Sample records for partial-record stations additional

  1. Water resources data for Pennsylvania, water year 1994. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1996-03-01

    Volume 2 contains: (1) discharge records for 94 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 17 gaging stations and 125 partial-record and project stations; and (4) water-level records for 25 observation wells. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.

  2. Water resources data for Pennsylvania, water year 1995. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1997-02-01

    This report, Volume, 2, includes record from the Susquehanna and Potomac River Basins. Specifically, it contains: (1) discharge records for 90 continuous-record streamflow-gaging stations and 41 partial-record stations; (2) elevation and contents record for 12 lakes and reservoirs; (3) water-quality records for 13 streamflow-gaging stations and 189 partial-record and project stations; and (4) water-level records for 25 network observation wells. Site locations are shown in figures throughout the report. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.

  3. Water resources data for New Mexico, water year 1975

    USGS Publications Warehouse

    ,

    1976-01-01

    Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  4. Index of stations: surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  5. Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.

    2003-01-01

    Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.

  6. Estimation of selected streamflow statistics for a network of low-flow partial-record stations in areas affected by Base Realignment and Closure (BRAC) in Maryland

    USGS Publications Warehouse

    Ries, Kernell G.; Eng, Ken

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, operated a network of 20 low-flow partial-record stations during 2008 in a region that extends from southwest of Baltimore to the northeastern corner of Maryland to obtain estimates of selected streamflow statistics at the station locations. The study area is expected to face a substantial influx of new residents and businesses as a result of military and civilian personnel transfers associated with the Federal Base Realignment and Closure Act of 2005. The estimated streamflow statistics, which include monthly 85-percent duration flows, the 10-year recurrence-interval minimum base flow, and the 7-day, 10-year low flow, are needed to provide a better understanding of the availability of water resources in the area to be affected by base-realignment activities. Streamflow measurements collected for this study at the low-flow partial-record stations and measurements collected previously for 8 of the 20 stations were related to concurrent daily flows at nearby index streamgages to estimate the streamflow statistics. Three methods were used to estimate the streamflow statistics and two methods were used to select the index streamgages. Of the three methods used to estimate the streamflow statistics, two of them--the Moments and MOVE1 methods--rely on correlating the streamflow measurements at the low-flow partial-record stations with concurrent streamflows at nearby, hydrologically similar index streamgages to determine the estimates. These methods, recommended for use by the U.S. Geological Survey, generally require about 10 streamflow measurements at the low-flow partial-record station. The third method transfers the streamflow statistics from the index streamgage to the partial-record station based on the average of the ratios of the measured streamflows at the partial-record station to the concurrent streamflows at the index streamgage. This method can be used with as few as one pair of streamflow measurements made on a single streamflow recession at the low-flow partial-record station, although additional pairs of measurements will increase the accuracy of the estimates. Errors associated with the two correlation methods generally were lower than the errors associated with the flow-ratio method, but the advantages of the flow-ratio method are that it can produce reasonably accurate estimates from streamflow measurements much faster and at lower cost than estimates obtained using the correlation methods. The two index-streamgage selection methods were (1) selection based on the highest correlation coefficient between the low-flow partial-record station and the index streamgages, and (2) selection based on Euclidean distance, where the Euclidean distance was computed as a function of geographic proximity and the basin characteristics: drainage area, percentage of forested area, percentage of impervious area, and the base-flow recession time constant, t. Method 1 generally selected index streamgages that were significantly closer to the low-flow partial-record stations than method 2. The errors associated with the estimated streamflow statistics generally were lower for method 1 than for method 2, but the differences were not statistically significant. The flow-ratio method for estimating streamflow statistics at low-flow partial-record stations was shown to be independent from the two correlation-based estimation methods. As a result, final estimates were determined for eight low-flow partial-record stations by weighting estimates from the flow-ratio method with estimates from one of the two correlation methods according to the respective variances of the estimates. Average standard errors of estimate for the final estimates ranged from 90.0 to 7.0 percent, with an average value of 26.5 percent. Average standard errors of estimate for the weighted estimates were, on average, 4.3 percent less than the best average standard errors of estima

  7. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Stewart, J.A.

