Nonlinear Hyperbolic Partial Differential Equations

    DTIC Science & Technology

    1997-12-01

    McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear

  19. Vertebrate decomposition is accelerated by soil microbes.

    PubMed

    Lauber, Christian L; Metcalf, Jessica L; Keepers, Kyle; Ackermann, Gail; Carter, David O; Knight, Rob

    2014-08-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology.

  20. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  1. Pressure-induced decomposition of indium hydroxide.

    PubMed

    Gurlo, Aleksander; Dzivenko, Dmytro; Andrade, Miria; Riedel, Ralf; Lauterbach, Stefan; Kleebe, Hans-Joachim

    2010-09-15

    A static pressure-induced decomposition of indium hydroxide into metallic indium that takes place at ambient temperature is reported. The lattice parameter of c-In(OH)(3) decreased upon compression from 7.977(2) to approximately 7.45 A at 34 GPa, corresponding to a decrease in specific volume of approximately 18%. Fitting the second-order Birch-Murnaghan equation of state to the obtained compression data gave a bulk modulus of 99 +/- 3 GPa for c-In(OH)(3). The c-In(OH)(3) crystals with a size of approximately 100 nm are comminuted upon compression, as indicated by the grain-size reduction reflected in broadening of the diffraction reflections and the appearance of smaller (approximately 5 nm) incoherently oriented domains in TEM. The rapid decompression of compressed c-In(OH)(3) leads to partial decomposition of indium hydroxide into metallic indium, mainly as a result of localized stress gradients caused by relaxation of the highly disordered indium sublattice in indium hydroxide. This partial decomposition of indium hydroxide into metallic indium is irreversible, as confirmed by angle-dispersive X-ray diffraction, transmission electron microscopy imaging, Raman scattering, and FTIR spectroscopy. Recovered c-In(OH)(3) samples become completely black and nontransparent and show typical features of metals, i.e., a falling absorption in the 100-250 cm(-1) region accompanied by a featureless spectrum in the 250-2500 cm(-1) region in the Raman spectrum and Drude-like absorption of free electrons in the region of 4000-8000 cm(-1) in the FTIR spectrum. These features were not observed in the initial c-In(OH)(3), which is a typical white wide-band-gap semiconductor.

  2. Partial wave analysis of the reaction γppω and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D’Angelo, A.; Daniel, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.

  3. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK" bound state

    SciTech Connect

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  4. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments.

  5. Experimental investigation of the interaction between turbulent boundary layers and near-surface wave-induced forcing

    NASA Astrophysics Data System (ADS)

    Williams, Owen

    2016-11-01

    Free-surface waves can have a significant impact on sub-surface turbulent boundary layers that are present on undersea vehicles or on the bottom of flowing bodies of water such as estuaries. This problem has a wide parameter space and resultant changes to boundary layer structure due to wave forcing still require investigation. Here, preliminary experimental measurements within the newly commissioned wave channel at the University of Washington are detailed. Particle image velocimetry (PIV) is used to examine velocity statistics across the water column. In an effort to more readily identify changes in underlying boundary layer structure, a range of flow decompositions, such as snapshot partial orthogonal decomposition (POD) are evaluated in an effort to separate turbulent motions from the forcing, which to first order is a traveling wave. The effect of the relative difference between water depth and boundary layer thickness will be examined, as well as the Froude number of the surface waves. Ongoing efforts to examine the full parameter space will be discussed, as dimensional analysis and linear wave theory suggest there are up to seven parameters relevant to either inner or outer layers.

  6. Wigner rotations and Iwasawa decompositions in polarization optics.

    PubMed

    Han, D; Kim, Y S; Noz, M E

    1999-07-01

    Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories.

  7. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    NASA Astrophysics Data System (ADS)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  8. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  9. Art of spin decomposition

    SciTech Connect

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-04-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  10. The Vector Decomposition Problem

    NASA Astrophysics Data System (ADS)

    Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru

    This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.

  11. Direct Sum Decomposition of Groups

    ERIC Educational Resources Information Center

    Thaheem, A. B.

    2005-01-01

    Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…

  12. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant

  13. The helical decomposition and the instability assumption

    NASA Technical Reports Server (NTRS)

    Waleffe, Fabian A.

    1993-01-01

    Direct numerical simulations show that the triadic transfer function T(k,p,q) peaks sharply when q (or p) is much smaller than k. The triadic transfer function T(k,p,q) gives the rate of energy input into wave number k from all interactions with modes of wave number p and q, where k, p, q form a triangle. This observation was thought to suggest that energy is cascaded downscale through non-local interactions with local transfer and that there was a strong connection between large and small scales. Both suggestions were in contradiction with the classical Kolmogorov picture of the energy cascade. The helical decomposition was found useful in distinguishing between kinematically independent interactions. That analysis has gone beyond the question of non-local interaction with local transfer. In particular, an assumption about the statistical direction of triadic energy transfer in any kinematically independent interaction was introduced (the instability assumption). That assumption is not necessary for the conclusions about non-local interactions with local transfer recalled above. In the case of turbulence under rapid rotation, the instability assumption leads to the prediction that energy is transferred in spectral space from the poles of the rotation axis toward the equator. The instability assumption is thought to be of general validity for any type of triad interactions (e.g. internal waves). The helical decomposition and the instability assumption offer detailed information about the homogeneous statistical dynamics of the Navier-Stokes equations. The objective was to explore the validity of the instability assumption and to study the contributions of the various types of helical interactions to the energy cascade and the subgrid-scale eddy-viscosity. This was done in the context of spectral closures of the Direct Interaction or Quasi-Normal type.

  14. Singular Value Decomposition of Optically-Mapped Cardiac Rotors and Fibrillatory Activity

    PubMed Central

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-01-01

    Our progress of understanding how cellular and structural factors contribute to the arrhythmia is hampered in part because of controversies whether a fibrillating heart is driven by a single, several, or multiple number of sources, and whether they are focal or reentrant, and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly-randomly propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that the SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: A transfer of modes from the driving to the passive regions resulting in a partial reaction of the passive region to the driving region. PMID:26668401

  15. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    NASA Astrophysics Data System (ADS)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  16. Decomposition in northern Minnesota peatlands

    SciTech Connect

    Farrish, K.W.

    1985-01-01

    Decomposition in peatlands was investigated in northern Minnesota. Four sites, an ombrotrophic raised bog, an ombrotrophic perched bog and two groundwater minerotrophic fens, were studied. Decomposition rates of peat and paper were estimated using mass-loss techniques. Environmental and substrate factors that were most likely to be responsible for limiting decomposition were monitored. Laboratory incubation experiments complemented the field work. Mass-loss over one year in one of the bogs, ranged from 11 percent in the upper 10 cm of hummocks to 1 percent at 60 to 100 cm depth in hollows. Regression analysis of the data for that bog predicted no mass-loss below 87 cm. Decomposition estimates on an area basis were 2720 and 6460 km/ha yr for the two bogs; 17,000 and 5900 kg/ha yr for the two fens. Environmental factors found to limit decomposition in these peatlands were reducing/anaerobic conditions below the water table and cool peat temperatures. Substrate factors found to limit decomposition were low pH, high content of resistant organics such as lignin, and shortages of available N and K. Greater groundwater influence was found to favor decomposition through raising the pH and perhaps by introducing limited amounts of dissolved oxygen.

  17. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  18. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  19. AUTONOMOUS GAUSSIAN DECOMPOSITION

    SciTech Connect

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  20. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  1. Domain decomposition methods for solving an image problem

    SciTech Connect

    Tsui, W.K.; Tong, C.S.

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  2. HCOOH decomposition on Pt(111): A DFT study

    NASA Astrophysics Data System (ADS)

    Scaranto, Jessica; Mavrikakis, Manos

    2016-06-01

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO2 and H2 or dehydration leading to CO and H2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We also considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. We found that CO2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.

  3. Catalyst for sodium chlorate decomposition

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1972-01-01

    Production of oxygen by rapid decomposition of cobalt oxide and sodium chlorate mixture is discussed. Cobalt oxide serves as catalyst to accelerate reaction. Temperature conditions and chemical processes involved are described.

  4. The inner structure of empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Hung; Young, Hsu-Wen Vincent; Lo, Men-Tzung

    2016-11-01

    The empirical mode decomposition (EMD) is a nonlinear method that is truly adaptive with good localization property in the time domain for analyzing non-stationary complex data. The EMD has been proven useful in a wide range of applications. However, due to the nonlinear and complex nature of the sifting process, the most essential step of the EMD, a firm mathematical foundation or a transparent physical description are still lacked for EMD. Here, we embark on constructing a mathematical theory of the sifting operator. We first show that the sifting operator can be expressed as the data plus the sum of the responses to the impulses (multiplied by the data value) at the extrema. Such an expression of the sifting operator is then used to investigate the adaptive nature and the localizing effect of the EMD. Alternatively, the sifting operator can also be represented by a sifting matrix, which depends nonlinearly on the extrema distribution. Based on the eigen-decomposition of the sifting matrix, the transfer function of the sifting process is analyzed. Finally we answer what an intrinsic mode function (IMF) is from the wave perspective by exploring the physical basis of the IMFs.

  5. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces

    PubMed Central

    Bahri, A.; Bendersky, M.; Cohen, F. R.; Gitler, S.

    2009-01-01

    This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley–Reisner ring of a finite simplicial complex, and natural generalizations. PMID:19620727

  6. Thermal decomposition products of butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Kaskey, Kevin R.; Warner, Brian J.; Wright, Emily M.; McCunn, Laura R.

    2013-12-01

    The thermal decomposition of gas-phase butyraldehyde, CH3CH2CH2CHO, was studied in the 1300-1600 K range with a hyperthermal nozzle. Products were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry in separate experiments. There are at least six major initial reactions contributing to the decomposition of butyraldehyde: a radical decomposition channel leading to propyl radical + CO + H; molecular elimination to form H2 + ethylketene; a keto-enol tautomerism followed by elimination of H2O producing 1-butyne; an intramolecular hydrogen shift and elimination producing vinyl alcohol and ethylene, a β-C-C bond scission yielding ethyl and vinoxy radicals; and a γ-C-C bond scission yielding methyl and CH2CH2CHO radicals. The first three reactions are analogous to those observed in the thermal decomposition of acetaldehyde, but the latter three reactions are made possible by the longer alkyl chain structure of butyraldehyde. The products identified following thermal decomposition of butyraldehyde are CO, HCO, CH3CH2CH2, CH3CH2CH=C=O, H2O, CH3CH2C≡CH, CH2CH2, CH2=CHOH, CH2CHO, CH3, HC≡CH, CH2CCH, CH3C≡CH, CH3CH=CH2, H2C=C=O, CH3CH2CH3, CH2=CHCHO, C4H2, C4H4, and C4H8. The first ten products listed are direct products of the six reactions listed above. The remaining products can be attributed to further decomposition reactions or bimolecular reactions in the nozzle.

  7. Partial Fractions in Calculus, Number Theory, and Algebra

    ERIC Educational Resources Information Center

    Yackel, C. A.; Denny, J. K.

    2007-01-01

    This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.

  8. Normalization of optical Weber waves and Weber-Gauss beams.

    PubMed

    Rodríguez-Lara, B M

    2010-02-01

    The normalization of energy divergent Weber waves and finite energy Weber-Gauss beams is reported. The well-known Bessel and Mathieu waves are used to derive the integral relations between circular, elliptic, and parabolic waves and to present the Bessel and Mathieu wave decomposition of the Weber waves. The efficiency to approximate a Weber-Gauss beam as a finite superposition of Bessel-Gauss beams is also given.

  9. Partial polarization by quantum distinguishability

    NASA Astrophysics Data System (ADS)

    Lahiri, Mayukh; Hochrainer, Armin; Lapkiewicz, Radek; Lemos, Gabriela Barreto; Zeilinger, Anton

    2017-03-01

    We establish that a connection exists between wave-particle duality of photons and partial polarization of a light beam. We perform a two-path lowest-order (single photon) interference experiment and demonstrate both theoretically and experimentally that the degree of polarization of the light beam emerging from an output of the interferometer depends on path distinguishability. In our experiment, we are able to change the quantum state of the emerging photon from a pure state to a fully mixed state without any direct interaction with the photon. Although most lowest-order interference experiments can be explained by classical theory, our experiment has no genuine classical analog. Our results show that a case exists where the cause of partial polarization is beyond the scope of classical theory.

  10. The ecology of carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carrion, or the remains of dead animals, is something that most people would like to avoid. It is visually unpleasant, emits foul odors, and may be the source of numerous pathogens. Decomposition of carrion, however, provides a unique opportunity for scientists to investigate how nutrients cycle t...

  11. Microbial interactions during carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This addresses the microbial ecology of carrion decomposition in the age of metagenomics. It describes what is known about the microbial communities on carrion, including a brief synopsis about the communities on other organic matter sources. It provides a description of studies using state-of-the...

  12. Cadaver decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carter, David O.; Yellowlees, David; Tibbett, Mark

    2007-01-01

    A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

  13. An analysis of scatter decomposition

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1990-01-01

    A formal analysis of a powerful mapping technique known as scatter decomposition is presented. Scatter decomposition divides an irregular computational domain into a large number of equal sized pieces, and distributes them modularly among processors. A probabilistic model of workload in one dimension is used to formally explain why, and when scatter decomposition works. The first result is that if correlation in workload is a convex function of distance, then scattering a more finely decomposed domain yields a lower average processor workload variance. The second result shows that if the workload process is stationary Gaussian and the correlation function decreases linearly in distance until becoming zero and then remains zero, scattering a more finely decomposed domain yields a lower expected maximum processor workload. Finally it is shown that if the correlation function decreases linearly across the entire domain, then among all mappings that assign an equal number of domain pieces to each processor, scatter decomposition minimizes the average processor workload variance. The dependence of these results on the assumption of decreasing correlation is illustrated with situations where a coarser granularity actually achieves better load balance.

  14. Investigating hydrogel dosimeter decomposition by chemical methods

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products.

