Science.gov

Sample records for partial wave decompositions

  1. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition. 2; Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2004-01-01

    The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.

  2. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  3. Weighted-Residual Methods for the Solution of Two-Particle Lippmann-Schwinger Equation Without Partial-Wave Decomposition

    NASA Astrophysics Data System (ADS)

    Kuruoğlu, Zeki C.

    2014-01-01

    Recently there has been a growing interest in computational methods for quantum scattering equations that avoid the traditional decomposition of wave functions and scattering amplitudes into partial waves. The aim of the present work is to show that the weighted-residual approach in combination with local basis functions give rise to convenient computational schemes for the solution of the multi-variable integral equations without the partial wave expansion. The weighted-residual approach provides a unifying framework for various variational and degenerate-kernel methods for integral equations of scattering theory. Using a direct-product basis of localized quadratic interpolation polynomials, Galerkin, collocation and Schwinger variational realizations of the weighted-residual approach have been implemented for a model potential. It is demonstrated that, for a given expansion basis, Schwinger variational method exhibits better convergence with basis size than Galerkin and collocation methods. A novel hybrid-collocation method is implemented with promising results as well.

  4. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  5. How to Compute the Partial Fraction Decomposition without Really Trying

    ERIC Educational Resources Information Center

    Brazier, Richard; Boman, Eugene

    2007-01-01

    For various reasons there has been a recent trend in college and high school calculus courses to de-emphasize teaching the Partial Fraction Decomposition (PFD) as an integration technique. This is regrettable because the Partial Fraction Decomposition is considerably more than an integration technique. It is, in fact, a general purpose tool which…

  6. Partial-wave expansions of angular spectra of plane waves.

    PubMed

    Lock, James A

    2006-11-01

    Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.

  7. Partial-wave expansions of angular spectra of plane waves

    NASA Astrophysics Data System (ADS)

    Lock, James A.

    2006-11-01

    Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.

  8. Pseudopotential Method for Higher Partial Wave Scattering

    SciTech Connect

    Idziaszek, Zbigniew; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  9. Plane-wave decomposition of spatially random fields.

    PubMed

    Nguyen, Tan H; Majeed, Hassaan; Popescu, Gabriel

    2015-04-01

    We investigate the uniqueness of the plane-wave decomposition of temporally deterministic, spatially random fields. Specifically, we consider the decomposition of spatially ergodic and, thus, statistically homogeneous fields. We show that when the spatial power spectrum is injective, the plane waves are the only possible coherent modes. Furthermore, the randomness of such fields originates in the spatial spectral phase, i.e., the phase associated with the coefficients of each plane wave in the expansion. By contrast, the spectral amplitude is deterministic and is specified by the spatial power spectrum. We end with a discussion showing how the results can be translated in full to the time domain.

  10. Wave Attenuation in Partially Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Yin, Chuan-Sheng

    1992-01-01

    This thesis consists of three independent papers. Paper 1 studies effects of pulsating gas pockets on wave propagation in partially saturated porous solids containing both liquid and gas phases. On the basis of Biot theory, an analytic solution for the White model for study of the effects of saturation history on wave attenuation is derived. One of the most significant findings of this work is that when the average spacing among the neighboring gas pockets is of the order of the boundary-layer thickness associated with the slow compressional (or P2) wave, the attenuation of the compressional (or P) wave due to local fluid flow reaches its maximum. Results of Paper 1 bear direct applications to seismic and logging responses of partially saturated rocks in prospecting for petroleum, and monitoring of oil and natural gas reservoirs. Paper 2 presents the results of the experimental studies of the effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstones. Two experimental methods are used; one is the resonant-bar method and the other the forced-deformation method. It is found that the wave attenuation depends on sample-saturation history (drainage or imbibition), as well as boundary-flow conditions, and the degree of saturation. The attenuation caused by "flowable" liquid is sensitive only in the region of low degree of gas saturation. An open-pore boundary tends to induce higher attenuation. The results obtained by the forced-deformation method show that the magnitude of the attenuation decreases substantially with decreasing frequency to the extent that no attenuation peak was apparent at frequencies below 100 Hz. Paper 3 analyzes extensional wave propagation in a porous fluid-saturated hollow-cylinder of infinite extent. Analytic solutions of complex Young's modulus for the long wavelength limit was obtained for a hollow -cylinder with open-pore inner surface. A simplified formula for estimating the frequency at which the

  11. Numerical errors of diffraction computing using plane wave spectrum decomposition

    NASA Astrophysics Data System (ADS)

    Kozacki, Tomasz

    2008-09-01

    In the paper the numerical determination of diffraction patterns using plane wave spectrum decomposition (PWS) is investigated. The simple formula for sampling selection for error-free numerical computation is proposed and its applicability is discussed. The usage of this formula presents practical difficulty for some diffraction problems due to required large memory load. A new multi-Fourier transform PWS (MPWS) method is elaborated which overcomes memory requirement of the PWS method. The performances of the PWS and MPWS methods are verified through extensive numerical simulations.

  12. The new BNL partial wave analysis programs

    SciTech Connect

    Cummings, J.P.; Weygand, D.P.

    1997-07-29

    Experiment E852 at Brookhaven National Laboratory is a meson spectroscopy experiment which took data at the Multi-Particle Spectrometer facility of the Alternating Gradient Syncrotron. Upgrades to the spectrometer`s data acquisition and trigger electronics allowed over 900 million data events, of numerous topologies, to be recorded to tape in 1995 running alone. One of the primary goals of E852 is identification of states beyond the quark model, i.e., states with gluonic degrees of freedom. Identification of such states involves the measurement of a systems spin-parity. Such a measurement is usually done using Partial Wave Analysis. Programs to perform such analyses exist, in fact, one was written at BNL and used in previous experiments by some of this group. This program, however, was optimized for a particular final state, and modification to allow analysis of the broad range of final states in E852 would have been difficult. The authors therefore decided to write a new program, with an eye towards generality that would allow analysis of a large class of reactions.

  13. Partial Wave Analysis of Coupled Photonic Structures

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.

  14. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  15. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  16. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  17. Scalar Decomposition of the Electromagnetic Vector Wave Equation

    NASA Astrophysics Data System (ADS)

    Franke, Carlos Rodolfo

    The accepted definition of separability of the electromagnetic vector wave equation requires that only one scalar field component exists in a scalar partial differential equation of no higher order than the second, for at least one of the scalar field components. The second order constraint so tightly restricts the mathematics that only the rectangular, the three cylindrical, and the spherical and conical coordinates can be separated. The constraint also permits separation of one scalar field component in prolate and oblate spheroidal coordinates, and paraboloidal coordinates, in that absence of azimuthal variations. The definition of separability makes it a particular attribute of a particular coordinate in a particular coordinate system, and not a general property of the coordinate system as a whole. The second order constraint on the scalar partial differential equation is now lifted, permitting the vector wave equation in any orthogonal curvilinear coordinate system to be completely separated into three scalar partial differential equations. The treatment is carried out for the circular-cylindrical and spherical coordinates, and the analysis indicates that the highest order of at least one of the uncoupled scalar partial differential equations in a given orthogonal curvilinear coordinate system is equal to twice the number of curvilinear coordinates.

  18. Introducing the Improved Heaviside Approach to Partial Fraction Decomposition to Undergraduate Students: Results and Implications from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…

  19. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  20. Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge

    NASA Astrophysics Data System (ADS)

    Gui, Yingang; Zhang, Xiaoxing; Zhang, Ying; Qiu, Yinjun; Chen, Lincong

    2016-07-01

    Air-insulated switchgear cabinet plays a critical role in entire power transmission and distribution system. Its stability directly affects the operational reliability of the power system. And the on-line gas detection method, which evaluates the insulation status of insulation equipment by detecting the decomposition components of filled air in cabinet, becomes an innovative way to ensure the running stability of air-insulated switchgear cabinet. In order to study the characteristic gas types and production regularity of decomposition components under partial discharge, three insulation defects: needle-plate, air-gap and impurity defect are proposed to simulate the insulation defects under partial discharge in air-insulated switchgear cabinet. Firstly, the generation pathways and mechanism of composition components are discussed. Then CO and NO2 are selected as the characteristic decomposition components to characterize the partial discharge due to their high concentration and chemical stability. Based on the different change regularity of CO and NO2 concentration under different insulation defect, it provides an effective way to evaluate and predict the insulation defect type and severity in the field.

  1. Partial Wave Dispersion Relations: Application to Electron-Atom Scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Drachman, Richard J.

    1999-01-01

    In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.

  2. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  3. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc E-mail: joseluis.ballester@uib.es

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  4. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  5. Correlations of πN partial waves for multireaction analyses

    DOE PAGESBeta

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less

  6. Correlations of π N partial waves for multireaction analyses

    NASA Astrophysics Data System (ADS)

    Döring, M.; Revier, J.; Rönchen, D.; Workman, R. L.

    2016-06-01

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic π N scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The influence of systematic errors is also considered.

  7. Evanescent wave decomposition in a novel resonator comprising unmagnetized and magnetized plasma layers

    SciTech Connect

    Kong Xiangkun; Liu Shaobin; Bian Borui; Li Haiming; Zhao Xin; Zhang Haifeng

    2013-04-15

    A 4 Multiplication-Sign 4 transfer matrix method has been applied to study the decomposition of any elliptically polarized wave in a magnetized resonator. When the incident elliptically polarized wave passes through the structure, it is orthogonally decomposed into two circular polarizations at two resonance frequencies. Without changing the structure of the resonator, the positions of the resonant frequencies of the right- and left-handed circularly polarized waves can be modulated by changing the external magnetized field. The results show that the proposed magnetized structure can be used to design a novel resonator, which can be applied in the decomposition of polarized electromagnetic waves.

  8. SLAC three-body partial wave analysis system

    SciTech Connect

    Aston, D.; Lasinski, T.A.; Sinervo, P.K.

    1985-10-01

    We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab.

  9. Dyadic analysis of partially coherent submillimeter-wave antenna systems

    NASA Astrophysics Data System (ADS)

    Withington, S.; Yassin, G.; Murphy, J. A.

    2001-08-01

    We describe a procedure for simulating the behavior of partially coherent submillimeter-wave antenna systems. The procedure is based on the principle that the second-order statistical properties of any partially coherent vector field can be decomposed into a sum of fully coherent, but completely uncorrelated, natural modes. Any of the standard electromagnetic analysis techniques-physical optics, geometrical theory of diffraction, etc.-can be used to propagate and scatter the modes individually, and the statistical properties of the total transformed field reconstructed at the output surface by means of superposition. In the case of modal optics-plane waves, Gaussian optics, waveguide mode matching, etc.-the properties of the field can be traced directly by means of scattering matrices. The overall procedure is of considerable value for calculating the behavior of astronomical instruments comprising planar and waveguide multimode bolometers, submillimeter-wave optical components, and large reflecting antennas.

  10. Calculation of the Scattering Amplitude Without Partial Wave Expansion

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, Aaron; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two developments in the direct calculation of the angular differential scattering amplitude have been implemented: (a) The integral expansion of the scattering amplitude is simplified by analytically integration over the azimuthal angle. (b) The resulting integral as a function of scattering angle is calculated by using the numerically generated wave function from a finite element method calculation. Results for electron-hydrogen scattering in the static approximation will be shown to be as accurate as a partial wave expansion with as many l's as is necessary for convergence at the incident energy being calculated.

  11. Can the effective string see higher partial waves?

    SciTech Connect

    Gubser, S.S.

    1997-10-01

    The semiclassical cross sections for arbitrary partial waves of ordinary scalars to fall into certain five-dimensional black holes have a form that seems capable of explanation in terms of the effective string model. The kinematics of these processes is analyzed in detail on the effective string and is shown to reproduce the correct functional form of the semiclassical cross sections. But it is necessary to choose a peculiar value of the effective string tension to obtain the correct scaling properties. Furthermore, the assumptions of locality and statistics combine to forbid the effective string from absorbing more than a finite number of partial waves. The relation of this limitation to cosmic censorship is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  12. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  13. An application of wavelet transforms and neural networks for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1995-07-01

    This paper reports on wavelet-based decomposition methods and neural networks for remote monitoring of airborne chemicals using millimeter wave spectroscopy. Because of instrumentation noise and the presence of untargeted chemicals, direct decomposition of the spectra requires a large number of training data and yields low accuracy. A neural network trained with features obtained from a discrete wavelet transform is demonstrated to have better decomposition with faster training time. Results based on simulated and experimental spectra are presented to show the efficacy of the wavelet-based methods.

  14. Impact of plunging breaking waves on a partially submerged cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C.; Duncan, J. H.

    2013-11-01

    The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.

  15. Seismic waves estimation and wavefield decomposition: application to ambient vibrations

    NASA Astrophysics Data System (ADS)

    Maranò, Stefano; Reller, Christoph; Loeliger, Hans-Andrea; Fäh, Donat

    2012-10-01

    Passive seismic surveying methods represent a valuable tool in local seismic hazard assessment, oil and gas prospection, and in geotechnical investigations. Array processing techniques are used in order to estimate wavefield properties such as dispersion curves of surface waves and ellipticity of Rayleigh waves. However, techniques presently in use often fail to properly merge information from three-components sensors and do not account for the presence of multiple waves. In this paper, a technique for maximum likelihood estimation of wavefield parameters including direction of propagation, velocity of Love waves and Rayleigh waves, and ellipticity of Rayleigh waves is described. This technique models jointly all the measurements and all the wavefield parameters. Furthermore it is possible to model the simultaneous presence of multiple waves. The performance of this technique is evaluated on a high-fidelity synthetic data set and on real data. It is shown that the joint modelling of all the sensor components, decreases the variance of wavenumber estimates and allows the retrieval of the ellipticity value together with an estimate of the prograde/retrograde motion.

  16. Teaching a New Method of Partial Fraction Decomposition to Senior Secondary Students: Results and Analysis from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong; Leung, Allen

    2012-01-01

    In this paper, we introduce a new approach to compute the partial fraction decompositions of rational functions and describe the results of its trials at three secondary schools in Hong Kong. The data were collected via quizzes, questionnaire and interviews. In general, according to the responses from the teachers and students concerned, this new…

  17. Seismoelectric wave propagation numerical modelling in partially saturated materials

    NASA Astrophysics Data System (ADS)

    Warden, S.; Garambois, S.; Jouniaux, L.; Brito, D.; Sailhac, P.; Bordes, C.

    2013-09-01

    To better understand and interpret seismoelectric measurements acquired over vadose environments, both the existing theory and the wave propagation modelling programmes, available for saturated materials, should be extended to partial saturation conditions. We propose here an extension of Pride's equations aiming to take into account partially saturated materials, in the case of a water-air mixture. This new set of equations was incorporated into an existing seismoelectric wave propagation modelling code, originally designed for stratified saturated media. This extension concerns both the mechanical part, using a generalization of the Biot-Gassmann theory, and the electromagnetic part, for which dielectric permittivity and electrical conductivity were expressed against water saturation. The dynamic seismoelectric coupling was written as a function of the streaming potential coefficient, which depends on saturation, using four different relations derived from recent laboratory or theoretical studies. In a second part, this extended programme was used to synthesize the seismoelectric response for a layered medium consisting of a partially saturated sand overburden on top of a saturated sandstone half-space. Subsequent analysis of the modelled amplitudes suggests that the typically very weak interface response (IR) may be best recovered when the shallow layer exhibits low saturation. We also use our programme to compute the seismoelectric response of a capillary fringe between a vadose sand overburden and a saturated sand half-space. Our first modelling results suggest that the study of the seismoelectric IR may help to detect a sharp saturation contrast better than a smooth saturation transition. In our example, a saturation contrast of 50 per cent between a fully saturated sand half-space and a partially saturated shallow sand layer yields a stronger IR than a stepwise decrease in saturation.

  18. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  19. Symmetric tensor decomposition description of fermionic many-body wave functions.

    PubMed

    Uemura, Wataru; Sugino, Osamu

    2012-12-21

    The configuration interaction (CI) is a versatile wave function theory for interacting fermions, but it involves an extremely long CI series. Using a symmetric tensor decomposition method, we convert the CI series into a compact and numerically tractable form. The converted series encompasses the Hartree-Fock state in the first term and rapidly converges to the full-CI state, as numerically tested by using small molecules. Provided that the length of the symmetric tensor decomposition CI series grows only moderately with the increasing complexity of the system, the new method will serve as one of the alternative variational methods to achieve full CI with enhanced practicability. PMID:23368456

  20. Spherical Harmonic Decomposition of Gravitational Waves Across Mesh Refinement Boundaries

    NASA Technical Reports Server (NTRS)

    Fiske, David R.; Baker, John; vanMeter, James R.; Centrella, Joan M.

    2005-01-01

    We evolve a linearized (Teukolsky) solution of the Einstein equations with a non-linear Einstein solver. Using this testbed, we are able to show that such gravitational waves, defined by the Weyl scalars in the Newman-Penrose formalism, propagate faithfully across mesh refinement boundaries, and use, for the first time to our knowledge, a novel algorithm due to Misner to compute spherical harmonic components of our waveforms. We show that the algorithm performs extremely well, even when the extraction sphere intersects refinement boundaries.

  1. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  2. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  3. Search for Higher Flavor Multiplets in Partial Wave Analyses

    SciTech Connect

    Yakov Azimov; Richard Arndt; I.I. Strakovsky; Ron Workman; K. Goeke

    2005-04-01

    The possible existence of higher multi-quark flavor multiplets of baryons is investigated. We argue that the S-matrix should have poles with any quantum numbers, including those which are exotic. This argument provides a novel justification for the existence of hadrons with arbitrary exotic structure. Though it does not constitute a proof, there are still no theoretical arguments against exotics. We then consider KN and piN scattering. Conventional and modified partial-wave analyses provide several sets of candidates for correlated pairs (Theta1, Delta), each of which could label a related 27-plet. Properties of the pairs (masses, mass orderings, spin-parity quantum numbers) do not quite correspond to the current theoretical expectations. Decay widths of the candidates are either wider or narrower than expected. Possible reasons for such disagreements are briefly discussed.

  4. Extension of a spectral time-stepping domain decomposition method for dispersive and dissipative wave propagation.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2015-04-01

    For time-domain modeling based on the acoustic wave equation, spectral methods have recently demonstrated promise. This letter presents an extension of a spectral domain decomposition approach, previously used to solve the lossless linear wave equation, which accommodates frequency-dependent atmospheric attenuation and assignment of arbitrary dispersion relations. Frequency-dependence is straightforward to assign when time-stepping is done in the spectral domain, so combined losses from molecular relaxation, thermal conductivity, and viscosity can be approximated with little extra computation or storage. A mode update free from numerical dispersion is derived, and the model is confirmed with a numerical experiment.

  5. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.

    PubMed

    Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying

    2016-04-01

    Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications.

  6. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse.

    PubMed

    Qasem, Ahmed; Avolio, Alberto

    2008-02-01

    Aortic pulse wave velocity (PWV), calculated from pulse transit time (PTT) using 2 separate pulse recordings over a known distance, is a significant biomarker of cardiovascular risk. This study evaluates a novel method of determining PTT from waveform decomposition of central aortic pressure using a single pulse measurement. Aortic pressure was estimated from a transformed radial pulse and decomposed into forward and backward waves using a triangular flow wave. Pulse transit time was determined from cross-correlation of forward and backward waves. Pulse transit time, representing twice the PTT between 2 specific sites, was compared with independent measurements of carotid-femoral PTT in a cohort of 46 subjects (23 females; age 57+/-14 years). Linear regression between measured PTT (y; milliseconds) and calculated PTT (x; milliseconds) was y=1.05x-2.1 (r=0.67; P<0.001). This model was tested in a separate group of 44 subjects (21 females; age 55+/-14 years) by comparing measured carotid-femoral PWV (y; meters per second) and PWV calculated using the estimated value of PTT (eTR/2) and carotid femoral distance (x; meters per second; y=1.21x-2.5; r=0.82; P<0.001). Findings indicate that the time lag between the forward and backward waves obtained from the decomposition of aortic pressure wave can be used to determine PWV along the aortic trunk and shows good agreement with carotid-femoral PWV. This technique can be used as a noninvasive and nonintrusive method for measurement of aortic PWV using a single pressure recording.

  7. Kinetics of CO and H atom production from the decomposition of HNCO in shock waves

    SciTech Connect

    Wu, C.H.; Wang, H.T. ); Lin, M.C. ); Fifer, R.A. )

    1990-04-19

    The production of CO and H atoms from the thermal decomposition of HNCO in shock waves at temperatures between 2,120 and 2,570 K has been measured by resonance absorption. Kinetic modeling of these product formation rates using a recently established mechanism yielded the second-order rate constants for the primary decomposition processes HNCO + Ar {yields} NH + CO + Ar (1) and HNCO + Ar {yields} H + NCO + Ar (2): k{sub 1} = 10{sup 15.41 {plus minus}0.16} exp({minus}39,800 {plus minus} 700/T) cm{sup 3}/(mol {times} s) and k{sub 2} = 10{sup 17.0} exp({minus}56,400/T) cm{sup 3}/(mol {times} s).

  8. H-He elastic scattering at low energies: Contribution of nonzero partial waves

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A.S.

    2005-01-01

    The present study reports the nonzero partial wave elastic cross sections together with s-wave results for the scattering of an antihydrogen atom off a gaseous helium target at thermal energies (up to 10{sup -2} a.u.). We have used a nonadiabatic atomic orbital method having different basis sets to investigate the system. The consideration of all the significant partial waves (up to J=24) reduces the oscillatory nature present in the individual partial wave cross section. The added elastic cross section is almost constant up to 10{sup -7} a.u. and then decreases steadily and very slowly with increasing energy.

  9. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  10. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  11. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation

    PubMed Central

    Zheng, Rencheng; Nakano, Kimihiko; Ohashi, Rui; Okabe, Yoji; Shimazaki, Mamoru; Nakamura, Hiroki; Wu, Qi

    2015-01-01

    Ultrasonic wave-sensing technology has been applied for the health monitoring of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, researchers are required to average thousands of repeated measurements to distinguish significant signals. To resolve this bottleneck problem, this study established a signal-processing strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic waves, by application of parallel factor analysis (PARAFAC) technology that produces unique multiway decomposition without additional orthogonal or independent constraints. Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting atom can be chosen and then restored to three-way profiles as a final result. An experimental study has revealed that the final result is consistent with the conventional 1024-data averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of ultrasonic waves can be significantly improved. PMID:26198232

  12. Identification of the slow wave of bowel myoelectrical surface recording by empirical mode decomposition.

    PubMed

    Ye, Yiyao; Garcia-Casado, J; Martinez-de-Juan, J L; Guardiola, J L; Ponce, J L

    2006-01-01

    Surface electroenterogram (EEnG) is a non-invasive method to study bowel myoelectrical activity. Nevertheless, surface recorded EEnG is contaminated by respiratory, motion artifacts, and other interferences. The goal of this paper is to remove the respiration artifact and ultra-low frequency components from surface EEnG by means of empirical mode decomposition (EMD). Seven recording sessions on abdominal surface of three Beagle dogs were conducted. Power percentages of interferences and of fundamental slow wave were calculated before and after the application of the method. The results show that the interference power is significantly reduced (23 +/- 16% vs. 5 +/- 4%), and fundamental slow wave power is significantly increased (59 +/- 17% vs. 76 +/- 13%). Therefore, the EMD method can be helpful to remove respiration and ultra-low frequency components from the external EEnG recordings.

  13. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  14. An application of wavelet transform for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1994-08-01

    Millimeter-wave technique, based on rotational energy transitions of molecules, holds promise for remote monitoring of environmentally hazardous effluents from processes. Argonne National Laboratory is developing a millimeter-wave sensor based on active swept-frequency radar technique in the frequency range of 220-320 GHz. Because the line widths of millimeter-wave spectra of molecules at atmospheric pressure are broad ({approximately} 4 GHz half-width at half height), the composite spectrum of multicomponent mixtures of chemicals is generally complex and overlapping. This paper presents an application of discrete wavelet transform for efficient representation and decomposition of millimeter-wave spectral data. A two-layer back propagation neural network is trained using multifrequency wavelet coefficients of the signals as input features and the known composition of different chemicals in the mixture as target output vectors. After training, composition of an unknown mixture of the base chemicals is determined using the wavelet representation of its absorption spectra. Simulated and experimental spectral data were used to test the wavelet transform technique. Accurate values of individual chemical compositions resulted for noise-free laboratory data. In addition, the technique showed more robustness than conventional multivariate techniques under noisy conditions.

  15. Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms.

    PubMed

    Thomas, Nicholas R; Kjaergaard, Niels; Julienne, Paul S; Wilson, Andrew C

    2004-10-22

    We report on the direct imaging of s and d partial-wave interference in cold collisions of atoms. Two ultracold clouds of 87Rb atoms were accelerated by magnetic fields to collide at energies near a d-wave shape resonance. The resulting halos of scattered particles were imaged using laser absorption. By scanning across the resonance we observed a marked evolution of the scattering patterns due to the energy dependent phase shifts for the interfering s and d waves. Since only two partial-wave states are involved in the collision process the scattering yield and angular distributions have a simple interpretation in terms of a theoretical model.

  16. Pseudo Rayleigh wave in a partially saturated non-dissipative porous solid

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2016-09-01

    Propagation of surface waves is studied at the pervious boundary of a porous solid saturated with a mixture of two immiscible fluids. An approach, based on continuum mixture theory, is used to derive a secular equation for the propagation of harmonic waves at the stress-free plane surface of this non-dissipative medium. Numerical analysis shows that this secular equation may not represent the propagation of true surface wave in the porous aggregate. Then, this equation is solved numerically for the propagation of pseudo Rayleigh wave or the leaky surface waves. To ensure the existence of pseudo Rayleigh wave, capillary effect between two (wetting and non-wetting) pore-fluids is related to the partial saturation. Effects of porosity and partial saturation coupled with capillary effect are observed on the phase velocity of pseudo Rayleigh waves in sandstone saturated with water-CO2 mixture.

  17. Spectral line polarization with angle-dependent partial frequency redistribution. I. A Stokes parameters decomposition for Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Frisch, H.

    2010-11-01

    Context. The linear polarization of a strong resonance lines observed near the solar limb is created by a multiple-scattering process. Partial frequency redistribution (PRD) effects must be accounted for to explain the polarization profiles. The redistribution matrix describing the scattering process is a sum of terms, each containing a PRD function multiplied by a Rayleigh type phase matrix. A standard approximation made in calculating the polarization is to average the PRD functions over all the scattering angles, because the numerical work needed to take the angle-dependence of the PRD functions into account is large and not always needed for reasonable evaluations of the polarization. Aims: This paper describes a Stokes parameters decomposition method, that is applicable in plane-parallel cylindrically symmetrical media, which aims at simplifying the numerical work needed to overcome the angle-average approximation. Methods: The decomposition method relies on an azimuthal Fourier expansion of the PRD functions associated to a decomposition of the phase matrices in terms of the Landi Degl'Innocenti irreducible spherical tensors for polarimetry T^K_Q(i, Ω) (i Stokes parameter index, Ω ray direction). The terms that depend on the azimuth of the scattering angle are retained in the phase matrices. Results: It is shown that the Stokes parameters I and Q, which have the same cylindrical symmetry as the medium, can be expressed in terms of four cylindrically symmetrical components I_Q^K (K = Q = 0, K = 2, Q = 0, 1, 2). The components with Q = 1, 2 are created by the angular dependence of the PRD functions. They go to zero at disk center, ensuring that Stokes Q also goes to zero. Each component I_Q^K is a solution to a standard radiative transfer equation. The source term S_Q^K are significantly simpler than the source terms corresponding to I and Q. They satisfy a set of integral equations that can be solved by an accelerated lambda iteration (ALI) method.