    1983-01-01

    Knowledge of low-flow data for Indiana streams is essential to the planners and developers of water resources for municipal, industrial, and recreational uses in the State. Low-flow data for 219 continuous-record gaging stations through the 1978 water year and for some stations since then are presented in tables and curves. Flow-duration and low-flow-frequency data were estimated or determined for continuous-record stations having more than 10 years of record. In addition, low-flow-frequency data were estimated for 248 partial-record stations. Methods for estimating these data are included in the report. (USGS)

  8. Streamflow measurements, basin characteristics, and streamflow statistics for low-flow partial-record stations operated in Massachusetts from 1989 through 1996

    USGS Publications Warehouse

    Ries, Kernell G.

    1999-01-01

    A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.

  9. Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.

    2004-01-01

    Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.

  10. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  11. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  12. Water resources data for California, water year 1995. Volume 1. Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River. Water-data report (Annual), 1 October 1994-30 SeptembeR 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.

    1996-04-01

    Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station.

  13. August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.

    2003-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.

  14. Water resources data West Virginia water wear 2001

    USGS Publications Warehouse

    Ward, S.M.; Taylor, B.C.; Crosby, G.R.

    2002-01-01

    Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  15. Water Resources Data, West Virginia, Water Year 2003

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2004-01-01

    Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  16. Water resources data-West Virginia, water year 2004

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2005-01-01

    Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  17. Index of surface-water stations in Texas, January 1986

    USGS Publications Warehouse

    Carrillo, E.R.; Buckner, H.D.; Rawson, Jack

    1986-01-01

    As of January 1, 1986, the surface-water data-collection network in Texas operated by the U.S. Geological Survey included 386 streamflow, 87 reservoir-contents, 33 stage, 10 crest-stage partial-record, 8 periodic discharge through range, 38 flood-hydrograph partial-record, 11 flood-profile partial-record , 36 low-flow partial-record 2 tide-level, 45 daily chemical-quality, 23 continuous-recording water-quality, 97 periodic biological, 19 lake surveys, 174 periodic organic- and (or) nutrient, 4 periodic insecticide, 58 periodic pesticide, 22 automatic sampler, 157 periodic minor elements, 141 periodic chemical-quality, 108 periodic physical-organic, 14 continuous-recording three- or four-parameter water-quality, 3 sediment, 39 periodic sediment, 26 continuous-recording temperature, and 37 national stream-quality accounting network stations were in operation. Tables describing the station location, type of data collected, and place where data are available are included, as well as maps showing the location of most of the stations. (USGS)

  18. Index of stations: surface-water data-collection network of Texas, September 1999

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    2001-01-01

    As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  19. Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2008-01-01

    Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).

  20. Water resources data for california, water year 1992. Volume 1. Southern Great Basin from Mexican border to Mono lake basin, and pacific slope basins from Tijuana river to Santa Maria river. Water-data report (Annual), 1 October 1991-30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.

    1993-09-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 11 stations.

  1. Water resources data for California, water year 1993. Volume 1. Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.

    1994-06-01

    Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations.

  2. Water resources data for California water year 1994. Volume 1. Southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria river. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.

    1995-03-01

    Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and (4) precipitation records for 8 stations.

  3. Evaluation of a method of estimating low-flow frequencies from base-flow measurements at Indiana streams

    USGS Publications Warehouse

    Wilson, John Thomas

    2000-01-01

    A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In that test case, the method tended to over predict, based on the median relative error. In 23 of 28 test pairs, the predicted 7-day, 10-year low flow was within 15 percent of the observed value; in 26 of 28 test pairs, the predicted 7-day, 2-year low flow was within 15 percent of the observed value. When the index station and partial-record station were on the same stream or streams tributary to each other and the index station had a smaller drainage area than the partial-record station, the method tended to under predict the low-flow frequencies. Nineteen of 28 predicted values of the 7-day, 10-year low flow were within 15 percent of the observed values. Twenty-five of 28 predicted values of the 7-day, 2-year low flow were within 15 percent of the observed values. When the index station and the partial-record station were on different streams, the method tended to under predict regardless of whether the index station had a larger or smaller drainage area than that of the partial-record station. Also, the variability of the relative error of estimate was greatest for the test cases that used index stations and partial-record stations from different streams. This variability, in part, may be caused by using more streamflow-gaging stations with small low-flow frequencies in these test cases. A small difference in the predicted and observed values can equate to a large relative error when dealing with stations that have small low-flow frequencies. In the test cases that used one index station, the method tended to predict smaller low-flow frequencies as the number of base-flow measurements was reduced from 20 to 5. Overall, the average relative error of estimate and the variability of the predicted values increased as the number of base-flow measurements was reduced.