  15. Thermal decomposition and non-isothermal decomposition kinetics of carbamazepine

    NASA Astrophysics Data System (ADS)

    Qi, Zhen-li; Zhang, Duan-feng; Chen, Fei-xiong; Miao, Jun-yan; Ren, Bao-zeng

    2014-12-01

    The thermal stability and kinetics of isothermal decomposition of carbamazepine were studied under isothermal conditions by thermogravimetry (TGA) and differential scanning calorimetry (DSC) at three heating rates. Particularly, transformation of crystal forms occurs at 153.75°C. The activation energy of this thermal decomposition process was calculated from the analysis of TG curves by Flynn-Wall-Ozawa, Doyle, distributed activation energy model, Šatava-Šesták and Kissinger methods. There were two different stages of thermal decomposition process. For the first stage, E and log A [s-1] were determined to be 42.51 kJ mol-1 and 3.45, respectively. In the second stage, E and log A [s-1] were 47.75 kJ mol-1 and 3.80. The mechanism of thermal decomposition was Avrami-Erofeev (the reaction order, n = 1/3), with integral form G(α) = [-ln(1 - α)]1/3 (α = ˜0.1-0.8) in the first stage and Avrami-Erofeev (the reaction order, n = 1) with integral form G(α) = -ln(1 - α) (α = ˜0.9-0.99) in the second stage. Moreover, Δ H ≠, Δ S ≠, Δ G ≠ values were 37.84 kJ mol-1, -192.41 J mol-1 K-1, 146.32 kJ mol-1 and 42.68 kJ mol-1, -186.41 J mol-1 K-1, 156.26 kJ mol-1 for the first and second stage, respectively.

  16. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  17. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  18. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  19. Empirical mode decomposition profilometry: small scale capabilities and comparison to Fourier Transform Profilometry

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Cobelli, Pablo; Bobinski, Tomasz; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe

    2015-11-01

    Fringe projection profilometry is an instrument of choice for the instantaneous measurement of the full height map of a free-surface. It is useful to capture interfacial phenomena such as droplet impact and propagation of water waves. We present the Empirical Mode Decomposition Profilometry (EMDP) for the analysis of fringe projection profilometry images. It is based on an iterative filter, using empirical mode decomposition, that is free of spatial filtering and adapted for surfaces characterized by a broadband spectrum of deformation. Examples of such surfaces can be found in nonlinear wave interaction regimes such as wave turbulence in gravity-capillary water waves. We show both numerically and experimentally that using EMDP improves strongly the profilometry small scale capabilities compared to traditionally used Fourier Transform Profilometry. Moreover, the height reconstruction distortion is much lower: the reconstructed height field is now both spectrally and statistically accurate.

  20. Decomposition of a depolarizing Mueller matrix into its nondepolarizing components by using symmetry conditions.

    PubMed

    Kuntman, Ertan; Arteaga, Oriol

    2016-04-01

    A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward. Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measurements, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the complete polarimetric response of two different systems and evaluate their weights in the overall response. The decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a second example, we use the decomposition to analyze an optical system in which a polarizing film is partially covered by another misaligned film.

  1. Anisotropic decomposition of energetic materials

    SciTech Connect

    Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang Wenge; Hooks, Daniel

    2007-12-12

    Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.

  2. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. Aflatoxin decomposition in various soils

    SciTech Connect

    Angle, J.S.

    1986-08-01

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.

  4. A Survey of Singular Value Decomposition Methods and Performance Comparison of Some Available Serial Codes

    NASA Technical Reports Server (NTRS)

    Plassman, Gerald E.

    2005-01-01

    This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition (SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms. The report also presents a survey of alternative algorithms, including partial SVD's special case SVD's, and others developed for concurrent processing systems.

  5. Decomposition patterns in terrestrial and intertidal habitats on Oahu Island and Coconut Island, Hawaii.

    PubMed

    Davis, J B; Goff, M L

    2000-07-01

    Decomposition studies were conducted at two sites on the Island of Oahu, Hawaii, to compare patterns of decomposition and arthropod invasion in intertidal and adjacent terrestrial habitats. The animal model used was the domestic pig. One site was on Coconut Island in Kaneohe Bay on the northeast side of Oahu, and the second was conducted in an anchialine pool located at Barber's Point Naval Air Station on the southwest shore of Oahu. At both sites, the terrestrial animal decomposed in a manner similar to what has been observed in previous studies in terrestrial habitats on the island of Oahu. Rate of biomass depletion was slower in both intertidal studies, and decomposition was primarily due to tide and wave activity and bacterial decomposition. No permanent colonization of carcasses by insects was seen for the intertidal carcass at Coconut Island. At the anchialine pool at Barber's Point Naval Air Station, Diptera larvae were responsible for biomass removal until the carcass was reduced below the water line and, from that point on, bacterial action was the means of decomposition. Marine and terrestrial scavengers were present at both sites although their impact on decomposition was negligible. Five stages of decomposition were recognized for the intertidal sites: fresh, buoyant/floating, deterioration/disintegration, buoyant remains, and scattered skeletal.

  6. Modeling Covariance Matrices via Partial Autocorrelations

    PubMed Central

    Daniels, M.J.; Pourahmadi, M.

    2009-01-01

    Summary We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the variables of a general random vector, then the above properties continue to hold and follows from establishing a one-to-one correspondence between a correlation matrix and its associated matrix of partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms for model formulation and various priors based on the partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a real dataset, and explore their properties via simulations. PMID:20161018

  7. Phlogopite Decomposition, Water, and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2005-01-01

    Venus is a hot and dry planet with a surface temperature of 660 to 740 K and 30 parts per million by volume (ppmv) water vapor in its lower atmosphere. In contrast Earth has an average surface temperature of 288 K and 1-4% water vapor in its troposphere. The hot and dry conditions on Venus led many to speculate that hydrous minerals on the surface of Venus would not be there today even though they might have formed in a potentially wetter past. Thermodynamic calculations predict that many hydrous minerals are unstable under current Venusian conditions. Thermodynamics predicts whether a particular mineral is stable or not, but we need experimental data on the decomposition rate of hydrous minerals to determine if they survive on Venus today. Previously, we determined the decomposition rate of the amphibole tremolite, and found that it could exist for billions of years at current surface conditions. Here, we present our initial results on the decomposition of phlogopite mica, another common hydrous mineral on Earth.

  8. Methanethiol decomposition on Ni(100)

    SciTech Connect

    Castro, M.E.; Ahkter, S.; Golchet, A.; White, J.M. ); Sahin, T. )

    1991-01-01

    Static secondary ion mass spectroscopy (SSIMS), temperature programmed desorption (TPD), and Auger electron spectroscopy (AES) were used under ultrahigh vacuum conditions to study the decomposition of CH{sub 3}SH on Ni(100). Only methane, hydrogen, and the parent molecule are observed in TPD. Complete decomposition to C(a), S(a) and desorbing H{sub 2} is the preferred reaction pathway for low exposures, while desorption of methane is observed at higher coverages. Preadsorbed hydrogen promoted methane desorption. Upon adsorption, and for low coverages, SSIMS evidence indicates S-H bond cleavage into CH{sub 3}S and surface hydrogen. S-H bond cleavage is inhibited for high coverages. The TP-SSIMS data are consistent with an activated C-S bond cleavage in CH{sub 3}S, with an activation energy of 8.81 kcal/mol and preexponential factor of 10{sup 6.5}s{sup {minus}1}. The low preexponential factor is taken as indicating a complex decomposition pathway. A mechanism consistent with the observed data is discussed.

  9. Non-conformal domain decomposition methods for time-harmonic Maxwell equations

    PubMed Central

    Shao, Yang; Peng, Zhen; Lim, Kheng Hwee; Lee, Jin-Fa

    2012-01-01

    We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term, are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method. PMID:22870061

  10. Non-conformal domain decomposition methods for time-harmonic Maxwell equations.

    PubMed

    Shao, Yang; Peng, Zhen; Lim, Kheng Hwee; Lee, Jin-Fa

    2012-09-08

    We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term, are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method.

  11. Spinodal decomposition of chemically reactive binary mixtures

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  12. Analysis of generalized Schwarz alternating procedure for domain decomposition

    SciTech Connect

    Engquist, B.; Zhao, Hongkai

    1996-12-31

    The Schwartz alternating method(SAM) is the theoretical basis for domain decomposition which itself is a powerful tool both for parallel computation and for computing in complicated domains. The convergence rate of the classical SAM is very sensitive to the overlapping size between each subdomain, which is not desirable for most applications. We propose a generalized SAM procedure which is an extension of the modified SAM proposed by P.-L. Lions. Instead of using only Dirichlet data at the artificial boundary between subdomains, we take a convex combination of u and {partial_derivative}u/{partial_derivative}n, i.e. {partial_derivative}u/{partial_derivative}n + {Lambda}u, where {Lambda} is some {open_quotes}positive{close_quotes} operator. Convergence of the modified SAM without overlapping in a quite general setting has been proven by P.-L.Lions using delicate energy estimates. The important questions remain for the generalized SAM. (1) What is the most essential mechanism for convergence without overlapping? (2) Given the partial differential equation, what is the best choice for the positive operator {Lambda}? (3) In the overlapping case, is the generalized SAM superior to the classical SAM? (4) What is the convergence rate and what does it depend on? (5) Numerically can we obtain an easy to implement operator {Lambda} such that the convergence is independent of the mesh size. To analyze the convergence of the generalized SAM we focus, for simplicity, on the Poisson equation for two typical geometry in two subdomain case.

  13. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  14. Ab initio modeling of decomposition in iron based alloys

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  15. Theoretical study of β-HMX decomposition mechanism of the solid phase under shock loadings

    NASA Astrophysics Data System (ADS)

    Ji, Guangfu; Ge, Nina; Chen, Xiangrong

    2015-06-01

    Study material properties under extreme conditions is a fundamental problem in the field of condensed matter physics. The decomposition mechanisms of energetic materials under the shock wave become a hot topic in recent years. In this paper, molecular dynamics simulations combined with multi-scale shock technology (MSST) are used to study the decomposition mechanism, shock sensitivity and electronic structure of β-HMX. First, the decomposition mechanism of β-HMX perfect crystal were studied at different shock speeds. We found that when the shock wave at a speed 8 km / s is loaded, the decomposition reaction start at N-NO2 bond breakage; when the shock wave at a speed of 10 km / s and 11 km / s is loaded, the the first decomposition reaction is CH bond breaking, and accompanied by the formation of five-membered ring and transfer of hydrogen ions. The simulation results also show that when the shock wave velocity is increased, the higher the pressure generated in the high-pressure N-NO2 bond cleavage was inhibited significantly. Secondly, the impact of its initial chemical reaction process along different crystal axis directions were studied, the results showed that along the a-axis and c-axis shock sensitivity is higher, and along the b-axis sensitivity is lower. We believe that the system of all sensitivity of direction is due to the rotation of the friction between the slip plane of crystals and molecules. Finally, we discussed the solid phase β-HMX electronic properties change under the shock wave loadings. We found that in the 11 km/s under the impact load, when the pressure reaches 130 GPa, zero bandgap is reached.

  16. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  17. Decomposition Rate and Pattern in Hanging Pigs.

    PubMed

    Lynch-Aird, Jeanne; Moffatt, Colin; Simmons, Tal

    2015-09-01

    Accurate prediction of the postmortem interval requires an understanding of the decomposition process and the factors acting upon it. A controlled experiment, over 60 days at an outdoor site in the northwest of England, used 20 freshly killed pigs (Sus scrofa) as human analogues to study decomposition rate and pattern. Ten pigs were hung off the ground and ten placed on the surface. Observed differences in the decomposition pattern required a new decomposition scoring scale to be produced for the hanging pigs to enable comparisons with the surface pigs. The difference in the rate of decomposition between hanging and surface pigs was statistically significant (p=0.001). Hanging pigs reached advanced decomposition stages sooner, but lagged behind during the early stages. This delay is believed to result from lower variety and quantity of insects, due to restricted beetle access to the aerial carcass, and/or writhing maggots falling from the carcass.

  18. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  19. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    Measurement System for Energetic Materials Decomposition This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2... Decomposition Report Title This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2. Pfeiffer Vacuum Benchtop Thermostar Mass...Spectrometer 3. Vision Research Phantom V12.1-8G-M high speed camera These instruments have been used to evaluate and study decomposition and

  20. On Schubert decompositions of quiver Grassmannians

    NASA Astrophysics Data System (ADS)

    Lorscheid, Oliver

    2014-02-01

    In this paper, we introduce Schubert decompositions for quiver Grassmannians and investigate certain classes of quiver Grassmannians with a Schubert decomposition into affine spaces. The main theorem puts the cells of a Schubert decomposition into relation to the cells of a certain simpler quiver Grassmannian. This allows us to extend known examples of Schubert decompositions into affine spaces to a larger class of quiver Grassmannians. This includes exceptional representations of the Kronecker quiver as well as representations of forests with block matrices of the form (0100). Finally, we draw conclusions on the Euler characteristics and the cohomology of quiver Grassmannians.

  1. On symmetric decompositions of positive operators

    NASA Astrophysics Data System (ADS)

    Anastasia Jivulescu, Maria; Nechita, Ion; Găvruţa, Paşc

    2017-04-01

    We present results concerning decompositions of positive operators acting on finite-dimensional Hilbert spaces. Our motivation is the study of a generalized version of the SIC–POVM problem, which has applications to Quantum Information Theory. We relax some of the conditions in the SIC–POVM setting (the elements sum up to the identity, resp. the elements have unit rank), and we focus on equiangular decompositions (the elements of the decomposition should have the same length, and pairs of distinct elements should have constant angles). We characterize all such decompositions, comparing our results with the case of SIC–POVMs. We also generalize some existing Welch-type inequalities.

  2. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  3. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  4. [Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory protiens (α- and β-keratins)].

    PubMed

    Bidzhieva, S Kh; Derbikova, K S; Kublanov, I V; Bonch-Osmolovskaya, E A

    2014-01-01

    Anaerobic thermophilic archaea of the genera Thermogladius and Desulfurococcus capable of a- and P3-keratin decomposition were isolated from hot springs of Kamchatka and Kunashir Island. For two of them (strains 2355k and 3008g), the presence of high-molecular mass, cell-bound endopeptidases active against nonhydrolyzed and partially hydrolyzed proteins at high values of temperature and pH was shown. Capacity for β-keratin decomposition was also found in collection strains (type strains of Desulfurococcus amylolyticus subsp. amylolyticus, D. mucosus subsp. mobilis, and D. fermentans).

  5. Phase Diagram and Decomposition of 1,1-Diamino-2,2-Dinitroethene (FOX-7)

    NASA Astrophysics Data System (ADS)

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2015-06-01

    To understand the reactive behavior of 1,1-diamino-2,2-dinitroethene (FOX-7) at the thermo-mechanical conditions relevant to shock-wave initiation, Raman and FTIR measurements were performed at high-pressures (HP) and high-temperatures (HT). Experiments were performed on single crystals of FOX-7 in a diamond anvil cell to 10 GPa and 800 K to provide the phase diagram and to gain insight into the HP decomposition mechanisms. Previous studies have demonstrated that the ambient structure of FOX-7 (alpha) transforms to beta and gamma phases at higher temperatures, and phase I (2 GPa) and II (4.5 GPa) at higher pressures. In this work, we determined the boundaries between these phases and the decomposition/melting curve. In particular, we found that: (i) both beta and gamma phases exist in a limited P-T domain (>386 K and <1 GPa), (ii) the transition between phase-I and phase-II takes place along the isobar, (iii) the decomposition temperature increases significantly with pressure (~ 25 K / GPa), and (iv) pressure inhibits the decomposition. Using FTIR spectroscopy, we observed that CO2 is the first dominating decomposition product, followed by N2O, NO2, HCN, and HNCO. Pressure effects on reaction kinetics will be presented along with the possible mechanisms of decomposition. Work supported by DOE/NNSA and ONR.