  18. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  19. Analysis of infragravity waves using Complete Ensemble Empirical Mode Decomposition (CEEMD) on microtidal and macrotidal beaches

    NASA Astrophysics Data System (ADS)

    Montaño Muñoz, Jennifer; Osorio Arias, Andres; Winter, Christian; Didenkulova, Ira; Otero, Luis

    2015-04-01

    Infragravity waves are long waves with periods between ~ 20 s and 300 s, these waves may dominate the hydrodynamics in the surf and swash zones, being the main driver of sediment transport and swash elevation (run-up). Data of pressure sensors at different cross-shore positions and camera systems that capture the swash excursion in a micro-tidal beach (Cartagena, Colombia, Caribbean Sea) and a macro-tidal beach (Norderney, Germany, North Sea) were analyzed to study the occurrence and temporal and spatial variability of infragravity waves. We used the Complete Ensemble Empirical Mode Decomposition (CEEMD) to decompose the time series into a finite set of "intrinsic mode functions" (IMFs). This method overcomes limitations of Fourier-based methods for time series analysis (e.g. FFT and wavelet techniques) that assume linear and stationary data. CEEMD was designed to analyze non-linear and non-stationary phenomena (as those in shallow waters), identifying processes with small amplitudes and low energy hidden in the data. A comparison with the Fourier spectrum shows the superiority of CEEMD to describe the behavior of ingragravity waves. Fourier spectra do not show infragravity energy in deeper waters; additionally, in shallow waters the energy of the spectra is spread in the infragravity band differing among sea states, therefore is not possible identifying a characteristic spectrum. On the other hand, with CEEMD the IMFs in the infragravity frequencies are observed in deeper waters, and the energy evolution cross-shore until the swash zone is shown at both beaches; furthermore, CEEMD shows the frequency clustering of the energy, allowing to see the gains or losses of energy at different frequencies. At the micro-tidal beach (Cartagena), infragravity energy is dominant in surf and swash zones for all analyzed sea states, with dominant energy in the IMF of about 100 s of period, showing infragravity wave selection. On the contrary, at the macro-tidal beach (Norderney

  20. Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses.

    PubMed

    Lajunen, Hanna; Tervo, Jani; Vahimaa, Pasi

    2004-11-01

    The modal theory for spectrally partially coherent nonstationary plane waves is introduced. The theory is first developed in the space-frequency domain and then extended to the space-time domain. Propagation properties of the coherent modes are analyzed. The concept of the overall degree of coherence is extended to the domain of nonstationary fields, and it is shown that the overall degree of coherence of partially coherent plane-wave pulses is the same in the space-frequency and space-time domains. The theory is applied to the recently introduced concept of spectrally Gaussian Schell-model plane-wave pulses.

  1. Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses

    NASA Astrophysics Data System (ADS)

    Lajunen, Hanna; Tervo, Jani; Vahimaa, Pasi

    2004-11-01

    The modal theory for spectrally partially coherent nonstationary plane waves is introduced. The theory is first developed in the space-frequency domain and then extended to the space-time domain. Propagation properties of the coherent modes are analyzed. The concept of the overall degree of coherence is extended to the domain of nonstationary fields, and it is shown that the overall degree of coherence of partially coherent plane-wave pulses is the same in the space-frequency and space-time domains. The theory is applied to the recently introduced concept of spectrally Gaussian Schell-model plane-wave pulses.

  2. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    SciTech Connect

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  3. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  4. An algorithm for the calculation of the partial wave expansion of the Coulomb-distorted plane wave

    NASA Astrophysics Data System (ADS)

    Hornyak, I.; Kruppa, A. T.

    2015-12-01

    The partial wave expansion of the Coulomb-distorted plane wave is determined by the help of the complex generalized hypergeometric function 2F2(a , a ; a + l + 1 , a - l ; z) . An algorithm for the calculation of 2F2(a , a ; a + l + 1 , a - l ; z) is created and it is implemented as a FORTRAN-90 code. The code is fast and its accuracy is 14 significant decimal digits.

  5. The Method of Decomposition in Invariant Structures: Exact Solutions for N Internal Waves in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Victor

    2015-11-01

    The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.

  6. Probing disturbances over canadian ionosphere using advance data analysis of wave decomposition

    NASA Astrophysics Data System (ADS)

    Kherani, Esfhan

    2016-07-01

    Using CHAIN network of GPS receivers, we present disturbances in total electron content (TEC) of the ionosphere on magnetically quiet day of 8 December 2009 and construct travel-time diagram to understand the propagation characteristics of these disturbances. We employ the wave decomposition method to identify the TEC disturbances. We found N-shaped amplified TEC disturbances at higher latitude around 80 N that appear during intensification of ionospheric current at ˜11 UT, suggesting them to be associated with energy input from magnetosphere. These TEC disturbances have spectral peak in between 55-65 minutes, originate in the vicnity of (80N,270W), propagate both southeastward and southwestward with similar velocity ˜80 m/s and arrives at latitude ˜55N around 20 UT. These propagation characteristcs classify them as medium-scale Traveling ionospheric disturbances (MSTIDs) and possibly of gravity wave origin. Noteworthy results of our study are following: (1) presence of dayside MSTIDs whose nightside counterpart is recently reported by Shiokawa et al (2012), (2) long-distance ˜2500 km propagation of dayside MSTIDs that is not reported for the nightside counterpart, (3) dayside MSIDs acquire largest amplitudes in 65-75 during 15-17 UT, similar to the nightside MSTIDs, (4) amplification of amplitudes of MSTIDs in the auroral oval latitudes and (5) identification of driving sources in two latitudes that enable them to propagate long distance.

  7. Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Margot, X.; García-Tíscar, J.

    2016-08-01

    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.

  8. On the accuracy of dynamic mode decomposition in estimating instability of wave packet

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Xue, Dong; Wang, Jinjun

    2015-08-01

    Lots of unstable flows in both nature and engineering pose multi-scale perturbations with infinitesimal initial amplitude, which compete and interact with each other during their unstable evolution. Dynamic mode decomposition (DMD) analysis can be used to extract these components' temporal/spatial growth rate. Therefore, it is necessary to evaluate the accuracy performance and confidence limit of DMD algorithm in the circumstance of multi-scale instability wave packet. In the present study, we use a linear combination of a sinusoidal unstable wave and its high-order harmonics as a prototype, based on which an error analysis of DMD algorithm is taken. In first, different numerical algorithms of DMD analysis are compared in terms of both accuracy and efficiency. The accuracy evaluation of the classical DMD algorithm in a large parameter domain is followed. It is found that the superimposition of finer structures with less energy dominance might damage the estimation accuracy of the primary structures' growth rate. Strong evidences suggest that even in a linear circumstance, resolving the dynamics of small-scale structures is comparably more difficult than that of the primary structures, i.e., DMD algorithm has a preference for structures with energetic dominance. Finally, the recommended thresholds for the sampling/discretizing parameters are summarized for practical usage.

  9. Analysis of non linear partially standing waves from 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.

    2003-04-01

    Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.

  10. Large-Scale Patterns of Waves in Partial Ice Cover in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Smith, M.; Thomson, J. M.; Rogers, W.

    2014-12-01

    Surface waves are becoming a central feature of the emerging Arctic Ocean; however, few direct measurements of waves have been made. We present multi-year time series of wave height and ice draft from moorings at two locations in the Beaufort Sea, as well as wavelength and direction estimated from high-resolution satellite imagery. In situ wave and ice data are used to examine large-scale spatial and temporal patterns of waves in the previously ice-covered Arctic Ocean. In particular, we investigate the dependence of waves on ice-controlled fetch, and wave physics in partial ice cover in the Beaufort Sea. These results are compared with WaveWatch III hindcasts to evaluate the model's accuracy in the marginal ice zone. We will expand on the approach of Thomson and Rogers (2014), who found that the energy of waves in the Arctic is directly correlated with open water distances. Incorporating new (2014) data collected throughout the marginal ice zone, we will examine adjustments to conventional fetch scaling laws in the presence of partial ice cover.

  11. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  12. A partial-wave analysis of the K -Φ system produced in the reaction K -p → K +K -K -p at 18.5 GeV/c

    NASA Astrophysics Data System (ADS)

    Armstrong, T.; Baubillier, M.; Beusch, W.; Bloodworth, I. J.; Bonesini, M.; Burns, A.; Calligarich, A.; Carney, J. N.; Cecchet, G.; Costa, G.; Dolfini, R.; Evangelista, C.; Ghidini, B.; Kinson, J. B.; Knudson, K.; Liguori, G.; Mandelli, L.; Mazzanti, M.; Navach, F.; Palano, A.; Perini, L.; Pons, Y.; Quercigh, E.; Strachman, Z.; Tamborini, M.; Teodoro, D.; Worsell, M. F.; Zito, G.; Zitoun, R.; Bari-Birmingham-CERN-Milan-Paris-Pavia Collaboration

    1983-07-01

    About 15 000 K -Φp events have been collected in the CERN Ω' spectrometer. A partial-wave decomposition of the K -Φ system is performed. The 1 +SO + wave is dominant. The 0 -P0 + and 2 -P0 + waves are important and show resonant behaviour at ˜ 1.83 GeV (Γ ˜ 0.25 GeV) and ˜ 1.73 GeV (Γ ˜ 0.22 GeV) respectively. The first one can be interpreted as the second radial excitation of the kaon while the second one can be identified as one of the two L mesons.

  13. Scattering of a partially-coherent wave from a material circular cylinder.

    PubMed

    Hyde, Milo W; Bogle, Andrew E; Havrilla, Michael J

    2013-12-30

    The case of a partially-coherent wave scattered from a material circular cylinder is investigated. Expressions for the TMz and TEz scattered-field cross-spectral density functions are derived by utilizing the plane-wave spectrum representation of electromagnetic fields and cylindrical wave transformations. From the analytical scattered-field cross-spectral density functions, the mean scattering widths are derived and subsequently validated via comparison with those computed from Method of Moments Monte Carlo simulations. The analytical relations as well as the simulation results are discussed and physically interpreted. Key insights are noted and subsequently analyzed.

  14. Noninterferometric characterization of partially coherent scalar wave fields and application to scattered light.

    PubMed

    Aruldoss, C K; Dragomir, N M; Roberts, A

    2007-10-01

    We report on the application of a simple propagation-based phase-space tomographic technique to the determination of characteristic projections through the mutual optical intensity and the generalized radiance of a scalar, quasi-monochromatic partially coherent wave field. This method is applied to the reconstruction of the coherence functions of an initially spatially coherent optical wave field that has propagated through a suspension of polystyrene microspheres. As anticipated, we see that the field separates into a ballistic, or unscattered, component and a scattered component with a much shorter coherence length. Good agreement is obtained between experimental results and the results of a model based on a wave-transport equation.

  15. Investigation of damping and radiation using full plane wave decomposition in ducts

    NASA Astrophysics Data System (ADS)

    Allam, Sabry; Åbom, Mats

    2006-05-01

    A general plane wave decomposition procedure that determines both the wave amplitudes (or the reflection coefficient) and the wavenumbers is proposed for in-duct measurements. To improve the quality of the procedure, overdetermination and a nonlinear least-squares procedure is used. The procedure has been tested using a six microphone array, and used for accurate measurements of the radiation from an open unflanged pipe with flow. The experimental results for the reflection coefficient magnitude and the end correction have been compared with the theory of Munt. The agreement is very good if the maximum speed rather than the average is used to compare measurements and theory. This result is the first complete experimental validation of the theory of Munt [Acoustic transmission properties of a jet pipe with subsonic jet flow, I: the cold jet reflection coefficient, Journal of Sound and Vibration 142(3) (1990) 413-436]. The damping of the plane wave (the imaginary part of the wavenumber) could also be obtained from the experimental data. It is found that the damping increases strongly, compared with the damping for a quiescent fluid, when the acoustic boundary layer becomes thicker than the viscous sublayer. This finding is in agreement with a few earlier measurements and is also in agreement with a theoretical model proposed by Howe [The damping of sound by wall turbulent sheer layers, Journal of Acoustic Society of America 98(3) (1995) 1723-1730]. The results reported here are the first experimental verifications of Howe's model. It is found that the model works well typically up to a normalized acoustic boundary layer thickness δA+ of 30-40. For values of a δA+ less than 10, corresponding to higher frequencies or lower flow speeds, the model proposed by Dokumaci [A note on transmission of sound in a wide pipe with mean flow and viscothermal attenuation, Journal of Sound and Vibration 208(4) (1997) 653-655] is also in good agreement with the experimental data.

  16. Wave interaction with a partially reflecting vertical wall protected by a submerged porous bar

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Liu, Yong; Li, Huajun

    2016-08-01

    This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method (BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.

  17. Modelling ultrasonic array signals in multilayer anisotropic materials using the angular spectrum decomposition of plane wave responses

    NASA Astrophysics Data System (ADS)

    Humeida, Yousif; Pinfield, Valerie J.; Challis, Richard E.

    2013-08-01

    Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite.

  18. Pion-nucleon partial wave analysis and study of baryon structure. Progress report, June 1, 1979-May 31, 1981

    SciTech Connect

    Hendrick, R.E.

    1981-01-10

    This report details progress toward completion of a long-term pion-nucleon partial wave analysis, summarizing results and conclusions to date. The report also discussed progress in using partial wave and resonance parameter results to test dynamical models of the baryon and in better understanding interquark forces within baryons.

  19. Simultaneous observations of gravity waves in auroras and partial reflection radar data

    NASA Astrophysics Data System (ADS)

    Roldugin, Valentin; Cherniakov, Sergey; Roldugin, Aleksey

    2016-07-01

    Some events of wave-like patterns of night sky intensity were revealed from the obtained data of the all-sky camera at the observatory "Lovozero" (67.97 N, 35.02 E). Their wave-lengths were about several tens kilometers and their time periods were about 15-30 minutes. We consider the wave-like structures as manifestation of acoustic-gravity waves. Two cases (28 January 2012 and 26 February 2012) were compared with the data of the partial reflection radar at the observatory "Tumanny" (69.0 N, 35.7 E). At these cases peaks of reflection intensity took place at 80-90 km, and the intensity on these altitudes oscillated with periods which were similar to the luminous ones.

  20. Mixing of partial waves near B*B̄* threshold in e⁺e⁻ annihilation

    SciTech Connect

    Li, Xin; Voloshin, M. B.

    2013-05-31

    We consider the production of B*B̄* meson pairs in e⁺e⁻ annihilation near the threshold. The rescattering due to pion exchange between the mesons results in a mixing between three partial wave amplitudes: two P-wave amplitudes with the total spin of the meson pair S=0 and S=2 and an F-wave amplitude. The mixing due to pion exchange with a low momentum transfer is calculable up to c.m. energy E≈15–20 MeV above the threshold. We find that the P–F mixing is numerically quite small in this energy range, while the mixing of the two P-wave amplitudes is rapidly changing with energy and can reach of order one at such low energies.

  1. Mixing of partial waves near B*B̄* threshold in e⁺e⁻ annihilation

    DOE PAGESBeta

    Li, Xin; Voloshin, M. B.

    2013-05-31

    We consider the production of B*B̄* meson pairs in e⁺e⁻ annihilation near the threshold. The rescattering due to pion exchange between the mesons results in a mixing between three partial wave amplitudes: two P-wave amplitudes with the total spin of the meson pair S=0 and S=2 and an F-wave amplitude. The mixing due to pion exchange with a low momentum transfer is calculable up to c.m. energy E≈15–20 MeV above the threshold. We find that the P–F mixing is numerically quite small in this energy range, while the mixing of the two P-wave amplitudes is rapidly changing with energy andmore » can reach of order one at such low energies.« less

  2. Computation of dispersion relations for axially symmetric guided waves in cylindrical structures by means of a spectral decomposition method.

    PubMed

    Höhne, Christian; Prager, Jens; Gravenkamp, Hauke

    2015-12-01

    In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given.

  3. Scan-based near-field acoustical holography and partial field decomposition in the presence of noise and source level variation.

    PubMed

    Lee, Moohyung; Bolton, J Stuart

    2006-01-01

    Practical holography measurements of composite sources are usually performed using a multireference cross-spectral approach, and the measured sound field must be decomposed into spatially coherent partial fields before holographic projection. The formulations by which the latter approach have been implemented have not taken explicit account of the effect of additive noise on the reference signals and so have strictly been limited to the case in which noise superimposed on the reference signals is negligible. Further, when the sound field is measured by scanning a subarray over a number of patches in sequence, the decomposed partial fields can suffer from corruption in the form of a spatially distributed error resulting from source level variation from scan-to-scan. In the present work, the effects of both noise included in the reference signals, and source level variation during a scan-based measurement, on partial field decomposition are described, and an integrated procedure for simultaneously suppressing the two effects is provided. Also, the relative performance of two partial field decomposition formulations is compared, and a strategy for obtaining the best results is described. The proposed procedure has been verified by using numerical simulations and has been applied to holographic measurements of a subsonic jet.

  4. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2015-04-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  5. Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Choquette, M.; Duncan, J. H.

    2011-11-01

    The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.

  6. PARTIAL REFLECTION AND TRAPPING OF A FAST-MODE WAVE IN SOLAR CORONAL ARCADE LOOPS

    SciTech Connect

    Kumar, Pankaj; Innes, D. E.

    2015-04-20

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s{sup −1} within ∼3–4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s{sup −1}, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  7. Raman rogue waves in a partially mode-locked fiber laser.

    PubMed

    Runge, Antoine F J; Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro

    2014-01-15

    We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics. PMID:24562136

  8. O (p6) extension of the large-NC partial wave dispersion relations

    NASA Astrophysics Data System (ADS)

    Guo, Z. H.; Sanz-Cillero, J. J.; Zheng, H. Q.

    2008-04-01

    Continuing our previous work [Z.H. Guo, J.J. Sanz-Cillero, H.Q. Zheng, JHEP 0706 (2007) 030], large-NC techniques and partial wave dispersion relations are used to discuss ππ scattering amplitudes. We get a set of predictions for O (p6) low-energy chiral perturbation theory couplings. They are provided in terms of the masses and decay widths of scalar and vector mesons.

  9. A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses

    SciTech Connect

    A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman

    2012-04-01

    A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.

  10. Renormalized effective actions in radially symmetric backgrounds: Partial wave cutoff method

    SciTech Connect

    Dunne, Gerald V.; Hur, Jin; Lee, Choonkyu

    2006-10-15

    The computation of the one-loop effective action in a radially symmetric background can be reduced to a sum over partial-wave contributions, each of which is the logarithm of an appropriate one-dimensional radial determinant. While these individual radial determinants can be evaluated simply and efficiently using the Gel'fand-Yaglom method, the sum over all partial-wave contributions diverges. A renormalization procedure is needed to unambiguously define the finite renormalized effective action. Here we use a combination of the Schwinger proper-time method, and a resummed uniform DeWitt expansion. This provides a more elegant technique for extracting the large partial-wave contribution, compared to the higher-order radial WKB approach which had been used in previous work. We illustrate the general method with a complete analysis of the scalar one-loop effective action in a class of radially separable SU(2) Yang-Mills background fields. We also show that this method can be applied to the case where the background gauge fields have asymptotic limits appropriate to uniform field strengths, such as, for example, in the Minkowski solution, which describes an instanton immersed in a constant background. Detailed numerical results will be presented in a sequel.

  11. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  12. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  13. Effect of partial coherence on four-wave mixing in photorefractive materials via reflection grating approximation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Yi, X.; Shen, X.; Wang, R.; Yeh, P.

    We investigate the effect of beam coherence on four-wave mixing via reflection gratings in photorefractive media. For the case of phase conjugation, the results of our theoretical analysis indicate that partial coherence always leads to a drop of signal gain and phase conjugate reflectivity in non-depleted cases. In general, the mutual coherence of the signal beam and the pump beam can be enhanced due to the process of wave mixing. The mutual coherence of the phase conjugate beam and one of the pump beams depends on the beam intensity ratio as well as the optical path difference. This is distinctly different from the four-wave mixing case with a transmission grating.

  14. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    PubMed

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-01

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  15. Multi-level quantum Monte Carlo wave functions for complex reactions: the decomposition of α-hydroxy-dimethylnitrosamine.

    PubMed

    Fracchia, Francesco; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction. We compute a reliable reaction path with the quadratic configuration interaction method and employ QMC for the calculation of the electronic energies. We show that the use of multideterminantal wave functions is very important to correctly describe the critical points of this PES within QMC, and that our multilevel J-LGVB approach is an effective tool to significantly reduce the cost of QMC calculations without loss of accuracy. As regards the complex PES of α-hydroxy-dimethylnitrosamine, the accurate energies computed with our approach allows us to confirm the validity of the two-step reaction mechanism of decomposition originally proposed within density functional theory, but with some important differences in the barrier heights of the individual steps.

  16. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    SciTech Connect

    Lorente-Crespo, M.; Mateo-Segura, C.

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  17. Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.

    2016-03-01

    Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.

  18. Evaporative cooling of metastable helium in the multi-partial-wave regime

    SciTech Connect

    Nguyen, Scott V.; Doret, S. Charles; Connolly, Colin B.; Michniak, Robert A.; Doyle, John M.; Ketterle, Wolfgang

    2005-12-15

    Metastable helium is buffer gas cooled, magnetically trapped, and evaporatively cooled in large numbers. 10{sup 11} {sup 4}He{sup *} atoms are trapped at an initial temperature of 400 mK and evaporatively cooled into the ultracold regime, resulting in a cloud of 2{+-}0.5x10{sup 9} atoms at 1.4{+-}0.2 mK. Efficient evaporation indicates low collisional loss for {sup 4}He{sup *} in both the ultracold and multi-partial-wave regime, in agreement with theory.

  19. Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV

    SciTech Connect

    Stoks, V.G.J.; Klomp, R.A.M.; Rentmeester, M.C.M.; de Swart, J.J. )

    1993-08-01

    We present a multienergy partial-wave analysis of all [ital NN] scattering data below [ital T][sub lab]=350 MeV, published in a regular physics journal between 1955 and 1992. After careful examination, our final database consists of 1787 [ital pp] and 2514 [ital np] scattering data. Our fit to these data results in [chi][sup 2]/[ital N][sub df]=1.08, with [ital N][sub df]=3945 the total number of degrees of freedom. All phase shifts and mixing parameters can be determined accurately.

  20. Wave optics simulation of spatially partially coherent beams: Applications to free space laser communications

    NASA Astrophysics Data System (ADS)

    Xiao, Xifeng

    One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial

  1. Study of insect succession and rate of decomposition on a partially burned pig carcass in an oil palm plantation in Malaysia.

    PubMed

    Heo, Chong Chin; Mohamad, Abdullah Marwi; Ahmad, Firdaus Mohd Salleh; Jeffery, John; Kurahashi, Hiromu; Omar, Baharudin

    2008-12-01

    Insects found associated with corpse can be used as one of the indicators in estimating postmortem interval (PMI). The objective of this study was to compare the stages of decomposition and faunal succession between a partially burnt pig (Sus scrofa Linnaeus) and natural pig (as control). The burning simulated a real crime whereby the victim was burnt by murderer. Two young pigs weighed approximately 10 kg were used in this study. Both pigs died from pneumonia and immediately placed in an oil palm plantation near a pig farm in Tanjung Sepat, Selangor, Malaysia. One pig was partially burnt by 1-liter petrol while the other served as control. Both carcasses were visited twice per day for the first week and once thereafter. Adult flies and larvae on the carcasses were collected and later processed in a forensic entomology laboratory. Results showed that there was no significant difference between the rate of decomposition and sequence of faunal succession on both pig carcasses. Both carcasses were completely decomposed to remain stage after nine days. The species of flies visiting the pig carcasses consisted of blow flies (Chrysomya megacephala, Chrysomya rufifacies, Hemipyrellia ligurriens), flesh fly (Sarcophagidae.), muscid fly (Ophyra spinigera), soldier fly (Hermetia illucens), coffin fly (Phoridae) and scavenger fly (Sepsidae). The only difference noted was in the number of adult flies, whereby more flies were seen in the control carcass. Faunal succession on both pig carcasses was in the following sequence: Calliphoridae, Sarcophagidae, Muscidae, Phoridae and lastly Stratiomyidae. However, there was overlap in the appearance of members of these families. Blowflies continued to oviposit on both carcasses. Hence postmortem interval (PMI) can still be estimated from the partially burnt pig carcass. PMID:19287358

  2. Study of insect succession and rate of decomposition on a partially burned pig carcass in an oil palm plantation in Malaysia.

    PubMed

    Heo, Chong Chin; Mohamad, Abdullah Marwi; Ahmad, Firdaus Mohd Salleh; Jeffery, John; Kurahashi, Hiromu; Omar, Baharudin

    2008-12-01

    Insects found associated with corpse can be used as one of the indicators in estimating postmortem interval (PMI). The objective of this study was to compare the stages of decomposition and faunal succession between a partially burnt pig (Sus scrofa Linnaeus) and natural pig (as control). The burning simulated a real crime whereby the victim was burnt by murderer. Two young pigs weighed approximately 10 kg were used in this study. Both pigs died from pneumonia and immediately placed in an oil palm plantation near a pig farm in Tanjung Sepat, Selangor, Malaysia. One pig was partially burnt by 1-liter petrol while the other served as control. Both carcasses were visited twice per day for the first week and once thereafter. Adult flies and larvae on the carcasses were collected and later processed in a forensic entomology laboratory. Results showed that there was no significant difference between the rate of decomposition and sequence of faunal succession on both pig carcasses. Both carcasses were completely decomposed to remain stage after nine days. The species of flies visiting the pig carcasses consisted of blow flies (Chrysomya megacephala, Chrysomya rufifacies, Hemipyrellia ligurriens), flesh fly (Sarcophagidae.), muscid fly (Ophyra spinigera), soldier fly (Hermetia illucens), coffin fly (Phoridae) and scavenger fly (Sepsidae). The only difference noted was in the number of adult flies, whereby more flies were seen in the control carcass. Faunal succession on both pig carcasses was in the following sequence: Calliphoridae, Sarcophagidae, Muscidae, Phoridae and lastly Stratiomyidae. However, there was overlap in the appearance of members of these families. Blowflies continued to oviposit on both carcasses. Hence postmortem interval (PMI) can still be estimated from the partially burnt pig carcass.

  3. SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)

    DOE Data Explorer

    George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm

  4. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    SciTech Connect

    Feng, Xiaobing

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  5. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    SciTech Connect

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B; Schneider, Kai; Benkadda, S.; Farge, Marie

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.

  6. Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability

    NASA Astrophysics Data System (ADS)

    Maugis, Philippe; Colignon, Yann; Mangelinck, Dominique; Hoummada, Khalid

    2015-08-01

    Used as fuel cladding in the Gen IV fission reactors, ODS steels would be held at temperatures in the range of 350°C to 600°C for several months. Under these conditions, spinodal decomposition is likely to occur in the matrix, resulting in an increase of material brittleness. In this study, thin films consisting of a modulated composition in Fe and in Cr in a given direction have been elaborated. The time evolution of the composition profiles during aging at 500°C has been characterized by atom probe tomography, indicating an apparent kinetic stasis of the initial microstructure. A computer model has been developed on the basis of the Cahn-Hilliard theory of spinodal decomposition, associated with the mobility form proposed by Martin (1990). We make the assumption that the initial profile is very close to the amplitude-dependent critical wavelength. Our calculations show that the thin film is unstable relative to wavelength modulations, resulting in the observed kinetic stasis.