  4. Water Resources Data, California, Water Year 1990. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; Jensen, R.M.; Hoffman, E.B.

    1991-01-01

    Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 157 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 2miscellaneous measurement stations; stage and contents records for 16 lakes and reservoirs; water-quality records for 19 streamflow-gaging stations, 2 partial-record stations; and precipitation records for 13 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data, California, Water Year 1991. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Jensen, R.M.; Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.

    1992-01-01

    Water resources data for the 1991 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains dischrage records for 171 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 3 miscellaneous measurement stations; stage and contents records for 24 lakes and reservoirs; water-quality records for 23 streamflow-gaging stations, 4 partial-record stations; and precipitation records for 16 stations. These data represent that part of the National Water Data System operated by the U,S. Geological Survey and cooperating State and Federal agencies in California.

  6. Water Resources Data, Alabama, Water Year 2002

    USGS Publications Warehouse

    Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.

    2003-01-01

    Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  7. Water Resources Data, Alabama, Water Year 2003

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2004-01-01

    Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  8. Water Resources Data, Alabama, Water Year 2004

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2005-01-01

    Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  9. Water Resources Data, Alabama, Water Year 2005

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2006-01-01

    Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  10. August median streamflow on ungaged streams in Eastern Coastal Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2004-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.

  11. Water resources data, Ohio, water year 2003 : Volume 1. Ohio River basin excluding project data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Frum, S.R.

    2004-01-01

    Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  12. Water resources data, Ohio, water year 2003: Volume 2. St. Lawrence River basin and statewide project data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Frum, S.R.

    2004-01-01

    Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  13. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  14. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  15. Water Resources Data--California, Water Year 2002, Volume 2, Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    USGS Publications Warehouse

    Freeman, L.A.; Smithson, J.R.; Webster, M.D.; Pope, G.L.; Friebel, M.F.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 2 contains discharge records for 133 gaging stations, stage and contents for 8 lakes and reservoirs, gage-height records for 6 stations, water quality for 43 streamflow-gaging stations and 5 partial-record stations. Also included are data for 1 low-flow partial-record station, and 5 miscellaneous-measurement stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  16. Water Resources Data, California, Water Year 1993. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.

    1994-01-01

    Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations . These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  17. Water Resources Data for Alaska, Water Year 1996

    USGS Publications Warehouse

    Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.

    1997-01-01

    Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  18. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  19. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  20. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  1. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  2. Water Resources Data, California, Water Year 1994. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.

    1995-01-01

    Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and ( 4) precipitation records for 8 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  3. Water Resources Data, California, Water Year 1995. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.

    1996-01-01

    Water resources data for the 1995 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.

    2012-01-01

    Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.

  5. Water Resources Data -- California, Water Year 2003, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Water Resources Data--California, Water Year 2001, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Agajanian, J.; Rockwell, G.L.; Anderson, S.W.; Pope, G.L.

    2002-01-01

    Water-resources data for the 2001 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 180 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 37 streamflow-gaging stations and 2 partial-record stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  7. Water Resources Data--California, Water Year 2002, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  8. Water resources data, California, water year 2004, volume 1: Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  9. Water Resources Data, California, Water Year 1996. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Rockwell, G.L.; Hayes, P.D.; Agajanian, J.A.

    1997-01-01

    Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  10. Water Resources Data--California, Water Year 2000, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Anderson, S.W.; Agajanian, J.; Rockwell, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 175 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 27 streamflow-gaging stations and 3 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  11. Water resources data, Indiana, water year 1982

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1983-01-01

    Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  12. Water resources data, Indiana, water year 1983

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1984-01-01

    Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  13. Use and Availability of Continuous Streamflow Records in Tennessee

    DTIC Science & Technology

    1988-01-01

    which are operated for a water budget study of Reelfoot Lake and two stations for a base flow-groundwater study at the Department of Energy’s Oak...continuous lake stage; (3) 5 flood hydrograph; (4) 75 low-flow partial-record; (5) 84 crest-stage partial-record; and (6) 6 flood-profile partial...operated for planning or design purposes. There is one gage at each of three water-supply studies, five stations are used in a lake sedimentation

  14. Cost-effectiveness of the US Geological Survey stream-gaging program in Arkansas

    USGS Publications Warehouse

    Darling, M.E.; Lamb, T.E.