  6. Non-Equilibrium Iron Clusters Coagulation and Thermal Decomposition at High Temperatures

    NASA Astrophysics Data System (ADS)

    Starikovskii, A. Yu.; Zaslonko, I. S.

    The fast thermal decomposition of Fe(CO)5 (1000-8000 ppm) behind reflected shock waves was used as source of iron atoms. The growth and decomposition of iron clusters was observed using light absorption technique at λ = 632.8 nm. The iron cluster formation was studied behind incident shock waves (T = 1200 — 2000 K, p = 5 — 50 bar) and cluster decomposition behind reflected shock waves (T = 2600 — 3000 K, p = 10 — 100 bar). The temperature and pressure dependencies of observable rate constants for iron cluster growth and thermal decomposition has been obtained. The experimental data were treated using master equation solution for the cluster size distribution function. The light absorption in the system is shown to depend on the total atoms amount in the clusters with n* < n < n **, were n* ~ 3 — 5, n** ~ 104. When coagulation time is rather small that the concentration of clusters with n > n** is negligible and concentration of small clusters (n < n*) permanently decreases, light absorption increase. After that number of atoms enclosed into the clusters with n* < n < n** became decreasing and the total light-absorption cross section decreases. So, observations of the absorption gives us an important information about streams through the particle size axes, and observable rate constant kobs = dln(D)/dt is a good parameter for the description of the kinetic behavior at the broad variations of temperature and pressure for an iron cluster ensemble.

  7. The Lockheed alternate partial polarizer universal filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    A tunable birefringent filter using an alternate partial polarizer design has been built. The filter has a transmission of 38% in polarized light. Its full width at half maximum is .09A at 5500A. It is tunable from 4500 to 8500A by means of stepping motor actuated rotating half wave plates and polarizers. Wave length commands and thermal compensation commands are generated by a PPD 11/10 minicomputer. The alternate partial polarizer universal filter is compared with the universal birefringent filter and the design techniques, construction methods, and filter performance are discussed in some detail. Based on the experience of this filter some conclusions regarding the future of birefringent filters are elaborated.

  8. Adomian Decomposition Method for Approximating the Solutions of the Bidirectional Sawada-Kotera Equation

    NASA Astrophysics Data System (ADS)

    Lai, Xian-Jing; Cai, Xiao-Ou

    2010-09-01

    In this paper, the decomposition method is implemented for solving the bidirectional Sawada- Kotera (bSK) equation with two kinds of initial conditions. As a result, the Adomian polynomials have been calculated and the approximate and exact solutions of the bSK equation are obtained by means of Maple, such as solitary wave solutions, doubly-periodic solutions, two-soliton solutions. Moreover, we compare the approximate solution with the exact solution in a table and analyze the absolute error and the relative error. The results reported in this article provide further evidence of the usefulness of the Adomian decomposition method for obtaining solutions of nonlinear problems

  9. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, J.

    2010-05-01

    Flux ropes are now generally accepted to be the magnetic configuration of Coronal Mass Ejections (CMEs), which may be formed prior or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its instability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, the partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches one, the critical index goes to a maximum value that depends on the distribution of the external magnetic field. We demonstrate that the partial torus instability helps us to understand the confinement, growth, and eventual eruption of a flux rope CME.

  10. Wave fields and spectra of Rayleigh waves in poroelastic media in the exploration seismic frequency band

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai

    2012-12-01

    A better understanding of the influences of different surface fluid drainage conditions on the propagation and attenuation of surface waves as the stipulated frequency is varied is a key issue to apply surface wave method to detect subsurface hydrological properties. Our study develops three-dimensional dynamical Green's functions in poroelastic media for Rayleigh waves of possible free surface conditions: permeable - "open pore," impermeable - "closed pore," and partially permeable boundaries. The full transient response of wave fields and spectra due to a stress impulse wavelet on the surface are investigated in the exploration seismic frequency band for typical surface drainage conditions, viscous coupling-damping, solid frame properties and porous fluid flowing configuration. Our numerical results show that, due to the slow dilatational wave - P2 wave, two types of Rayleigh waves, designated as R1 and R2 waves, exist along the surface. R1 wave possesses high energy as classic Rayleigh waves in pure elastic media for each porous materials. A surface fluid drainage condition is a significant factor to influence dispersion and attenuation, especially attenuation of R1 waves. R2 wave for closed pore and partially permeable surfaces is only observed for a low coupling-damping coefficient. The non-physical wave for partially surface conditions causes the R1 wave radiates into the R2 wave in the negative attenuation frequency range. It makes weaker R1 wave and stronger R2 wave to closed pore surface. Moreover, it is observed that wave fields and spectra of R1 wave are sensitive to frame elastic moduli change for an open pore surface, and to pore fluid flow condition change for closed pore and partially permeable surface.

  11. Metallo-organic decomposition films

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1985-01-01

    A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.

  12. Sampling Stoichiometry: The Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Clift, Philip A.

    1992-01-01

    Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…

  13. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  14. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  15. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  16. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  17. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  18. Chinese Orthographic Decomposition and Logographic Structure

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lin, Shan-Yuan

    2013-01-01

    "Chinese orthographic decomposition" refers to a sense of uncertainty about the writing of a well-learned Chinese character following a prolonged inspection of the character. This study investigated the decomposition phenomenon in a test situation in which Chinese characters were repeatedly presented in a word context and assessed…

  19. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  20. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  1. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  2. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  3. English and Turkish Pupils' Understanding of Decomposition

    ERIC Educational Resources Information Center

    Cetin, Gulcan

    2007-01-01

    This study aimed to describe seventh grade English and Turkish students' levels of understanding of decomposition. Data were analyzed descriptively from the students' written responses to four diagnostic questions about decomposition. Results revealed that the English students had considerably higher sound understanding and lower no understanding…

  4. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  5. Helmholtz Hodge decomposition of scalar optical fields.

    PubMed

    Bahl, Monika; Senthilkumaran, P

    2012-11-01

    It is shown that the vector field decomposition method, namely, the Helmholtz Hodge decomposition, can also be applied to analyze scalar optical fields that are ubiquitously present in interference and diffraction optics. A phase gradient field that depicts the propagation and Poynting vector directions can hence be separated into solenoidal and irrotational components.

  6. Regular Decompositions for H(div) Spaces

    SciTech Connect

    Kolev, Tzanio; Vassilevski, Panayot

    2012-01-01

    We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.

  7. Metallo-Organic Decomposition (MOD) film development

    NASA Technical Reports Server (NTRS)

    Parker, J.

    1986-01-01

    The processing techniques and problems encountered in formulating metallo-organic decomposition (MOD) films used in contracting structures for thin solar cells are described. The use of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques performed at Jet Propulsion Laboratory (JPL) in understanding the decomposition reactions lead to improvements in process procedures. The characteristics of the available MOD films were described in detail.

  8. A global HMX decomposition model

    SciTech Connect

    Hobbs, M.L.

    1996-12-01

    HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) decomposes by competing reaction pathways to form various condensed and gas-phase intermediate and final products. Gas formation is related to the development of nonuniform porosity and high specific surface areas prior to ignition in cookoff events. Such thermal damage enhances shock sensitivity and favors self-supported accelerated burning. The extent of HMX decomposition in highly confined cookoff experiments remains a major unsolved experimental and modeling problem. The present work is directed at determination of global HMX kinetics useful for predicting the elapsed time to thermal runaway (ignition) and the extent of decomposition at ignition. Kinetic rate constants for a six step engineering based global mechanism were obtained using gas formation rates measured by Behrens at Sandia National Laboratories with his Simultaneous Modulated Beam Mass Spectrometer (STMBMS) experimental apparatus. The six step global mechanism includes competition between light gas (H[sub 2]Awe, HCN, CO, H[sub 2]CO, NO, N[sub 2]Awe) and heavy gas (C[sub 2]H[sub 6]N[sub 2]Awe and C[sub 4]H[sub 10]N0[sub 2]) formation with zero order sublimation of HMX and the mononitroso analog of HMX (mn-HMX), C[sub 4]H[sub 8]N[sub 8]Awe[sub 7]. The global mechanism was applied to the highly confined, One Dimensional Time to eXplosion (ODTX) experiment and hot cell experiments by suppressing the sublimation of HMX and mn-HMX. An additional gas-phase reaction was also included to account for the gas-phase reaction of N[sub 2]Awe with H[sub 2]CO. Predictions compare adequately to the STMBMS data, ODTX data, and hot cell data. Deficiencies in the model and future directions are discussed.

  9. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  10. Phase Waves in Oscillatory Chemical Reactions.

    DTIC Science & Technology

    number of waves emitted from a center of heterogeneous catalysis , the rate of wave emission. the lifetime of each wave, the asymptotic wave pattern, the...A theory is presented for the effect of heterogeneity on an oscillatory chemically reactive system in a stable limit cycle such as in heterogeneous ... catalysis . A perturbation technique is developed free of secular behavior for the solution of the non-linear partial differential equations. The

  11. Multilinear operators for higher-order decompositions.

    SciTech Connect

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  12. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species.

    PubMed

    Dossa, Gbadamassi G O; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D

    2016-10-04

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11-1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition.

  13. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.

    2016-01-01

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461

  14. Partial knee replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  15. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  16. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  17. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  18. Partially coherent nonparaxial beams.

    PubMed

    Duan, Kailiang; Lü, Baida

    2004-04-15

    The concept of a partially coherent nonparaxial beam is proposed. A closed-form expression for the propagation of nonparaxial Gaussian Schell model (GSM) beams in free space is derived and applied to study the propagation properties of nonparaxial GSM beams. It is shown that for partially coherent nonparaxial beams a new parameter f(sigma) has to be introduced, which together with the parameter f, determines the beam nonparaxiality.

  19. PARTIAL TORUS INSTABILITY

    SciTech Connect

    Olmedo, Oscar; Zhang Jie

    2010-07-20

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  20. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, Jie

    2010-07-01

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  1. Application of monochromatic ocean wave forecasts to prediction of wave-induced currents

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    The use of monochromatic wind-wave forecasts in prediction of wind-wave-induced currents was assessed. Currents were computed for selected combinations of wind conditions by using a spectrum approach which was developed by using the Bretschneider wave spectrum for partially developed wind seas. These currents were compared with currents computed by using the significant and average monochromatic wave parameters related to the Bretschneider spectrum. Results indicate that forecasts of significant wave parameters can be used to predict surface wind-wave-induced currents. Conversion of these parameters to average wave parameters can furnish reasonable estimates of subsurface current values.

  2. Using singular value decomposition to compute the conditioned cross-spectral density matrix and coherence functions

    SciTech Connect

    Smallwood, D.O.

    1995-08-07

    It is shown that the usual method for computing the coherence functions (ordinary, partial, and multiple) for a general multiple-input/multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross spectral density matrix of the inputs and outputs. The modified form of Cholesky decomposition used is G{sub zz} = LCL{prime}, where G is the cross spectral density matrix of inputs and outputs, L is a lower; triangular matrix with ones on the diagonal, and C is a diagonal matrix, and the symbol {prime} denotes the conjugate transpose. If a diagonal element of C is zero, the off diagonal elements in the corresponding column of L are set to zero. It is shown that the results can be equivalently obtained using singular value decomposition (SVD) of G{sub zz}. The formulation as a SVD problem suggests a way to order the inputs when a natural physical order of the inputs is absent.

  3. The impact of shallow burial on differential decomposition to the body: a temperate case study.

    PubMed

    Schotsmans, Eline M J; Van de Voorde, Wim; De Winne, Joan; Wilson, Andrew S

    2011-03-20

    Extant literature contains a number of specific case studies on differential decomposition involving adipocere formation or desiccation, but few describe the co-occurrence of these features within a temperate climate. The case of a 65-year-old male, partially buried in a shallow grave for 7 months, is presented in which the soft tissues of the body were outwardly well preserved. The right leg was desiccated, some parts of the body were covered with adipocere (head, neck, right shoulder, upper torso and left leg) and other parts could be classified as in the early stages of decomposition. In this study the taphonomic variables resulting in differential decomposition with desiccation and adipocere formation are discussed.

  4. Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves

    NASA Astrophysics Data System (ADS)

    Picozzi, Antonio; Garnier, Josselin; Xu, Gang; Rica, Sergio

    We provide an introduction to different wave turbulence formalisms describing the propagation of partially incoherent optical waves in nonlinear media. We consider the nonlinear Schrödinger equation as a representative model accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. We discuss the wave turbulence kinetic equation describing, e.g., wave condensation or wave thermalization through supercontinuum generation; the Vlasov formalism describing incoherent modulational instabilities and the formation of large scale incoherent localized structures in analogy with long-range gravitational systems; and the weak Langmuir turbulence formalism describing spectral incoherent solitons, as well as spectral shock or collapse singularities. Finally, recent developments and some open questions are discussed, in particular in relation with a wave turbulence formulation of laser systems and different mechanisms of breakdown of thermalization.

  5. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  6. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  7. Poroelastic Wave Propagation With a 3D Velocity-Stress-Pressure Finite-Difference Algorithm

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Bartel, L. C.

    2004-12-01

    Seismic wave propagation within a three-dimensional, heterogeneous, isotropic poroelastic medium is numerically simulated with an explicit, time-domain, finite-difference algorithm. A system of thirteen, coupled, first-order, partial differential equations is solved for the particle velocity vector components, the stress tensor components, and the pressure associated with solid and fluid constituents of the two-phase continuum. These thirteen dependent variables are stored on staggered temporal and spatial grids, analogous to the scheme utilized for solution of the conventional velocity-stress system of isotropic elastodynamics. Centered finite-difference operators possess 2nd-order accuracy in time and 4th-order accuracy in space. Seismological utility is enhanced by an optional stress-free boundary condition applied on a horizontal plane representing the earth's surface. Absorbing boundary conditions are imposed on the flanks of the 3D spatial grid via a simple wavefield amplitude taper approach. A massively parallel computational implementation, utilizing the spatial domain decomposition strategy, allows investigation of large-scale earth models and/or broadband wave propagation within reasonable execution times. Initial algorithm testing indicates that a point force density and/or moment density source activated within a poroelastic medium generates diverging fast and slow P waves (and possibly an S-wave)in accord with Biot theory. Solid and fluid particle velocities are in-phase for the fast P-wave, whereas they are out-of-phase for the slow P-wave. Conversions between all wave types occur during reflection and transmission at interfaces. Thus, although the slow P-wave is regarded as difficult to detect experimentally, its presence is strongly manifest within the complex of waves generated at a lithologic or fluid boundary. Very fine spatial and temporal gridding are required for high-fidelity representation of the slow P-wave, without inducing excessive

  8. Domain decomposition algorithms and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.

  9. On a Decomposition Model for Optical Flow

    NASA Astrophysics Data System (ADS)

    Abhau, Jochen; Belhachmi, Zakaria; Scherzer, Otmar

    In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.