  7. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well. PMID:21383822

  8. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well.

  9. Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2016-04-01

    We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media

  10. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  11. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  12. Partial-wave expansion for photoproduction of two pseudoscalars on a nucleon

    NASA Astrophysics Data System (ADS)

    Fix, A.; Arenhövel, H.

    2012-03-01

    The amplitudes for photoproduction of two pseudoscalars on a nucleon are expanded in the overall center-of-momentum (c.m.) frame in a model-independent way with respect to the contribution of the final-state partial wave of total angular momentum J and its projection on the normal to the plane spanned by the momenta of the final particles. The expansion coefficients, which are analogs to the multipole amplitudes for single-meson photoproduction, contain the complete information about the reaction dynamics. Results of an explicit evaluation are presented for the moments Wjm of the inclusive angular distribution of an incident photon beam with respect to the c.m. coordinate system defined by the final particles, taking photoproduction of π0π0 and π0η as an example.

  13. PyPWA: A partial-wave/amplitude analysis software framework

    NASA Astrophysics Data System (ADS)

    Salgado, Carlos

    2016-05-01

    The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.

  14. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  15. Nonequilibrium shock wave structure, 1. Kinetics of nitric oxide formation and decomposition, 2

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Hanson, R. K.

    1972-01-01

    Theoretical and numerical aspects of molecular flow simulation focussed on the development of collision models for diatomic and triatomic gases undergoing rotational excitation and energy exchange. A laser absorption technique is proposed and analyzed as sufficiently sensitive for measuring rotational populations in a nonequilibrium shock wave. Also reported is a survey of available literature on NO chemical rate data in preparation for experiments on NO decompensation kinetics in atmospheric pollution.

  16. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps. PMID:26986436

  17. Partial-wave analysis of n +241Am reaction cross sections in the resonance region

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Bouland, O.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Plompen, A.; Gunsing, F.; Sage, C.; Sirakov, I.

    2015-07-01

    Cross sections for neutron-induced reactions of 241Am in the resonance region have been evaluated. Results of time-of-flight cross section experiments carried out at the GELINA, LANSCE, ORELA and Saclay facilities have been combined with optical model calculations to derive consistent cross sections from the thermal energy region up to the continuum region. Resolved resonance parameters were derived from a resonance shape analysis of transmissions, capture yields, and fission yields in the energy region up to 150 eV using the refit code. From a statistical analysis of these parameters, a neutron strength function (104S0=1.01 ±0.12 ), mean level spacing (D0=0.60 ±0.01 eV) and average radiation width (<Γγ 0>=43.3 ±1.1 meV) for s -wave resonances were obtained. Neutron strength functions for higher partial waves (l >0 ) together with channel and effective scattering radii were deduced from calculations based on a complex mean-field optical model potential, applying an equivalent hard-sphere scattering radius approximation.

  18. X-ray standing wave analysis of nanostructures using partially coherent radiation

    SciTech Connect

    Tiwari, M. K. Das, Gangadhar; Bedzyk, M. J.

    2015-09-07

    The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.

  19. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  20. Are seismic wave velocities and anisotropies reliable proxies for partial melts?

    NASA Astrophysics Data System (ADS)

    Lee, Amicia; Torvela, Taija; Lloyd, Geoffrey; Walker, Andrew

    2015-04-01

    Partial melts and their segregation weaken mineral crystallographic alignment, resulting in a decrease in seismic anisotropy (AV). Furthermore, introduction of melt induces a drop in seismic wave velocities, especially for shear (Vs) but also compressional (Vp) waves, although some solid-state processes can also lead to velocity drops. Thus, decreases in AV and/or V are often used to infer the presence and even the amount of melt in both the crust and mantle, for example via the Vp/Vs ratio. However, evidence is accumulating that the relationship between melt fraction and seismic properties is not straight-forward. We consider how varying melt fraction (f) might affect crustal seismic properties. Our modelling approach is based on electron backscattered diffraction (EBSD) analysis of crystallographic preferred orientation (CPO) patterns from granulite facies sheared migmatites. The CPO data are used to model the seismic properties of rocks with different solid/melt proportions. Subsequently, melt was simulated via an isotropic elastic stiffness matrix and combined mathematically with the CPO-derived seismic properties, and seismic properties then recalculated to take into account the presence of melt. These melt models, therefore, predict changes in seismic properties at different f. The models show that low (c. f < 0.15) and high (0.7 < f < 1) values affect seismic properties much more than the 'crystal mush' part (0.1 < f < 0.7): velocities (V) and anisotropies (AV) for both low and high f drop rapidly but 'plateau' at intermediate f. Our results imply that V and, especially, AV may not be reliable proxies for the amount of crustal melt present. Seismic wave behaviour in crystal-supported (0.1 < f < 0.7) material may be controlled by the solid rather than the melt phase.

  1. Summation by parts methods for spherical harmonic decompositions of the wave equation in any dimensions

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Martín-García, José M.; Garfinkle, David

    2013-07-01

    We investigate numerical methods for wave equations in n + 2 spacetime dimensions, written in spherical coordinates, decomposed in spherical harmonics on Sn, and finite-differenced in the remaining coordinates r and t. Such an approach is useful when the full physical problem has spherical symmetry, for perturbation theory about a spherical background, or in the presence of boundaries with spherical topology. The key numerical difficulty arises from lower order 1/r terms at the origin r = 0. As a toy model for this, we consider the flat space linear wave equation in the form \\dot{\\pi }=\\psi ^{\\prime }+p\\psi /r, \\dot{\\psi }=\\pi ^{\\prime }, where p = 2l + n and l is the leading spherical harmonic index. We propose a class of summation by parts (SBP) finite-differencing methods that conserve a discrete energy up to boundary terms, thus guaranteeing stability and convergence in the energy norm. We explicitly construct SBP schemes that are second- and fourth-order accurate at interior points and the symmetry boundary r = 0, and first- and second-order accurate at the outer boundary r = R.

  2. Integrability and conservation laws for the nonlinear evolution equations of partially coherent waves in noninstantaneous Kerr media.

    PubMed

    Hansson, T; Lisak, M; Anderson, D

    2012-02-10

    It is shown that the evolution equations describing partially coherent wave propagation in noninstantaneous Kerr media are integrable and have an infinite number of invariants. A recursion relation for generating these invariants is presented, and it is demonstrated how to express them in the coherent density, self-consistent multimode, mutual coherence, and Wigner formalisms.

  3. A reconfigurable digital filterbank for hearing-aid systems with a variety of sound wave decomposition plans.

    PubMed

    Wei, Ying; Liu, Debao

    2013-06-01

    Current hearing-aid systems have fixed sound wave decomposition plans due to the use of fixed filterbanks, thus cannot provide enough flexibility for the compensation of different hearing impairment cases. In this paper, a reconfigurable filterbank that consists of a multiband-generation block and a subband-selection block is proposed. Different subbands can be produced according to the control parameters without changing the structure of the filterbank system. The use of interpolation, decimation, and frequency-response masking enables us to reduce the computational complexity by realizing the entire system with only three prototype filters. Reconfigurability of the proposed filterbank enables hearing-impaired people to customize hearing aids based on their own specific conditions to improve their hearing ability. We show, by means of examples, that the proposed filterbank can achieve a better matching to the audiogram and has smaller complexity compared with the fixed filterbank. The drawback of the proposed method is that the throughput delay is relatively long (>20 ms), which needs to be further reduced before it can be used in a real hearing-aid application.

  4. Volume measurements of the cell destruction zone and thermal decomposition zone in the focus of a shock wave transducer

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor; Teslenko, Vyacheslav; Nikolin, Valery

    2001-05-01

    Evaluation of the volume of the cell destruction zone is of interest in biomedical applications of shock waves (SW). The volume depends on mechanical properties of the cell membranes and is different for different cell types. In this work, we evaluated the cell destruction volume for two different cell types, tumor cells Crebs-2 and red blood cells. We used 0 70 0.5-s SW pulses with 45-MPa pressure in the focal zone. The concentration of destroyed cells was counted by dyeing in the case of tumor cells, and by spectrometry of released hemoglobin in the case of RBC. The cell destruction volume was calculated from destruction versus pulse number data and measured as 0.0135 ml for tumor cells. For RBC, the volume was 0.021 ml. To evaluate the effective volume of thermal zone, we used EPR signal of stable disulphide biradicals. Under SW action, S-S bonds of the biradicals rupture. The volume measurements were 0.003 ml. Since for that biradical, S-S bonds rupture at temperatures >80°C, and concentration of free radicals was an order lower (measured by spin traps) than of the produced monoradical, the rupture was caused by thermal decomposition. Thermal effects can play a significant role in SW action.

  5. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    NASA Astrophysics Data System (ADS)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a

  6. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  7. An Embedded Cluster Self-Consistent Partial Wave Method using Divide and Conquer

    SciTech Connect

    Averill, Frank; Painter, Gayle S

    2008-04-01

    An efficient approach to extending the spatial scale of electronic structure calculations is described in this work. The method is formulated as a combination of the interacting fragments concept of Harris [J. Harris, Phys. Rev. B 31, 1770 (1985)] and the D&C method of Yang [W. Yang, Phys. Rev. Lett. 66, 1438 (1991)], which recognizes the intrinsic locality of electron bonding and is devised to optimize the total electron charge density within an approximate representation of partitioned components. Beginning with a brief review of D&C concepts, we report results from this new method using the D&C as an embedding method for coupling an atomic cluster to its extended environment. The convergence properties as implemented within the self-consistent partial wave linear variational method (SCPW) are illustrated through various applications. In particular, results from a study of the adsorption of La atoms at the prism plane of -Si3N4 demonstrate the practicality of the SCPW using D&C as an embedding technique. PACS numbers: 71.15.Mb, 31.15.Ew, 31.50.Bc

  8. Partial wave analyses of J/ψ→γππ and γππ

    NASA Astrophysics Data System (ADS)

    BES Collaboration; Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.

    2006-11-01

    Results are presented on J/ψ radiative decays to ππ and ππ based on a sample of 58M J/ψ events taken with the BES II detector. Partial wave analyses are carried out using the relativistic covariant tensor amplitude method in the 1.0 to 2.3GeV/cππ mass range. There are conspicuous peaks due to the f(1270) and two 0 states in the 1.45 and 1.75 GeV/c mass regions. The first 0 state has a mass of 1466±6±20MeV/c, a width of 108-11+14±25MeV/c, and a branching fraction B(J/ψ→γf(1500)→γππ)=(0.67±0.02±0.30)×10. Spin 0 is strongly preferred over spin 2. The second 0 state peaks at 1765-3+4±13MeV/c with a width of 145±8±69MeV/c. If this 0 is interpreted as coming from f(1710), the ratio of its branching fractions to ππ and KK¯ is 0.41-0.17+0.11.

  9. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  10. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples.

  11. Poles as the only true resonant-state signals extracted from a worldwide collection of partial-wave amplitudes using only one, well controlled pole-extraction method

    SciTech Connect

    Hadzimehmedovic, M.; Osmanovic, H.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-09-15

    Each and every energy-dependent partial-wave analysis is parametrizing the pole positions in a procedure defined by the way the continuous energy dependence is implemented. These pole positions are, henceforth, inherently model dependent. To reduce this model dependence, we use only one, coupled-channel, unitary, fully analytic method based on the isobar approximation to extract the pole positions from each available member of the worldwide collection of partial-wave amplitudes, which are understood as nothing more but a good energy-dependent representation of genuine experimental numbers assembled in a form of partial-wave data. In that way, the model dependence related to the different assumptions on the analytic form of the partial-wave amplitudes is avoided, and the true confidence limit for the existence of a particular resonant state, at least in one model, is established. The way the method works and first results are demonstrated for the S{sub 11} partial wave.

  12. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  13. Resolving Difficulties of a Single-Channel Partial-Wave Analysis

    NASA Astrophysics Data System (ADS)

    Hunt, Brian; Manley, D. Mark

    2016-03-01

    The goal of our research is to determine better the properties of nucleon resonances using techniques of a global multichannel partial-wave analysis. Currently, many predicted resonances have not been found, while the properties of several known resonances are relatively uncertain. To resolve these issues, one must analyze many different reactions in a multichannel fit. Other groups generally approach this problem by generating an energy-dependent fit from the start. This is a fit where all channels are analyzed together. The method is powerful, but due to the complex nature of resonances, certain model-dependent assumptions have to be introduced from the start. The current work tries to resolve these issues by first generating single-energy solutions in which experimental data are analyzed in narrow energy bins. The single-energy solutions can then be used to constrain the energy-dependent solution in a comparatively unbiased manner. Our work focuses on adding three new single-energy solutions into the global fit. These reactions are γp --> ηp , γn --> ηn , and γp -->K+ Λ . During this talk, I will discuss the difficulties of this approach, our methods to overcome these difficulties, and a few preliminary results. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award Nos. DE-FG02-01ER41194 and DE-SC0014323 and by the Kent State University Department of Physics.

  14. Partial wave spectroscopic microscopy can predict prostate cancer progression and mitigate over-treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim

    2016-02-01

    Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.

  15. On the influence of the hysteretic behavior of the capillary pressure on the wave propagation in partially saturated soils

    NASA Astrophysics Data System (ADS)

    Albers, Bettina

    2016-06-01

    It is well known that the capillary pressure curve of partially saturated soils exhibits a hysteresis. For the same degree of saturation it has different values depending on the initial state of the soil, thus for drying of a wet soil or wetting of a dry soil. The influence of these different values of the capillary pressure on the propagation of sound waves is studied by use of a linear hyperbolic model. Even if the model does not contain a hysteresis operator, the effect of hysteresis in the capillary pressure curve is accounted for. In order to obtain the limits of phase speeds and attenuations for the two processes the correspondent values for main drying and main wetting are inserted into the model separately. This is done for two examples of soils, namely for Del Monte sand and for a silt loam both filled by an air-water mixture. The wave analysis reveals four waves: one transversal wave and three longitudinal waves. The waves which are driven by the immiscible pore fluids are influenced by the hysteresis in the capillary pressure curve while the waves which are mainly driven by the solid are not.

  16. Hyperspherical partial-wave theory applied to electron-hydrogen-atom ionization calculation for equal-energy-sharing kinematics

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2003-04-01

    Hyperspherical partial-wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A 45, 2951 (2002)] and with the latest theoretical results of the ECS and CCC calculations [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A (to be published)] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large {theta}{sub ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [J. N. Das, J. Phys. B 35, 1165 (2002)], it may be said that the hyperspherical partial-wave theory is quite appropriate for the description of ionization events of electron-hydrogen-type systems. It is also clear that the present approach in the implementation of the hyperspherical partial-wave theory is very appropriate.

  17. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    NASA Astrophysics Data System (ADS)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  18. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    PubMed

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  19. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  20. Two-dimensional stationary Schroedinger equation via the {partial_derivative}-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.

    2010-09-15

    The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.

  1. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  2. Topological Septet Pairing with Spin-3/2 Fermions: High-Partial-Wave Channel Counterpart of the 3He -B Phase

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Li, Yi; Wu, Congjun

    2016-08-01

    We systematically generalize the exotic 3He -B phase, which not only exhibits unconventional symmetry but is also isotropic and topologically nontrivial, to arbitrary partial-wave channels with multicomponent fermions. The concrete example with four-component fermions is illustrated including the isotropic f -, p -, and d -wave pairings in the spin septet, triplet, and quintet channels, respectively. The odd partial-wave channel pairings are topologically nontrivial, while pairings in even partial-wave channels are topologically trivial. The topological index reaches the largest value of N2 in the p -wave channel (N is half of the fermion component number). The surface spectra exhibit multiple linear and even high order Dirac cones. Applications to multiorbital condensed matter systems and multicomponent ultracold large spin fermion systems are discussed.

  3. Topological Septet Pairing with Spin-3/2 Fermions: High-Partial-Wave Channel Counterpart of the ^{3}He-B Phase.

    PubMed

    Yang, Wang; Li, Yi; Wu, Congjun

    2016-08-12

    We systematically generalize the exotic ^{3}He-B phase, which not only exhibits unconventional symmetry but is also isotropic and topologically nontrivial, to arbitrary partial-wave channels with multicomponent fermions. The concrete example with four-component fermions is illustrated including the isotropic f-, p-, and d-wave pairings in the spin septet, triplet, and quintet channels, respectively. The odd partial-wave channel pairings are topologically nontrivial, while pairings in even partial-wave channels are topologically trivial. The topological index reaches the largest value of N^{2} in the p-wave channel (N is half of the fermion component number). The surface spectra exhibit multiple linear and even high order Dirac cones. Applications to multiorbital condensed matter systems and multicomponent ultracold large spin fermion systems are discussed. PMID:27563972

  4. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  5. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    SciTech Connect

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  6. Estimation of the propagation characteristics of elastic waves propagating through a partially saturated sand soil

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kawakata, H.; Doi, I.; Takahashi, N.

    2015-12-01

    Recently, landslides due to heavy rain and/or earthquakes have been increasing and severe damage occurred in Japan in some cases (e.g., Chigira et al., 2013, Geomorph.). One of the principle factors activating landslides is groundwater. Continuous measurements of moisture in soil and/or pore pressure are performed to investigate the groundwater behavior. However, such measurements give information on only local behavior of the groundwater. To monitor the state of target slope, it is better to measure signals affected by the behavior of groundwater in a widely surrounding region. The elastic waves propagating through the medium under the target slope are one of candidates of such signals. In this study, we measure propagating waves through a sand soil made in laboratory, injecting water into it from the bottom. We investigate the characteristics of the propagating waves. We drop sand particles in a container (750 mm long, 300 mm wide and 400 mm high) freely and made a sand soil. The sand soil consists of two layers. One is made of larger sand particles (0.2-0.4 mm in diameter) and the other is made of smaller sand particles (0.05-0.2 mm in diameter). The dry density of these sand layers is about 1.45 g/cm3. We install a shaker for generating elastic waves, accelerometers and pore pressure gauges in the sand soil. We apply small voltage steps repeatedly, and we continuously measure elastic waves propagating through the sand soil at a sampling rate of 51.2 ksps for a period including the water injection period. We estimate the spatio-temporal variation in the maximum cross-correlation coefficients and the corresponding time lags, using template waveforms recorded in the initial period as references. The coefficient for the waveforms recorded at the accelerometer attached to the tip of the shaker is almost stable in high values with a slight decrease down to 0.94 in the period when the sand particles around the shaker are considered to become wet. On the other hand

  7. Ultrasonic wave propagation on an inclined solid half-space partially immersed in a liquid

    NASA Astrophysics Data System (ADS)

    Dao, Cac Minh

    The interaction between a bounded ultrasonic beam and a liquid wedge over a solid half-space is studied theoretically as well as experimentally. A semi-analytical technique called Distributed Point Source Method (DPSM) is adopted for modeling the ultrasonic field in a wedge-shaped fluid structure on a solid half-space. This study is important for analyzing and understanding the propagation of ultrasonic waves used for underwater communications and inspections. A better understanding of the elastic wave propagation in water and in submerged marine strata near the seashore requires extensive investigations of such problem geometries. The semi-analytical technique used in this dissertation considers a bounded acoustic beam striking a fluid-solid interface between a fluid wedge and a solid half-space. Solution of this problem is beyond the scope of the currently available analytical methods when the beam is bounded. However, it is important to model the bounded beams because, in all underwater communications and inspections, bounded beams are used. Currently, only numerical method [Boundary Element Method (BEM) or Finite Element Method (FEM)] based packages (e.g., PZFlex) are in principle capable of modeling ultrasonic fields in such structures. However, these packages are not very accurate and are very CPU-intensive for high-frequency ultrasonic problems. At high frequencies, FEM- and BEM-based packages require huge amount of computation memory and time for their executions that the DPSM technique can avoid. The effect of the angle variation between the fluid-solid interface and the fluid wedge on the wave propagation characteristics is studied and presented.

  8. Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles.

    PubMed

    Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro

    2016-09-01

    It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias. PMID:27422985

  9. Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles.

    PubMed

    Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro

    2016-09-01

    It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias.

  10. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.

    PubMed

    Rasouli, Ghoncheh; Rey, Alejandro D

    2011-05-14

    The structure and dynamics of early stage kinetics of pressure-induced phase separation of compressible polymer solutions via spinodal decomposition is analyzed using a linear Euler-Cahn-Hilliard model and the modified Sanchez Lacombe equation of state. The integrated density wave and Cahn-Hilliard equations combine the kinetic and structural characteristics of spinodal decomposition with density waves arising from pressure-induced couplings. When mass transfer rate is slower that acoustic waves, concentration gradients generate density waves that cycle back into the spinodal decomposition dynamics, resulting in oscillatory demixing. The wave attenuation increases with increasing mass transfer rates eventually leading to nonoscillatory spinodal demixing. The novel aspects of acousto-spinodal decomposition arise from the coexistence of stable oscillatory density dynamics and the unstable monotonic concentration dynamics. Scaling laws for structure and dynamics indicate deviations from incompressible behavior, with a significant slowing down of demixing due to couplings with density waves. Partial structure factors for density and density-concentration reflect the oscillatory nature of acousto-spinodal modes at lower wave vectors, while the single maximum at a constant wave vector reflects the presence of a dominant mode in the linear regime. The computed total structure factor is in qualitative agreement with experimental data for a similar polymer solution. PMID:21568529

  11. On-shell coupled-channel approach to proton-hydrogen collisions without partial-wave expansion

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.

    2006-01-15

    A fully quantal approach to proton collisions with hydrogen based on the atomic-orbital close-coupling method is presented. The method leads to a system of coupled three-dimensional momentum-space integral equations for the scattering amplitudes. These equations are reduced to two-dimensional ones using an on-shell approximation. Furthermore, by considering the symmetry of the problem, we demonstrate that these can be reduced to just one dimension. The resulting equations are solved without partial-wave expansion. Cross sections for electron transfer in proton collisions with the ground state of atomic hydrogen are calculated and shown to agree well with experiment over a wide energy range.

  12. Improved Two-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection Through Partial Fourier Sampling

    NASA Astrophysics Data System (ADS)

    Farsaei, Amir Ashkan; Mokhtari-Koushyar, Farzad; Javad Seyed-Talebi, Seyed Mohammad; Kavehvash, Zahra; Shabany, Mahdi

    2016-03-01

    Active millimeter-wave imaging based on synthetic aperture focusing offers certain unique and practical advantages in nondestructive testing applications. Traditionally, the imaging for this purpose is performed through a long procedure of raster scanning with a single antenna across a two-dimensional grid, leading to a slow, bulky, and expensive scanning platform. In this paper, an improved bistatic structure based on radial compressive sensing is proposed, where one fixed transmitter antenna and a linear array of receiving antennas are used. The main contributions of this paper are (a) reducing the scanning time, (b) improving the output quality, and (c) designing an inexpensive setup. These improvements are the result of the underlying proposed simpler scanning structure and faster reconstruction process.

  13. Using the Bi-Orthogonal Decomposition framework to compute the three dimensional Empirical Orthogonal Functions of stratospheric planetary waves from time correlation matrices

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Domeisen, Daniela I. V.

    2016-04-01

    Many geophysical waves in the atmosphere or in the ocean have a three dimensional structure and contain a range of scales. This is for instance the case of planetary waves in the stratosphere connected to baroclinic eddies in the troposphere [1]. In the study of such waves from reanalysis data or output of numerical simulations, Empirical Orthogonal Functions (EOF) obtained as a Proper Orthogonal Decomposition of the data sets have been of great help. However, most of these computations rely on the diagonalisation of space correlation matrices: this means that the considered data set can only have a limited number of gridpoints. The main consequence is that such analyses are often only performed in planes (as function of height and latitude, or longitude and latitude for instance), which makes the educing of the three dimensional structure of the wave quite difficult. In the case of the afore mentionned waves, the matter of the longitudinal dependence or the proper correlation between modes through the tropopause is an open question. An elegant manner to circumvent this problem is to consider the output of the Orthogonal Decomposition as a whole. Indeed, it has been shown that the normalised time series of the amplitude of each EOF, far from just being decorrelated from one another, are actually another set of orthogonal functions. These can actually be computed through the diagonlisation of the time correlation matrix of the data set, just like the EOF were the result of the diagonalisation of the space correlation matrix. The signal is then fully decomposed in the framework of the Bi-Orthogonal Decomposition as the sum of the nth explained variance, time the nth eigenmode of the time correlation times the nth eigenmode of the spacial correlations [2,3]. A practical consequence of this result is that the EOF can be reconstructed from the projection of the dataset onto the eigenmodes of the time correlation matrix in the so-called snapshot method [4]. This is very

  14. Using the Bi-Orthogonal Decomposition framework to compute the three dimensional Empirical Orthogonal Functions of stratospheric planetary waves from time correlation matrices

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Domeisen, Daniela I. V.

    2016-04-01

    Many geophysical waves in the atmosphere or in the ocean have a three dimensional structure and contain a range of scales. This is for instance the case of planetary waves in the stratosphere connected to baroclinic eddies in the troposphere [1]. In the study of such waves from reanalysis data or output of numerical simulations, Empirical Orthogonal Functions (EOF) obtained as a Proper Orthogonal Decomposition of the data sets have been of great help. However, most of these computations rely on the diagonalisation of space correlation matrices: this means that the considered data set can only have a limited number of gridpoints. The main consequence is that such analyses are often only performed in planes (as function of height and latitude, or longitude and latitude for instance), which makes the educing of the three dimensional structure of the wave quite difficult. In the case of the afore mentionned waves, the matter of the longitudinal dependence or the proper correlation between modes through the tropopause is an open question. An elegant manner to circumvent this problem is to consider the output of the Orthogonal Decomposition as a whole. Indeed, it has been shown that the normalised time series of the amplitude of each EOF, far from just being decorrelated from one another, are actually another set of orthogonal functions. These can actually be computed through the diagonlisation of the time correlation matrix of the data set, just like the EOF were the result of the diagonalisation of the space correlation matrix. The signal is then fully decomposed in the framework of the Bi-Orthogonal Decomposition as the sum of the nth explained variance, time the nth eigenmode of the time correlation times the nth eigenmode of the spacial correlations [2,3]. A practical consequence of this result is that the EOF can be reconstructed from the projection of the dataset onto the eigenmodes of the time correlation matrix in the so-called snapshot method [4]. This is very

  15. Analysis of partial-reflection data from the solar eclipse of 10 Jul. 1972. [ground-based experiment using vertical incident radio waves partially reflected from D region

    NASA Technical Reports Server (NTRS)

    Bean, T. A.; Bowhill, S. A.