    1984-01-01

    This report documents the results of the cost-effectiveness of the stream-gaging program in Arkansas. Data uses and funding sources were identified for the daily-discharge stations. All daily-discharge stations were found to be in one or more data use categories, and none were candidates for alternate methods which would result in discontinuation or conversion to a partial record station. The cost for operation of daily-discharge stations and routing costs to partial record stations, crest gages, pollution control stations as well as seven recording ground-water stations was evaluated in the Kalman-Filtering Cost-Effective Resource allocation (K-CERA) analysis. This operation under current practices requires a budget of $292,150. The average standard error of estimate of streamflow record for the Arkansas District was analyzed at 33 percent.

  15. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

  16. Water resources data for California, water year 1996. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin and Pacific Slope basins from Tijuana River to Santa Maria river. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockwell, G.L.; Hayes, P.D.; Agajanian, J.

    1997-07-01

    Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State andmore » Federal agencies in California.« less

  17. Water resources data-California, water year 2004. volume 4. northern central valley basins and the Great Basin from Honey Lake basin to Oregon state line

    USGS Publications Warehouse

    Webster, M.D.; Rockwell, G.L.; Friebel, M.F.; Brockner, S.J.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 188 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 20 streamflow-gaging stations and 1 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data for California, Water Year 1985. Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line except Central Valley

    USGS Publications Warehouse

    Anderson, S.; Markham, K.L.; Trujillo, L.F.; Shelton, W.F.; Grillo, D.A.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; and stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 2 contains discharge records for 133 gaging stations; stage and contents for 9 lakes and reservoirs; and water quality for 34 stations. Also included are 3 low-flow partial-record stations and 1 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Water resources data, Kentucky. Water year 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less

  20. Water resources data for Pennsylvania, water year 1993. Volume 2. Susquehanna and Potomac river basins. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1994-01-01

    Water resources data for the 1993 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River Basins. Specifically, Volume 2 contains (1) discharge records for 97 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 13 lakes and reservoirs; and (3) water-level records for 25 observation wells. The location of these sites is shown in figures 6-8. Additional waste data collected at various sitesmore » not involved in the systematic data-collection program are also presented.« less

  1. Methods for estimating low-flow statistics for Massachusetts streams

    USGS Publications Warehouse

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e

  2. Water resources data, Arkansas, 2002

    USGS Publications Warehouse

    Brossett, T.H.; Evans, D.A.

    2003-01-01

    Water resources data for the 2002 water year for Arkansas consist of records of discharge and water quality (physical measurements and chemical concentrations) of streams, water quality of lakes, and groundwater levels and ground-water quality. Data from selected sites in Missouri and Oklahoma also are included. This report contains daily discharge records for 108 surface-water gaging stations and 87 peak-discharge partial-record stations, water-quality data for 65 surface-water stations and 5 wells, and water levels for 15 observation wells. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. Note: Historically, this report has been published as a paper report. Beginning with the 2002 water year report, these reports will be available from the World Wide Web at http://ar.water.usgs.gov.

  3. Water Resources Data, California, Water Year 1989. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hoffman, E.B.; Bowers, J.C.; Jensen, R.M.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 137 gaging stations; stage and contents for 15 lakes and reservoirs; water quality for 25 streams; and precipitation for 8 gaging stations. Also included are 15 crest-stage partial-record stations, 7 miscellaneous measurement sites, and 5 water-quality partial record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  5. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  6. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  7. Minimum average 7-day, 10-year flows in the Hudson River basin, New York, with release-flow data on Rondout and Ashokan reservoirs

    USGS Publications Warehouse

    Archer, Roger J.

    1978-01-01

    Minimum average 7-day, 10-year flow at 67 gaging stations and 173 partial-record stations in the Hudson River basin are given in tabular form. Variation of the 7-day, 10-year low flow from point to point in selected reaches, and the corresponding times of travel, are shown graphically for Wawayanda Creek, Wallkill River, Woodbury-Moodna Creek, and the Fishkill Creek basins. The 7-day, 10-year low flow for the Saw Kill basin, and estimates of the 7-day, 10-year low flow of the Roeliff Jansen Kill at Ancram and of Birch Creek at Pine Hill, are given. Summaries of discharge from Rondout and Ashokan Reservoirs, in Ulster County, are also included. Minimum average 7-day, 10-year flow for gaging stations with 10 years or more of record were determined by log-Pearson Type III computation; those for partial-record stations were developed by correlation of discharge measurements made at the partial-record stations with discharge data from appropriate long-term gaging stations. The variation in low flows from point to point within the selected subbasins were estimated from available data and regional regression formula. Time of travel at these flows in the four subbasins was estimated from available data and Boning's equations.