  10. Hamiltonian decomposition for bulk and surface states.

    PubMed

    Sasaki, Ken-Ichi; Shimomura, Yuji; Takane, Yositake; Wakabayashi, Katsunori

    2009-04-10

    We demonstrate that a tight-binding Hamiltonian with nearest- and next-nearest-neighbor hopping integrals can be decomposed into bulk and boundary parts for honeycomb lattice systems. The Hamiltonian decomposition reveals that next-nearest-neighbor hopping causes sizable changes in the energy spectrum of surface states even if the correction to the energy spectrum of bulk states is negligible. By applying the Hamiltonian decomposition to edge states in graphene systems, we show that the next-nearest-neighbor hopping stabilizes the edge states. The application of Hamiltonian decomposition to a general lattice system is discussed.

  11. The use of the Adomian decomposition method for solving a parabolic equation with temperature overspecification

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Tatari, Mehdi

    2006-03-01

    Certain types of physical problems can be modelled by a parabolic partial differential equation with temperature overspecification. In this work, the Adomian decomposition method is used to solve the two-dimensional (or three-dimensional) parabolic partial differential equation subject to the overspecification at a point in the spatial domain. This analytic technique can also be used to provide a numerical approximation for the problem without linearization or discretization. The Adomian decomposition procedure does not need to solve any linear or nonlinear system of algebraic equations. It finds the solution in a rapid convergent series. Some theoretical behaviours of the method are investigated. To support the theoretical discussion and show the superiority of the method, two test problems are given and the numerical results are presented.

  12. Thermal decomposition of HfCl{sub 4} as a function of its hydration state

    SciTech Connect

    Barraud, E.; Begin-Colin, S. . E-mail: begin@ipcms.u-strasbg.fr; Le Caer, G.; Villieras, F.; Barres, O.

    2006-06-15

    The thermogravimetric behavior of HfCl{sub 4} powders with different hydration states has been compared. Strongly hydrated powders consist of HfOCl{sub 2}.nH{sub 2}O with n>4. Partially hydrated powders consist of particles with a HfCl{sub 4} core and a hydrated outerlayer of HfOCl{sub 2}.nH{sub 2}O with n in the range of 0-8. Hydrated powders decomposed at temperature lower than 200 deg. C whereas the decomposition of partially hydrated powders was completed at a temperature of around 450 deg. C. The observed differences in decomposition temperature is related to the structure of HfOCl{sub 2}.nH{sub 2}O, which is different if n is higher or smaller than 4 and leads to intermediate compounds, which decompose at different temperatures.

  13. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  14. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  15. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  16. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  17. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  18. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  19. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption?

    PubMed

    Graça, M A S; Poquet, J M

    2014-03-01

    We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.

  20. Partially strong WW scattering

    SciTech Connect

    Cheung Kingman; Chiang Chengwei; Yuan Tzuchiang

    2008-09-01

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  1. Sand Waves in Tidal Channels

    DTIC Science & Technology

    2007-01-01

    example, in the Bahia Blanca Estuary (Argentina), the sand wave field terminated when the surficial sand sheet became too thin (Aliotta and Perillo... Rosa Island partially breached near the present-day location of the inlet mouth, but soon closed. It was reopened in March 1929 when the local...and Perillo, 1987) Bahia Blanca Estuary mean 11˚ max 30˚ mean 4˚ (Anthony and Leth, 2002) North Sea 2-4˚ 66 Figure 24. Sand wave

  2. Modeling shock waves in orthotropic elastic materials

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade; Campbell, James C.; Bourne, Neil K.; Djordjevic, Nenad

    2008-08-01

    A constitutive relationship for modeling of shock wave propagation in orthotropic materials is proposed for nonlinear explicit transient large deformation computer codes (hydrocodes). A procedure for separation of material volumetric compression (compressibility effects equation of state) from deviatoric strain effects is formulated, which allows for the consistent calculation of stresses in the elastic regime as well as in the presence of shock waves. According to this procedure the pressure is defined as the state of stress that results in only volumetric deformation, and consequently is a diagonal second order tensor. As reported by Anderson et al. [Comput. Mech. 15, 201 (1994)], the shock response of an orthotropic material cannot be accurately predicted using the conventional decomposition of the stress tensor into isotropic and deviatoric parts. This paper presents two different stress decompositions based on the assumption that the stress tensor is split into two components: one component is due to volumetric strain and the other is due to deviatoric strain. Both decompositions are rigorously derived. In order to test their ability to describe shock propagation in orthotropic materials, both algorithms were implemented in a hydrocode and their predictions were compared to experimental plate impact data. The material considered was a carbon fiber reinforced epoxy material, which was tested in both the through-thickness and longitudinal directions. The ψ decomposition showed good agreement with the physical behavior of the considered material, while the ζ decomposition significantly overestimated the longitudinal stresses.

  3. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  4. Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide.

    PubMed

    Fang, Wenhui; Li, Zhanlong; Li, Dongfei; Li, Zuowei; Zhou, Mi; Men, Zhiwei; Sun, Chenglin

    2013-03-15

    Stimulated Raman scattering (SRS) of sulfur-II (S-II) phase was investigated by laser decomposition of liquid carbon disulfide. As a matter of fact, above a threshold of the laser intensity, it is suggested that a strong shock wave is generated in the liquid carbon disulfide, which is decomposed owing to the induced high dynamic pressure and temperature. One bending mode E frequency at 289 cm(-1) and one symmetric stretching mode A1 frequency at 490 cm(-1) of S-II phase were observed. The SRS spectra indicated that S-II structure is formed by laser decomposition, as the strong shock wave generates the stable pressure-temperature range of S-II phase. The dynamic high-pressure and static-electric field generated by laser-induced breakdown results in the softening A1 mode becoming more hardened.

  5. Unimolecular decomposition of methyltrichlorosilane: RRKM calculations

    SciTech Connect

    Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.

    1993-06-01

    Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.

  6. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  7. Thermal Decomposition of Poly(methylphenylsilane)

    NASA Astrophysics Data System (ADS)

    Pan, Lujun; Zhang, Mei; Nakayama, Yoshikazu

    2000-03-01

    The thermal decomposition of poly(methylphenylsilane) was performed at constant heating rates and isothermal conditions. The evolved gases were studied by ionization-threshold mass spectroscopy. Pyrolysis under isothermal conditions reveals that the decomposition of poly(methylphenylsilane) is a type of depolymerization that has a first-order reaction. Kinetic analysis of the evolution spectra of CH3-Si-C6H5 radicals, phenyl and methyl substituents reveals the mechanism and activation energies of the decomposition reactions in main chains and substituents. It is found that the decomposition of main chains is a dominant reaction and results in the weight loss of approximately 90%. The effusion of phenyl and methyl substituents occurs in the two processes of rearrangement of main chains and the formation of stable Si-C containing residuals.

  8. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition.

  9. On least-order flow decompositions for aerodynamics and aeroacoustics

    NASA Astrophysics Data System (ADS)

    Schlegel, Michael; Noack, Bernd R.; Jordan, Peter

    2012-11-01

    A generalisation of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables is presented, as proposed in the identically named publication of Schlegel, Noack, Jordan, Dillmann, Groeschel, Schroeder, Wei, Freund, Lehmann and Tadmor (Journal of Fluid Mechanics 2012, vol. 697, pp. 367-398). This Galerkin expansion, termed ``observable inferred decomposition'' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Three aerodynamic and aeroacoustic observables are studied: (1) lift and drag fluctuation of a two-dimensional cylinder wake flow, (2) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer, and (3) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ``drag-related,'' ``lift-related'' and ``loud'' structures are distilled and interpreted in terms of known physical processes. This work was partially funded by the DFG under grants SCHL 586/2-1 and ANR, Chair of Excellence, TUCOROM.

  10. Canonical information flow decomposition among neural structure subsets.

    PubMed

    Takahashi, Daniel Y; Baccalá, Luiz A; Sameshima, Koichi

    2014-01-01

    Partial directed coherence (PDC) and directed coherence (DC) which describe complementary aspects of the directed information flow between pairs of univariate components that belong to a vector of simultaneously observed time series have recently been generalized as bPDC/bDC, respectively, to portray the relationship between subsets of component vectors (Takahashi, 2009; Faes and Nollo, 2013). This generalization is specially important for neuroscience applications as one often wishes to address the link between the set of time series from an observed ROI (region of interest) with respect to series from some other physiologically relevant ROI. bPDC/bDC are limited, however, in that several time series within a given subset may be irrelevant or may even interact opposingly with respect to one another leading to interpretation difficulties. To address this, we propose an alternative measure, termed cPDC/cDC, employing canonical decomposition to reveal the main frequency domain modes of interaction between the vector subsets. We also show bPDC/bDC and cPDC/cDC are related and possess mutual information rate interpretations. Numerical examples and a real data set illustrate the concepts. The present contribution provides what is seemingly the first canonical decomposition of information flow in the frequency domain.

  11. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  12. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  13. Decomposition of Balanced Matrices. Part 5: Goggles

    DTIC Science & Technology

    1991-10-01

    A D-A 247 462 Management Science Research Report #MSRR-573 1~ ~~112 Eil 11 I Decomposition of Balanced Matrices . Part V: Goggles Michele Conforti 12...9001705. I Dipartimento di Matematica Pura ed Applicata, UniversitA di Padova, Via Belzoni 7, 35131 Padova, Italy.f 2 Carnegie Mellon University...NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED DECOMPOSITION OF BALANCED MATRICES . Technical Report, Oct 1991 PART V: GOGGLES 6

  14. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  15. Hardware Implementation of Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Majumder, Swanirbhar; Shaw, Anil Kumar; Sarkar, Subir Kumar

    2016-06-01

    Singular value decomposition (SVD) is a useful decomposition technique which has important role in various engineering fields such as image compression, watermarking, signal processing, and numerous others. SVD does not involve convolution operation, which make it more suitable for hardware implementation, unlike the most popular transforms. This paper reviews the various methods of hardware implementation for SVD computation. This paper also studies the time complexity and hardware complexity in various methods of SVD computation.

  16. Domain Decomposition for the SPN Solver MINOS

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-12-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nédélec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3® code.

  17. Tiling Models for Spatial Decomposition in AMTRAN

    SciTech Connect

    Compton, J C; Clouse, C J

    2005-05-27

    Effective spatial domain decomposition for discrete ordinate (S{sub n}) neutron transport calculations has been critical for exploiting massively parallel architectures typified by the ASCI White computer at Lawrence Livermore National Laboratory. A combination of geometrical and computational constraints has posed a unique challenge as problems have been scaled up to several thousand processors. Carefully scripted decomposition and corresponding execution algorithms have been developed to handle a range of geometrical and hardware configurations.

  18. Domain decomposition for the SPN solver MINOS

    SciTech Connect

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-07-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)

  19. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  20. Unimolecular thermal decomposition of dimethoxybenzenes

    SciTech Connect

    Robichaud, David J. Mukarakate, Calvin; Nimlos, Mark R.; Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  1. Laser decontamination and decomposition of PCB-containing paint

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Kögler, P.; Friedrich, C.; Lippmann, W.; Hurtado, A.

    2017-01-01

    Decontamination of concrete surfaces contaminated with paint containing polychlorinated biphenyls is an elaborate and complex task that must be performed within the scope of nuclear power plant dismantling as well as conventional pollutant cleanup in buildings. The state of the art is mechanical decontamination, which generates dust as well as secondary waste and is both dangerous and physically demanding. Moreover, the ablated PCB-containing paint has to be treated in a separate process step. Laser technology offers a multitude of possibilities for contactless surface treatment with no restoring forces and a high potential for automation. An advanced experimental setup was developed for performing standard laser decontamination investigations on PCB-painted concrete surfaces. As tested with epoxy paints, a high-power diode laser with a laser power of 10 kW in continuous wave (CW) mode was implemented and resulted in decontamination of the concrete surfaces as well as significant PCB decomposition. The experimental results showed PCB removal of 96.8% from the concrete surface and PCB decomposition of 88.8% in the laser decontamination process. Significant PCDD/F formation was thereby avoided. A surface ablation rate of approx. 7.2 m2/h was realized.

  2. Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density electroencephalogram

    NASA Astrophysics Data System (ADS)

    Wingeier, B. M.; Nunez, P. L.; Silberstein, R. B.

    2001-11-01

    We demonstrate an application of spherical harmonic decomposition to the analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to the analysis of hemispherical, irregularly sampled data. Spatial sampling requirements and performance of the methods are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wave-number relationship in some bands.

  3. Advanced Polarimetric Concepts - Part 1 (Polarimetric Target Description, Speckle filtering and Decomposition Theorems)

    DTIC Science & Technology

    2007-02-01

    with p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case. The distribution functions for dual polarization ( HH , VH), (HV...and scene description difficult. The speckle reduction problem is more complicated for polarimetric SAR than a single polarization SAR, because of the...changes in wave polarization basis. Among the existing Polarimetric Target Decomposition theorems - coherent (Krogager, Cameron ...), non-coherent (Huynen

  4. Dilemmas of partial cooperation.

    PubMed

    Stark, Hans-Ulrich

    2010-08-01

    Related to the often applied cooperation models of social dilemmas, we deal with scenarios in which defection dominates cooperation, but an intermediate fraction of cooperators, that is, "partial cooperation," would maximize the overall performance of a group of individuals. Of course, such a solution comes at the expense of cooperators that do not profit from the overall maximum. However, because there are mechanisms accounting for mutual benefits after repeated interactions or through evolutionary mechanisms, such situations can constitute "dilemmas" of partial cooperation. Among the 12 ordinally distinct, symmetrical 2 x 2 games, three (barely considered) variants are correspondents of such dilemmas. Whereas some previous studies investigated particular instances of such games, we here provide the unifying framework and concisely relate it to the broad literature on cooperation in social dilemmas. Complementing our argumentation, we study the evolution of partial cooperation by deriving the respective conditions under which coexistence of cooperators and defectors, that is, partial cooperation, can be a stable outcome of evolutionary dynamics in these scenarios. Finally, we discuss the relevance of such models for research on the large biodiversity and variation in cooperative efforts both in biological and social systems.