    1973-01-01

    Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

  16. Quantization of wave equations and hermitian structures in partial differential varieties.

    PubMed

    Paneitz, S M; Segal, I E

    1980-12-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation-e.g., of the form squarevarphi + m(2)varphi + gvarphi(p) = 0-admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  17. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  18. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  19. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  20. Partial wave analysis of the reaction {gamma}p{yields}p{omega} and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-12-15

    An event-based partial wave analysis (PWA) of the reaction {gamma}p{yields}p{omega} has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of {omega}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The data confirm the dominance of the t-channel {pi}{sup 0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F{sub 15}(1680) and D{sub 13}(1700) near threshold, as well as the G{sub 17}(2190) at higher energies. Suggestive evidence for the presence of a J{sup P}=5/2{sup +} state around 2 GeV, a ''missing'' state, has also been found. Evidence for other states is inconclusive.

  1. Partial wave analysis of the reaction γp→pω and the search for nucleon resonances

    DOE PAGESBeta

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; et al

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as wellmore » as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.« less

  2. Partial wave analysis of the reaction γp→pω and the search for nucleon resonances

    NASA Astrophysics Data System (ADS)

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; de Vita, R.; de Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-12-01

    An event-based partial wave analysis (PWA) of the reaction γp→pω has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world’s first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of ω→π+π-π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F15(1680) and D13(1700) near threshold, as well as the G17(2190) at higher energies. Suggestive evidence for the presence of a JP=5/2+ state around 2 GeV, a “missing” state, has also been found. Evidence for other states is inconclusive.

  3. Partial wave analyses of J / ψ → γπ+π- and γπ0π0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.; BES Collaboration

    2006-11-01

    Results are presented on J / ψ radiative decays to π+π- and π0π0 based on a sample of 58M J / ψ events taken with the BES II detector. Partial wave analyses are carried out using the relativistic covariant tensor amplitude method in the 1.0 to 2.3GeV /c2 ππ mass range. There are conspicuous peaks due to the f2 (1270) and two 0++ states in the 1.45 and 1.75 GeV /c2 mass regions. The first 0++ state has a mass of 1466 ± 6 ± 20MeV /c2, a width of 108-11+14 ± 25MeV /c2, and a branching fraction B (J / ψ → γf0 (1500) → γπ+π-) = (0.67 ± 0.02 ± 0.30) ×10-4. Spin 0 is strongly preferred over spin 2. The second 0++ state peaks at 1765-3+4 ± 13MeV /c2 with a width of 145 ± 8 ± 69MeV /c2. If this 0++ is interpreted as coming from f0 (1710), the ratio of its branching fractions to ππ and KKbar is 0.41-0.17+0.11.

  4. Formation of Fe-Os, Fe-Ru, and Fe-Co bimetallic particles by thermal decomposition of heteropolynuclear clusters supported on a partially dehydroxylated magnesia

    SciTech Connect

    Choplin, A.; Huang, L.; Theolier, A.; Gallezot, P.; Basset, J.M.; Siriwardane, U.; Shore, S.G.; Mathieu, R.

    1986-07-09

    The authors wish to report here that with H/sub 2/FeOs/sub 3/(CO)/sub 13/, H/sub 2/FeRu/sub 3/(VO)/sub 13/, and HFeCo/sub 3/(CO)/sub 12/ supported on a partially hydroxylated magnesia, it is possible to obtain, after H/sub 2/ treatment at 400/sup 0/C, very small bimetallic particles, having the same bulk composition as that of the starting heteropolynuclear precursor cluster. This conclusion is based on high spatial resolution analytical microscopy.

  5. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  6. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  7. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates.

  8. Partial-wave analysis of {pi}{sup -}{pi}{sup 0}{pi}{sup 0} events at 18 GeV/c

    SciTech Connect

    Brown, D. S.

    1998-05-29

    A partial-wave analysis has been performed on 170 K {pi}{sup -}{pi}{sup 0}{pi}{sup 0} events produced in the reaction {pi}{sup -}p{yields}p{pi}{sup -}{pi}{sup 0}{pi}{sup 0}, and the results of the mass-independent fits are presented. The objective was to confirm the existence of the {pi}(1800) and the exotic J{sup PC}=1{sup -+} object, reported by VES.

  9. A partial-wave analysis of the (K +K -π-) system produced in π-p → K +K -π-p at 16 GeV/ c

    NASA Astrophysics Data System (ADS)

    Armstrong, T. A.; Baccari, B.; Bonesini, M.; Booth, P. S. L.; Brun, R.; Campbell, P. T.; Carroll, L. J.; Costa, G.; Donald, R. A.; Edwards, D. N.; Frame, D.; French, B. R.; Geer, S. H. P.; Girtler, P.; Ghidini, B.; Hughes, I. S.; Jackson, J. N.; Lynch, J. G.; Mandelli, L.; Minto, P. W.; Mitaroff, W. A.; Müller, K.; Otter, G.; Palano, A.; Perini, L.; Pinfold, J.; Range, W. H.; Richardson, J. A.; Rudolph, G.; Saleemi, F.; Schlütter, H.; Schmitz, W.; Scott, L.; Stewart, D. T.; Tamborini, M.; Thompson, A. S.; Turnbull, R. M.

    1982-07-01

    The reaction π-p → K +K -π- p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K +K -π-) system (1.3-2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t-channel helicity. The 1 +S K ∗overlineK wave dominates the low-mass (K +K -π-) region. We observe an enhancement in 2 -P K ∗overlineK wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.

  10. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  11. Medical Comorbidity of Full and Partial Posttraumatic Stress Disorder in United States Adults: Results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions

    PubMed Central

    Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.

    2011-01-01

    Objective This study examined associations between lifetime trauma exposures, PTSD and partial PTSD, and past-year medical conditions in a nationally representative sample of U.S. adults. Methods Face-to-face interviews were conducted with 34,653 participants in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses evaluated associations of trauma exposure, PTSD and partial PTSD with respondent-reported medical diagnoses. Results After adjustment for sociodemographic characteristics and comorbid Axis I and II disorders, respondents with full PTSD were more likely than traumatized respondents without full or partial PTSD (comparison group) to report diagnoses of diabetes mellitus, noncirrhotic liver disease, angina pectoris, tachycardia, hypercholesterolemia, other heart disease, stomach ulcer, HIV seropositivity, gastritis, and arthritis (odds ratios [ORs]=1.2-2.5). Respondents with partial PTSD were more likely than the comparison group to report past-year diagnoses of stomach ulcer, angina pectoris, tachycardia, and arthritis (ORs=1.3-1.6). Men with full and partial PTSD were more likely than controls to report diagnoses of hypertension (both ORs=1.6), and both men and women with PTSD (ORs=1.8 and 1.6, respectively), and men with partial PTSD (OR=2.0) were more likely to report gastritis. Total number of lifetime traumatic event types was associated with many assessed medical conditions (ORs=1.04-1.16), reducing the magnitudes and rendering non-significant some of the associations between PTSD status and medical conditions. Conclusions Greater lifetime trauma exposure and PTSD are associated with numerous medical conditions, many of which are stress-related and chronic, in U.S. adults. Partial PTSD is associated with intermediate odds of some of these conditions. PMID:21949429

  12. Isobar-model partial-wave analysis of πN-->ππN in the c.m. energy range 1320-1930 MeV

    NASA Astrophysics Data System (ADS)

    Manley, D. Mark; Arndt, Richard A.; Goradia, Yogesh; Teplitz, Vigdor L.

    1984-09-01

    We study the reactions πN-->ππN in the center-of-mass energy range 1320-1930 MeV within the framework of the isobar model. The present analysis includes over 30% more events than the most extensive previous analysis. Data for π-p-->π+π-n, π-p-->π0π-p, π+p-->π0π+p, and π+p-->π+π+n are simultaneously fitted assuming production of ɛ, ρ, Δ(P33) and N*(P11). The cross section for π-p-->π0π0n is predicted and found to be in good agreement with experiment. πN-->πN* amplitudes for I=12 are investigated for the first time. We confirm the existence of a significant πN* decay for the second P33 resonance and determine that πN* is the dominant inelastic channel for the P31 partial wave. The ρN decay of the G17 wave is observed for the first time. Evidence is found for unestablished resonances near 1900 MeV in the S11, P11, P13, and F15 partial waves. We also discuss evidence for a second F35 resonance. Signs of resonant amplitudes determined from this analysis are compared with results of previous analyses and with predictions from several models.

  13. Some nonlinear space decomposition algorithms

    SciTech Connect

    Tai, Xue-Cheng; Espedal, M.

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  14. Partial-wave analysis of {pi}{sup {minus}}{pi}{sup 0}{pi}{sup 0} events at 18 GeV/c

    SciTech Connect

    Brown, D.S.

    1998-05-01

    A partial-wave analysis has been performed on 170 K {pi}{sup {minus}}{pi}{sup 0}{pi}{sup 0} events produced in the reaction {pi}{sup {minus}}p{r_arrow}p{pi}{sup {minus}}{pi}{sup 0}{pi}{sup 0}, and the results of the mass-independent fits are presented. The objective was to confirm the existence of the {pi}(1800) and the exotic J{sup PC}=1{sup {minus}+} object, reported by VES. {copyright} {ital 1998 American Institute of Physics.}

  15. Partial wave analysis of scattering with the nonlocal Aharonov-Bohm effect and the anomalous cross section induced by quantum interference

    SciTech Connect

    Lin, D.-H.

    2004-05-01

    Partial wave theory of a three dimensional scattering problem for an arbitrary short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a 'hard sphere'-like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in understanding some other phenomena in mesoscopic physics.

  16. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2007-06-01

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described. PMID:17677378

  17. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2007-06-01

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.

  18. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet

    SciTech Connect

    Bliokh, K. Yu.; Bliokh, Yu. P.

    2007-06-15

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda et al. Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh et al. Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.

  19. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  20. A complex Noether approach for variational partial differential equations

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.

    2015-10-01

    Scalar complex partial differential equations which admit variational formulations are studied. Such a complex partial differential equation, via a complex dependent variable, splits into a system of two real partial differential equations. The decomposition of the Lagrangian of the complex partial differential equation in the real domain is shown to yield two real Lagrangians for the split system. The complex Maxwellian distribution, transonic gas flow, Maxwellian tails, dissipative wave and Klein-Gordon equations are considered. The Noether symmetries and gauge terms of the split system that correspond to both the Lagrangians are constructed by the Noether approach. In the case of coupled split systems, the same Noether symmetries are obtained. The Noether symmetries for the uncoupled split systems are different. The conserved vectors of the split system which correspond to both the Lagrangians are compared to the split conserved vectors of the complex partial differential equation for the examples. The split conserved vectors of the complex partial differential equation are the same as the conserved vectors of the split system of real partial differential equations in the case of coupled systems. Moreover a Noether-like theorem for the split system is proved which provides the Noether-like conserved quantities of the split system from knowledge of the Noether-like operators. An interesting result on the split characteristics and the conservation laws is shown as well. The Noether symmetries and gauge terms of the Lagrangian of the split system with the split Noether-like operators and gauge terms of the Lagrangian of the given complex partial differential equation are compared. Folklore suggests that the split Noether-like operators of a Lagrangian of a complex Euler-Lagrange partial differential equation are symmetries of the Lagrangian of the split system of real partial differential equations. This is not the case. They are proved to be the same if the

  1. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK–" bound state

    DOE PAGESBeta

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; et al

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore » description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less

  2. Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas.

    PubMed

    Andreev, Pavel A; Iqbal, Z

    2016-03-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n(0) ∼ 10(27) cm(-3) and high-magnetic-field B(0)=10(10) G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.

  3. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  4. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  5. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  6. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  7. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  8. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    NASA Astrophysics Data System (ADS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-06-01

    Removing ethylene (C2H4) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO2) photocatalyst or γ-irradiated TiO2 (TiO2*) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO2/ACF cell or TiO2*/ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation-orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V voltage. The maximum K value attained was 4.4 × 10-4 min-1.

  9. Circulant states with positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2007-09-15

    We construct a large class of quantum dxd states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure - that is why we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. This class contains many well-known examples of PPT states from the literature and gives rise to a huge family of completely new states.

  10. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  11. Limits to acoustic sensing and modal decomposition using FBGs

    NASA Astrophysics Data System (ADS)

    Norman, Patrick; Davis, Claire; Rosalie, Cédric; Rajic, Nik

    2016-04-01

    Lamb-wave based structural health monitoring (SHM) approaches are typically constrained to operate below the first cut-off frequency to simplify the interpretation of the wave field in the time-domain. However from a diagnostic perspective, it is desirable to unlock the additional information encoded in the higher-order Lamb wave spectrum. Wave-mode decomposition is necessary for the extraction of useful information from multi-modal acoustic wave fields, which requires spatially dense sampling over the field. The instrument of choice for this task is the laser Doppler vibrometer, which is capable of producing detailed spectral decompositions. However vibrometry is not suited to in-situ measurement for SHM. Fibre Bragg gratings (FBGs) are capable of sensing Lamb waves and detection of higher order modes using FBGs has been previously demonstrated. The ability to multiplex multiple short-length gratings along a single fibre to create an FBG array gives rise to an in-situ sensor with sufficiently dense spatial sampling of an acoustic wave field to perform useful wave-mode decomposition. This paper explores some of the fundamental limits to modal decomposition resolution and bandwidth that exist for such sensors. Potential sources of noise and distortion encountered due to limitations of the sensor fabrication and interrogation methods are also discussed. In addition, modal decomposition of Lamb waves with frequencies up to 1.25 MHz is demonstrated in a laboratory experiment using an array of sixteen ~1 mm long gratings bonded to an aluminium plate. At least four modes are distinguishable in the resulting spectral decomposition.

  12. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  13. Orthogonal tensor decompositions

    SciTech Connect

    Tamara G. Kolda

    2000-03-01

    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  14. Domain decomposition methods in aerodynamics

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Saltz, Joel

    1990-01-01

    Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.

  15. A contact mechanics based model for partially-closed randomly distributed surface microcracks and their effect on acoustic nonlinearity in Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Oberhardt, Tobias; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.

    2016-02-01

    This research investigates the modeling of randomly distributed surface-breaking microcracks and the dependency of higher harmonic generation in Rayleigh surface waves on microcrack density. The microcrack model is based on micromechanical considerations of rough surface contact. An effective stress-strain relationship is derived to describe the nonlinear behavior of a single microcrack and implemented into a finite-element model via a hyperelastic constitutive law. Finite-element simulations of nonlinear wave propagation in a solid with distributed surface microcracks are performed for a range of microcrack densities. The evolution of fundamental and second harmonic amplitudes along the propagation distance is studied and the acoustic nonlinearity parameter is calculated. The results show that the nonlinearity parameter increases with crack density. While, for small crack densities (dilute concentration of microcracks) a proportionality between crack density and acoustic nonlinearity is observed, this is not valid for higher crack densities, as the microcracks start to interact.

  16. Decomposing Nekrasov decomposition

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  17. Mueller matrix differential decomposition.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-05-15

    We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. PMID:21593943

  18. Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter

    SciTech Connect

    Kao, Jim . E-mail: kao@lanl.gov; Flicker, Dawn; Ide, Kayo; Ghil, Michael

    2006-05-20

    This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand.

  19. P-wave velocity structure beneath Mt. Melbourne in northern Victoria Land, Antarctica: Evidence of partial melting and volcanic magma sources

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Yoo, Hyun Jae; Lee, Won Sang; Lee, Choon-Ki; Lee, Joohan; Park, Hadong; Kim, Jinseok; Kim, Yeadong

    2015-12-01

    Mt. Melbourne is a late Cenozoic intraplate volcano located ∼30 km northeast of Jang Bogo Station in Antarctica. The volcano is quiescent with fumarolic activity at the summit. To monitor volcanic activity and glacial movements near Jang Bogo Station, a seismic network was installed during the 2010-11 Antarctic summer field season. The network is maintained during the summer field season every year, and the number of stations has been increased. We used continuous seismic data recorded by the network and an Italian seismic station (TNV) at Mario Zucchelli Station to develop a 3-D P-wave velocity model for the Mt. Melbourne area based on the teleseismic P-wave tomographic method. The new 3-D model presented a relative velocity structure for the lower part of the crust and upper mantle between depths of 30 and 160 km and revealed the presence of two low-velocity anomalies beneath Mt. Melbourne and the Priestley Fault. The low-velocity anomaly beneath Mt. Melbourne may be caused by the edge flow of hot mantle material at the lithospheric step between the thick East Antarctic Craton and thin Ross Sea crust. The other low-velocity anomaly along the Priestley Fault may have been beneath Mt. Melbourne and moved to the southern tip of the Deep Freeze Range, where the crustal thickness is relatively thin. The anomaly was trapped on the fault line and laterally flowed along the fault line in the northwest direction.

  20. An Alternative Method to the Classical Partial Fraction Decomposition

    ERIC Educational Resources Information Center

    Cherif, Chokri

    2007-01-01

    PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…

  1. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  2. Epilepsy (partial)

    PubMed Central

    2011-01-01

    Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or

  3. The thermal decomposition of methane in a tubular reactor

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

  4. Domain decomposition: A bridge between nature and parallel computers

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1992-01-01

    Domain decomposition is an intuitive organizing principle for a partial differential equation (PDE) computation, both physically and architecturally. However, its significance extends beyond the readily apparent issues of geometry and discretization, on one hand, and of modular software and distributed hardware, on the other. Engineering and computer science aspects are bridged by an old but recently enriched mathematical theory that offers the subject not only unity, but also tools for analysis and generalization. Domain decomposition induces function-space and operator decompositions with valuable properties. Function-space bases and operator splittings that are not derived from domain decompositions generally lack one or more of these properties. The evolution of domain decomposition methods for elliptically dominated problems has linked two major algorithmic developments of the last 15 years: multilevel and Krylov methods. Domain decomposition methods may be considered descendants of both classes with an inheritance from each: they are nearly optimal and at the same time efficiently parallelizable. Many computationally driven application areas are ripe for these developments. A progression is made from a mathematically informal motivation for domain decomposition methods to a specific focus on fluid dynamics applications. To be introductory rather than comprehensive, simple examples are provided while convergence proofs and algorithmic details are left to the original references; however, an attempt is made to convey their most salient features, especially where this leads to algorithmic insight.

  5. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  6. Tensor decomposition of EEG signals: a brief review.

    PubMed

    Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani

    2015-06-15

    Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously.

  7. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  8. Vertebrate Decomposition Is Accelerated by Soil Microbes

    PubMed Central

    Lauber, Christian L.; Metcalf, Jessica L.; Keepers, Kyle; Ackermann, Gail; Carter, David O.

    2014-01-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology. PMID:24907317

  9. Vertebrate decomposition is accelerated by soil microbes.

    PubMed

    Lauber, Christian L; Metcalf, Jessica L; Keepers, Kyle; Ackermann, Gail; Carter, David O; Knight, Rob

    2014-08-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology.

  10. Pressure-induced decomposition of indium hydroxide.

    PubMed

    Gurlo, Aleksander; Dzivenko, Dmytro; Andrade, Miria; Riedel, Ralf; Lauterbach, Stefan; Kleebe, Hans-Joachim

    2010-09-15

    A static pressure-induced decomposition of indium hydroxide into metallic indium that takes place at ambient temperature is reported. The lattice parameter of c-In(OH)(3) decreased upon compression from 7.977(2) to approximately 7.45 A at 34 GPa, corresponding to a decrease in specific volume of approximately 18%. Fitting the second-order Birch-Murnaghan equation of state to the obtained compression data gave a bulk modulus of 99 +/- 3 GPa for c-In(OH)(3). The c-In(OH)(3) crystals with a size of approximately 100 nm are comminuted upon compression, as indicated by the grain-size reduction reflected in broadening of the diffraction reflections and the appearance of smaller (approximately 5 nm) incoherently oriented domains in TEM. The rapid decompression of compressed c-In(OH)(3) leads to partial decomposition of indium hydroxide into metallic indium, mainly as a result of localized stress gradients caused by relaxation of the highly disordered indium sublattice in indium hydroxide. This partial decomposition of indium hydroxide into metallic indium is irreversible, as confirmed by angle-dispersive X-ray diffraction, transmission electron microscopy imaging, Raman scattering, and FTIR spectroscopy. Recovered c-In(OH)(3) samples become completely black and nontransparent and show typical features of metals, i.e., a falling absorption in the 100-250 cm(-1) region accompanied by a featureless spectrum in the 250-2500 cm(-1) region in the Raman spectrum and Drude-like absorption of free electrons in the region of 4000-8000 cm(-1) in the FTIR spectrum. These features were not observed in the initial c-In(OH)(3), which is a typical white wide-band-gap semiconductor.

  11. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK" bound state

    SciTech Connect

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  12. Partial wave analysis of the reaction γppω and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D’Angelo, A.; Daniel, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.

  13. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments.

  14. Wigner rotations and Iwasawa decompositions in polarization optics.

    PubMed

    Han, D; Kim, Y S; Noz, M E

    1999-07-01

    Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories. PMID:11969850

  15. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Direct Sum Decomposition of Groups

    ERIC Educational Resources Information Center

    Thaheem, A. B.

    2005-01-01

    Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…

  17. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant

  18. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant

  19. Ammonia decomposition catalysis using lithium-calcium imide.

    PubMed

    Makepeace, Joshua W; Hunter, Hazel M A; Wood, Thomas J; Smith, Ronald I; Murray, Claire A; David, William I F

    2016-07-01

    Lithium-calcium imide is explored as a catalyst for the decomposition of ammonia. It shows the highest ammonia decomposition activity yet reported for a pure light metal amide or imide, comparable to lithium imide-amide at high temperature, with superior conversion observed at lower temperatures. Importantly, the post-reaction mass recovery of lithium-calcium imide is almost complete, indicating that it may be easier to contain than the other amide-imide catalysts reported to date. The basis of this improved recovery is that the catalyst is, at least partially, solid across the temperature range studied under ammonia flow. However, lithium-calcium imide itself is only stable at low and high temperatures under ammonia, with in situ powder diffraction showing the decomposition of the catalyst to lithium amide-imide and calcium imide at intermediate temperatures of 200-460 °C. PMID:27092374

  20. The helical decomposition and the instability assumption

    NASA Technical Reports Server (NTRS)

    Waleffe, Fabian A.

    1993-01-01

    Direct numerical simulations show that the triadic transfer function T(k,p,q) peaks sharply when q (or p) is much smaller than k. The triadic transfer function T(k,p,q) gives the rate of energy input into wave number k from all interactions with modes of wave number p and q, where k, p, q form a triangle. This observation was thought to suggest that energy is cascaded downscale through non-local interactions with local transfer and that there was a strong connection between large and small scales. Both suggestions were in contradiction with the classical Kolmogorov picture of the energy cascade. The helical decomposition was found useful in distinguishing between kinematically independent interactions. That analysis has gone beyond the question of non-local interaction with local transfer. In particular, an assumption about the statistical direction of triadic energy transfer in any kinematically independent interaction was introduced (the instability assumption). That assumption is not necessary for the conclusions about non-local interactions with local transfer recalled above. In the case of turbulence under rapid rotation, the instability assumption leads to the prediction that energy is transferred in spectral space from the poles of the rotation axis toward the equator. The instability assumption is thought to be of general validity for any type of triad interactions (e.g. internal waves). The helical decomposition and the instability assumption offer detailed information about the homogeneous statistical dynamics of the Navier-Stokes equations. The objective was to explore the validity of the instability assumption and to study the contributions of the various types of helical interactions to the energy cascade and the subgrid-scale eddy-viscosity. This was done in the context of spectral closures of the Direct Interaction or Quasi-Normal type.

  1. Singular Value Decomposition of Optically-Mapped Cardiac Rotors and Fibrillatory Activity

    PubMed Central

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-01-01

    Our progress of understanding how cellular and structural factors contribute to the arrhythmia is hampered in part because of controversies whether a fibrillating heart is driven by a single, several, or multiple number of sources, and whether they are focal or reentrant, and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly-randomly propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that the SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: A transfer of modes from the driving to the passive regions resulting in a partial reaction of the passive region to the driving region. PMID:26668401

  2. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    NASA Astrophysics Data System (ADS)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  3. Decomposition in northern Minnesota peatlands

    SciTech Connect

    Farrish, K.W.

    1985-01-01

    Decomposition in peatlands was investigated in northern Minnesota. Four sites, an ombrotrophic raised bog, an ombrotrophic perched bog and two groundwater minerotrophic fens, were studied. Decomposition rates of peat and paper were estimated using mass-loss techniques. Environmental and substrate factors that were most likely to be responsible for limiting decomposition were monitored. Laboratory incubation experiments complemented the field work. Mass-loss over one year in one of the bogs, ranged from 11 percent in the upper 10 cm of hummocks to 1 percent at 60 to 100 cm depth in hollows. Regression analysis of the data for that bog predicted no mass-loss below 87 cm. Decomposition estimates on an area basis were 2720 and 6460 km/ha yr for the two bogs; 17,000 and 5900 kg/ha yr for the two fens. Environmental factors found to limit decomposition in these peatlands were reducing/anaerobic conditions below the water table and cool peat temperatures. Substrate factors found to limit decomposition were low pH, high content of resistant organics such as lignin, and shortages of available N and K. Greater groundwater influence was found to favor decomposition through raising the pH and perhaps by introducing limited amounts of dissolved oxygen.

  4. Fast numerical treatment of nonlinear wave equations by spectral methods

    SciTech Connect

    Skjaeraasen, Olaf; Robinson, P. A.; Newman, D. L.

    2011-02-15

    A method is presented that accelerates spectral methods for numerical solution of a broad class of nonlinear partial differential wave equations that are first order in time and that arise in plasma wave theory. The approach involves exact analytical treatment of the linear part of the wave evolution including growth and damping as well as dispersion. After introducing the method for general scalar and vector equations, we discuss and illustrate it in more detail in the context of the coupling of high- and low-frequency plasma wave modes, as modeled by the electrostatic and electromagnetic Zakharov equations in multiple dimensions. For computational efficiency, the method uses eigenvector decomposition, which is particularly advantageous when the wave damping is mode-dependent and anisotropic in wavenumber space. In this context, it is shown that the method can significantly speed up numerical integration relative to standard spectral or finite difference methods by allowing much longer time steps, especially in the limit in which the nonlinear Schroedinger equation applies.

  5. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  6. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  7. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  8. AUTONOMOUS GAUSSIAN DECOMPOSITION

    SciTech Connect

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  9. Domain decomposition methods for solving an image problem

    SciTech Connect

    Tsui, W.K.; Tong, C.S.

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  10. Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sharma, Ati S.; Mezić, Igor; McKeon, Beverley J.

    2016-07-01

    The relationship between Koopman mode decomposition, resolvent mode decomposition, and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalized to permit combinations of such operations, in addition to translation in time. This invariance is related to the spectrum of a spatiotemporal Koopman operator, which has a traveling-wave interpretation. The relationship leads to a generalization of dynamic mode decomposition, in which symmetry operations are applied to restrict the dynamic modes to span a subspace subject to those symmetries. The resolvent is interpreted as the mapping between the Koopman modes of the Reynolds stress divergence and the velocity field. It is shown that the singular vectors of the resolvent (the resolvent modes) are the optimal basis in which to express the velocity field Koopman modes where the latter are not a priori known.

  11. Catalyst for sodium chlorate decomposition

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1972-01-01

    Production of oxygen by rapid decomposition of cobalt oxide and sodium chlorate mixture is discussed. Cobalt oxide serves as catalyst to accelerate reaction. Temperature conditions and chemical processes involved are described.

  12. Lignocellulose decomposition by microbial secretions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon storage in terrestrial ecosystems is contingent upon the natural resistance of plant cell wall polymers to rapid biological degradation. Nevertheless, certain microorganisms have evolved remarkable means to overcome this natural resistance. Lignocellulose decomposition by microorganisms com...