  8. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  9. Water resources data, Idaho, 2002; Volume 2. Upper Columbia River basin and Snake River basin below King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  10. Magnitude and frequency of Iowa floods, Part two

    USGS Publications Warehouse

    Schwob, Harlan H.

    1966-01-01

    Floqd records fo.r regular and partial-record gaging stations are contained in the following pages. Each listing contains the station number .and name, descriptive paragraphs pertaining to the station, qnd a listing of the flood peaks available through the 1965 water year. Peaks above a base as well as annual peaks are listed. These provide the data for a partial-duration flood-frequency curve. Most of the material is self-explan~tory and needs no discussion. However, a few items may be made clearer by the brief explanation which follows. 

  11. Water Resources Data for California, Water Year 1986. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  12. Water Resources Data for California, Water Year 1985. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Water Resources Data for California, 1965; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district chief, Menlo Park, Calif.

  14. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  15. Low-flow characteristics for selected streams in Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  16. Water Resources Data for California, 1967; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  17. Water Resources Data for California, 1967; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  18. Water resources data for California, 1968; Part 1: Surface water records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  19. Water Resources Data for California, 1968; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  20. Water Resources Data for California, 1966; Part 1: Surface Water Records; Volume 2: Northern Great Basin and Central Valley

    USGS Publications Warehouse

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann and R. Stanley Lord, successive district chiefs, Menlo Park, Calif.

  1. Water Resources Data for California, 1965; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district chief, Menlo Park, Calif.

  2. Surface water records of California, 1964; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of California are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district engineer, Surface Water Branch.

  3. Low-Flow Characteristics and Regionalization of Low-Flow Characteristics for Selected Streams in Arkansas

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.

    2008-01-01

    Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.

  4. Water Resources Data for California, Water Year 1988. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data for California, Water Year 1987. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed-rank test showed a significant difference at the 95-percent confidence level between the Q100 computed from AMS station data and the Q100 determined from previously published FIS for 97 sites. The flood-frequency discharges computed from AMS station data were consistently larger than the flood discharges from the FIS; mean percentage difference between the two data sets ranged from 14 percent for the Q100 to 20 percent for the Q50. The results of the Mann-Kendall test showed that 8 stations exhibited a positive trend (i.e., increasing annual maximum peaks over time) over their respective periods of record at the 95-percent confidence level, and an additional 7 stations indicated a positive trend, for a total of 15 stations, at a confidence level of greater than or equal to 90 percent. The Q2, Q5, Q10, Q50, and Q100 determined from AMS and PDS data for each station were compared by percentage. The flood magnitudes for the 2-year return period were 16 percent higher when partial-duration peaks were incorporated into the analyses, as opposed to using only the annual maximum peaks. The discharges then tended to converge around the 5-year return period, with a mean collective difference of only 1 percent. At the 10-, 50-, and 100-year return periods, the flood magnitudes based on annual maximum peaks were, on average, 6 percent higher compared to corresponding flood magnitudes based on partial-duration peaks. Possible effects on flood peaks from flood-control reservoirs and urban development within the basin also were examined. Annual maximum peak-flow data from four stations were divided into pre- and post-regulation periods. Comparisons were made between the Q100 determined from AMS station data for the periods of record pre- and post-regulation. Two stations showed a nearly 60- and 20-percent reduction in the 100-year discharges; the other two stations showed negligible differences in discharges. Three stations within urban basins were compared to 38 stations

  7. Water resources data, Idaho, 2004; Volume 2. Surface water records for Upper Columbia River basin and Great Basin below King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Water resources data, Idaho, 2003; Volume 2. Surface water records for Upper Columbia River basin and Great Basin below King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  9. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  10. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  11. Water resources data for Pennsylvania, water year 1996. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1997-07-01

    This report, Volume, 2, contains (1) discharge records for 81 continuous-record streamflow-gaging stations, 16 partial-record stations, and 20 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 7 gaging stations and 46 ungaged stream sites; and (4) water-level records for 30 ground-water network observation wells. Site locations are shown in figures throughout the report.