  5. Critical analysis of nitramine decomposition data: Activation energies and frequency factors for HMX and RDX decomposition

    NASA Technical Reports Server (NTRS)

    Schroeder, M. A.

    1980-01-01

    A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.

  6. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  7. High-temperature unimolecular decomposition of ethyl propionate

    NASA Astrophysics Data System (ADS)

    Giri, Binod Raj; AlAbbad, Mohammed; Farooq, Aamir

    2016-11-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976-1300 K and pressures of 825-1875 Torr. The reaction progress was monitored by detecting C2H4 near 10.532 μm using CO2 gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that C2H4 elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  8. Full and Partial Cloaking in Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Deng, Youjun; Liu, Hongyu; Uhlmann, Gunther

    2017-01-01

    In this paper, we consider two regularized transformation-optics cloaking schemes for electromagnetic (EM) waves. Both schemes are based on the blowup construction with the generating sets being, respectively, a generic curve and a planar subset. We derive sharp asymptotic estimates in assessing the cloaking performances of the two constructions in terms of the regularization parameters and the geometries of the cloaking devices. The first construction yields an approximate full-cloak, whereas the second construction yields an approximate partial-cloak. Moreover, by incorporating properly chosen conducting layers, both cloaking constructions are capable of nearly cloaking arbitrary EM contents. This work complements the existing results in Ammari et al. (SIAM J Appl Math 73:2055-2076, 2013), Bao and Liu (SIAM J Appl Math 74:724-742, 2014), Bao et al. (J Math Pure Appl (9) 101:716-733, 2014) on approximate EM cloaks with the generating set being a singular point, and it also extends Deng et al. (On regularized full- and partial-cloaks in acoustic scat- tering. Preprint, arXiv:1502.01174, 2015), Li et al. (Commun Math Phys, 335:671-712, 2015) on regularized full and partial cloaks for acoustic waves governed by the Helmholtz system to the more challenging EM case governed by the full Maxwell system.

  9. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  10. The rate of pyrite decomposition on the surface of Venus

    NASA Astrophysics Data System (ADS)

    Fegley, B., Jr.; Lodders, K.; Treiman, A. H.; Klingelhoefer, G.

    1995-05-01

    We report the results of a detailed experiment study of the kinetics and mechanism of pyrite (FeS2) chemical weathering under Venus surface conditions. Pyrite is thermodynamically unstable on the surface of Venus and will spontaneously decompose to pyrrhotite (Fe7S8) because the observed S2 partial pressure in the lower atmosphere of Venus is lower than the S2 vapor pressure over coexisting pyrite and pyrrhotite. Pyrite decomposition kinetics were studied in pure CO2 and CO2 gas mixtures along five isotherms in the temperature range 390-531 C. In all gas mixtures studied, pyrite thermally decomposes to pyrrhotite (Fe7S8), which on continued heating loses sulfur to form more Fe-rich pyrrhotites. During this process the pyrrhotites are also being oxidized to form magnetite (Fe3O4), which converts to maghemite (gamma-Fe2O3), and then to hematite (alpha-Fe2O3). The reaction rates for pyrite thermal decomposition to pyrrhotite were determined by measuring the weight loss. The thickness of the unreacted pyrite in the samples provided a second independent reaction rate measurement. Finally, Mossbauer spectra done on 42 of the 115 experimental samples provided a third set of independent reaction rate data. Pyrite decomposition follows zero-order kinetics and is independent of the amount of pyrite present. The rate of pyrite decomposition is apparently independent of the gas compositions used and of the CO2 number density over a range of a factor of 40. The derived activation energy of approximately 150 kJ/mole is the same in pure CO2, two different CO-CO2 mixtures, and a ternary CO-SO2-CO2 mixture. Based on data for a CO-CO2-SO2 gas mixture with a CO number density approximately 10 times higher than at the surface of Venus and a SO2 number density approximately equal to that at the surface of Venus, the rate of pyrite destruction on the surface of Venus varies from about 1225 +/- 238 days/cm at the top of Maxwell Montes (approximately 660 K) to about 233 +/- 133 days/cm in

  11. The rate of pyrite decomposition on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lodders, K.; Treiman, A. H.; Klingelhoefer, G.

    1995-01-01

    We report the results of a detailed experiment study of the kinetics and mechanism of pyrite (FeS2) chemical weathering under Venus surface conditions. Pyrite is thermodynamically unstable on the surface of Venus and will spontaneously decompose to pyrrhotite (Fe7S8) because the observed S2 partial pressure in the lower atmosphere of Venus is lower than the S2 vapor pressure over coexisting pyrite and pyrrhotite. Pyrite decomposition kinetics were studied in pure CO2 and CO2 gas mixtures along five isotherms in the temperature range 390-531 C. In all gas mixtures studied, pyrite thermally decomposes to pyrrhotite (Fe7S8), which on continued heating loses sulfur to form more Fe-rich pyrrhotites. During this process the pyrrhotites are also being oxidized to form magnetite (Fe3O4), which converts to maghemite (gamma-Fe2O3), and then to hematite (alpha-Fe2O3). The reaction rates for pyrite thermal decomposition to pyrrhotite were determined by measuring the weight loss. The thickness of the unreacted pyrite in the samples provided a second independent reaction rate measurement. Finally, Mossbauer spectra done on 42 of the 115 experimental samples provided a third set of independent reaction rate data. Pyrite decomposition follows zero-order kinetics and is independent of the amount of pyrite present. The rate of pyrite decomposition is apparently independent of the gas compositions used and of the CO2 number density over a range of a factor of 40. The derived activation energy of approximately 150 kJ/mole is the same in pure CO2, two different CO-CO2 mixtures, and a ternary CO-SO2-CO2 mixture. Based on data for a CO-CO2-SO2 gas mixture with a CO number density approximately 10 times higher than at the surface of Venus and a SO2 number density approximately equal to that at the surface of Venus, the rate of pyrite destruction on the surface of Venus varies from about 1225 +/- 238 days/cm at the top of Maxwell Montes (approximately 660 K) to about 233 +/- 133 days/cm in

  12. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  13. A Modal Decomposition of the Rotating Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Poulin, Francis; Waite, Michael; Greig, Daniel

    2013-04-01

    The dynamics of the atmosphere and oceans are complicated because of the vast range of length and time scales involved. Understanding how energy cascades from the large to small scales is an outstanding problem in the field and of great interest. In any attempt to do this it is always necessary to specify the physical structure of the basis functions. Perhaps the most popular choice are Fourier modes, which are desirable because they 1) can form a complete basis; 2) are well understood because of the richness of Fourier analysis; and 3) are a basis for high-order spectral methods. This is a convenient choice but numerous other possibilities exist, such as polynomials and wavelets. All of these choices are generic in that they do not arise from the underlying physics of the waves and can usually be applied to virtually any problem. The motivation for this work stems from the idea that a better choice for basis functions should be dictated by the model equations. One relatively simple model that has often been used to looked at energy transfers between different length and time scales is the Rotating Shallow Water model (RSW). It is restrictive in that it only describes homogeneous fluids, however, because it can contain both fast gravity and slow Rossby waves it is a useful paradigm to study energy transfers between waves with vastly different scales. The pioneering work of Leith (1980) investigated the decomposition of the RSW into its linear modes and subsequently others have built on this to understand the modal structure of stratified flows. In these works the emphasis has been on f-plane and therefore the slow component was a vortical mode that does not propagate. In his original paper Leith points out that it would be interesting to extend his methodology to a beta-plane and in this talk we present results from our preliminary work to do just that. This is done numerically using spectral methods to find the most accurate solutions possible for a given number

  14. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  15. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  16. Partially coherent ultrafast spectrography

    PubMed Central

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-01-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080

  17. Laparoscopic partial splenic resection.

    PubMed

    Uranüs, S; Pfeifer, J; Schauer, C; Kronberger, L; Rabl, H; Ranftl, G; Hauser, H; Bahadori, K

    1995-04-01

    Twenty domestic pigs with an average weight of 30 kg were subjected to laparoscopic partial splenic resection with the aim of determining the feasibility, reliability, and safety of this procedure. Unlike the human spleen, the pig spleen is perpendicular to the body's long axis, and it is long and slender. The parenchyma was severed through the middle third, where the organ is thickest. An 18-mm trocar with a 60-mm Endopath linear cutter was used for the resection. The tissue was removed with a 33-mm trocar. The operation was successfully concluded in all animals. No capsule tears occurred as a result of applying the stapler. Optimal hemostasis was achieved on the resected edges in all animals. Although these findings cannot be extended to human surgery without reservations, we suggest that diagnostic partial resection and minor cyst resections are ideal initial indications for this minimally invasive approach.

  18. Hierarchical partial order ranking.

    PubMed

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  19. Partially coherent ultrafast spectrography

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-03-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.

  20. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  1. Activated partial thromboplastin time.

    PubMed

    Ignjatovic, Vera

    2013-01-01

    Activated partial thromboplastin time (APTT) is a commonly used coagulation assay that is easy to perform, is affordable, and is therefore performed in most coagulation laboratories, both clinical and research, worldwide. The APTT is based on the principle that in citrated plasma, the addition of a platelet substitute, factor XII activator, and CaCl2 allows for formation of a stable clot. The time required for the formation of a stable clot is recorded in seconds and represents the actual APTT result.

  2. The Third Wave: A Position Paper.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    2000-01-01

    Describes the Third Wave as an "information bomb... exploding in our midst, showering us with a shrapnel of images and drastically changing the way each of us perceives and acts upon our private world." Begins with a description of A. Toffler's Third Wave as an attempt to partially explain what is happening in higher education,…

  3. Does the Wave Equation Really Work?

    ERIC Educational Resources Information Center

    Armstead, Donald C.; Karls, Michael A.

    2006-01-01

    The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…

  4. Laparoscopic partial adrenalectomy.

    PubMed

    Ikeda, Y; Takami, H; Tajima, G; Sasaki, Y; Takayama, J; Kurihara, H; Niimi, M

    2002-01-01

    Since corticosteroids are indispensable hormones, partial or cortical-sparing adrenalectomies may be adopted for the surgical treatment of adrenal diseases. In this article, we describe the technique and results of these procedures. Laparoscopic partial or cortical-sparing adrenalectomy has been performed in 10 patients. Seven cases had an aldosterone-producing adenoma (APA) and three had a pheochromocytoma. Three cases with an APA and a case with a pheochromocytoma had tumors located far from the adrenal central vein, and the vein could be preserved. Four cases with an APA and two with a pheochromocytoma had tumors located close to the adrenal central vein, and it was necessary to section the central vein to resect them. All endoscopic procedures were performed successfully. There were no postoperative complications. At follow-up, adrenal 131I-adosterol scintigrams showed the preservation of remnant adrenal function in all patients. Laparoscopic partial or cortical-sparing adrenal surgery was safely performed, and adrenal function was preserved irrespective of whether the adrenal central vein could be preserved or not. We consider this to be a useful operative technique for selected cases.

  5. Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve

    NASA Astrophysics Data System (ADS)

    Tang, Yadan; Roberts, Charles A.; Perkins, Ryan T.; Wachs, Israel E.

    2016-08-01

    This study revisits the classic volcano curve for HCOOH decomposition by metal catalysts by taking a modern catalysis approach. The metal catalysts (Au, Ag, Cu, Pt, Pd, Ni, Rh, Co and Fe) were prepared by H2 reduction of the corresponding metal oxides. The number of surface active sites (Ns) was determined by formic acid chemisorption. In situ IR indicated that both monodentate and bidentate/bridged surface HCOO* were present on the metals. Heats of adsorption (ΔHads) for surface HCOO* values on metals were taken from recently reported DFT calculations. Kinetics for surface HCOO* decomposition (krds) were determined with TPD spectroscopy. Steady-state specific activity (TOF = activity/Ns) for HCOOH decomposition over the metals was calculated from steady-state activity (μmol/g-s) and Ns (μmol/g). Steady-state TOFs for HCOOH decomposition weakly correlated with surface HCOO* decomposition kinetics (krds) and ΔHads of surface HCOO* intermediates. The plot of TOF vs. ΔHads for HCOOH decomposition on metal catalysts does not reproduce the classic volcano curve, but shows that TOF depends on both ΔHads and decomposition kinetics (krds) of surface HCOO* intermediates. This is the first time that the classic catalysis study of HCOOH decomposition on metallic powder catalysts has been repeated since its original publication.

  6. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  7. A fundamental approach to the problem of domain decomposition in structured grid generation

    NASA Astrophysics Data System (ADS)

    Piperni, Pasquale

    2003-10-01

    A new approach is presented for the automation of structured grid generation in multiply-connected domains. In this approach, the domain decomposition problem is cast as a classical boundary value problem in which the mesh topology is defined through the imposition of appropriate boundary conditions on the domain boundaries. The automation of the domain decomposition process is achieved by transferring it from the physical space to the topological space, where it is amenable to a rigorous solution. Once the domain is decomposed in the topological space, the mesh is generated in the physical space via the solution of a non-linear elliptic partial differential operator which takes into account the curvature of the physical space. The forms of the decomposition surfaces are obtained as part of the solution of the differential operator. The latter is solved iteratively in a system of overlapping sub-domains in which the decomposition surfaces are left floating, and in which only the shape of the domain boundaries and the point distribution thereon influence the form of the final mesh. It is shown that the proper representation of domain curvature is an essential element to the success of the domain decomposition strategy. In any curved space, the curvature of the decomposition surfaces must closely mirror the curvature of the space in order to yield a high quality mesh. Since the decomposition of the multiply-connected domain is done in the topological space, the curvature of the physical space must be re-injected into the system through the solution of an appropriate differential operator. A new mathematical formulation is derived for this purpose and takes the form of a new forcing function in the elliptic grid generation equations. This new Curvature term is completely general and can be applied to both two- and three-dimensional domains of arbitrary shape. The combination of the new grid generation equations and the domain decomposition strategy provides a

  8. Communication modes with partially coherent fields.

    PubMed

    Martinsson, Per; Lajunen, Hanna; Friberg, Ari T

    2007-10-01

    We develop a theory for the description of partially coherent wave fields in linear optical systems in terms of the so-called communication modes. The communication modes are the singular functions and singular values of the appropriate propagation kernels. In particular, we show that optical fields of any state of coherence may be readily propagated through deterministic systems using the modal representation based on the system properties. The relation of the communication modes to the conventional coherent-mode representation is discussed, and expressions for the effective degree of coherence in the optical system are derived. The results are illustrated by numerical examples in optical near-field geometry.