  13. Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness.

    PubMed

    Zhou, Guoxu; Cichocki, Andrzej; Zhao, Qibin; Xie, Shengli

    2015-12-01

    Nonnegative Tucker decomposition (NTD) is a powerful tool for the extraction of nonnegative parts-based and physically meaningful latent components from high-dimensional tensor data while preserving the natural multilinear structure of data. However, as the data tensor often has multiple modes and is large scale, the existing NTD algorithms suffer from a very high computational complexity in terms of both storage and computation time, which has been one major obstacle for practical applications of NTD. To overcome these disadvantages, we show how low (multilinear) rank approximation (LRA) of tensors is able to significantly simplify the computation of the gradients of the cost function, upon which a family of efficient first-order NTD algorithms are developed. Besides dramatically reducing the storage complexity and running time, the new algorithms are quite flexible and robust to noise, because any well-established LRA approaches can be applied. We also show how nonnegativity incorporating sparsity substantially improves the uniqueness property and partially alleviates the curse of dimensionality of the Tucker decompositions. Simulation results on synthetic and real-world data justify the validity and high efficiency of the proposed NTD algorithms.

  14. HCOOH decomposition on Pt(111): A DFT study

    NASA Astrophysics Data System (ADS)

    Scaranto, Jessica; Mavrikakis, Manos

    2016-06-01

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO2 and H2 or dehydration leading to CO and H2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We also considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. We found that CO2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.

  15. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    SciTech Connect

    HOBBS,MICHAEL L.; ERICKSON,KENNETH L.; CHU,TZE YAO

    1999-11-08

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam that contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  16. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    SciTech Connect

    CHU,TZE YAO; ERICKSON,KENNETH L.; HOBBS,MICHAEL L.

    1999-11-01

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam which contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  17. Decomposition of indwelling EMG signals

    PubMed Central

    Nawab, S. Hamid; Wotiz, Robert P.; De Luca, Carlo J.

    2008-01-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca (25, 26), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains. PMID:18483170

  18. The inner structure of empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Hung; Young, Hsu-Wen Vincent; Lo, Men-Tzung

    2016-11-01

    The empirical mode decomposition (EMD) is a nonlinear method that is truly adaptive with good localization property in the time domain for analyzing non-stationary complex data. The EMD has been proven useful in a wide range of applications. However, due to the nonlinear and complex nature of the sifting process, the most essential step of the EMD, a firm mathematical foundation or a transparent physical description are still lacked for EMD. Here, we embark on constructing a mathematical theory of the sifting operator. We first show that the sifting operator can be expressed as the data plus the sum of the responses to the impulses (multiplied by the data value) at the extrema. Such an expression of the sifting operator is then used to investigate the adaptive nature and the localizing effect of the EMD. Alternatively, the sifting operator can also be represented by a sifting matrix, which depends nonlinearly on the extrema distribution. Based on the eigen-decomposition of the sifting matrix, the transfer function of the sifting process is analyzed. Finally we answer what an intrinsic mode function (IMF) is from the wave perspective by exploring the physical basis of the IMFs.

  19. Wave propagation in solids and fluids

    SciTech Connect

    Davis, J. L.

    1988-01-01

    The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.

  20. Thermal decomposition of ethylpentaborane in gas phase

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1956-01-01

    The thermal decomposition of ethylpentaborane at temperatures of 185 degrees to 244 degrees C is approximately a 1.5-order reaction. The products of the decomposition were hydrogen, methane, a nonvolatile boron hydride, and traces of decaborane. Measurements of the rate of decomposition of pentaborane showed that ethylpentaborane has a greater rate of decomposition than pentaborane.

  1. Energy-decomposition analysis for viscous free-surface flows.

    PubMed

    Colagrossi, Andrea; Bouscasse, Benjamin; Marrone, Salvatore

    2015-11-01

    This work is dedicated to the energy decomposition analysis of a viscous free-surface flow. In the presence of a free surface, the viscous dissipation for a Newtonian liquid can be decomposed into two terms: an enstrophy component and a free-surface deformation component. The latter requires the evaluation of volume and surface integrals in the meshless framework. The analysis is based on the weakly compressible smoothed particle hydrodynamics formalism. The behavior of the energy terms is studied in standing wave problems by changing the viscosity and the wave amplitude. Finally, an analysis of a complex shallow water breaking wave case is provided. It is shown that in presence of intense breaking phenomena the two energy components are always comparable, whereas generally the free surface component is dominant on the viscous dissipation of gravity waves. PMID:26651775

  2. Energy-decomposition analysis for viscous free-surface flows

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Bouscasse, Benjamin; Marrone, Salvatore

    2015-11-01

    This work is dedicated to the energy decomposition analysis of a viscous free-surface flow. In the presence of a free surface, the viscous dissipation for a Newtonian liquid can be decomposed into two terms: an enstrophy component and a free-surface deformation component. The latter requires the evaluation of volume and surface integrals in the meshless framework. The analysis is based on the weakly compressible smoothed particle hydrodynamics formalism. The behavior of the energy terms is studied in standing wave problems by changing the viscosity and the wave amplitude. Finally, an analysis of a complex shallow water breaking wave case is provided. It is shown that in presence of intense breaking phenomena the two energy components are always comparable, whereas generally the free surface component is dominant on the viscous dissipation of gravity waves.

  3. Coherent diffractive imaging and partial coherence

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Quiney, Harry M.; Peele, Andrew G.; Nugent, Keith A.

    2007-03-01

    We formulate coherent diffractive imaging in the framework of partially spatially coherent diffraction. We find that the reconstruction can be critically dependent on the degree of coherence in the illuminating field and that even a small departure from full coherence may invalidate the conventional assumption that a mapping exists between an exit surface wave of finite support and a far field diffraction pattern. We demonstrate that the introduction of sufficient phase curvature in the illumination can overcome the adverse effects of partial coherence.

  4. Gauge-invariant decomposition of nucleon spin

    SciTech Connect

    Wakamatsu, M.

    2010-06-01

    We investigate the relation between the known decompositions of the nucleon spin into its constituents, thereby clarifying in what respect they are common and in what respect they are different essentially. The decomposition recently proposed by Chen et al. can be thought of as a nontrivial generalization of the gauge-variant Jaffe-Manohar decomposition so as to meet the gauge-invariance requirement of each term of the decomposition. We however point out that there is another gauge-invariant decomposition of the nucleon spin, which is closer to the Ji decomposition, while allowing the decomposition of the gluon total angular momentum into the spin and orbital parts. After clarifying the reason why the gauge-invariant decomposition of the nucleon spin is not unique, we discuss which decomposition is more preferable from an experimental viewpoint.

  5. Thermal decomposition products of butyraldehyde.

    PubMed

    Hatten, Courtney D; Kaskey, Kevin R; Warner, Brian J; Wright, Emily M; McCunn, Laura R

    2013-12-01

    The thermal decomposition of gas-phase butyraldehyde, CH3CH2CH2CHO, was studied in the 1300-1600 K range with a hyperthermal nozzle. Products were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry in separate experiments. There are at least six major initial reactions contributing to the decomposition of butyraldehyde: a radical decomposition channel leading to propyl radical + CO + H; molecular elimination to form H2 + ethylketene; a keto-enol tautomerism followed by elimination of H2O producing 1-butyne; an intramolecular hydrogen shift and elimination producing vinyl alcohol and ethylene, a β-C-C bond scission yielding ethyl and vinoxy radicals; and a γ-C-C bond scission yielding methyl and CH2CH2CHO radicals. The first three reactions are analogous to those observed in the thermal decomposition of acetaldehyde, but the latter three reactions are made possible by the longer alkyl chain structure of butyraldehyde. The products identified following thermal decomposition of butyraldehyde are CO, HCO, CH3CH2CH2, CH3CH2CH=C=O, H2O, CH3CH2C≡CH, CH2CH2, CH2=CHOH, CH2CHO, CH3, HC≡CH, CH2CCH, CH3C≡CH, CH3CH=CH2, H2C=C=O, CH3CH2CH3, CH2=CHCHO, C4H2, C4H4, and C4H8. The first ten products listed are direct products of the six reactions listed above. The remaining products can be attributed to further decomposition reactions or bimolecular reactions in the nozzle.

  6. Secondary decomposition reactions in nitramines

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    Thermal decomposition of nitramines is known to proceed via multiple, competing reaction branches, some of which are triggered by secondary reactions between initial decomposition products and unreacted nitramine molecules. Better mechanistic understanding of these secondary reactions is needed to enable extrapolations of measured rates to higher temperatures and pressures relevant to shock ignition. I will present density functional theory (DFT) based simulations of nitramines that aim to re-evaluate known elementary mechanisms and seek alternative pathways in the gas and condensed phases. This work was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  7. Partial Fractions in Calculus, Number Theory, and Algebra

    ERIC Educational Resources Information Center

    Yackel, C. A.; Denny, J. K.

    2007-01-01

    This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.

  8. How Is Morphological Decomposition Achieved?

    ERIC Educational Resources Information Center

    Libben, Gary

    1994-01-01

    Two experiments investigated morphological decomposition in ambiguous novel compounds such as "busheater," which can be parsed as either "bus-heater" or "bush-heater." It was found that subjects' parsing choices for such words are influenced by orthographic constraints but that these constraints do not operate prelexically. (33 references) (MDM)

  9. Cadaver decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carter, David O.; Yellowlees, David; Tibbett, Mark

    2007-01-01

    A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

  10. Microbial interactions during carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This addresses the microbial ecology of carrion decomposition in the age of metagenomics. It describes what is known about the microbial communities on carrion, including a brief synopsis about the communities on other organic matter sources. It provides a description of studies using state-of-the...

  11. Spectral decomposition of black-hole perturbations on hyperboloidal slices

    NASA Astrophysics Data System (ADS)

    Ansorg, Marcus; Macedo, Rodrigo Panosso

    2016-06-01

    In this paper, we present a spectral decomposition of solutions to relativistic wave equations described on horizon-penetrating hyperboloidal slices within a given Schwarzschild-black-hole background. The wave equation in question is Laplace transformed, which leads to a spatial differential equation with a complex parameter. For initial data which are analytic with respect to a compactified spatial coordinate, this equation is treated with the help of the Mathematica package in terms of a sophisticated Taylor series analysis. Thereby, all ingredients of the desired spectral decomposition arise explicitly to arbitrarily prescribed accuracy, including quasinormal modes and quasinormal mode amplitudes as well as the jump of the Laplace transform along the branch cut. Finally, all contributions are put together to obtain, via the inverse Laplace transformation, the spectral decomposition in question. The paper explains extensively this procedure and includes detailed discussions of relevant aspects, such as the definition of quasinormal modes and the question regarding the contribution of infinity frequency modes to the early time response of the black hole.

  12. Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark S.; Wang, Tseng-Chan

    1991-01-01

    An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.

  13. Tremolite Decomposition and Water on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2000-01-01

    We present experimental data showing that the decomposition rate of tremolite, a hydrous mineral, is sufficiently slow that it can survive thermal decomposition on Venus over geologic timescales at current and higher surface temperatures.

  14. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  15. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  16. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  17. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  18. Investigating hydrogel dosimeter decomposition by chemical methods

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products.

  19. Decomposition of a depolarizing Mueller matrix into its nondepolarizing components by using symmetry conditions.

    PubMed

    Kuntman, Ertan; Arteaga, Oriol

    2016-04-01

    A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward. Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measurements, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the complete polarimetric response of two different systems and evaluate their weights in the overall response. The decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a second example, we use the decomposition to analyze an optical system in which a polarizing film is partially covered by another misaligned film.

  20. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  1. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  2. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. 21 CFR 874.3450 - Partial ossicular replacement prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3450 Partial ossicular... conduction of sound wave from the tympanic membrane to the inner ear. The device is made of materials such...

  4. Empirical mode decomposition profilometry: small scale capabilities and comparison to Fourier Transform Profilometry

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Cobelli, Pablo; Bobinski, Tomasz; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe

    2015-11-01

    Fringe projection profilometry is an instrument of choice for the instantaneous measurement of the full height map of a free-surface. It is useful to capture interfacial phenomena such as droplet impact and propagation of water waves. We present the Empirical Mode Decomposition Profilometry (EMDP) for the analysis of fringe projection profilometry images. It is based on an iterative filter, using empirical mode decomposition, that is free of spatial filtering and adapted for surfaces characterized by a broadband spectrum of deformation. Examples of such surfaces can be found in nonlinear wave interaction regimes such as wave turbulence in gravity-capillary water waves. We show both numerically and experimentally that using EMDP improves strongly the profilometry small scale capabilities compared to traditionally used Fourier Transform Profilometry. Moreover, the height reconstruction distortion is much lower: the reconstructed height field is now both spectrally and statistically accurate.

  5. Aflatoxin decomposition in various soils

    SciTech Connect

    Angle, J.S.

    1986-08-01

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.

  6. Phlogopite Decomposition, Water, and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2005-01-01

    Venus is a hot and dry planet with a surface temperature of 660 to 740 K and 30 parts per million by volume (ppmv) water vapor in its lower atmosphere. In contrast Earth has an average surface temperature of 288 K and 1-4% water vapor in its troposphere. The hot and dry conditions on Venus led many to speculate that hydrous minerals on the surface of Venus would not be there today even though they might have formed in a potentially wetter past. Thermodynamic calculations predict that many hydrous minerals are unstable under current Venusian conditions. Thermodynamics predicts whether a particular mineral is stable or not, but we need experimental data on the decomposition rate of hydrous minerals to determine if they survive on Venus today. Previously, we determined the decomposition rate of the amphibole tremolite, and found that it could exist for billions of years at current surface conditions. Here, we present our initial results on the decomposition of phlogopite mica, another common hydrous mineral on Earth.

  7. A Survey of Singular Value Decomposition Methods and Performance Comparison of Some Available Serial Codes

    NASA Technical Reports Server (NTRS)

    Plassman, Gerald E.

    2005-01-01

    This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition (SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms. The report also presents a survey of alternative algorithms, including partial SVD's special case SVD's, and others developed for concurrent processing systems.

  8. Coherence of acoustic modes propagating through shallow water internal waves

    NASA Astrophysics Data System (ADS)

    Rouseff, Daniel; Turgut, Altan; Wolf, Stephen N.; Finette, Steve; Orr, Marshall H.; Pasewark, Bruce H.; Apel, John R.; Badiey, Mohsen; Chiu, Ching-Sang; Headrick, Robert H.; Lynch, James F.; Kemp, John N.; Newhall, Arthur E.; von der Heydt, Keith; Tielbuerger, Dirk

    2002-04-01

    The 1995 Shallow Water Acoustics in a Random Medium (SWARM) experiment [Apel et al., IEEE J. Ocean. Eng. 22, 445-464 (1997)] was conducted off the New Jersey coast. The experiment featured two well-populated vertical receiving arrays, which permitted the measured acoustic field to be decomposed into its normal modes. The decomposition was repeated for successive transmissions allowing the amplitude of each mode to be tracked. The modal amplitudes were observed to decorrelate with time scales on the order of 100 s [Headrick et al., J. Acoust. Soc. Am. 107(1), 201-220 (2000)]. In the present work, a theoretical model is proposed to explain the observed decorrelation. Packets of intense internal waves are modeled as coherent structures moving along the acoustic propagation path without changing shape. The packets cause mode coupling and their motion results in a changing acoustic interference pattern. The model is consistent with the rapid decorrelation observed in SWARM. The model also predicts the observed partial recorrelation of the field at longer time scales. The model is first tested in simple continuous-wave simulations using canonical representations for the internal waves. More detailed time-domain simulations are presented mimicking the situation in SWARM. Modeling results are compared to experimental data.

  9. Non-conformal domain decomposition methods for time-harmonic Maxwell equations.

    PubMed

    Shao, Yang; Peng, Zhen; Lim, Kheng Hwee; Lee, Jin-Fa

    2012-09-01

    We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term, are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method. PMID:22870061

  10. Non-conformal domain decomposition methods for time-harmonic Maxwell equations

    PubMed Central

    Shao, Yang; Peng, Zhen; Lim, Kheng Hwee; Lee, Jin-Fa

    2012-01-01

    We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term, are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method. PMID:22870061

  11. Spinodal decomposition of chemically reactive binary mixtures

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  12. Spinodal decomposition of chemically reactive binary mixtures.

    PubMed

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  13. Analysis of generalized Schwarz alternating procedure for domain decomposition

    SciTech Connect

    Engquist, B.; Zhao, Hongkai

    1996-12-31

    The Schwartz alternating method(SAM) is the theoretical basis for domain decomposition which itself is a powerful tool both for parallel computation and for computing in complicated domains. The convergence rate of the classical SAM is very sensitive to the overlapping size between each subdomain, which is not desirable for most applications. We propose a generalized SAM procedure which is an extension of the modified SAM proposed by P.-L. Lions. Instead of using only Dirichlet data at the artificial boundary between subdomains, we take a convex combination of u and {partial_derivative}u/{partial_derivative}n, i.e. {partial_derivative}u/{partial_derivative}n + {Lambda}u, where {Lambda} is some {open_quotes}positive{close_quotes} operator. Convergence of the modified SAM without overlapping in a quite general setting has been proven by P.-L.Lions using delicate energy estimates. The important questions remain for the generalized SAM. (1) What is the most essential mechanism for convergence without overlapping? (2) Given the partial differential equation, what is the best choice for the positive operator {Lambda}? (3) In the overlapping case, is the generalized SAM superior to the classical SAM? (4) What is the convergence rate and what does it depend on? (5) Numerically can we obtain an easy to implement operator {Lambda} such that the convergence is independent of the mesh size. To analyze the convergence of the generalized SAM we focus, for simplicity, on the Poisson equation for two typical geometry in two subdomain case.

  14. Making Food Protein Gels via an Arrested Spinodal Decomposition.

    PubMed

    Mahmoudi, Najet; Stradner, Anna

    2015-12-17

    We report an investigation of the structural and dynamic properties of mixtures of food colloid casein micelles and low molecular weight poly(ethylene oxide). A combination of visual observations, confocal laser scanning microscopy, diffusing wave spectroscopy, and oscillatory shear rheometry is used to characterize the state diagram of the mixtures and describe the structural and dynamic properties of the resulting fluid and solid-like structures. We demonstrate the formation of gel-like structures through an arrested spinodal decomposition mechanism. We discuss our observations in view of previous experimental and theoretical studies with synthetic and food colloids, and comment on the potential of such a route toward gels for food processing.

  15. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  16. Electron Stimulated Decomposition of Acetylene as a Precursor for Graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Mahesh; Rothwell, Sara; Cohen, Philip

    2011-03-01

    We report here on the deposition of carbon via C2 H2 dissociation by electron beam irradiation and thermal decomposition. The substrates investigated include sapphire, silicon, ALD deposited Al 2 O3 / Si O2 , and GaN/sapphire. Raman analyses show that on C-plane sapphire both thermal decomposition and electron beam stimulated dissociation of C2 H2 deposit carbon successfully. On other substrates these methods were inactive, showing the decomposition of C2 H2 on sapphire is catalytic. We tested different annealing times and C2 H2 pressures, gauging absorption saturation with RHEED. Samples exposed to 15 min. C2 H2 adsorption during 400 eV electron irradiation and then annealed for 2 hr. to above 600° C in high vacuum showed the greatest proportion of sp2 to sp3 bonding by Raman analysis. The Raman spectra also suggest hydrogen adsorption, which may hinder further sp2 bonding. Annealing samples in a hydrogen atmosphere does not change their Raman spectra, suggesting hydrogen saturation. Partial support from the University of Minnesota Institute for Renewable Energy and the Environment

  17. Characteristics of pressure waves

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Air blast characteristics generated by most types of explosions are discussed. Data cover both negative and positive blast load phases and net transverse pressure as a function of time. The effects of partial or total confinement, atmospheric propagation, absorption of energy by ground shock or cratering, and transmission over irregular terrain on blast wave properties were also considered.

  18. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  19. Decomposition Rate and Pattern in Hanging Pigs.

    PubMed

    Lynch-Aird, Jeanne; Moffatt, Colin; Simmons, Tal

    2015-09-01

    Accurate prediction of the postmortem interval requires an understanding of the decomposition process and the factors acting upon it. A controlled experiment, over 60 days at an outdoor site in the northwest of England, used 20 freshly killed pigs (Sus scrofa) as human analogues to study decomposition rate and pattern. Ten pigs were hung off the ground and ten placed on the surface. Observed differences in the decomposition pattern required a new decomposition scoring scale to be produced for the hanging pigs to enable comparisons with the surface pigs. The difference in the rate of decomposition between hanging and surface pigs was statistically significant (p=0.001). Hanging pigs reached advanced decomposition stages sooner, but lagged behind during the early stages. This delay is believed to result from lower variety and quantity of insects, due to restricted beetle access to the aerial carcass, and/or writhing maggots falling from the carcass.

  20. Decomposition methods in turbulence research

    NASA Astrophysics Data System (ADS)

    Uruba, Václav

    2012-04-01

    Nowadays we have the dynamical velocity vector field of turbulent flow at our disposal coming thanks advances of either mathematical simulation (DNS) or of experiment (time-resolved PIV). Unfortunately there is no standard method for analysis of such data describing complicated extended dynamical systems, which is characterized by excessive number of degrees of freedom. An overview of candidate methods convenient to spatiotemporal analysis for such systems is to be presented. Special attention will be paid to energetic methods including Proper Orthogonal Decomposition (POD) in regular and snapshot variants as well as the Bi-Orthogonal Decomposition (BOD) for joint space-time analysis. Then, stability analysis using Principal Oscillation Patterns (POPs) will be introduced. Finally, the Independent Component Analysis (ICA) method will be proposed for detection of coherent structures in turbulent flow-field defined by time-dependent velocity vector field. Principle and some practical aspects of the methods are to be shown. Special attention is to be paid to physical interpretation of outputs of the methods listed above.

  1. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter.

    PubMed

    Yuan, Zhilin; Chen, Lianqing

    2014-01-01

    The role of fungal endophytes (FEs) as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa) of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm) experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation) revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3), laccase, and cellobiohydrolase (GH7) genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.

  2. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  3. Iterative filtering decomposition based on local spectral evolution kernel.

    PubMed

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  4. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  5. Phase Diagram and Decomposition of 1,1-Diamino-2,2-Dinitroethene (FOX-7)

    NASA Astrophysics Data System (ADS)

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2015-06-01

    To understand the reactive behavior of 1,1-diamino-2,2-dinitroethene (FOX-7) at the thermo-mechanical conditions relevant to shock-wave initiation, Raman and FTIR measurements were performed at high-pressures (HP) and high-temperatures (HT). Experiments were performed on single crystals of FOX-7 in a diamond anvil cell to 10 GPa and 800 K to provide the phase diagram and to gain insight into the HP decomposition mechanisms. Previous studies have demonstrated that the ambient structure of FOX-7 (alpha) transforms to beta and gamma phases at higher temperatures, and phase I (2 GPa) and II (4.5 GPa) at higher pressures. In this work, we determined the boundaries between these phases and the decomposition/melting curve. In particular, we found that: (i) both beta and gamma phases exist in a limited P-T domain (>386 K and <1 GPa), (ii) the transition between phase-I and phase-II takes place along the isobar, (iii) the decomposition temperature increases significantly with pressure (~ 25 K / GPa), and (iv) pressure inhibits the decomposition. Using FTIR spectroscopy, we observed that CO2 is the first dominating decomposition product, followed by N2O, NO2, HCN, and HNCO. Pressure effects on reaction kinetics will be presented along with the possible mechanisms of decomposition. Work supported by DOE/NNSA and ONR.

  6. The Lockheed alternate partial polarizer universal filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    A tunable birefringent filter using an alternate partial polarizer design has been built. The filter has a transmission of 38% in polarized light. Its full width at half maximum is .09A at 5500A. It is tunable from 4500 to 8500A by means of stepping motor actuated rotating half wave plates and polarizers. Wave length commands and thermal compensation commands are generated by a PPD 11/10 minicomputer. The alternate partial polarizer universal filter is compared with the universal birefringent filter and the design techniques, construction methods, and filter performance are discussed in some detail. Based on the experience of this filter some conclusions regarding the future of birefringent filters are elaborated.

  7. Nonphotosensitive video game-induced partial seizures.

    PubMed

    Takahashi, Y; Shigematsu, H; Kubota, H; Inoue, Y; Fujiwara, T; Yagi, K; Seino, M

    1995-08-01

    We report a 9-year-old boy with a ring 20 chromosome anomaly whose complex partial seizures (CPS), presumably of frontal lobe origin, were often induced by playing video games. Neither photosensitivity nor pattern sensitivity was observed. An intensive video-EEG investigation showed that video games as well as mental calculation elicited rhythmic runs of bilateral high-voltage slow waves, which eventually evolved into ictal discharges. This case suggests that higher brain functions can be involved in seizure induction.

  8. Amino Acid Free Energy Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Fairchild, Michael; Livesay, Dennis; Jacobs, Donald

    2009-03-01

    The Distance Constraint Model (DCM) describes protein thermodynamics at a coarse-grained level based on a Free Energy Decomposition (FED) that assigns energy and entropy contributions to specific molecular interactions. Application of constraint theory accounts for non-additivity in conformational entropy so that the total free energy of a system can be reconstituted from all its molecular parts. In prior work, a minimal DCM utilized a simple FED involving temperature-independent parameters indiscriminately applied to all residues. Here, we describe a residue-specific FED that depends on local conformational states. The FED of an amino acid is constructed by weighting the energy spectrums associated with local energy minimums in configuration space by absolute entropies estimated using a quasi-harmonic approximation. Interesting temperature-dependent behavior is found. Support is from NIH R01 GM073082 and a CRI postdoctoral Duke research fellowship for H. Wang.

  9. Metallo-organic decomposition films

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1985-01-01

    A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.

  10. Spectral decomposition of phosphorescence decays.

    PubMed

    Fuhrmann, N; Brübach, J; Dreizler, A

    2013-11-01

    In phosphor thermometry, the fitting of decay curves is a key task in the robust and precise determination of temperatures. These decays are generally assumed to be mono-exponential in certain temporal boundaries, where fitting is performed. The present study suggests a multi-exponential method to determine the spectral distribution in terms of decay times in order to analyze phosphorescence decays and thereby complement the mono-exponential analysis. Therefore, two methods of choice are compared and verified using simulated data in the presence of noise. Addtionally, this spectral decomposition is applied to the thermographic phosphor Mg4FGeO6 : Mn and reveals changes in the exponential distributions of decay times upon a change of the excitation laser energy.

  11. A global HMX decomposition model

    SciTech Connect

    Hobbs, M.L.