  12. Water Resources Data for California, 1966; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Cenral Valley

    USGS Publications Warehouse

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann and R. Stanley Lord, successive district chiefs, Menlo Park, Calif.

  13. Water resources data for Indiana, 1967

    USGS Publications Warehouse

    ,

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface- and ground-water supplies of the Nation. The basic records for the 1967 water year for quality of surface waters within the State of Indiana are given in this report. For convenience and interest, there are also records for a few water quality stations in bordering states.

  14. Water resources data for Indiana, 1966

    USGS Publications Warehouse

    ,

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering states. The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface- and ground-water supplies of the Nation. The basic records for the 1966 water year for quality of surface waters within the State of Indiana are given in this report. For convenience and interest, there are also records for a few water quality stations in bordering states.

  15. Low-flow frequency analyses for streams in west-central Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1985-01-01

    The log-Pearson type III distribution was used for defining low-flow frequency at 116 continuous-record streamflow stations in west-central Florida. Frequency distributions were calculated for 1, 3, 7, 14, 30, 60, 90, 120, and 183 consecutive-day periods for recurrence intervals of 2, 5, 10, and 20 years. Discharge measurements at more than 100 low-flow partial-record stations and miscellaneous discharge-measurement stations were correlated with concurrent daily mean discharge at continuous-record stations. Estimates of the 7-day, 2-year; 7-day, 10-year; 30-day, 2-year; and 30-day, 10-year discharges were made for most of the low-flow partial-record and miscellaneous discharge-measurement stations based on those correlations. Multiple linear-regression analysis was used in an attempt to mathematically relate low-flow frequency data to basin characteristics. The resulting equations showed an apparent bias and were considered unsatisfactory for use in estimating low-flow characteristics. Maps of the 7-day, 10-year and 30-day, 10-year low flows are presented. Techniques that can be used to estimate low-flow characteristics at an ungaged site are also provided. (USGS)

  16. Water Resources Data, Kansas, Water Year 2001

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.

    2002-01-01

    Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  17. Water Resources Data, Kansas, Water Year 2002

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2003-01-01

    Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  18. Water Resources Data, Kansas, Water Year 2000

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  19. Water Resources Data, California, Water Year 1992. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.; Hayes, P.D.

    1993-01-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partialrecord stations; and ( 4) precipitation records for 11 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Low-flow characteristics for streams on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling

    2016-08-03

    Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.

  1. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  2. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.

  3. Water Resources Data, California, Water Year 1997. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.

    1998-01-01

    Water-resources data for the 1997 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 151 gaging stations and 16 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 23 streamflow-gaging stations and 10 partialrecord stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Califomia.

  4. Water Resources Data, California, Water Year 1998. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Agajanian, J.; Rockwell, G.L.; Hayes, P.D.; Anderson, S.W.

    1999-01-01

    Water-resources data for the 1998 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 157 gaging stations and 13 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage-height records for 1 station, water quality for 22 streamflow-gaging stations and 14 partialrecord stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water resources data for Pennsylvania, water year 1992. Volume 2. Susquehanna and Potomac river basins. Water-data report (Annual), 1 October 1991-30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1993-08-01

    Water resources data for the 1992 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River basins. Specifically, it contains discharge records for 85 continuous-record streamflow-gaging stations and 38 partial-record stations; elevation and contents records for 13 lakes and reservoirs; water-quality records for 12 streamflow-gaging stations and 48 ungaged streamsites; and water-level records for 25 observation wells.

  6. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  7. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  8. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  9. Water resources data for Indiana, 1968

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sties within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. Water-resources investigations of the U.S. Geological Survey include the collection of water quality data on the chemical and physical characteristics of surface- and ground-water supplies of the Nation. These data for the 1968 water year for the quality of surface water in Indiana are presented in this report.

  10. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is representative of the increased development of the last 20 years (1989–2008). The two different land- and water-use conditions were used as surrogates for development to determine whether there have been changes in low-flow statistics as a result of changes in development over time. The State was divided into two low-flow regression regions, the Coastal Plain and the non-coastal region, in order to improve the accuracy of the regression equations. The left-censored parametric survival regression method was used for the analyses to account for streamgages and partial-record stations that had zero flow values for some of the statistics. The average standard error of estimate for the 348 regression equations ranged from 16 to 340 percent. These regression equations and basin characteristics are presented in the U.S. Geological Survey (USGS) StreamStats Web-based geographic information system application. This tool allows users to click on an ungaged site on a stream in New Jersey and get the estimated flow-duration and low-flow frequency statistics. Additionally, the user can click on a streamgage or partial-record station and get the “at-site” streamflow statistics. The low-flow characteristics of a stream ultimately affect the use of the stream by humans. Specific information on the low-flow characteristics of streams is essential to water managers who deal with problems related to municipal and industrial water supply, fish and wildlife conservation, and dilution of wastewater.