  9. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    PubMed

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  10. Thermal Decomposition Behavior of Poly(3-nitratooxetane)

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Cruz, Aliza; Stoltz, Chad

    2009-06-01

    Poly(3-nitratooxetane), or PNO, is a new high-energy density polymer that is expected to increase formulation energy output without sacrificing binder stability. It is anticipated that using PNO in propellant formulations will be advantageous compared to other energetic binders such as its structural isomer poly(glycidyl nitrate) (PGN). In an effort to understand the combustion behavior of this new energetic polymer, thermal decomposition of PNO has been investigated. Differential scanning calorimetry coupled with thermal gravimetric analysis shows that this material is thermally stable to at least 150^oC and that exothermic decomposition peaks near 203^oC. T- Jump/FTIR was used under various conditions to identify gas- phase thermal decomposition products, including H2O, CH2O, CO2, CO, N2O, NO, NO2, and HONO (cis and trans). Additional time- resolved T-Jump/FTIR experiments suggest immediate dissociation of NO2 as the obvious first step in PNO decomposition, while previous work on the PGN polymer system suggests that the entire CH2ONO2 side chain breaks from the PGN backbone before dissociation. It is likely that different decomposition pathways are followed for each binder system due to location of available C-O and N-O moieties on each polymer.

  11. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  12. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  13. Computational aeroacoustics using hyperbolic wave primitives

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1995-01-01

    A compact high order three-spatial point, two-time level dissipationless scheme is derived by matching amplification factors from differential and difference forms hyperbolic systems of partial differential equations. This approach has the advantage of allowing large time steps (Courant numbers of one) and imposing boundary conditions that are globally compatible with the wave operators. Solutions are presented for planar and spherical one dimensional acoustic waves and more complex wave patterns in two dimensions.

  14. The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2012-11-01

    The celebrated Beale-Kato-Majda (BKM) criterion for the 3D Euler equations has been updated by Kozono and Taniuchi by replacing the supremum with the bounded mean oscillation norm. We consider this generalized criterion in an attempt to understand it more intuitively by giving an alternative explanation. For simplicity, we first treat the Constantin-Lax-Majda (CLM) equation dfrac{partial ω }{partial t}=H(ω )ω for the vorticity ω in one-dimension and identify a mechanism underlying the update of such an estimate. We consider a Fefferman-Stein (FS) decomposition for the initial vorticity ω = ω0 + H[ω1] and how it propagates under the dynamics of the CLM equation. In particular, we obtain a set of dynamical equations for it, which reads in its simplest case dfrac{partial ω _0}{partial t} =ω _0 H[ω _0]-{ω _1} H[{ω _1}] and dfrac{partial {ω _1}}{partial t} =ω _0 H[{ω _1}]+{ω _1} H[ω _0]. The equation for the second component ω1, responsible for a possible logarithmic blow-up, is linear and homogeneous; hence it remains zero if it is so initially until a stronger blow-up takes place. This rules out a logarithmic blow-up on its own and underlies the generalized BKM criterion. Numerical results are also presented to illustrate how each component of the FS decomposition evolves in time. Higher dimensional cases are also discussed. Without knowing fully explicit FS decompositions for the 3D Euler equations, we show that the second component of the FS decomposition will not appear if it is zero initially, thereby precluding a logarithmic blow-up.

  15. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  16. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    ERIC Educational Resources Information Center

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  17. Spatial-Decomposition Analysis of Energetics of Ionic Hydration.

    PubMed

    Mogami, George; Suzuki, Makoto; Matubayasi, Nobuyuki

    2016-03-03

    Hydration energetics is analyzed for a set of ions. The analysis is conducted on the basis of a spatial-decomposition formula for the excess partial molar energy of the solute that expresses the thermodynamic quantity as an integral over the whole space of the solute-solvent and solvent-solvent interactions conditioned by the solute-solvent distance. It is observed for all the ionic solutes treated in the present work that the ion-water interaction is favorable at the expense of the water-water interaction and that the variations of the ion-water and water-water interactions with the ion-water distance compensate against each other beyond the contact distance. The extent of spatial localization of the excess partial molar energy is then assessed by introducing a cutoff into the integral expression and examining the convergence with respect to the change in the cutoff. It is found that the excess energy is not quantitatively localized within the first and second hydration layers, while its correlations over the variation of ions are good against the first-layer contribution.

  18. Spectral decomposition in multichannel recordings based on multivariate parametric identification.

    PubMed

    Baselli, G; Porta, A; Rimoldi, O; Pagani, M; Cerutti, S

    1997-11-01

    A method of spectral decomposition in multichannel recordings is proposed, which represents the results of multivariate (MV) parametric identification in terms of classification and quantification of different oscillating mechanisms. For this purpose, a class of MV dynamic adjustment (MDA) models in which a MV autoregressive (MAR) network of causal interactions is fed by uncorrelated autoregressive (AR) processes is defined. Poles relevant to the MAR network closed-loop interactions (cl-poles) and poles relevant to each AR input are disentangled and accordingly classified. The autospectrum of each channel can be divided into partial spectra each relevant to an input. Each partial spectrum is affected by the cl-poles and by the poles of the corresponding input; consequently, it is decomposed into the relevant components by means of the residual method. Therefore, different oscillating mechanisms, even at similar frequencies, are classified by different poles and quantified by the corresponding components. The structure of MDA models is quite flexible and can be adapted to various sets of available signals and a priori hypotheses about the existing interactions; a graphical layout is proposed that emphasizes the oscillation sources and the corresponding closed-loop interactions. Application examples relevant to cardiovascular variability are briefly illustrated.

  19. Partial decomposition of the genetic correlation between forage yield and fiber using semi-hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voluntary intake potential of a forage crop is generally considered to be the most important feed characteristic regulating animal performance. Efforts to develop forage crops with reduced bulk volume, measured by neutral detergent fiber (NDF) concentration, are associated with reduced plant fitness...

  20. Inhomogeneous plane waves and cylindrical waves in anisotropic anelastic media

    NASA Astrophysics Data System (ADS)

    Krebes, E. S.; Le, Lawrence H. T.

    1994-12-01

    In isotropic anelastic media, the phase velocity of an inhomogeneous plane body wave, which is a function of Q and the degree of inhomogeneity gamma, is significantly less than the corresponding homogeneous wave phase velocity typically only if gamma is very large (unless Q is unusually low). Here we investigate inhomogeneous waves in anisotropic anelastic media, where phase velocities are also functions of the direction of phase propagation theta, and find that (1) the low phase velocities can occur at values of gamma which are substantially less than the isotropic values and that they occur over a limited range of oblique directions theta, and (2) for large positive values of gamma, there are ranges of oblique directions theta in which the inhomogeneous waves cannot propagate at all because there is no physically acceptable solution to the dispersion relation. We show examples of how the waves of case 1 can occur in practice and cause a number of anomalous wave propagation effects. The waves of case 2, though, do not arise in practice (they do not correspond to any points on the horizontal slowness plate). We also show that in the decomposition of a cylindrical wave into plane waves, inhomogeneous plane waves occur whose amplitudes grow in the direction of phase propagation and that this direction is away from the receiver to which they are contributing. The energy in these waves does, however, travel toward the receiver, and their amplitudes decay in the direction of energy propagation. We also show that if the commonly used definition for the quality factor in an isotropic medium, Q = -Re(mu)/Im(mu) where mu is a complex modulus, is applied to an anisotropic anelastic medium in order to study absorption anisotropy, a generally unreliable measure of the anelasticity of inhomogeneous wave propagation in a given arbitrary direction is obtained. The more fundamental definition based on energy loss (i.e., 2pi/Q = Delta E/E) should be used in general, and we present

  1. Partial Southwest Elevation Mill #5 West (Part 3), Partial ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial Southwest Elevation - Mill #5 West (Part 3), Partial Southwest Elevation - Mill #5 West (with Section of Courtyard) (Parts 1 & 2) - Boott Cotton Mills, John Street at Merrimack River, Lowell, Middlesex County, MA

  2. Control methods for localization of nonlinear waves.

    PubMed

    Porubov, Alexey; Andrievsky, Boris

    2017-03-06

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions.This article is part of the themed issue 'Horizons of cybernetical physics'.

  3. Control methods for localization of nonlinear waves

    NASA Astrophysics Data System (ADS)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  4. Tetrahydrofuran hydrate decomposition characteristics in porous media

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  5. Decomposition of free chlorine with tertiary ammonium.

    PubMed

    Katano, Hajime; Uematsu, Kohei; Tatsumi, Hirosuke; Tsukatani, Toshihide

    2010-01-01

    The reaction of free chlorine with tertiary ammonium or amine compounds in aqueous solution was studied by the amperometry at a rotating Pt-disk electrode. The amperometric method can be applied to follow the concentration of free chlorine (c(Cl)) even in the presence of chloramine species. By addition of mono- and dibutylammonium to the solution containing free chlorine, the step-like decrease in c(Cl) was observed, indicating the rapid formation of the stable chloramine species. By addition of tributylammonium, the c(Cl) was decreased exponentially to nearly zero even if the free chlorine was present initially in excess. The c(Cl)-t curves can be explained by tributylammonium-species-catalyzed decomposition of free chlorine to chloride ion. The catalytic decomposition was observed also with the tertiary-ammonium-based anion-exchange resins. Furthermore, the anion-exchange resins exhibited the decomposition of not only free chlorine but also chloramines in water.

  6. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  7. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  8. Error reduction in EMG signal decomposition.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2014-12-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.

  9. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  10. Paternalism and partial autonomy.

    PubMed Central

    O'Neill, O

    1984-01-01

    A contrast is often drawn between standard adult capacities for autonomy, which allow informed consent to be given or withheld, and patients' reduced capacities, which demand paternalistic treatment. But patients may not be radically different from the rest of us, in that all human capacities for autonomous action are limited. An adequate account of paternalism and the role that consent and respect for persons can play in medical and other practice has to be developed within an ethical theory that does not impose an idealised picture of unlimited autonomy but allows for the variable and partial character of actual human autonomy. PMID:6520849

  11. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.

    2013-03-01

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both

  12. Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine

    ERIC Educational Resources Information Center

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-01-01

    Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of…

  13. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  14. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  15. Balanced 0, + or - Matrices. Part 1. Decomposition,

    DTIC Science & Technology

    1994-01-22

    AD-A278 170 Management Science Research Report Number *600 Balanced 0, ± Matrices Part 1: DecompositionDTIC~ SD’.I.CT 1 Michele Conforti:. F I, ECTE...G6rard CornuJ6jgsQE R15� Ajai Kapuur 00 P 1 4 Kristina Vuskovic U F January 22, 1994 Dipartimento di Matematica Pura ed Applicata Universiti di...two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0, 1 matrices

  16. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    SciTech Connect

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  17. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. On the convective properties of magnetospheric Bernstein waves

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1980-01-01

    Recent plasma wave observations made by the ISEE and GEOS satellites of the electrostatic cyclotron harmonic waves have been consistent with and organized very well within the theoretical framework of Bernstein waves excited in magnetospheric plasma. Attention is given to an examination of a number of effects that result simply from the convective properties of Bernstein waves in a magnetospheric plasma environment. The roles of wave trapping in plasma density depressions and partial trappings near the magnetic equator are discussed. Certain future wave observations are suggested that can improve the understanding of this magnetospheric wave phenomenon.

  19. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  20. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  1. Making waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  2. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  3. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

    PubMed Central

    Yang, B.; Zhou, Y. T.; Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al2Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  4. Solitary Waves of the MRLW Equation by Variational Iteration Method

    SciTech Connect

    Hassan, Saleh M.; Alamery, D. G.

    2009-09-09

    In a recent publication, Soliman solved numerically the modified regularized long wave (MRLW) equation by using the variational iteration method (VIM). In this paper, corrected numerical results have been computed, plotted, tabulated, and compared with not only the exact analytical solutions but also the Adomian decomposition method results. Solitary wave solutions of the MRLW equation are exactly obtained as a convergent series with easily computable components. Propagation of single solitary wave, interaction of two and three waves, and also birth of solitons have been discussed. Three invariants of motion have been evaluated to determine the conservation properties of the problem.

  5. Methodologies in forensic and decomposition microbiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culturable microorganisms represent only 0.1-1% of the total microbial diversity of the biosphere. This has severely restricted the ability of scientists to study the microbial biodiversity associated with the decomposition of ephemeral resources in the past. Innovations in technology are bringing...

  6. Morphological Decomposition in Reading Hebrew Homographs

    ERIC Educational Resources Information Center

    Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered

    2016-01-01

    The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…

  7. Low Temperature Decomposition Rates for Tetraphenylborate Ion

    SciTech Connect

    Walker, D.D.

    1998-11-18

    Previous studies indicated that palladium is catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Additional evidence suggest that Pd(II) reduces to Pd(0) during catalyst activation. Further use of tetraphenylborate ion in the decontamination of radioactive waste may require removal of the catalyst or cooling to temperatures at which the decomposition reaction proceeds slowly and does not adversely affect processing. Recent tests showed that tetraphenylborate did not react appreciably at 25 degrees Celsius over six months suggesting the potential to avoid the decomposition at low temperatures. The lack of reaction at low temperature could reflect very slow kinetics at the lower temperature, or may indicate a catalyst ''deactivation'' process. Previous tests in the temperature range 35 to 70 degrees Celsius provided a low precision estimate of the activation energy of the reaction with which to predict the rate of reaction at 25 percent Celsius. To understand the observations at 25 degrees Celsius, experiments must separate the catalyst activation step and the subsequent reaction with TPB. Tests described in this report represent an initial attempt to separate the two steps and determine the rate and activation energy of the reaction between active catalyst and TPB. The results of these tests indicate that the absence of reaction at 25 degrees Celsius was caused by failure to activate the catalyst or the presence of a deactivating mechanism. In the presence of activated catalyst, the decomposition reaction rate is significant.

  8. 3-D vascular skeleton extraction and decomposition.

    PubMed

    Chowriappa, Ashirwad; Seo, Yong; Salunke, Sarthak; Mokin, Maxim; Kan, Peter; Scott, Peter

    2014-01-01

    We introduce a novel vascular skeleton extraction and decomposition technique for computer-assisted diagnosis and analysis. We start by addressing the problem of vascular decomposition as a cluster optimization problem and present a methodology for weighted convex approximations. Decomposed vessel structures are then grouped using the vessel skeleton, extracted using a Laplace-based operator. The method is validated using presegmented sections of vasculature archived for 98 aneurysms in 112 patients. We test first for vascular decomposition and next for vessel skeleton extraction. The proposed method produced promising results with an estimated 80.5% of the vessel sections correctly decomposed and 92.9% of the vessel sections having the correct number of skeletal branches, identified by a clinical radiological expert. Next, the method was validated on longitudinal study data from n = 4 subjects, where vascular skeleton extraction and decomposition was performed. Volumetric and surface area comparisons were made between expert segmented sections and the proposed approach on sections containing aneurysms. Results suggest that the method is able to detect changes in aneurysm volumes and surface areas close to that segmented by an expert.