    1996-12-01

    HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) decomposes by competing reaction pathways to form various condensed and gas-phase intermediate and final products. Gas formation is related to the development of nonuniform porosity and high specific surface areas prior to ignition in cookoff events. Such thermal damage enhances shock sensitivity and favors self-supported accelerated burning. The extent of HMX decomposition in highly confined cookoff experiments remains a major unsolved experimental and modeling problem. The present work is directed at determination of global HMX kinetics useful for predicting the elapsed time to thermal runaway (ignition) and the extent of decomposition at ignition. Kinetic rate constants for a six step engineering based global mechanism were obtained using gas formation rates measured by Behrens at Sandia National Laboratories with his Simultaneous Modulated Beam Mass Spectrometer (STMBMS) experimental apparatus. The six step global mechanism includes competition between light gas (H[sub 2]Awe, HCN, CO, H[sub 2]CO, NO, N[sub 2]Awe) and heavy gas (C[sub 2]H[sub 6]N[sub 2]Awe and C[sub 4]H[sub 10]N0[sub 2]) formation with zero order sublimation of HMX and the mononitroso analog of HMX (mn-HMX), C[sub 4]H[sub 8]N[sub 8]Awe[sub 7]. The global mechanism was applied to the highly confined, One Dimensional Time to eXplosion (ODTX) experiment and hot cell experiments by suppressing the sublimation of HMX and mn-HMX. An additional gas-phase reaction was also included to account for the gas-phase reaction of N[sub 2]Awe with H[sub 2]CO. Predictions compare adequately to the STMBMS data, ODTX data, and hot cell data. Deficiencies in the model and future directions are discussed.

  12. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  13. Regular Decompositions for H(div) Spaces

    SciTech Connect

    Kolev, Tzanio; Vassilevski, Panayot

    2012-01-01

    We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.

  14. Chinese Orthographic Decomposition and Logographic Structure

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lin, Shan-Yuan

    2013-01-01

    "Chinese orthographic decomposition" refers to a sense of uncertainty about the writing of a well-learned Chinese character following a prolonged inspection of the character. This study investigated the decomposition phenomenon in a test situation in which Chinese characters were repeatedly presented in a word context and assessed…

  15. Metallo-Organic Decomposition (MOD) film development

    NASA Technical Reports Server (NTRS)

    Parker, J.

    1986-01-01

    The processing techniques and problems encountered in formulating metallo-organic decomposition (MOD) films used in contracting structures for thin solar cells are described. The use of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques performed at Jet Propulsion Laboratory (JPL) in understanding the decomposition reactions lead to improvements in process procedures. The characteristics of the available MOD films were described in detail.

  16. Sampling Stoichiometry: The Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Clift, Philip A.

    1992-01-01

    Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…

  17. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  18. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  19. English and Turkish Pupils' Understanding of Decomposition

    ERIC Educational Resources Information Center

    Cetin, Gulcan

    2007-01-01

    This study aimed to describe seventh grade English and Turkish students' levels of understanding of decomposition. Data were analyzed descriptively from the students' written responses to four diagnostic questions about decomposition. Results revealed that the English students had considerably higher sound understanding and lower no understanding…

  20. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  1. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  2. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  3. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  4. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  5. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  6. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  7. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  8. Multilinear operators for higher-order decompositions.

    SciTech Connect

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  9. Thermal decomposition of magnesium and calcium sulfates

    SciTech Connect

    Roche, S L

    1982-04-01

    The effect of catalyst on the thermal decomposition of MgSO/sub 4/ and CaSO/sub 4/ in vacuum was studied as a function of time in Knudsen cells and for MgSO/sub 4/, in open crucibles in vacuum in a Thermal Gravimetric Apparatus. Platinum and Fe/sub 2/O/sub 3/ were used as catalysts. The CaSO/sub 4/ decomposition rate was approximately doubled when Fe/sub 2/O/sub 3/ was present in a Knudsen cell. Platinum did not catalyze the CaSO/sub 4/ decomposition reaction. The initial decomposition rate for MgSO/sub 4/ was approximately 5 times greater than when additives were present in Knudsen cells but only about 1.5 times greater when decomposition was done in an open crucible.

  10. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.

    2016-01-01

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461

  11. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  12. Making Waves.

    ERIC Educational Resources Information Center

    DeClark, Tom

    2000-01-01

    Presents an activity on waves that addresses the state standards and benchmarks of Michigan. Demonstrates waves and studies wave's medium, motion, and frequency. The activity is designed to address different learning styles. (YDS)

  13. Accurate identification of waveform of evoked potentials by component decomposition using discrete cosine transform modeling.

    PubMed

    Bai, O; Nakamura, M; Kanda, M; Nagamine, T; Shibasaki, H

    2001-11-01

    This study introduces a method for accurate identification of the waveform of the evoked potentials by decomposing the component responses. The decomposition was achieved by zero-pole modeling of the evoked potentials in the discrete cosine transform (DCT) domain. It was found that the DCT coefficients of a component response in the evoked potentials could be modeled sufficiently by a second order transfer function in the DCT domain. The decomposition of the component responses was approached by using partial expansion of the estimated model for the evoked potentials, and the effectiveness of the decomposition method was evaluated both qualitatively and quantitatively. Because of the overlap of the different component responses, the proposed method enables an accurate identification of the evoked potentials, which is useful for clinical and neurophysiological investigations.

  14. BayesWave Analysis for LIGO Detector Characterization

    NASA Astrophysics Data System (ADS)

    Key, Joey Shapiro; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    The Advanced LIGO gravitational wave detectors successfully collected data during the first observing run (O1) September 2015 to January 2016. The Bayesian inference wavelet decomposition algorithm BayesWave uses a phenomenological parameterized model to characterize the data. Among the BayesWave products are reconstructed waveforms and spectral analysis of instrument noise transients (``glitches''). The BayesWave analysis contributes to our understanding of the LIGO instrument and our ability to distinguish instrument glitches from burst sources of gravitational waves. Preliminary BayesWave analysis of the LIGO O1 data will be presented.

  15. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  16. Electromagnetic wave scattering by Schwarzschild black holes.

    PubMed

    Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S

    2009-06-12

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920

  17. Efficiently enclosing the compact binary parameter space by singular-value decomposition

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew

    2011-10-15

    Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.

  18. Composite gravitational-wave detection of compact binary coalescence

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.

    2011-04-15

    The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.

  19. Variance Components: Partialled vs. Common.

    ERIC Educational Resources Information Center

    Curtis, Ervin W.

    1985-01-01

    A new approach to partialling components is used. Like conventional partialling, this approach orthogonalizes variables by partitioning the scores or observations. Unlike conventional partialling, it yields a common component and two unique components. (Author/GDC)

  20. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  4. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  5. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  6. Domain decomposition algorithms and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.

  7. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  8. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  9. Dynamics of partial control.

    PubMed

    Sabuco, Juan; Sanjuán, Miguel A F; Yorke, James A

    2012-12-01

    Safe sets are a basic ingredient in the strategy of partial control of chaotic systems. Recently we have found an algorithm, the sculpting algorithm, which allows us to construct them, when they exist. Here we define another type of set, an asymptotic safe set, to which trajectories are attracted asymptotically when the partial control strategy is applied. We apply all these ideas to a specific example of a Duffing oscillator showing the geometry of these sets in phase space. The software for creating all the figures appearing in this paper is available as supplementary material. PMID:23278093

  10. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  11. Application of monochromatic ocean wave forecasts to prediction of wave-induced currents

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    The use of monochromatic wind-wave forecasts in prediction of wind-wave-induced currents was assessed. Currents were computed for selected combinations of wind conditions by using a spectrum approach which was developed by using the Bretschneider wave spectrum for partially developed wind seas. These currents were compared with currents computed by using the significant and average monochromatic wave parameters related to the Bretschneider spectrum. Results indicate that forecasts of significant wave parameters can be used to predict surface wind-wave-induced currents. Conversion of these parameters to average wave parameters can furnish reasonable estimates of subsurface current values.

  12. Thermal decomposition of HfCl{sub 4} as a function of its hydration state

    SciTech Connect

    Barraud, E.; Begin-Colin, S. . E-mail: begin@ipcms.u-strasbg.fr; Le Caer, G.; Villieras, F.; Barres, O.

    2006-06-15

    The thermogravimetric behavior of HfCl{sub 4} powders with different hydration states has been compared. Strongly hydrated powders consist of HfOCl{sub 2}.nH{sub 2}O with n>4. Partially hydrated powders consist of particles with a HfCl{sub 4} core and a hydrated outerlayer of HfOCl{sub 2}.nH{sub 2}O with n in the range of 0-8. Hydrated powders decomposed at temperature lower than 200 deg. C whereas the decomposition of partially hydrated powders was completed at a temperature of around 450 deg. C. The observed differences in decomposition temperature is related to the structure of HfOCl{sub 2}.nH{sub 2}O, which is different if n is higher or smaller than 4 and leads to intermediate compounds, which decompose at different temperatures.

  13. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  14. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption?

    PubMed

    Graça, M A S; Poquet, J M

    2014-03-01

    We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.

  15. New simultaneous thermogravimetry and modulated molecular beam mass spectrometry apparatus for quantitative thermal decomposition studies

    SciTech Connect

    Behrens, R. Jr.

    1987-03-01

    A new type of instrument has been designed and constructed to measure quantitatively the gas phase species evolving during thermal decompositions. These measurements can be used for understanding the kinetics of thermal decomposition, determining the heats of formation and vaporization of high-temperature materials, and analyzing sample contaminants. The new design allows measurements to be made on the same time scale as the rates of the reactions being studied, provides a universal detection technique to study a wide range of compounds, gives quantitative measurements of decomposition products, and minimizes interference from the instrument on the measurements. The instrument design is based on a unique combination of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and modulated beam mass spectroscopy (MBMS) which are brought together into a symbiotic relationship through the use of differentially pumped vacuum systems, modulated molecular beam techniques, and computer control and data-acquisition systems. A data analysis technique that calculates partial pressures in the reaction cell from the simultaneous microbalance force measurements and the modulated mass spectrometry measurements has been developed. This eliminates the need to know the ionization cross section, the ion dissociation channels, the quadrupole transmission, and the ion detector sensitivity for each thermal decomposition product prior to quantifying the mass spectral data. The operation of the instrument and the data analysis technique are illustrated with the thermal decomposition of contaminants from a precipitated palladium powder.

  16. A new fifth parameter for transverse isotropy II: partial derivatives

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi

    2016-07-01

    Kawakatsu et al. and Kawakatsu introduced a new fifth parameter, ηκ, to describe transverse isotropy (TI). Considering that ηκ characterizes the incidence angle dependence of body wave phase velocities for TI models, its relevance for body wave seismology is obvious. Here, we derive expressions for partial derivatives (sensitivity kernels) of surface wave phase velocity and normal mode eigenfrequency for the new set of five parameters. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ should be more readily resolved. While partial derivatives for S velocities are not so changed, those for P velocities are significantly modified; the sensitivity for anisotropic P velocities is greatly reduced. In contrary to the suggestion by Dziewonski & Anderson and Anderson & Dziewonski, there is not much control on the anisotropic P velocities. On the other hand, the significance of ηκ for long-period seismology has become clear.

  17. Partial hue-matching.

    PubMed

    Logvinenko, Alexander D; Beattie, Lesley L

    2011-01-01

    It is widely believed that color can be decomposed into a small number of component colors. Particularly, each hue can be described as a combination of a restricted set of component hues. Methods, such as color naming and hue scaling, aim at describing color in terms of the relative amount of the component hues. However, there is no consensus on the nomenclature of component hues. Moreover, the very notion of hue (not to mention component hue) is usually defined verbally rather than perceptually. In this paper, we make an attempt to operationalize such a fundamental attribute of color as hue without the use of verbal terms. Specifically, we put forth a new method--partial hue-matching--that is based on judgments of whether two colors have some hue in common. It allows a set of component hues to be established objectively, without resorting to verbal definitions. Specifically, the largest sets of color stimuli, all of which partially match each other (referred to as chromaticity classes), can be derived from the observer's partial hue-matches. A chromaticity class proves to consist of all color stimuli that contain a particular component hue. Thus, the chromaticity classes fully define the set of component hues. Using samples of Munsell papers, a few experiments on partial hue-matching were carried out with twelve inexperienced normal trichromatic observers. The results reinforce the classical notion of four component hues (yellow, blue, red, and green). Black and white (but not gray) were also found to be component colors. PMID:21742961

  18. Partial knee replacement

    MedlinePlus

    ... You will need to understand what surgery and recovery will be like. Partial knee arthroplasty may be a good choice if you have arthritis in only one side or part of the knee and: You are older, thin, and not very active. You do not ...

  19. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    NASA Technical Reports Server (NTRS)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  20. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition.

  1. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  2. Hydrofluoride decomposition of natural materials including zirconium-containing minerals

    NASA Astrophysics Data System (ADS)

    Laptash, N.; Maslennikova, I.

    2016-01-01

    Recently, interest in ammonium hydrogen difluoride (NH4HF2) as a versatile fluorinating agent for the decomposition of natural materials resumed. It is considered to be a new and more efficient than hydrofluoric acid (HF) reagent in analytical chemistry. Thermodynamically possible fluorination reactions with NH4HF2 are exothermic and proceed even at room temperature with the entropy reserve. The fluorination products are of high symmetry phases (tetragonal or cubic) with partial substitution of fluoride ion for oxide (or hydroxide). The fluorination of refractory silicate zircon (ZrSiO4) is kinetically hindered, and its complete decomposition requires the use of a Teflon autoclave at 200oC. The fluorination products are cubic (NH4)3Zr(OH)xF7-x (x ≤ 0.3) and tetragonal double salt (NH4)3SiF7, which can be separated due to incongruent sublimation of (NH4)2SiF6. The mechanism of the latter process is proposed.

  3. Dynamic mode decomposition for non-uniformly sampled data

    NASA Astrophysics Data System (ADS)

    Leroux, Romain; Cordier, Laurent

    2016-05-01

    We propose an original approach to estimate dynamic mode decomposition (DMD) modes from non-uniformly sampled data. The proposed strategy processes a time-resolved sequence of flow snapshots in three steps. First, a reduced-order modeling of the non-missing data is made by proper orthogonal decomposition to obtain a low-order description of the state space. Second, the missing data are determined with maximum likelihood by coupling a linear dynamical state-space model with the Expectation-Maximization algorithm. Third, the DMD modes are finally estimated on the reconstructed data with a multiple linear regression method called orthonormalized partial least squares regression. This methodology is assessed for the flow past a NACA0012 airfoil at 20° of angle of attack and a Reynolds number of 103. The flow measurements are obtained with time-resolved particle image velocimetry and artificially subsampled at different ratios of missing data. The results show that the proposed method can reproduce the dominant DMD modes and the main structures of the flow fields for 50 and 75 % of missing data.

  4. Thermal image filtering by bi-dimensional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan-Mihai; Vizireanu, Constantin-Radu; Fratu, Octavian; Mara, Constantin; Vizireanu, Dragos-Nicolae; Preda, Radu; Gavriloaia, Gheorghe

    2015-02-01

    The abnormal function of cells can be detected by anatomic or physiological registrations. Most of modern approaches, as ultrasound, RMN or CT, show anatomic parametric modifications of tissues or organs. They highlight areas with a larger diameter 1 cm. In the case of skin or superficial cancers, local temperature is different, and it can be put out by thermal imager. Medical imaging is a leading role in modern diagnosis for abnormal or normal tissues or organs. Some information has to be improved for a better diagnosis by reducing or removing some unwanted information like noise affecting image texture. The traditional technologies for medical image enhancement use spatial or frequency domain methods, but whole image processing will hide both partial and specific information for human signals. A particular kind of medical images is represented by thermal imaging. Recently, these images were used for skin or superficial cancers diagnosis, but very clear outlines of certain alleged affected areas need to be shown. Histogram equalization cannot highlights the edges and control the effects of enhancement. A new filtering method was introduced by Huang by using the empirical mode decomposition, EMD. An improved filtering method for thermal images, based on EMD, is presented in this paper, and permits to analyze nonlinear and non-stationary data by the adaptive decomposition into intrinsic mode surfaces. The results, evaluated by SNR ratios, are compared with other filtering methods.

  5. Time-resolved proper orthogonal decomposition of liquid jet dynamics

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Soteriou, Marios C.

    2009-11-01

    New insight into the mechanism of liquid jet in crossflow atomization is provided by an analysis technique based on proper orthogonal decomposition and spectral analysis. Data are provided in the form of high-speed videos of the jet near field from experiments over a broad range of injection conditions. For each condition, proper orthogonal modes (POMs) are generated and ordered by intensity variation relative to the time average. The feasibility of jet dynamics reduction by truncation of the POM series to the first few modes is then examined as a function of crossflow velocity for laminar and turbulent liquid injection. At conditions where the jet breaks up into large chunks of liquid, the superposition of specific orthogonal modes is observed to track long waves traveling along the liquid column. The temporal coefficients of these modes can be described as a bandpass spectrum that shifts toward higher frequencies as the crossflow velocity is increased. The dynamic correlation of these modes is quantified by their cross-power spectrum density. Based on the frequency and wavelength extracted from the videos, the observed traveling waves are linked to the linearly fastest growing wave of Kelvin-Helmholtz instability. The gas boundary layer thickness at the gas-liquid shear layer emerges at the end of this study as the dominant length scale of jet dynamics at moderate Weber numbers.

  6. Sparse + low-energy decomposition for viscous conservation laws

    NASA Astrophysics Data System (ADS)

    Hou, Thomas Y.; Li, Qin; Schaeffer, Hayden

    2015-05-01

    For viscous conservation laws, solutions contain smooth but high-contrast features, which require the use of fine grids to properly resolve. On coarse grids, these high-contrast jumps resemble shocks rather than their true viscous profiles, which could lead to issues in the numerical approximation of their underlying dynamics. In many cases, the equations of motion emit traveling wave solutions which can be used to represent the viscous profiles analytically. The traveling wave solutions can be thought of as a lower dimensional representation of the motion, since they contain information from the evolution equation, but are constant along certain time-space curves. Using a parameterized basis involving the traveling waves, along with the sparse + low-energy decompositions found in imaging sciences, we propose an approximation to viscous conservation laws which separates the coarse smooth component from the sharp fine one. Our method provides an appropriate approximation to the solution on a coarse grid, thereby accurately under-resolving the viscous profile. This is similar to the philosophy of shock capturing methods, in the sense that we want to capture the viscous front without needing to resolve the profile. Theoretical results on the consistency of our method are shown in general. We provide several computational examples for convex and non-convex fluxes.

  7. On the polar decomposition of right linear operators in quaternionic Hilbert spaces

    NASA Astrophysics Data System (ADS)

    G, Ramesh; P, Santhosh Kumar

    2016-04-01

    In this article, we prove the existence of the polar decomposition of densely defined closed right linear operators in quaternionic Hilbert spaces: If T is a densely defined closed right linear operator in a quaternionic Hilbert space H, then there exists a partial isometry U0 such that T = U 0 |" separators=" T | . In fact U0 is unique if N(U0) = N(T). In particular, if H is separable and U is a partial isometry with T = U |" separators=" T | , then we prove that U = U0 if and only if either N(T) = {0} or R(T)⊥ = {0}.

  8. Domain decomposition for the SPN solver MINOS

    SciTech Connect

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-07-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)

  9. Hardware Implementation of Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Majumder, Swanirbhar; Shaw, Anil Kumar; Sarkar, Subir Kumar

    2016-06-01

    Singular value decomposition (SVD) is a useful decomposition technique which has important role in various engineering fields such as image compression, watermarking, signal processing, and numerous others. SVD does not involve convolution operation, which make it more suitable for hardware implementation, unlike the most popular transforms. This paper reviews the various methods of hardware implementation for SVD computation. This paper also studies the time complexity and hardware complexity in various methods of SVD computation.

  10. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  11. Asbestos-induced decomposition of hydrogen peroxide

    SciTech Connect

    Eberhardt, M.K.; Roman-Franco, A.A.; Quiles, M.R.

    1985-08-01

    Decomposition of H/sub 2/O/sub 2/ by chrysotile asbestos was demonstrated employing titration with KMnO/sub 4/. The participation of OH radicals in this process was delineated employing the OH radical scavenger dimethyl sulfoxide (DMSO). A mechanism involving the Fenton and Haber-Weiss reactions as the pathway for the H/sub 2/O/sub 2/ decomposition and OH radical production is postulated.

  12. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  13. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  14. Unimolecular thermal decomposition of dimethoxybenzenes

    SciTech Connect

    Robichaud, David J. Mukarakate, Calvin; Nimlos, Mark R.; Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  15. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  16. Critical analysis of nitramine decomposition data: Activation energies and frequency factors for HMX and RDX decomposition

    NASA Technical Reports Server (NTRS)

    Schroeder, M. A.

    1980-01-01

    A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.

  17. Algorithms for sparse nonnegative Tucker decompositions.

    PubMed

    Mørup, Morten; Hansen, Lars Kai; Arnfred, Sidse M

    2008-08-01

    There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as generalizations of the regular factor analysis to data of more than two modalities. Nonnegative matrix factorization (NMF), in conjunction with sparse coding, has recently been given much attention due to its part-based and easy interpretable representation. While NMF has been extended to the PARAFAC model, no such attempt has been done to extend NMF to the Tucker model. However, if the tensor data analyzed are nonnegative, it may well be relevant to consider purely additive (i.e., nonnegative) Tucker decompositions). To reduce ambiguities of this type of decomposition, we develop updates that can impose sparseness in any combination of modalities, hence, proposed algorithms for sparse nonnegative Tucker decompositions (SN-TUCKER). We demonstrate how the proposed algorithms are superior to existing algorithms for Tucker decompositions when the data and interactions can be considered nonnegative. We further illustrate how sparse coding can help identify what model (PARAFAC or Tucker) is more appropriate for the data as well as to select the number of components by turning off excess components. The algorithms for SN-TUCKER can be downloaded from Mørup (2007).

  18. Full and Partial Cloaking in Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Deng, Youjun; Liu, Hongyu; Uhlmann, Gunther

    2016-08-01

    In this paper, we consider two regularized transformation-optics cloaking schemes for electromagnetic (EM) waves. Both schemes are based on the blowup construction with the generating sets being, respectively, a generic curve and a planar subset. We derive sharp asymptotic estimates in assessing the cloaking performances of the two constructions in terms of the regularization parameters and the geometries of the cloaking devices. The first construction yields an approximate full-cloak, whereas the second construction yields an approximate partial-cloak. Moreover, by incorporating properly chosen conducting layers, both cloaking constructions are capable of nearly cloaking arbitrary EM contents. This work complements the existing results in Ammari et al. (SIAM J Appl Math 73:2055-2076, 2013), Bao and Liu (SIAM J Appl Math 74:724-742, 2014), Bao et al. (J Math Pure Appl (9) 101:716-733, 2014) on approximate EM cloaks with the generating set being a singular point, and it also extends Deng et al. (On regularized full- and partial-cloaks in acoustic scat- tering. Preprint, arXiv:1502.01174, 2015), Li et al. (Commun Math Phys, 335:671-712, 2015) on regularized full and partial cloaks for acoustic waves governed by the Helmholtz system to the more challenging EM case governed by the full Maxwell system.

  19. Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density electroencephalogram

    NASA Astrophysics Data System (ADS)

    Wingeier, B. M.; Nunez, P. L.; Silberstein, R. B.

    2001-11-01

    We demonstrate an application of spherical harmonic decomposition to the analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to the analysis of hemispherical, irregularly sampled data. Spatial sampling requirements and performance of the methods are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wave-number relationship in some bands.

  20. Evolution of speckle during spinodal decomposition

    SciTech Connect

    Brown, G.; Rikvold, P.A.; Brown, G.; Sutton, M.; Grant, M.

    1999-11-01

    Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is known to grow in time {tau} as R=[B{tau}]{sup n} with n=1/3, where {ital B} is a constant. The intensities of individual speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector {bold k} can be collapsed onto a scaling function Cov({delta}t,{bar t}&hthinsp;), where {delta}t=k{sup 1/n}B{vert_bar}{tau}{sub 2}{minus}{tau}{sub 1}{vert_bar} and {bar t}=k{sup 1/n}B({tau}{sub 1}+{tau}{sub 2})/2. Both analytically and numerically, the covariance is found to depend on {delta}t only through {delta}t/{bar t} in the small-{bar t} limit and {delta}t/{bar t}&hthinsp;{sup 1{minus}n} in the large-{bar t} limit, consistent with a simple theory of moving interfaces that applies to any universality class described by a scalar order parameter. The speckle-intensity covariance is numerically demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an analytic scaling function is obtained for large {bar t}. In addition, the two-time, two-point order-parameter correlation function is found to scale as C{bold (}r/(B{sup n}{radical} ({tau}{sub 1}{sup 2n}+{tau}{sub 2}{sup 2n}) ),{tau}{sub 1}/{tau}{sub 2}{bold )}, even for quite large distances {ital r}. The asymptotic power-law exponent for the autocorrelation function is found to be {lambda}{approx}4.47, violating an upper bound conjectured by Fisher and Huse. {copyright} {ital 1999} {ital The American Physical Society}

  1. Thermal decomposition of carbon tetrachloride

    SciTech Connect

    Michael, J.V.; Lim, K.P. ); Kumaran, S.S.; Kiefer, J.H. )

    1993-03-04

    The first rate measurements of the thermal dissociation of CCl[sub 4] are reported. Three detection techniques were used in monitoring the reaction rate for various dilutions over a wide temperature range: (i) ARAS of product Cl atoms in reflected shock waves using 3.2--6.4 ppM of CCl[sub 4] in Ar over 1084--1705 K and 150--908 Torr, (ii) decay of CCl[sub 4] by molecular absorption of O-atom resonance radiation in reflected shock waves using 48--173 ppM of CCl[sub 4] in Ar over 1192--1733 K and 219--855 Torr, and (iii) laser schlieren density gradients in incident shock waves using 0.5 and 2% CCl[sub 4] in Kr over 1470--2186 K and 90--660 Torr. The second-order rates from ARAS and molecular absorption measurements for the bond fission reaction CCl[sub 4] [yields] CCl[sub 3] + Cl are in complete agreement with the laser schlieren results where they overlap. The temperature and pressure dependence of these rates is well characterized by Gorin model RRKM calculations using current [Delta]H[degrees][sub 0] = 67.71 kcal/mol for E[sub 0], derived from [Delta][sub f]H[degrees][sub 298] = 17.0 kcal/mol for for CCl[sub 3]. The low-pressure rate constant (k[sub 0]) derived from this RRKM fit is log k[sub 0] (cm[sup 3]/(mol s)) = 54.980 [minus] 10.624 log T [minus] 74.796 (kcal/mol)/2.303RT. These low-pressure rates require unusually large [beta][sub c] corresponding to a [l angle][Delta]E[r angle][sub down] = 1200 cm[sup [minus]1]. This may be a general feature of chlorocarbon dissociations. The ARAS data indicate that two Cl atoms are ultimately produced for each CCl[sub 4] that dissociates, with the second Cl atom forming slower than the first. Here all the measurements are consistent with a further dissociation of CCl[sub 3], CCl[sub 3] [yields] CCl[sub 2] + Cl, as the dominant source of secondary Cl-atom at a rate about 0.1 that of the primary fission. 31 refs., 9 figs., 2 tabs.