  11. Low-flow characteristics of streams in Ohio through water year 1997

    USGS Publications Warehouse

    Straub, David E.

    2001-01-01

    This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).

  12. Water Resources Data, Kansas, Water Year 1999

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2000-01-01

    Water-resources data for the 1999 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 143 gaging stations; elevation and contents at 19 watershed lakes and reservoirs; and water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 4 stations. Also included are data for 26 high-flow and 2 low-flow partial-record stations; and 2 chemical quality of precipitation stations. Miscellaneous onsite water-quality data were collected at 132 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with State, local, and Federal agencies in Kansas.

  13. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  14. Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)

    USGS Publications Warehouse

    LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.

    2006-01-01

    This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.

  15. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  16. Low-flow statistics of selected streams in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1998-01-01

    Low-flow statistics for many streams in Chester County, Pa., were determined on the basis of data from 14 continuous-record streamflow stations in Chester County and data from 1 station in Maryland and 1 station in Delaware. The stations in Maryland and Delaware are on streams that drain large areas within Chester County. Streamflow data through the 1994 water year were used in the analyses. The low-flow statistics summarized are the 1Q10, 7Q10, 30Q10, and harmonic mean. Low-flow statistics were estimated at 34 partial-record stream sites throughout Chester County.

  17. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.

  18. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  19. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  20. Methods for estimating tributary streamflow in the Chattahoochee River basin between Buford Dam and Franklin, Georgia

    USGS Publications Warehouse

    Stamey, Timothy C.

    1998-01-01

    Simple and reliable methods for estimating hourly streamflow are needed for the calibration and verification of a Chattahoochee River basin model between Buford Dam and Franklin, Ga. The river basin model is being developed by Georgia Department of Natural Resources, Environmental Protection Division, as part of their Chattahoochee River Modeling Project. Concurrent streamflow data collected at 19 continuous-record, and 31 partial-record streamflow stations, were used in ordinary least-squares linear regression analyses to define estimating equations, and in verifying drainage-area prorations. The resulting regression or drainage-area ratio estimating equations were used to compute hourly streamflow at the partial-record stations. The coefficients of determination (r-squared values) for the regression estimating equations ranged from 0.90 to 0.99. Observed and estimated hourly and daily streamflow data were computed for May 1, 1995, through October 31, 1995. Comparisons of observed and estimated daily streamflow data for 12 continuous-record tributary stations, that had available streamflow data for all or part of the period from May 1, 1995, to October 31, 1995, indicate that the mean error of estimate for the daily streamflow was about 25 percent.

  1. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  2. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  3. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.

  4. Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.

  5. Water resources data for California, water year 1980; Volume 1, Colorado River basin, Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    ,

    1981-01-01

    Volume 1 of water resources data for the 1980 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lake and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 51 stations; water levels for 165 observation wells. Also included are 9 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  7. A portable station for recording fire weather data

    Treesearch

    John R. Murray; Clive M. Countryman

    1968-01-01

    A portable station for recording fire weather data has been developed for use in wildland fires, prescribed burns, evaluating sites for fire weather stations, and fire research. Housed in a mechanic's tool box, the station weighs about 60 pounds. One man can have it ready to operate in about 15 minutes. The unit can record five weather variables, but additional...

  8. Analysis of recently digitized continuous seismic data recorded during the March-May, 1980, eruption sequence at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Malone, S. D.