  9. Non-isothermal decomposition kinetics of diosgenin

    NASA Astrophysics Data System (ADS)

    Chen, Fei-xiong; Fu, Li; Feng, Lu; Liu, Chuo-chuo; Ren, Bao-zeng

    2013-10-01

    The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, Šatava-Šesták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation ( n = 1/3, n is the reaction order) with integral form G(α) = [-ln(1 - α)]1/3 (α = 0.10-0.80). E a and log A [s-1] were determined to be 44.10 kJ mol-1 and 3.12, respectively. Moreover, the thermodynamics properties of Δ H ≠, Δ S ≠, and Δ G ≠ of this reaction were 38.18 kJ mol-1, -199.76 J mol-1 K-1, and 164.36 kJ mol-1 in the stage of thermal decomposition.

  10. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    NASA Technical Reports Server (NTRS)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  11. Layer tracking, asymptotics, and domain decomposition

    NASA Technical Reports Server (NTRS)

    Brown, D. L.; Chin, R. C. Y.; Hedstrom, G. W.; Manteuffel, T. A.

    1991-01-01

    A preliminary report is presented on the work on the tracking of internal layers in a singularly-perturbed convection-diffusion equation. It is shown why such tracking may be desirable, and it is also shown how to do it using domain decomposition based on asymptotic analysis.

  12. Methanol decomposition bottoming cycle for IC engines

    NASA Technical Reports Server (NTRS)

    Purohit, G.; Houseman, J.

    1979-01-01

    This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.

  13. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  14. Decomposition of Prefixed Words in Russian

    ERIC Educational Resources Information Center

    Kazanina, Nina

    2011-01-01

    I examined the nature of morphological decomposition in a series of masked-priming experiments with Russian prefixed nouns. In Experiments 1A and 1B, I tested 3 types of prime-target pairs in which the prime was a morphologically simple word, and a facilitation was found when the prime and the target were truly morphologically related (e.g.,…

  15. TP89 - SIRZ Decomposition Spectral Estimation

    SciTech Connect

    Seetho, Isacc M.; Azevedo, Steve; Smith, Jerel; Brown, William D.; Martz, Jr., Harry E.

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  16. Angular Momentum Decomposition for an Electron

    SciTech Connect

    Burkardt, Matthias; BC, Hikmat

    2009-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  17. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical

  18. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  19. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  20. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  1. Model-based multiple patterning layout decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Daifeng; Tian, Haitong; Du, Yuelin; Wong, Martin D. F.

    2015-10-01

    As one of the most promising next generation lithography technologies, multiple patterning lithography (MPL) plays an important role in the attempts to keep in pace with 10 nm technology node and beyond. With feature size keeps shrinking, it has become impossible to print dense layouts within one single exposure. As a result, MPL such as double patterning lithography (DPL) and triple patterning lithography (TPL) has been widely adopted. There is a large volume of literature on DPL/TPL layout decomposition, and the current approach is to formulate the problem as a classical graph-coloring problem: Layout features (polygons) are represented by vertices in a graph G and there is an edge between two vertices if and only if the distance between the two corresponding features are less than a minimum distance threshold value dmin. The problem is to color the vertices of G using k colors (k = 2 for DPL, k = 3 for TPL) such that no two vertices connected by an edge are given the same color. This is a rule-based approach, which impose a geometric distance as a minimum constraint to simply decompose polygons within the distance into different masks. It is not desired in practice because this criteria cannot completely capture the behavior of the optics. For example, it lacks of sufficient information such as the optical source characteristics and the effects between the polygons outside the minimum distance. To remedy the deficiency, a model-based layout decomposition approach to make the decomposition criteria base on simulation results was first introduced at SPIE 2013.1 However, the algorithm1 is based on simplified assumption on the optical simulation model and therefore its usage on real layouts is limited. Recently AMSL2 also proposed a model-based approach to layout decomposition by iteratively simulating the layout, which requires excessive computational resource and may lead to sub-optimal solutions. The approach2 also potentially generates too many stiches. In this

  2. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  3. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  4. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  5. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGES

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  6. Formaldehyde decomposition and oxidation on Pt(110)

    NASA Astrophysics Data System (ADS)

    Attard, G. A.; Ebert, H. D.; Parsons, R.

    1990-12-01

    The decomposition reactions of formaldehyde on clean and oxygen dosed Pt(110) have been studied by LEED, XPS and TPRS. Formaldehyde is adsorbed in two states, a monolayer phase and a multilayer phase which were distinguishable by both TPRS and XPS. The saturated monolayer (corresponding to 8.06 × 10 14 molecules cm -2) desorbed at 134 K and the multilayer phase (which could not be saturated) desorbed at 112 K. The only other reaction products observed at higher temperatures were CO and H 2 produced in desorption limited processes and these reached a maximum upon saturation of the formaldehyde monolayer. The desorption spectrum of hydrogen was found to be perturbed by the presence of CO as reported by Weinberg and coworkers. It is proposed that local lifting of the clean surface (1 × 2) reconstruction is responsible for this behaviour. Analysis of the TPRS and XPS peak areas demonstrated that on the clean surface approximately 50% of the adsorbed monolayer dissociated with the remainder desorbing intact. Reaction of formaldehyde with preadsorbed oxygen resulted in the formation of H 2O (hydroxyl recombination) and CO 2 (decomposition of formate) desorbing at 200 and 262 K, respectively. The CO and H 2 desorption peaks were both smaller relative to formaldehyde decomposition on the clean surface and in particular, H 2 desorbed in a reaction limited process associated with decomposition of the formate species. No evidence was found for methane or hydrocarbon evolution in the present study under any circumstances. The results of this investigation are discussed in the light of our earlier work on the decomposition of methanol on the same platinum surface.

  7. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.

  8. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  9. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    PubMed

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy

  10. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  11. An unusual pattern of decomposition associated with suicidal electrocution in a bath.

    PubMed

    Fernando, Tarini; Winskog, Calle; Byard, Roger W

    2013-07-01

    A 51-year-old man was found dead face down and partially submerged in a bathtub alongside two hairdryers. The hairdryers had continued to work, as the victim had bypassed the electrical board of the house prior to dropping them into the water. This had resulted in death due to electrocution, with subsequent heating of the bath water causing marked putrefaction and softening of the immersed body parts. The back and feet, which were not submerged, were preserved. The degree of anterior decomposition was not in keeping with the postmortem interval; however, regional decomposition with sparing of the back and feet provided a clue at autopsy as to the sequence of events. Individuals with training in, or knowledge of, electrical circuitry are capable of modifying domestic wiring so that safety switches and/or fuses can be bypassed ensuring that electrical devices will continue to function even while under water.

  12. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-30

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  13. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  14. A Pt-doped TiO2 nanotube arrays sensor for detecting SF6 decomposition products.

    PubMed

    Zhang, Xiaoxing; Tie, Jing; Zhang, Jinbin

    2013-10-30

    The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor's response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor.

  15. Waves in Turbulent Stably Stratified Shear Flow

    NASA Technical Reports Server (NTRS)

    Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)

    2002-01-01

    Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.

  16. Decomposition and Stability Studies of TAGN (Triaminoguanidium Nitrate)

    DTIC Science & Technology

    1988-12-01

    and atomic absorption spectroscopy . TAGN (Triaminoquanidinium Nitrate), DAGN (Diaminoquanidinium Nitrate), Thermal analysis, Mass Spectroscopy, RDX (Trinitrotriazacyclohexane), Decomposition chemistry.

  17. Theoretical Study of Decomposition Pathways for HArF and HKrF

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)

    2002-01-01

    To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.

  18. Exploring Patterns of Soil Organic Matter Decomposition with Students through the Global Decomposition Project (GDP) and the Interactive Model of Leaf Decomposition (IMOLD)

    NASA Astrophysics Data System (ADS)

    Steiner, S. M.; Wood, J. H.

    2015-12-01

    As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.

  19. Decompositions and Biplots in Three-Way Correspondence Analysis.

    ERIC Educational Resources Information Center

    Carlier, Andre; Kroonenberg, Pieter M.

    1996-01-01

    Correspondence analysis for three-way contingency tables is presented using three-way generalizations of the singular value decomposition. It is shown that, in combination with the additive decomposition of interactions in three-way tables proposed by H. O. Lancaster, a detailed analysis of decomposition of dependence is possible. (SLD)

  20. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  1. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  2. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  3. Gravitational waves from axion monodromy

    SciTech Connect

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  4. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  5. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  6. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  7. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Jia; Luan, Xi-Wu; Fang, Gang; Liu, Xin-Xin; Pan, Jun; Wang, Xiao-Jie

    2016-09-01

    Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.

  8. A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilities

    NASA Astrophysics Data System (ADS)

    Mohamad, Mustafa A.; Cousins, Will; Sapsis, Themistoklis P.

    2016-10-01

    We consider the problem of the probabilistic quantification of dynamical systems that have heavy-tailed characteristics. These heavy-tailed features are associated with rare transient responses due to the occurrence of internal instabilities. Systems with these properties can be found in a variety of areas including mechanics, fluids, and waves. Here we develop a computational method, a probabilistic decomposition-synthesis technique, that takes into account the nature of internal instabilities to inexpensively determine the non-Gaussian probability density function for any arbitrary quantity of interest. Our approach relies on the decomposition of the statistics into a 'non-extreme core', typically Gaussian, and a heavy-tailed component. This decomposition is in full correspondence with a partition of the phase space into a 'stable' region where we have no internal instabilities, and a region where non-linear instabilities lead to rare transitions with high probability. We quantify the statistics in the stable region using a Gaussian approximation approach, while the non-Gaussian distribution associated with the intermittently unstable regions of phase space is inexpensively computed through order-reduction methods that take into account the strongly nonlinear character of the dynamics. The probabilistic information in the two domains is analytically synthesized through a total probability argument. The proposed approach allows for the accurate quantification of non-Gaussian tails at more than 10 standard deviations, at a fraction of the cost associated with the direct Monte-Carlo simulations. We demonstrate the probabilistic decomposition-synthesis method for rare events for two dynamical systems exhibiting extreme events: a two-degree-of-freedom system of nonlinearly coupled oscillators, and in a nonlinear envelope equation characterizing the propagation of unidirectional water waves.

  9. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol.

  10. Removable partial denture occlusion.

    PubMed

    Ivanhoe, John R; Plummer, Kevin D

    2004-07-01

    No single occlusal morphology, scheme, or material will successfully treat all patients. Many patients have been treated, both successfully and unsuccessfully, using widely varying theories of occlusion, choices of posterior tooth form, and restorative materials. Therefore, experience has demonstrated that there is no one righ r way to restore the occlusion of all patients. Partially edentulous patients have many and varied needs. Clinicians must understand the healthy physiologic gnathostomatic system and properly diagnose what is or may become pathologic. Henderson [3] stated that the occlusion of the successfully treated patient allows the masticating mechanism to carry out its physiologic functions while the temporomandibular joints, the neuromuscular mechanism, the teeth and their supporting structures remain in a good state of health. Skills in diagnosis and treatment planning are of utmost importance in treating these patients, for whom the clinician's goals are not only an esthetic and functional restoration but also a lasting harmonious state. Perhaps this was best state by DeVan [55] more than 60 years ago in his often-quoted objective. "The patient's fundamental need is the continued meticulous restoration of what is missing, since what is lost is in a sense irretrievably lost." Because it is clear that there is no one method, no one occlusal scheme, or one material that guarantees success for all patients, recommendations for consideration when establishing or reestablishing occlusal schemes have been presented. These recommendations must be used in conjunction with other diagnostic and technical skills.

  11. Partially solidified systems

    NASA Astrophysics Data System (ADS)

    The evolution of magmas is a topic of considerable importance in geology and geophysics because it affects volcanology, igneous petrology, geothermal energy sources, mantle convection, and the thermaland chemical evolution of the earth. The dynamics and evolution of magmas are strongly affected by the presence of solid crystals that occur either in suspension in liquid or as a rigid porous matrix through which liquid magma can percolate. Such systems are physically complex and difficult to model mathematically. Similar physical situations are encountered by metallurgists who study the solidification of molten alloys, and applied mathematicians have long been interested in such moving boundary problems. Clearly, it would be of mutual benefit to bring together scientists, engineers, and mathematicians with a common interest in such systems. Such a meeting is being organized as a North Atlantic Treaty Organization (NATO) Advanced Research Workshop on the Structure and Dynamics of Partially Solidified Systems, to be held at Stanford University's Fallen Leaf Lodge at Tahoe, Calif., May 12-16, 1986 The invited speakers and their topics are

  12. Partial disassembly of peroxisomes

    PubMed Central

    1985-01-01

    Rat liver peroxisomes were subjected to a variety of procedures intended to partially disassemble or damage them; the effects were analyzed by recentrifugation into sucrose gradients, enzyme analyses, electron microscopy, and SDS PAGE. Freezing and thawing or mild sonication released some matrix proteins and produced apparently intact peroxisomal "ghosts" with crystalloid cores and some fuzzy fibrillar content. Vigorous sonication broke open the peroxisomes but the membranes remained associated with cores and fibrillar and amorphous matrix material. The density of both ghosts and more severely damaged peroxisomes was approximately 1.23. Pyrophosphate (pH 9) treatment solubilized the fibrillar content, yielding ghosts that were empty except for cores. Some matrix proteins such as catalase and thiolase readily leak from peroxisomes. Other proteins were identified that remain in mechanically damaged peroxisomes but are neither core nor membrane proteins because they can be released by pyrophosphate treatment. These constitute a class of poorly soluble matrix proteins that appear to correspond to the fibrillar material observed morphologically. All of the peroxisomal beta-oxidation enzymes are located in the matrix, but they vary greatly in how easily they leak out. Palmitoyl coenzyme A synthetase is in the membrane, based on its co-distribution with the 22-kilodalton integral membrane polypeptide. PMID:2989301

  13. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  14. Nucleon spin decomposition and orbital angular momentum in the nucleon

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Masashi

    2014-09-01

    To get a complete decomposition of nucleon spin is a fundamentally important homework of QCD. In fact, if our researches end up without accomplishing this task, a tremendous efforts since the 1st discovery of the nucleon spin crisis would end in the air. We now have a general agreement that there are at least two physically inequivalent gauge-invariant decompositions of the nucleon. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum (OAM) parts. The OAMs of quarks and gluons appearing in the first decomposition are the so-called ``mechanical'' OAMs, while those appearing in the second decomposition are the generalized (gauge-invariant) ``canonical'' ones. By this reason, these decompositions are broadly called the ``mechanical'' and ``canonical'' decompositions of the nucleon spin. Still, there remains several issues, which have not reached a complete consensus among the experts. (See the latest recent). In the present talk, I will mainly concentrate on the practically most important issue, i.e. which decomposition is more favorable from the observational viewpoint. There are two often-claimed advantages of canonical decomposition. First, each piece of this decomposition satisfies the SU(2) commutation relation or angular momentum algebra. Second, the canonical OAM rather than the mechanical OAM is compatible with free partonic picture of constituent orbital motion. In the present talk, I will show that both these claims are not necessarily true, and push forward a viewpoint that the ``mechanical'' decomposition is more physical in that it has more direct connection with observables. I also emphasize that the nucleon spin decomposition accessed by the lattice QCD analyses is the ``mechanical'' decomposition not the ``canonical'' one. The recent lattice QCD studies of the nucleon spin decomposition are also briefly overviewed.