  2. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  3. Aridity and decomposition processes in complex landscapes

    NASA Astrophysics Data System (ADS)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  4. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  5. Partially coherent ultrafast spectrography

    PubMed Central

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-01-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080

  6. Laparoscopic partial splenic resection.

    PubMed

    Uranüs, S; Pfeifer, J; Schauer, C; Kronberger, L; Rabl, H; Ranftl, G; Hauser, H; Bahadori, K

    1995-04-01

    Twenty domestic pigs with an average weight of 30 kg were subjected to laparoscopic partial splenic resection with the aim of determining the feasibility, reliability, and safety of this procedure. Unlike the human spleen, the pig spleen is perpendicular to the body's long axis, and it is long and slender. The parenchyma was severed through the middle third, where the organ is thickest. An 18-mm trocar with a 60-mm Endopath linear cutter was used for the resection. The tissue was removed with a 33-mm trocar. The operation was successfully concluded in all animals. No capsule tears occurred as a result of applying the stapler. Optimal hemostasis was achieved on the resected edges in all animals. Although these findings cannot be extended to human surgery without reservations, we suggest that diagnostic partial resection and minor cyst resections are ideal initial indications for this minimally invasive approach.

  7. Partially coherent ultrafast spectrography

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-03-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.

  8. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  9. The rate of pyrite decomposition on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lodders, K.; Treiman, A. H.; Klingelhoefer, G.

    1995-01-01

    We report the results of a detailed experiment study of the kinetics and mechanism of pyrite (FeS2) chemical weathering under Venus surface conditions. Pyrite is thermodynamically unstable on the surface of Venus and will spontaneously decompose to pyrrhotite (Fe7S8) because the observed S2 partial pressure in the lower atmosphere of Venus is lower than the S2 vapor pressure over coexisting pyrite and pyrrhotite. Pyrite decomposition kinetics were studied in pure CO2 and CO2 gas mixtures along five isotherms in the temperature range 390-531 C. In all gas mixtures studied, pyrite thermally decomposes to pyrrhotite (Fe7S8), which on continued heating loses sulfur to form more Fe-rich pyrrhotites. During this process the pyrrhotites are also being oxidized to form magnetite (Fe3O4), which converts to maghemite (gamma-Fe2O3), and then to hematite (alpha-Fe2O3). The reaction rates for pyrite thermal decomposition to pyrrhotite were determined by measuring the weight loss. The thickness of the unreacted pyrite in the samples provided a second independent reaction rate measurement. Finally, Mossbauer spectra done on 42 of the 115 experimental samples provided a third set of independent reaction rate data. Pyrite decomposition follows zero-order kinetics and is independent of the amount of pyrite present. The rate of pyrite decomposition is apparently independent of the gas compositions used and of the CO2 number density over a range of a factor of 40. The derived activation energy of approximately 150 kJ/mole is the same in pure CO2, two different CO-CO2 mixtures, and a ternary CO-SO2-CO2 mixture. Based on data for a CO-CO2-SO2 gas mixture with a CO number density approximately 10 times higher than at the surface of Venus and a SO2 number density approximately equal to that at the surface of Venus, the rate of pyrite destruction on the surface of Venus varies from about 1225 +/- 238 days/cm at the top of Maxwell Montes (approximately 660 K) to about 233 +/- 133 days/cm in

  10. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  11. Estimation of atmospheric turbulence parameters with wave front sensor data

    NASA Astrophysics Data System (ADS)

    Iroshnikov, N. G.; Koryabin, A. V.; Larichev, A. V.; Shmalhausen, V. I.; Andreeva, M. S.

    2012-11-01

    Estimates of atmospheric turbulence parameters can be calculated on the basis of data, obtained with wave front sensor. The method described is based on decomposition of phase fluctuations into Zernike series and analysis of statistics of this decomposition coefficients. Estimates of turbulence outer scale L0 and refractive index structure constant C2/n obtained in experiments with turbulence in water cell showed good agreement with previous results.

  12. Partial spatial coherence and partial polarization in random evanescent fields on lossless interfaces.

    PubMed

    Norrman, Andreas; Setälä, Tero; Friberg, Ari T

    2011-03-01

    We consider partial spatial coherence and partial polarization of purely evanescent optical fields generated in total internal reflection at an interface of two dielectric (lossless) media. Making use of the electromagnetic degree of coherence, we show that, in such fields, the coherence length can be notably shorter than the light's vacuum wavelength, especially at a high-index-contrast interface. Physical explanation for this behavior, analogous to the generation of incoherent light in a multimode laser, is provided. We also analyze the degree of polarization by using a recent three-dimensional formulation and show that the field may be partially polarized at a subwavelength distance from the surface even though it is fully polarized farther away. The degree of polarization can assume values unattainable by beamlike fields, indicating that electromagnetic evanescent waves generally are genuine three-dimensional fields. The results can find applications in near-field optics and nanophotonics.

  13. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  14. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  15. Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve

    NASA Astrophysics Data System (ADS)

    Tang, Yadan; Roberts, Charles A.; Perkins, Ryan T.; Wachs, Israel E.

    2016-08-01

    This study revisits the classic volcano curve for HCOOH decomposition by metal catalysts by taking a modern catalysis approach. The metal catalysts (Au, Ag, Cu, Pt, Pd, Ni, Rh, Co and Fe) were prepared by H2 reduction of the corresponding metal oxides. The number of surface active sites (Ns) was determined by formic acid chemisorption. In situ IR indicated that both monodentate and bidentate/bridged surface HCOO* were present on the metals. Heats of adsorption (ΔHads) for surface HCOO* values on metals were taken from recently reported DFT calculations. Kinetics for surface HCOO* decomposition (krds) were determined with TPD spectroscopy. Steady-state specific activity (TOF = activity/Ns) for HCOOH decomposition over the metals was calculated from steady-state activity (μmol/g-s) and Ns (μmol/g). Steady-state TOFs for HCOOH decomposition weakly correlated with surface HCOO* decomposition kinetics (krds) and ΔHads of surface HCOO* intermediates. The plot of TOF vs. ΔHads for HCOOH decomposition on metal catalysts does not reproduce the classic volcano curve, but shows that TOF depends on both ΔHads and decomposition kinetics (krds) of surface HCOO* intermediates. This is the first time that the classic catalysis study of HCOOH decomposition on metallic powder catalysts has been repeated since its original publication.

  16. Local decomposition induced by dislocation motions inside tetragonal Al(2)Cu compound: slip system-dependent dynamics.

    PubMed

    Chen, D; Ma, X L

    2013-11-07

    Dislocations in a crystal are usually classified into several independent slip systems. Motion of a partial dislocation in monometallic crystals may remove or create stacking fault characterized with a partial of a lattice translation vector. However, it is recently known that motion of partial dislocations in complex structure, such as that inside an intermetallic Al2Cu compound, lead to a local composition deviation from its stoichiometric ratio and the resultant structure collapse. Here we report such a local decomposition behaviors are strongly dependent on slip system of dislocations. Under applied external stress, we have studied dislocation motion behaviors in the three independent slip systems of [001](110), [100]() and [110]() within tetragonal Al2Cu crystal by using molecular dynamics method. We found dislocation motions in all these slip systems result in local decomposition but their physical details differ significantly.

  17. Tympanal travelling waves in migratory locusts.

    PubMed

    Windmill, James F C; Göpfert, Martin C; Robert, Daniel

    2005-01-01

    Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.

  18. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  19. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    PubMed

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations. PMID:26748499

  20. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    PubMed

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  1. Partial decomposition of the genetic correlation between forage yield and fiber using semi-hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voluntary intake potential of a forage crop is generally considered to be the most important feed characteristic regulating animal performance. Efforts to develop forage crops with reduced bulk volume, measured by neutral detergent fiber (NDF) concentration, are associated with reduced plant fitness...

  2. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    PubMed Central

    WALL, DIANA H; BRADFORD, MARK A; ST JOHN, MARK G; TROFYMOW, JOHN A; BEHAN-PELLETIER, VALERIE; BIGNELL, DAVID E; DANGERFIELD, J MARK; PARTON, WILLIAM J; RUSEK, JOSEF; VOIGT, WINFRIED; WOLTERS, VOLKMAR; GARDEL, HOLLEY ZADEH; AYUKE, FRED O; BASHFORD, RICHARD; BELJAKOVA, OLGA I; BOHLEN, PATRICK J; BRAUMAN, ALAIN; FLEMMING, STEPHEN; HENSCHEL, JOH R; JOHNSON, DAN L; JONES, T HEFIN; KOVAROVA, MARCELA; KRANABETTER, J MARTY; KUTNY, LES; LIN, KUO-CHUAN; MARYATI, MOHAMED; MASSE, DOMINIQUE; POKARZHEVSKII, ANDREI; RAHMAN, HOMATHEVI; SABARÁ, MILLOR G; SALAMON, JOERG-ALFRED; SWIFT, MICHAEL J; VARELA, AMANDA; VASCONCELOS, HERALDO L; WHITE, DON; ZOU, XIAOMING

    2008-01-01

    Climate and litter quality are primary drivers of terrestrial decomposition and, based on evidence from multisite experiments at regional and global scales, are universally factored into global decomposition models. In contrast, soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. Soil animals are consequently excluded from global models of organic mineralization processes. Incomplete assessment of the roles of soil animals stems from the difficulties of manipulating invertebrate animals experimentally across large geographic gradients. This is compounded by deficient or inconsistent taxonomy. We report a global decomposition experiment to assess the importance of soil animals in C mineralization, in which a common grass litter substrate was exposed to natural decomposition in either control or reduced animal treatments across 30 sites distributed from 43°S to 68°N on six continents. Animals in the mesofaunal size range were recovered from the litter by Tullgren extraction and identified to common specifications, mostly at the ordinal level. The design of the trials enabled faunal contribution to be evaluated against abiotic parameters between sites. Soil animals increase decomposition rates in temperate and wet tropical climates, but have neutral effects where temperature or moisture constrain biological activity. Our findings highlight that faunal influences on decomposition are dependent on prevailing climatic conditions. We conclude that (1) inclusion of soil animals will improve the predictive capabilities of region- or biome-scale decomposition models, (2) soil animal influences on decomposition are important at the regional scale when attempting to predict global change scenarios, and (3) the statistical relationship between decomposition rates and climate, at the global scale, is robust against changes in soil faunal abundance and diversity.

  3. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  4. Melancholia and partial insanity.

    PubMed

    Jackson, S W

    1983-04-01

    In the medical literature of the eighteenth century melancholia came to be defined as partial insanity. Seventeenth-century English law introduced the term and influenced later forensic concerns about the concept. But the history of melancholia reveals a gradual development of such a concept of limited derangement associated with the delusions usually cited in accounts of this disease. In the early nineteenth century the relationship of melancholia and this concept weakened and was gradually abandoned, the content of the syndrome of melancholia was reduced, and out of this complex process emerged the notion of monomania.

  5. Esthetic removable partial dentures.

    PubMed

    Ancowitz, Stephen

    2004-01-01

    This article provides information regarding the many ways that removable partial dentures (RPDs) may be used to solve restorative problems in the esthetic zone without displaying metal components or conspicuous acrylic resin flanges. The esthetic zone is defined and described, as are methods for recording it. Six dental categories are presented that assist the dentist in choosing a variety of RPD design concepts that may be used to avoid metal display while still satisfying basic principles of RPDs. New materials that may be utilized for optimal esthetics are presented and techniques for contouring acrylic resin bases and tinting denture bases are described.

  6. Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine

    ERIC Educational Resources Information Center

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-01-01

    Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of…

  7. The Third Wave: A Position Paper.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    2000-01-01

    Describes the Third Wave as an "information bomb... exploding in our midst, showering us with a shrapnel of images and drastically changing the way each of us perceives and acts upon our private world." Begins with a description of A. Toffler's Third Wave as an attempt to partially explain what is happening in higher education, especially distance…

  8. Does the Wave Equation Really Work?

    ERIC Educational Resources Information Center

    Armstead, Donald C.; Karls, Michael A.

    2006-01-01

    The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…

  9. Parallel processing for pitch splitting decomposition

    NASA Astrophysics Data System (ADS)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  10. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  11. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  12. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  13. Partial Triceps Disruption

    PubMed Central

    Foulk, David M.; Galloway, Marc T.

    2011-01-01

    Partial triceps tendon disruptions are a rare injury that can lead to debilitating outcomes if misdiagnosed or managed inappropriately. The clinician should have a high index of suspicion when the mechanism involves a fall onto an outstretched arm and there is resultant elbow extension weakness along with pain and swelling. The most common location of rupture is at the tendon-osseous junction. This case report illustrates a partial triceps tendon disruption with involvement of, primarily, the medial head and the superficial expansion. Physical examination displayed weakness with resisted elbow extension in a flexed position over 90°. Radiographs revealed a tiny fleck of bone proximal to the olecranon, but this drastically underestimated the extent of injury upon surgical exploration. Magnetic resonance imaging is essential to ascertain the percentage involvement of the tendon; it can be used for patient education and subsequently to determine treatment recommendations. Although excellent at finding associated pathology, it may misjudge the size of the tear. As such, physicians must consider associated comorbidities and patient characteristics when formulating treatment plans. PMID:23016005

  14. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  15. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  16. Error reduction in EMG signal decomposition.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2014-12-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.

  17. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  18. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  19. A mathematical analysis of the scattered decomposition

    SciTech Connect

    Salmon, J.

    1988-01-01

    A theoretical basis for the scattered decomposition is worked out in some detail. The basic result has been part of the /open quotes/folklore/close quotes/ for some time, but has never been proved. The load imbalance expected from a scattered decomposition of a set of computational tasks is proportional to the number of tasks assigned to each processor, the mean time per task and root mean square deviation timer per task. The constant of proportionality is a very slowly increasing function of the number of processors. 4 refs.

  20. Convergence Analysis of a Domain Decomposition Paradigm

    SciTech Connect

    Bank, R E; Vassilevski, P S

    2006-06-12

    We describe a domain decomposition algorithm for use in several variants of the parallel adaptive meshing paradigm of Bank and Holst. This algorithm has low communication, makes extensive use of existing sequential solvers, and exploits in several important ways data generated as part of the adaptive meshing paradigm. We show that for an idealized version of the algorithm, the rate of convergence is independent of both the global problem size N and the number of subdomains p used in the domain decomposition partition. Numerical examples illustrate the effectiveness of the procedure.

  1. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  2. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    ERIC Educational Resources Information Center

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  3. Magnetic Helicity of Alfven Simple Waves

    NASA Technical Reports Server (NTRS)

    Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-01-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.

  4. Magnetic Helicity of Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-12-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase \\varphi=k0(z-λ t), where k0 is the wave number and λ is the group velocity of the wave, and (b) the generalized Barnes (1976) simple Alfvén wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.

  5. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  6. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  7. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  8. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  9. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

    PubMed Central

    Yang, B.; Zhou, Y. T.; Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al2Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  10. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  11. Hugoniot and sound velocity of antigorite and evidence for sluggish decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; Yu, Yin; He, Hongliang; Meng, Chuanmin; Liu, Fusheng; Zhang, Mingjian

    2014-05-01

    Antigorite is one kind of hydrous serpentine that is present in meteorites and in the Earth mantle. In order to understand its dynamic behaviors, metastability and decomposition, shock experiments on antigorite have been conducted using a two-stage gas gun, and wave profiles of particle velocities have been measured to obtain the Hugoniot up to ~130 GPa and sound velocity at high pressures. The results show three regions of low-pressure phase below ~43 GPa and its metastable extension above a pressure of ~43 GPa for short durations of shock and high-pressure phase(s) above a pressure of ~43 GPa for long durations of shock. The dynamic behaviors of antigorite depend on not only the pressure but also the compression duration. Metastable extension state indicates that antigorite may survive beyond the stability depending on the shock conditions. Shock temperatures for antigorite are calculated along the Hugoniot. The pressure-density, sound velocity-pressure and shock temperature-pressure plots demonstrate that the decomposition reaction of antigorite into high-pressure phase(s) is accompanied by a volume expansion, sound velocity increase and temperature decrease, relative to the metastable extension phase above ~43 GPa. The decomposition should be sluggish and needs enough reaction time to complete and to overcome the activation energy. As a result of the high metastability of antigorite and possible decomposition assemblages, the hydrous serpentine (antigorite) may play a crucial role for the origin of water during the Earth accretion.

  12. Methanol decomposition bottoming cycle for IC engines

    NASA Technical Reports Server (NTRS)

    Purohit, G.; Houseman, J.

    1979-01-01

    This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.

  13. Decomposition of Prefixed Words in Russian

    ERIC Educational Resources Information Center

    Kazanina, Nina

    2011-01-01

    I examined the nature of morphological decomposition in a series of masked-priming experiments with Russian prefixed nouns. In Experiments 1A and 1B, I tested 3 types of prime-target pairs in which the prime was a morphologically simple word, and a facilitation was found when the prime and the target were truly morphologically related (e.g.,…

  14. Soluble kinetic model for spinodal decomposition

    SciTech Connect

    Scheucher, M.; Spohn, H.

    1988-10-01

    We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.

  15. Methodologies in forensic and decomposition microbiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culturable microorganisms represent only 0.1-1% of the total microbial diversity of the biosphere. This has severely restricted the ability of scientists to study the microbial biodiversity associated with the decomposition of ephemeral resources in the past. Innovations in technology are bringing...

  16. Non-isothermal decomposition kinetics of diosgenin

    NASA Astrophysics Data System (ADS)

    Chen, Fei-xiong; Fu, Li; Feng, Lu; Liu, Chuo-chuo; Ren, Bao-zeng

    2013-10-01

    The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, Šatava-Šesták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation ( n = 1/3, n is the reaction order) with integral form G(α) = [-ln(1 - α)]1/3 (α = 0.10-0.80). E a and log A [s-1] were determined to be 44.10 kJ mol-1 and 3.12, respectively. Moreover, the thermodynamics properties of Δ H ≠, Δ S ≠, and Δ G ≠ of this reaction were 38.18 kJ mol-1, -199.76 J mol-1 K-1, and 164.36 kJ mol-1 in the stage of thermal decomposition.

  17. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  18. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  19. Modeling decomposition of rigid polyurethane foam

    SciTech Connect

    Hobbs, M.L.

    1998-01-01

    Rigid polyurethane foams are used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Decomposing foams have either been ignored by assuming the foam is not present, or have been empirically modeled by changing physical properties, such as thermal conductivity or emissivity, based on a prescribed decomposition temperature. The hypothesis addressed in the current work is that improved predictions of polyurethane foam degradation can be realized by using a more fundamental decomposition model based on chemical structure and vapor-liquid equilibrium, rather than merely fitting the data by changing physical properties at a prescribed decomposition temperature. The polyurethane decomposition model is founded on bond breaking of the primary polymer and formation of a secondary polymer which subsequently decomposes at high temperature. The bond breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA) from a single nonisothermal experiment with a heating rate of 20 C/min. Model predictions compare reasonably well with a separate nonisothermal TGA weight loss experiment with a heating rate of 200 C/min.

  20. Morphological Decomposition in Reading Hebrew Homographs

    ERIC Educational Resources Information Center

    Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered

    2016-01-01

    The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…

  1. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  2. Low Temperature Decomposition Rates for Tetraphenylborate Ion

    SciTech Connect

    Walker, D.D.

    1998-11-18

    Previous studies indicated that palladium is catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Additional evidence suggest that Pd(II) reduces to Pd(0) during catalyst activation. Further use of tetraphenylborate ion in the decontamination of radioactive waste may require removal of the catalyst or cooling to temperatures at which the decomposition reaction proceeds slowly and does not adversely affect processing. Recent tests showed that tetraphenylborate did not react appreciably at 25 degrees Celsius over six months suggesting the potential to avoid the decomposition at low temperatures. The lack of reaction at low temperature could reflect very slow kinetics at the lower temperature, or may indicate a catalyst ''deactivation'' process. Previous tests in the temperature range 35 to 70 degrees Celsius provided a low precision estimate of the activation energy of the reaction with which to predict the rate of reaction at 25 percent Celsius. To understand the observations at 25 degrees Celsius, experiments must separate the catalyst activation step and the subsequent reaction with TPB. Tests described in this report represent an initial attempt to separate the two steps and determine the rate and activation energy of the reaction between active catalyst and TPB. The results of these tests indicate that the absence of reaction at 25 degrees Celsius was caused by failure to activate the catalyst or the presence of a deactivating mechanism. In the presence of activated catalyst, the decomposition reaction rate is significant.

  3. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    PubMed

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy

  4. Development of Partial Discharge Sensing Device for Epoxy Resin Bushing

    NASA Astrophysics Data System (ADS)

    Mutakamihigashi, Tatsuya; Kawasaki, Makoto; Hashiba, Yasuhito

    For the electric power equipment and the cables, prevention of accident is very important. And in substations, a lot of solid insulations using epoxy resin are introduced into cubicle-type switchgears because of its high insulation reliability and down-sizing ability. We know a phenomenon that partial discharge occur when electric installation have degraded. When void or crack exist in the polymer insulating materials or interface of conductor, partial discharge is caused and finally results in breakdown. In recent years, the feature is seen in the partial discharge generated in the epoxy resin before and after the progress of electric tree by our research. Electro-magnetic wave spectra radiated from partial discharge have specific frequency region from 200MHz to 450MHz. We developed the sensing device that can detect the electric discharge by receiving the signal by mobile antenna. We proved the performance of this equipment in operating substations; As a result, partial discharge in epoxy resin was detected by electro-magnetic wave. And then, we removed epoxy resin bushing from the cubicle and measured partial discharge by discharging current, we confirmed that presumed level is correct.

  5. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical

  6. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  7. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.

  8. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    SciTech Connect

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  9. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGESBeta

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  10. Decomposition of diverse litter mixtures in streams.

    PubMed

    Lecerf, Antoine; Risnoveanu, Geta; Popescu, Cristina; Gessner, Mark O; Chauvet, Eric

    2007-01-01

    In view of growing interest in understanding how biodiversity affects ecosystem functioning, we investigated effects of riparian plant diversity on litter decomposition in forest streams. Leaf litter from 10 deciduous tree species was collected during natural leaf fall at two locations (Massif Central in France and Carpathians in Romania) and exposed in the field in litter bags. There were 35 species combinations, with species richness ranging 1-10. Nonadditive effects on the decomposition of mixed-species litter were minor, although a small synergistic effect was observed in the Massif Central stream where observed litter mass remaining was significantly lower overall than expected from data on single-species litter. In addition, variability in litter mass remaining decreased with litter diversity at both locations. Mean nitrogen concentration of single- and mixed-species litters (0.68-4.47% of litter ash-free dry mass) accounted for a large part of the variation in litter mass loss across species combinations. For a given species or mixture, litter mass loss was also consistently faster in the Massif Central than in the Carpathians, and the similarity in general stream characteristics, other than temperature, suggests that this effect was largely due to differences in thermal regimes. These results support the notion that decomposition of litter mixtures is primarily driven by litter quality and environmental factors, rather than by species richness per se. However, the observed consistent decrease in variability of decomposition rate with increasing plant species richness indicates that conservation of riparian tree diversity is important even when decomposition rates are not greatly influenced by litter mixing.

  11. Steepened magnetosonic waves at Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Smith, Edward J.; Thorne, Richard M.; Gosling, J. T.; Matsumoto, Hiroshi

    1987-10-01

    Intense MHD waves at Comet Giacobini-Zinner were examined to investigate the mode and direction of wave propagation and thereby to provide important constraints on potential mechanisms for the wave origin in the vicinity of the comet. From observations of steepened wave forms, it is found that the waves must be propagating toward the sun but are blown back across the ICE spacecraft. The correlation between magnetic field magnitude and electron density enhancements indicates that these waves are fast magnetosonic mode emissions. The sense of rotation of the partial rotations are left-hand circularly polarized in the spacecraft frame, consistent with anomalously Doppler-shifted right-hand waves.

  12. FAST TRACK PAPER: Receiver function decomposition of OBC data: theory

    NASA Astrophysics Data System (ADS)

    Edme, Pascal; Singh, Satish C.

    2009-06-01

    This paper deals with theoretical aspects of wavefield decomposition of Ocean Bottom Cable (OBC) data in the τ-p domain, considering a horizontally layered medium. We present both the acoustic decomposition and elastic decomposition procedures in a simple and compatible way. Acoustic decomposition aims at estimating the primary upgoing P wavefield just above the ocean-bottom, whereas elastic decomposition aims at estimating the primary upgoing P and S wavefields just below the ocean-bottom. Specific issues due to the interference phenomena at the receiver level are considered. Our motivation is to introduce the two-step decomposition scheme called `receiver function' (RF) decomposition that aims at determining the primary upgoing P and S wavefields (RFP and RFS, free of any water layer multiples). We show that elastic decomposition is a necessary step (acting as pre-conditioning) before applying the multiple removal step by predictive deconvolution. We show the applicability of our algorithm on a synthetic data example.

  13. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  14. Photodegradation at day, microbial decomposition at night - decomposition in arid lands

    NASA Astrophysics Data System (ADS)

    Gliksman, Daniel; Gruenzweig, Jose

    2014-05-01

    Our current knowledge of decomposition in dry seasons and its role in carbon turnover is fragmentary. So far, decomposition during dry seasons was mostly attributed to abiotic mechanisms, mainly photochemical and thermal degradation, while the contribution of microorganisms to the decay process was excluded. We asked whether microbial decomposition occurs during the dry season and explored its interaction with photochemical degradation under Mediterranean climate. We conducted a litter bag experiment with local plant litter and manipulated litter exposure to radiation using radiation filters. We found notable rates of CO2 fluxes from litter which were related to microbial activity mainly during night-time throughout the dry season. This activity was correlated with litter moisture content and high levels of air humidity and dew. Day-time CO2 fluxes were related to solar radiation, and radiation manipulation suggested photodegradation as the underlying mechanism. In addition, a decline in microbial activity was followed by a reduction in photodegradation-related CO2 fluxes. The levels of microbial decomposition and photodegradation in the dry season were likely the factors influencing carbon mineralization during the subsequent wet season. This study showed that microbial decomposition can be a dominant contributor to CO2 emissions and mass loss in the dry season and it suggests a regulating effect of microbial activity on photodegradation. Microbial decomposition is an important contributor to the dry season decomposition and impacts the annual litter turn-over rates in dry regions. Global warming may lead to reduced moisture availability and dew deposition, which may greatly influence not only microbial decomposition of plant litter, but also photodegradation.

  15. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  16. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  17. Numerical modelling of thermal decomposition processes and associated damage in carbon fibre composites

    NASA Astrophysics Data System (ADS)

    Chippendale, R. D.; Golosnoy, I. O.; Lewin, P. L.

    2014-09-01

    Thermo-chemical degradation of carbon fibre composite (CFC) materials under intensive heat fluxes are modelled. The model couples together heat diffusion, polymer pyrolysis with associated gas production and convection through partially decomposed CFCs, and changes in transport properties of the material due to the damage. The model is verified by laser ablation experiments with controlled heat input. The numerical predictions indicate that the thermal gas transport has a minimal effect on the decomposition extent. On the other hand, the model shows that the internal gas pressure is large enough to cause fracture and delamination, and the damage extent may go far beyond the decomposition region as witnessed from experimental verification of the model.

  18. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    PubMed Central

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition. PMID:24976274

  19. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  20. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-30

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  1. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition. PMID:24976274

  2. Exploring Patterns of Soil Organic Matter Decomposition with Students through the Global Decomposition Project (GDP) and the Interactive Model of Leaf Decomposition (IMOLD)

    NASA Astrophysics Data System (ADS)

    Steiner, S. M.; Wood, J. H.

    2015-12-01

    As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.

  3. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  4. Viscoelastic effects on early stage of spinodal decomposition in dynamically asymmetric polymer blends

    NASA Astrophysics Data System (ADS)

    Takenaka, Mikihito; Takeno, Hiroyuki; Hashimoto, Takeji; Nagao, Michihiro

    2006-03-01

    Spinodal decomposition induced by a rapid pressure change was investigated for a dynamically asymmetric polymer blend [deuterated polybutadiene (DPB)/polyisoprene (PI)] with a composition of 50/50wt/wt by using time-resolved small angle neutron scattering. The time change in the scattered intensity distribution with wave number (q) during the spinodal decomposition was found to be approximated by the Doi-Onuki theory [M. Doi and A. Onuki, J. Phys. II 2, 1631 (1992)]. The theoretical analysis yielded the q dependence of the Onsager kinetic coefficient which is characterized by the q-2 dependence at qξve>1 with the characteristic length ξve being much larger than the radius of gyration of DPB or PI. The estimated ξve agrees well with that obtained previously in the relaxation processes induced by pressure change within the one phase region for the same blend.

  5. Theoretical Study of Decomposition Pathways for HArF and HKrF

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)

    2002-01-01

    To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.

  6. Design of channeled partial Mueller matrix polarimeters.

    PubMed

    Alenin, Andrey S; Scott Tyo, J

    2016-06-01

    In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432

  7. Wall pressure fluctuations in rectangular partial enclosures

    NASA Astrophysics Data System (ADS)

    Pagliaroli, T.; Camussi, R.

    2015-04-01

    Wall pressure fluctuations generated within rectangular partial enclosures (RPEs) have been studied experimentally for a broad range of geometrical parameters. The geometry represents a simplified version of a new generation trapped vortex combustor and consisted of a rectangular cavity connected to a neck of smaller size. Wall pressure fluctuations have been measured through wall mounted microphones providing single and multi-variate pressure statistics both in the physical space and in the Fourier domain. In order to interpret the pressure signals, aerodynamic and acoustic investigations have been carried out as well for several cavity-neck ratios. The analysis of the acoustic response of the cavity has been conducted both numerically and experimentally and a simple theoretical model has been proposed to predict the frequency of the acoustic resonances. The aerodynamic study has been carried out through PIV measurements that provided characterization in terms of the geometrical parameters of both the large-scale vortex generated within the cavity and the recirculation zone formed upstream of the neck. The use of the POD decomposition permitted us to correlate the dynamics of the recirculation with the observed pressure statistics. The aerodynamic and acoustic investigations allowed us to interpret exhaustively the wall pressure cross-statistics and to separate contributions induced by hydrodynamic and purely acoustic pressure fluctuations.

  8. Partial volume simulation in software breast phantoms

    NASA Astrophysics Data System (ADS)

    Chen, Feiyu; Pokrajac, David; Shi, Xiquan; Liu, Fengshan; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-03-01

    A modification to our previous simulation of breast anatomy is proposed, in order to improve the quality of simulated projections generated using software breast phantoms. Anthropomorphic software breast phantoms have been used for quantitative validation of breast imaging systems. Previously, we developed a novel algorithm for breast anatomy simulation, which did not account for the partial volume (PV) of various tissues in a voxel; instead, each phantom voxel was assumed to contain single tissue type. As a result, phantom projection images displayed notable artifacts near the borders between regions of different materials, particularly at the skin-air boundary. These artifacts diminished the realism of phantom images. One solution is to simulate smaller voxels. Reducing voxel size, however, extends the phantom generation time and increases memory requirements. We achieved an improvement in image quality without reducing voxel size by the simulation of PV in voxels containing more than one simulated tissue type. The linear x-ray attenuation coefficient of each voxel is calculated by combining attenuation coefficients proportional to the voxel subvolumes occupied by the various tissues. A local planar approximation of the boundary surface is employed, and the skin volume in each voxel is computed by decomposition into simple geometric shapes. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. We illustrate the proposed methodology on phantom slices and simulated mammographic projections. Our results show that the PV simulation has improved image quality by reducing quantization artifacts.

  9. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol.

  10. A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilities

    NASA Astrophysics Data System (ADS)

    Mohamad, Mustafa A.; Cousins, Will; Sapsis, Themistoklis P.

    2016-10-01

    We consider the problem of the probabilistic quantification of dynamical systems that have heavy-tailed characteristics. These heavy-tailed features are associated with rare transient responses due to the occurrence of internal instabilities. Systems with these properties can be found in a variety of areas including mechanics, fluids, and waves. Here we develop a computational method, a probabilistic decomposition-synthesis technique, that takes into account the nature of internal instabilities to inexpensively determine the non-Gaussian probability density function for any arbitrary quantity of interest. Our approach relies on the decomposition of the statistics into a 'non-extreme core', typically Gaussian, and a heavy-tailed component. This decomposition is in full correspondence with a partition of the phase space into a 'stable' region where we have no internal instabilities, and a region where non-linear instabilities lead to rare transitions with high probability. We quantify the statistics in the stable region using a Gaussian approximation approach, while the non-Gaussian distribution associated with the intermittently unstable regions of phase space is inexpensively computed through order-reduction methods that take into account the strongly nonlinear character of the dynamics. The probabilistic information in the two domains is analytically synthesized through a total probability argument. The proposed approach allows for the accurate quantification of non-Gaussian tails at more than 10 standard deviations, at a fraction of the cost associated with the direct Monte-Carlo simulations. We demonstrate the probabilistic decomposition-synthesis method for rare events for two dynamical systems exhibiting extreme events: a two-degree-of-freedom system of nonlinearly coupled oscillators, and in a nonlinear envelope equation characterizing the propagation of unidirectional water waves.

  11. Waves in Turbulent Stably Stratified Shear Flow

    NASA Technical Reports Server (NTRS)

    Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)

    2002-01-01

    Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.

  12. Nucleon spin decomposition and orbital angular momentum in the nucleon

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Masashi

    2014-09-01

    To get a complete decomposition of nucleon spin is a fundamentally important homework of QCD. In fact, if our researches end up without accomplishing this task, a tremendous efforts since the 1st discovery of the nucleon spin crisis would end in the air. We now have a general agreement that there are at least two physically inequivalent gauge-invariant decompositions of the nucleon. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum (OAM) parts. The OAMs of quarks and gluons appearing in the first decomposition are the so-called ``mechanical'' OAMs, while those appearing in the second decomposition are the generalized (gauge-invariant) ``canonical'' ones. By this reason, these decompositions are broadly called the ``mechanical'' and ``canonical'' decompositions of the nucleon spin. Still, there remains several issues, which have not reached a complete consensus among the experts. (See the latest recent). In the present talk, I will mainly concentrate on the practically most important issue, i.e. which decomposition is more favorable from the observational viewpoint. There are two often-claimed advantages of canonical decomposition. First, each piece of this decomposition satisfies the SU(2) commutation relation or angular momentum algebra. Second, the canonical OAM rather than the mechanical OAM is compatible with free partonic picture of constituent orbital motion. In the present talk, I will show that both these claims are not necessarily true, and push forward a viewpoint that the ``mechanical'' decomposition is more physical in that it has more direct connection with observables. I also emphasize that the nucleon spin decomposition accessed by the lattice QCD analyses is the ``mechanical'' decomposition not the ``canonical'' one. The recent lattice QCD studies of the nucleon spin decomposition are also briefly overviewed.

  13. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  14. Decomposition of ethylene on small Pd particles

    NASA Technical Reports Server (NTRS)

    Durrer, W. G.; Poppa, H.; Dickinson, J. T.; Park, C.

    1985-01-01

    New results have been obtained which contribute to the understanding of hydrocarbon reactions on the surface of highly dispersed metal systems. Small particle of Pd were grown by electron beam evaporation on cleavage planes of high purity natural mica under ultrahigh vacuum conditions. Samples were subsequently characterized by transmission electron microscopy. Average particle sizes ranged from about 1 to 10 nm diameter. The chemisoption and decomposition of C2H4 on the Pd particles was studied using Auger electron spectroscopy and flash thermal desorption. It is shown that (a) C2H4 decomposes on Pd particles at room temperature, (b) specific surface sites are causing decomposition, and (c) the proportion of such active sites is significantly greater for the smaller metal particles. This enhanced reactivity may be due to an increase in the density of step, corner, and edge sites with a decrease in particle size.

  15. Hierarchical decomposition model for reconfigurable architecture

    NASA Astrophysics Data System (ADS)

    Erdogan, Simsek; Wahab, Abdul

    1996-10-01

    This paper introduces a systematic approach for abstract modeling of VLSI digital systems using a hierarchical decomposition process and HDL. In particular, the modeling of the back propagation neural network on a massively parallel reconfigurable hardware is used to illustrate the design process rather than toy examples. Based on the design specification of the algorithm, a functional model is developed through successive refinement and decomposition for execution on the reconfiguration machine. First, a top- level block diagram of the system is derived. Then, a schematic sheet of the corresponding structural model is developed to show the interconnections of the main functional building blocks. Next, the functional blocks are decomposed iteratively as required. Finally, the blocks are modeled using HDL and verified against the block specifications.

  16. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-12-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  17. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  18. Aluminate solution decomposition new technology development

    SciTech Connect

    Abramov, V.Ya.; Stelmakova, G.D.

    1996-10-01

    Scientific Technical Centre Reactor together with SC Aluminy carried out the number of investigations in the field of aluminum solution decomposition new technology development. It was based on large prime ratio on one hand, and liquid-solid countercurrent flow movement on the other hand. Practically the suggested technology was considered to be the result of unstationary, mass-transfer theory, which had been checked up at 100 m3 plot scale plant. Hydrate washing was accomplished at the first stage under the condition of countercurrent flow and less than 1 m3 water discharge. The experiments of 3.2--3.3 caustic module aluminate solution decomposition were carried out at the second stage. While full reactor 20 hour regime operation the caustic module increased till 4.1. Usually it accounts 3.7 under the analogous conditions and time.

  19. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  20. Tensor decomposition in potential energy surface representations.

    PubMed

    Ostrowski, Lukas; Ziegler, Benjamin; Rauhut, Guntram

    2016-09-14

    In order to reduce the operation count in vibration correlation methods, e.g., vibrational configuration interaction (VCI) theory, a tensor decomposition approach has been applied to the analytical representations of multidimensional potential energy surfaces (PESs). It is shown that a decomposition of the coefficients within the individual n-mode coupling terms in a multimode expansion of the PES is feasible and allows for convenient contractions of one-dimensional integrals with these newly determined factor matrices. Deviations in the final VCI frequencies of a set of small molecules were found to be negligible once the rank of the factors matrices is chosen appropriately. Recommendations for meaningful ranks are provided and different algorithms are discussed. PMID:27634247

  1. Grandchild of the frequency: Decomposition multigrid method

    SciTech Connect

    Dendy, J.E. Jr.; Tazartes, C.C.

    1994-12-31

    Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.

  2. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  3. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  4. Domain decomposition multigrid for unstructured grids

    SciTech Connect

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  5. Monte Carlo simulations for spinodal decomposition

    SciTech Connect

    Sander, E.; Wanner, T.

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, the authors are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u{sub 0} {equivalent_to} {mu} in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u{sub 0}. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, the authors numerically compare these two mathematical approaches. In fact, they are able to synthesize the understanding they gain from the numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, they can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. The approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter {var_epsilon} of the governing equation. The authors give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. They observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. They explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. They also describe the dynamics of these exceptional solutions.

  6. Axisymmetric scattering of scalar waves by spheroids.

    PubMed

    Lekner, John; Boyack, Rufus

    2011-06-01

    A phase shift formulation of scattering by oblate and prolate spheroids is presented, in parallel with the partial-wave theory of scattering by spherical obstacles. The crucial step is application of a finite Legendre transform to the Helmholtz equation in spheroidal coordinates. In the long-wavelength limit the spheroidal analog of the spherical scattering length immediately gives the cross section. Analytical results are readily obtained for scattering of Schrödinger particle waves by impenetrable spheroids, and for scattering of sound waves by acoustically soft spheroidal objects. The method is restricted to scattering by spheroids whose symmetry axis is coincident with the direction of the incident plane wave. PMID:21682372

  7. Axisymmetric scattering of scalar waves by spheroids.

    PubMed

    Lekner, John; Boyack, Rufus

    2011-06-01

    A phase shift formulation of scattering by oblate and prolate spheroids is presented, in parallel with the partial-wave theory of scattering by spherical obstacles. The crucial step is application of a finite Legendre transform to the Helmholtz equation in spheroidal coordinates. In the long-wavelength limit the spheroidal analog of the spherical scattering length immediately gives the cross section. Analytical results are readily obtained for scattering of Schrödinger particle waves by impenetrable spheroids, and for scattering of sound waves by acoustically soft spheroidal objects. The method is restricted to scattering by spheroids whose symmetry axis is coincident with the direction of the incident plane wave.

  8. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  9. Decomposition of Furan on Pd(111)

    SciTech Connect

    Xu, Ye

    2012-01-01

    Periodic density functional theory calculations (GGA-PBE) have been performed to investigate the mechanism for the decomposition of furan up to CO formation on the Pd(111) surface. At 1/9 ML coverage, furan adsorbs with its molecular plane parallel to the surface in several states with nearly identical adsorption energies of -1.0 eV. The decomposition of furan begins with the opening of the ring at the C-O position with an activation barrier of E{sub a} = 0.82 eV, which yields a C{sub 4}H{sub 4}O aldehyde species that rapidly loses the {alpha} H to form C{sub 4}H{sub 3}O (E{sub a} = 0.40 eV). C{sub 4}H{sub 3}O further dehydrogenates at the {delta} position to form C{sub 4}H{sub 2}O (E{sub a} = 0.83 eV), before the {alpha}-{beta} C-C bond dissociates (E{sub a} = 1.08 eV) to form CO. Each step is the lowest-barrier dissociation step in the respective species. A simple kinetic analysis suggests that furan decomposition begins at 240-270 K and is mostly complete by 320 K, in close agreement with previous experiments. It is suggested that the C{sub 4}H{sub 2}O intermediate delays the decarbonylation step up to 350 K.

  10. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  11. Spark decomposition studies of dielectric gas mixtures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Christophorou, L. G.

    The ultimate usefulness of a high voltage insulating gas depends not only on the ability of the gas to withstand high voltages, but also on the degradation of the gas resulting from spark discharges, corona or prolonged electrical stress and the effect(s) of the by-products on the equipment and, possibly, the environment. In view of these considerations, the study of long-range spark decomposition was undertaken in an effort to improve the decomposition characteristics of dielectric gases through proper tailoring of gas mixtures while maintaining high breakdown strengths. The data reported are on the analyses of gases sparked by capactive (0.1 micro F) discharge into a 0.5-mm gap, resulting in an energy input of approximately 5 J per spark. The nature of the decomposition products of SF6 formed by high voltage discharges observed is found to be critically dependent on impurities (particularly H2O), electrode material and insulating materials present in the system.

  12. Perspectives on Pentaerythritol Tetranitrate (PETN) Decomposition

    SciTech Connect

    Chambers, D; Brackett, C; Sparkman, D O

    2002-07-01

    This report evaluates the large body of work involving the decomposition of PETN and identifies the major decomposition routes and byproducts. From these studies it becomes apparent that the PETN decomposition mechanisms and the resulting byproducts are primarily determined by the chemical environment. In the absence of water, PETN can decompose through the scission of the O-NO{sup 2} bond resulting in the formation of an alkoxy radical and NO{sub 2}. Because of the relatively high reactivity of both these initial byproducts, they are believed to drive a number of autocatalytic reactions eventually forming (NO{sub 2}OCH{sub 2}){sub 3}CCHO, (NO{sub 2}OCH{sub 2}){sub 2}C=CHONO{sub 2}, NO{sub 2}OCH=C=CHONO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 3}C-NO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 2}C(NO{sub 2}){sub 2}, NO{sub 2}OCH{sub 2}C(NO{sub 2}){sub 3}, and C(NO{sub 2}){sub 4} as well as polymer-like species such as di-PEHN and tri-PEON. Surprisingly, the products of many of these proposed autocatalytic reactions have never been analytically validated. Conversely, in the presence of water, PETN has been shown to decompose primarily to mono, di, and tri nitrates of pentaerythritol.

  13. Input-output dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Annoni, Jennifer; Jovanovic, Mihailo; Nichols, Joseph; Seiler, Peter

    2015-11-01

    The objective of this work is to obtain reduced-order models for fluid flows that can be used for control design. High-fidelity computational fluid dynamic models provide accurate characterizations of complex flow dynamics but are not suitable for control design due to their prohibitive computational complexity. A variety of methods, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD), can be used to extract the dominant flow structures and obtain reduced-order models. In this presentation, we introduce an extension to DMD that can handle problems with inputs and outputs. The proposed method, termed input-output dynamic mode decomposition (IODMD), utilizes a subspace identification technique to obtain models of low-complexity. We show that, relative to standard DMD, the introduction of the external forcing in IODMD provides robustness with respect to small disturbances and noise. We use the linearized Navier-Stokes equations in a channel flow to demonstrate the utility of the proposed approach and to provide a comparison with standard techniques for obtaining reduced-order dynamical representations. NSF Career Grant No. NSFCMMI-1254129.

  14. Microscale heat transfer enhancement using spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Poesio, Pietro; Molin, Dafne; Hadjiconstantinou, Nicolas G.; Beretta, Gian Paolo

    2011-11-01

    In many cases, miniaturization is limited by our ability to quickly remove heat; current state-of-the-art cooling approaches have significant limitations, particularly for high heat flux applications. Recent studies have shown that phase separation of a binary liquid-liquid mixture quenched to a temperature below the spinodal curve can be used to enhance heat transfer in small-scale devices. In particular, it has been shown that the self propulsion of single droplets formed during the intermediate stage of spinodal decomposition can produce considerable agitation and, as a result, enhanced heat transport. Spinodal phase separation dynamics can be described by the coupled Cahn-Hilliard/Navier-Stokes equations; unfortunately, simulation of these equations at the device scale is computationally costly due to the mulltiscale nature of spinodal decomposition, which requires resolution of the phase interface between the two fluids which is of atomistic size. In this talk we discuss possible approaches for reducing this computational cost by calculating the resulting transport from synthetic fluctuating fields that simulate the effect of spinodal decomposition but are generated stochastically without solving the Cahn-Hilliard equation at close-to-atomistic resolution.

  15. Exploiting multi-lead electrocardiogram correlations using robust third-order tensor decomposition.

    PubMed

    Padhy, Sibasankar; Dandapat, Samarendra

    2015-10-01

    In this Letter, a robust third-order tensor decomposition of multi-lead electrocardiogram (MECG) comprising of 12-leads is proposed to reduce the dimension of the storage data. An order-3 tensor structure is employed to represent the MECG data by rearranging the MECG information in three dimensions. The three-dimensions of the formed tensor represent the number of leads, beats and samples of some fixed ECG duration. Dimension reduction of such an arrangement exploits correlations present among the successive beats (intra-beat and inter-beat) and across the leads (inter-lead). The higher-order singular value decomposition is used to decompose the tensor data. In addition, multiscale analysis has been added for effective care of ECG information. It grossly segments the ECG characteristic waves (P-wave, QRS-complex, ST-segment and T-wave etc.) into different sub-bands. In the meantime, it separates high-frequency noise components into lower-order sub-bands which helps in removing noise from the original data. For evaluation purposes, we have used the publicly available PTB diagnostic database. The proposed method outperforms the existing algorithms where compression ratio is under 10 for MECG data. Results show that the original MECG data volume can be reduced by more than 45 times with acceptable diagnostic distortion level. PMID:26609416

  16. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  17. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  18. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  19. Biochemical Decomposition of the Herbicide N-(3,4-Dichlorophenyl)-2-Methylpentanamide and Related Compounds

    PubMed Central

    Sharabi, Nagim El-Din; Bordeleau, Lucien M.

    1969-01-01

    Organisms capable of decomposing N-(3,4-dichlorophenyl)-2-methylpentanamide (Karsil) were isolated, identified, and tested for their ability to hydrolyze this herbicide. Primary products of Karsil decomposition by cells and cell-free extracts of a Penicillium sp. were identified as 2-methyl-valeric acid and 3,4-dichloroaniline. The Karsil acylamidase (EC 3.5.1.a aryl acylamine amidohydrolase) was an induced enzyme. It was partially purified and tested for its ability to hydrolyze 25 related compounds. Some relations between the structures of these compounds and their susceptibility to enzymatic hydrolysis were discerned. PMID:5373674

  20. The abiotic litter decomposition in the drylands

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  1. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  2. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  3. Reforming and decomposition of glucose in an aqueous phase

    NASA Technical Reports Server (NTRS)

    Amin, S.; Reid, R. C.; Modell, M.

    1975-01-01

    Exploratory experiments have been carried out to study the decomposition of glucose, a typical carbohydrate, in a high temperature-high pressure water reactor. The objective of the study was to examine the feasibility of such a process to decompose cellulosic waste materials in long-term space missions. At temperatures below the critical point of water, glucose decomposed to form liquid products and char. Little gas was noted with or without reforming catalysts present. The rate of the primary glucose reaction increased significantly with temperature. Partial identification of the liquid phase was made and the C:H:O ratios determined for both the liquid and solid products. One of the more interesting results from this study was the finding that when glucose was injected into a reactor held at the critical temperature (and pressure) of water, no solid products formed. Gas production increased, but the majority of the carbon was found in soluble furans (and furan derivatives). This significant result is now being investigated further.

  4. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  5. Domain decomposition methods for the parallel computation of reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1988-01-01

    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.

  6. Plane waves in noncommutative fluids

    NASA Astrophysics Data System (ADS)

    Abdalla, M. C. B.; Holender, L.; Santos, M. A.; Vancea, I. V.

    2013-08-01

    We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.

  7. Decomposition of Rare Earth Loaded Resin Particles

    SciTech Connect

    Voit, Stewart L; Rawn, Claudia J

    2010-09-01

    resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

  8. State-to-State F + H2 Reaction at Etrans = 0.04088 eV: QP Decomposition, Parametrized S Matrix Incorporating Regge Poles, and Uniform Asymptotic Complex Angular Momentum Analysis of the Angular Scattering.

    PubMed

    Shan, Xiao; Connor, J N L

    2016-08-18

    We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform.

  9. State-to-State F + H2 Reaction at Etrans = 0.04088 eV: QP Decomposition, Parametrized S Matrix Incorporating Regge Poles, and Uniform Asymptotic Complex Angular Momentum Analysis of the Angular Scattering.

    PubMed

    Shan, Xiao; Connor, J N L

    2016-08-18

    We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform. PMID:27434264

  10. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  11. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  12. Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Watt-Meyer, Oliver; Kushner, Paul

    2014-05-01

    A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.

  13. Investigating complex patterns of blocked intestinal artery blood pressure signals by empirical mode decomposition and linguistic analysis

    NASA Astrophysics Data System (ADS)

    Yeh, J.-R.; Lin, T.-Y.; Shieh, J.-S.; Chen, Y.; Huang, N. E.; Wu, Z.; Peng, C.-K.

    2008-02-01

    In this investigation, surgical operations of blocked intestinal artery have been conducted on pigs to simulate the condition of acute mesenteric arterial occlusion. The empirical mode decomposition method and the algorithm of linguistic analysis were applied to verify the blood pressure signals in simulated situation. We assumed that there was some information hidden in the high-frequency part of the blood pressure signal when an intestinal artery is blocked. The empirical mode decomposition method (EMD) has been applied to decompose the intrinsic mode functions (IMF) from a complex time series. But, the end effects and phenomenon of intermittence damage the consistence of each IMF. Thus, we proposed the complementary ensemble empirical mode decomposition method (CEEMD) to solve the problems of end effects and the phenomenon of intermittence. The main wave of blood pressure signals can be reconstructed by the main components, identified by Monte Carlo verification, and removed from the original signal to derive a riding wave. Furthermore, the concept of linguistic analysis was applied to design the blocking index to verify the pattern of riding wave of blood pressure using the measurements of dissimilarity. Blocking index works well to identify the situation in which the sampled time series of blood pressure signal was recorded. Here, these two totally different algorithms are successfully integrated and the existence of the existence of information hidden in high-frequency part of blood pressure signal has been proven.

  14. Partial confinement photonic crystal waveguides

    SciTech Connect

    Saini, S.; Hong, C.-Y.; Pfaff, N.; Kimerling, L. C.; Michel, J.

    2008-12-29

    One-dimensional photonic crystal waveguides with an incomplete photonic band gap are modeled and proposed for an integration application that exploits their property of partial angular confinement. Planar apodized photonic crystal structures are deposited by plasma enhanced chemical vapor deposition and characterized by reflectivity as a function of angle and polarization, validating a partial confinement design for light at 850 nm wavelength. Partial confinement identifies an approach for tailoring waveguide properties by the exploitation of conformal film deposition over a substrate with angularly dependent topology. An application for an optoelectronic transceiver is demonstrated.

  15. An Ultrasonic Clamp for Bloodless Partial Nephrectomy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril; Bouchoux, Guillaume; Murat, François Joseph; Birer, Alain; Theillère, Yves; Chapelon, Jean Yves; Cathignol, Dominique

    2007-05-01

    Maximum conservation of the kidney is preferable through partial nephrectomy for patients at risk of disease recurrence of renal cancers. Haemostatic tools are needed in order to achieve bloodless surgery and reduce post surgery morbidity. Two piezo-ceramic transducers operating at a frequency of 4 MHz were mounted on each arm of a clamp. When used for coagulation purposes, two transducers situated on opposite arms of the clamp were driven simultaneously. Heat delivery was optimized as each transducers mirrored back to targeted tissues the wave generated by the opposite transducer. Real-time treatment monitoring with an echo-based technique was also envisaged with this clamp. Therapy was periodically interrupted so one transducer could generate a pulse. The echo returning from the opposite transducer was treated. Coagulation necroses were obtained in vitro on substantial thicknesses (23-38mm) of pig liver over exposure durations ranging from 30s to 130s, and with acoustic intensities of less than 15W/cm2 per transducer. Both kidneys of two pigs were treated in vivo with the clamp (14.5W/cm2 for 90s), and the partial nephrectomies performed proved to be bloodless. In vitro and in vivo, wide transfixing lesions corresponded to an echo energy decrease superior to -10dB and parabolic form of the time of flight versus treatment time. In conclusion, this ultrasound clamp has proven to be an excellent mean for achieving monitored haemostasis in kidney.

  16. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the

  17. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    PubMed Central

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  18. Structure and process in semantic memory: new evidence based on speed-accuracy decomposition.

    PubMed

    Kounios, J; Osman, A M; Meyer, D E

    1987-03-01

    Reaction-time and accuracy data obtained from studies of sentence verification have not been rich enough to answer certain important theoretical questions about structures and processes in human semantic memory. However, a new technique called speed-accuracy decomposition (Meyer, Irwin, Osman, & Kounios, 1986) may help solve this problem. The technique allows intermediate products of sentence verification to be analyzed more precisely. Three experiments with speed-accuracy decomposition indicate that verification processes produce useful partial information before they are completed. Such information appears to accumulate continuously at a rate whose magnitude depends on the degree of relatedness between semantic categories. This outcome is consistent with continuous computational (e.g., semantic-feature comparison) models of semantic memory. An analysis of reaction-time minima suggests that a discrete all-or-none search process may also contribute at least occasionally to sentence verification. Further details regarding the nature of these processes and the memory structures on which they operate can be inferred from additional results obtained through speed-accuracy decomposition.

  19. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.

    PubMed

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G

    2015-08-07

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.

  20. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    PubMed Central

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620