  15. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Duan; Xu, Lijun; Li, Xiaolu

    2017-04-01

    To measure the distances and properties of the objects within a laser footprint, a decomposition method for full-waveform light detection and ranging (LiDAR) echoes is proposed. In this method, firstly, wavelet decomposition is used to filter the noise and estimate the noise level in a full-waveform echo. Secondly, peak and inflection points of the filtered full-waveform echo are used to detect the echo components in the filtered full-waveform echo. Lastly, particle swarm optimization (PSO) is used to remove the noise-caused echo components and optimize the parameters of the most probable echo components. Simulation results show that the wavelet-decomposition-based filter is of the best improvement of SNR and decomposition success rates than Wiener and Gaussian smoothing filters. In addition, the noise level estimated using wavelet-decomposition-based filter is more accurate than those estimated using other two commonly used methods. Experiments were carried out to evaluate the proposed method that was compared with our previous method (called GS-LM for short). In experiments, a lab-build full-waveform LiDAR system was utilized to provide eight types of full-waveform echoes scattered from three objects at different distances. Experimental results show that the proposed method has higher success rates for decomposition of full-waveform echoes and more accurate parameters estimation for echo components than those of GS-LM. The proposed method based on wavelet decomposition and PSO is valid to decompose the more complicated full-waveform echoes for estimating the multi-level distances of the objects and measuring the properties of the objects in a laser footprint.

  16. Exploiting multi-lead electrocardiogram correlations using robust third-order tensor decomposition

    PubMed Central

    Dandapat, Samarendra

    2015-01-01

    In this Letter, a robust third-order tensor decomposition of multi-lead electrocardiogram (MECG) comprising of 12-leads is proposed to reduce the dimension of the storage data. An order-3 tensor structure is employed to represent the MECG data by rearranging the MECG information in three dimensions. The three-dimensions of the formed tensor represent the number of leads, beats and samples of some fixed ECG duration. Dimension reduction of such an arrangement exploits correlations present among the successive beats (intra-beat and inter-beat) and across the leads (inter-lead). The higher-order singular value decomposition is used to decompose the tensor data. In addition, multiscale analysis has been added for effective care of ECG information. It grossly segments the ECG characteristic waves (P-wave, QRS-complex, ST-segment and T-wave etc.) into different sub-bands. In the meantime, it separates high-frequency noise components into lower-order sub-bands which helps in removing noise from the original data. For evaluation purposes, we have used the publicly available PTB diagnostic database. The proposed method outperforms the existing algorithms where compression ratio is under 10 for MECG data. Results show that the original MECG data volume can be reduced by more than 45 times with acceptable diagnostic distortion level. PMID:26609416

  17. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  18. Aluminate solution decomposition new technology development

    SciTech Connect

    Abramov, V.Ya.; Stelmakova, G.D.

    1996-10-01

    Scientific Technical Centre Reactor together with SC Aluminy carried out the number of investigations in the field of aluminum solution decomposition new technology development. It was based on large prime ratio on one hand, and liquid-solid countercurrent flow movement on the other hand. Practically the suggested technology was considered to be the result of unstationary, mass-transfer theory, which had been checked up at 100 m3 plot scale plant. Hydrate washing was accomplished at the first stage under the condition of countercurrent flow and less than 1 m3 water discharge. The experiments of 3.2--3.3 caustic module aluminate solution decomposition were carried out at the second stage. While full reactor 20 hour regime operation the caustic module increased till 4.1. Usually it accounts 3.7 under the analogous conditions and time.

  19. Decomposition of pertoluic acid in chlorobenzene solution

    SciTech Connect

    Ariko, N.G.; Kornilova, N.N.; Mitskevich, N.I.

    1985-09-01

    The kinetics and composition of the decomposition products of pertoluic acid in chlorobenzene at 353-403 K were studied. The activation energy of the gross decomposition is 82.4 is identical to 6 kJ/mole; the main products are pertoluic acid and CO/sub 2/. On the basis of the dependence of the yields of CO/sub 2/ on the concentration of the peracid (0.01-0.05 M), it was concluded that the peracid undergoes radical breakdown, and induced breakdown with abstraction of a H atom from OOH group occurs. The formation of toluence (conversion product of the CH/sub 3/-C/sub 6/H/sub 4/. radical) and O/sub 2/ was demonstrated.

  20. Schmidt decomposition and multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Bogdanov, Yu. I.; Bogdanova, N. A.; Fastovets, D. V.; Luckichev, V. F.

    2016-12-01

    The new method of multivariate data analysis based on the complements of classical probability distribution to quantum state and Schmidt decomposition is presented. We considered Schmidt formalism application to problems of statistical correlation analysis. Correlation of photons in the beam splitter output channels, when input photons statistics is given by compound Poisson distribution is examined. The developed formalism allows us to analyze multidimensional systems and we have obtained analytical formulas for Schmidt decomposition of multivariate Gaussian states. It is shown that mathematical tools of quantum mechanics can significantly improve the classical statistical analysis. The presented formalism is the natural approach for the analysis of both classical and quantum multivariate systems and can be applied in various tasks associated with research of dependences.

  1. A study of two domain decomposition preconditioners.

    SciTech Connect

    Dohrmann, Clark R.

    2003-12-01

    Large-scale finite element analysis often requires the iterative solution of equations with many unknowns. Preconditioners based on domain decomposition concepts have proven effective at accelerating the convergence of iterative methods like conjugate gradients for such problems. A study of two new domain decomposition preconditioners is presented here. The first is based on a substructuring approach and can viewed as a primal counterpart of the dual-primal variant of the finite element tearing and interconnecting method called FETI-DP. The second uses an algebraic approach to construct a coarse problem for a classic overlapping Schwarz method. The numerical properties of both preconditioners are shown to scale well with problem size. Although developed primarily for structural mechanics applications, the preconditioners are also useful for other problems types. Detailed descriptions of the two preconditioners along with numerical results are included.

  2. Domain decomposition for implicit solvation models.

    PubMed

    Cancès, Eric; Maday, Yvon; Stamm, Benjamin

    2013-08-07

    This article is the first of a series of papers dealing with domain decomposition algorithms for implicit solvent models. We show that, in the framework of the COSMO model, with van der Waals molecular cavities and classical charge distributions, the electrostatic energy contribution to the solvation energy, usually computed by solving an integral equation on the whole surface of the molecular cavity, can be computed more efficiently by using an integral equation formulation of Schwarz's domain decomposition method for boundary value problems. In addition, the so-obtained potential energy surface is smooth, which is a critical property to perform geometry optimization and molecular dynamics simulations. The purpose of this first article is to detail the methodology, set up the theoretical foundations of the approach, and study the accuracies and convergence rates of the resulting algorithms. The full efficiency of the method and its applicability to large molecular systems of biological interest is demonstrated elsewhere.

  3. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  4. Domain decomposition multigrid for unstructured grids

    SciTech Connect

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  5. Grandchild of the frequency: Decomposition multigrid method

    SciTech Connect

    Dendy, J.E. Jr.; Tazartes, C.C.

    1994-12-31

    Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.

  6. Decomposition theorem in ideal topological spaces

    NASA Astrophysics Data System (ADS)

    AL-omeri, W.; Noorani, Mohd. Salmi; AL-Omari, A.

    2014-06-01

    We introduce new classes of sets called a* -I -open,A-β-I-open sets, A-pre* -I-open sets, strongly T-I -sets, A-β-T-I-sets, strongly BA -I -sets, BA -I -sets, and δβA -I -open sets in ideal topological spaces. Using these sets, to obtain decompositions of continuity in an ideal topological space.

  7. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  8. Decomposition of dilute trichloroethylene by nonthermal plasma

    SciTech Connect

    Oda, Tetsuji; Takahashi, Tadashi; Tada, Keiko

    1999-03-01

    Decomposition performance of a dilute toxic organic compound, trichloroethylene (TCE), in air by using nonthermal plasma processing was studied extensively. The nonthermal plasma was generated by the high-frequency (2 kHz) or commercial-frequency (50 Hz) barrier discharge in a fused silica tube. Three types of reactors, bolt type, rod type (both are barrier-discharge type), and coil type (surface-discharge type), were tested. Analysis of byproducts, residual materials, and end products generated by the plasma process was performed by a gas chromatography mass spectrometer of gas chromatography. Most organic byproducts decrease with an increase of the electric discharge power, but only toxic phosgene increases with the increase of the discharge power. As a post process, NaOH solution was used to test effluent from the plasma reactor. The solution was found effective in phosgene absorption. Comparison between nonthermal plasma and UV irradiation for TCE decomposition was also made. In regard to the energy efficiency of the TCE decomposition, UV irradiation is found much better than discharge plasma.

  9. Nonlinear vibrating system identification via Hilbert decomposition

    NASA Astrophysics Data System (ADS)

    Feldman, Michael; Braun, Simon

    2017-02-01

    This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.

  10. Faster Algorithms on Branch and Clique Decompositions

    NASA Astrophysics Data System (ADS)

    Bodlaender, Hans L.; van Leeuwen, Erik Jan; van Rooij, Johan M. M.; Vatshelle, Martin

    We combine two techniques recently introduced to obtain faster dynamic programming algorithms for optimization problems on graph decompositions. The unification of generalized fast subset convolution and fast matrix multiplication yields significant improvements to the running time of previous algorithms for several optimization problems. As an example, we give an O^{*}(3^{ω/2k}) time algorithm for Minimum Dominating Set on graphs of branchwidth k, improving on the previous O *(4 k ) algorithm. Here ω is the exponent in the running time of the best matrix multiplication algorithm (currently ω< 2.376). For graphs of cliquewidth k, we improve from O *(8 k ) to O *(4 k ). We also obtain an algorithm for counting the number of perfect matchings of a graph, given a branch decomposition of width k, that runs in time O^{*}(2^{ω/2k}). Generalizing these approaches, we obtain faster algorithms for all so-called [ρ,σ]-domination problems on branch decompositions if ρ and σ are finite or cofinite. The algorithms presented in this paper either attain or are very close to natural lower bounds for these problems.

  11. Perspectives on Pentaerythritol Tetranitrate (PETN) Decomposition

    SciTech Connect

    Chambers, D; Brackett, C; Sparkman, D O

    2002-07-01

    This report evaluates the large body of work involving the decomposition of PETN and identifies the major decomposition routes and byproducts. From these studies it becomes apparent that the PETN decomposition mechanisms and the resulting byproducts are primarily determined by the chemical environment. In the absence of water, PETN can decompose through the scission of the O-NO{sup 2} bond resulting in the formation of an alkoxy radical and NO{sub 2}. Because of the relatively high reactivity of both these initial byproducts, they are believed to drive a number of autocatalytic reactions eventually forming (NO{sub 2}OCH{sub 2}){sub 3}CCHO, (NO{sub 2}OCH{sub 2}){sub 2}C=CHONO{sub 2}, NO{sub 2}OCH=C=CHONO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 3}C-NO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 2}C(NO{sub 2}){sub 2}, NO{sub 2}OCH{sub 2}C(NO{sub 2}){sub 3}, and C(NO{sub 2}){sub 4} as well as polymer-like species such as di-PEHN and tri-PEON. Surprisingly, the products of many of these proposed autocatalytic reactions have never been analytically validated. Conversely, in the presence of water, PETN has been shown to decompose primarily to mono, di, and tri nitrates of pentaerythritol.

  12. Randomized interpolative decomposition of separated representations

    NASA Astrophysics Data System (ADS)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  13. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  14. On the solution of system of fractional nonlinear predator-prey population model via homotopy decomposition method

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon

    2013-10-01

    We exploit a relatively new analytical technique, the Homotopy Decomposition Method (HDM), for solving nonlinear fractional partial differential equations arising in prey-predator biological population dynamics system. Numerical solutions are provided and they have certain properties which exhibit biologically significant dependence on the parameter values. The fractional derivatives are described in the Caputo sense. The HDM is reliable and reduces the number of computations. This gives the HDM a wider applicability. In addition, the method is very easy to use.

  15. Analytical solutions to the simplified spherical harmonics equations using eigen decompositions.

    PubMed

    Zhang, Limin; Li, Jiao; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2013-12-15

    We develop a modified method to simplify the analytical solutions to the simplified spherical harmonics equations (SP(N)). The scheme decouples the SP(N) partial differential equations into independent equations using eigen decompositions and calculates the Green's function of the photon migrations based on the eigenvectors and eigenvalues. In contrast to the established solutions that are based on the original coupled equations, the proposed derivation is theoretically concise and universally extendable to other regular geometries. We validate the proposed method in comparison with Monte-Carlo simulations for an infinite scattering medium and a circular geometry as an example of the boundary value problems.

  16. PSM design for inverse lithography with partially coherent illumination.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2008-11-24

    Phase-shifting masks (PSM) are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. Recently, a set of gradient-based PSM optimization methods have been developed to solve for the inverse lithography problem under coherent illumination. Most practical lithography systems, however, use partially coherent illumination due to non-zero width and off-axis light sources, which introduce partial coherence factors that must be accounted for in the optimization of PSMs. This paper thus focuses on developing a framework for gradient-based PSM optimization methods which account for the inherent nonlinearities of partially coherent illumination. In particular, the singular value decomposition (SVD) is used to expand the partially coherent imaging equation by eigenfunctions into a sum of coherent systems (SOCS). The first order coherent approximation corresponding to the largest eigenvalue is used in the PSM optimization. In order to influence the solution patterns to have more desirable manufacturability properties and higher fidelity, a post-processing of the mask pattern based on the 2D discrete cosine transformation (DCT) is introduced. Furthermore, a photoresist tone reversing technique is exploited in the design of PSMs to project extremely sparse patterns.

  17. Modulation of short waves by long waves. [ocean wave interactions

    NASA Technical Reports Server (NTRS)

    Reece, A. M., Jr.

    1978-01-01

    Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.

  18. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    NASA Astrophysics Data System (ADS)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  19. Domain decomposition methods for the parallel computation of reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1988-01-01

    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.

  20. Estimating the decomposition of predictive information in multivariate systems.

    PubMed

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.