    2013-12-01

    The May 18, 1980, eruption of Mount St. Helens (MSH) was an historic event, both for society and for the field of volcanology. However, our knowledge of the eruption and the precursory period leading up it is limited by the fact that most of the data, particularly seismic recordings, were not kept due to severe limitations in the amount of digital data that could be handled and stored using 1980 computer technology. Because of these limitations, only about 900 digital event files have been available for seismic studies of the March-May seismic sequence out of a total of more than 4,000 events that were counted using paper records. Fortunately, data from a subset of stations were also recorded continuously on a series of 24 analog 14-track IRIG magnetic tapes. We have recently digitized these tapes and time-corrected and cataloged the resultant digital data streams, enabling more in-depth studies of the (almost) complete pre-eruption seismic sequence using modern digital processing techniques. Of the fifteen seismic stations operating near MSH for at least a part of the two months between March 20 and May 18, six stations have relatively complete analog recordings. These recordings have gaps of minutes to days because of radio noise, poor tape quality, or missing tapes. In addition, several other stations have partial records. All stations had short-period vertical-component sensors with very limited dynamic range and unknown response details. Nevertheless, because the stations were at a range of distances and were operated at a range of gains, a variety of earthquake sizes were recorded on scale by at least one station, and therefore a much more complete understanding of the evolution of event types, sizes and character should be achievable. In our preliminary analysis of this dataset we have found over 10,000 individual events as recorded on stations 35-40 km from MSH, spanning a recalculated coda-duration magnitude range of ~1.5 to 4.1, including many M < 3.0 events that are not part of the PNSN catalog. The closest stations (2-7 km from the summit) recorded several times as many events as the more remote stations during the times they were operational, although many signals are clipped. We see a range of event types including long-period events, tremor, and occasional volcano-tectonic earthquakes. The latter group includes small volcano-tectonic events that occurred at depths of > 7 km during the crypto-dome intrusion phase, which were recognized in 1980 but not fully described. In our analysis of the hours to days prior to the May 18 eruption, we find no obvious changes in seismicity that could have been interpreted as a short-term precursor to the May 18 eruption initiation. This new dataset is currently being formatted for permanent archiving in the IRIS Data Management Center, where it will be available for anyone to use.

  9. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  10. Chemical, geologic, and hydrologic data from the Little Colorado River basin, Arizona and New Mexico, 1988-91

    USGS Publications Warehouse

    Fisk, Gregory G.; Ferguson, S.A.; Rankin, D.R.; Wirt, Laurie

    1994-01-01

    In June 1988, The U.S. Geological Survey began a 4-year study of the occurrence and movement of radionuclides and other chemical constituents in ground water and surface water in the Little Colorado River basin in Arizona and New Mexico. Radionuclides and other chemical constituents occur naturally in water, rock, and sediment throughout the region; however, discharge of mine--dewatering effluents released by mining operations increased the quantity of radionuclides and other chemical contaminants. Additionally, in 1979, the failure of a tailings-pond dike resulted in the largest known single release of water contaminated by uranium tailings in the United States. Ground-water data and surface-water data were collected from July 1988 through September 1991. Sixty-nine wells were sampled, and collected data include well- construction information, lithologic logs, water levels and chemical analysis of water samples. The wells include 31 wells drilled by the U.S. Geological Survey, 7 wells drilled by the New Mexico Environment Department, 11 private wells, and 20 temporary drive-point wells; in addition, 1 spring was sampled. Data from nine continual-record and five partial-record stxeamflow-gaging stations include daily mean discharge, daily mean suspended-sediment concentration and discharge, and chemical analysis for discrete water and sediment samples. Precipitation data also were collected at the nine continual-record stations.

  11. Streamflow and Selected Precipitation Data for Yucca Mountain Region, Southern Nevada and Eastern California, Water Years 1986-90

    USGS Publications Warehouse

    Kane, Thomas G.; Bauer, David J.; Martinez, Clair M.

    1994-01-01

    Streamflow and precipitation data collected at and near Yucca Mountain, Nevada, during water years 1986-90 are presented in this report. The data were collected and compiled as part of the studies by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to characterize surface-water hydrology in the Yucca Mountain area. Streamflow data include daily-mean discharges and peak discharges at 5 continuous-record gaging stations, and peak discharges at 10 crest-stage, partial-record stations and 2 miscellaneous sites. Precipitation data include cumulative totals at 20 stations maintained by the U.S. Geological Survey and daily totals at 15 stations maintained by the Weather Service Nuclear Support Office, National Oceanic and Atmospheric Administration.

  12. Evaluation of the streamflow-gaging network of Texas and a proposed core network

    USGS Publications Warehouse

    Slade, Raymond M.; Howard, Teresa; Anaya, Roberto

    2001-01-01

    The U.S. Geological Survey streamflowgaging network in Texas is operated as part of the National Streamgaging Program and is jointly funded by the Geological Survey and Federal, State, and local agencies. This report documents an evaluation of the existing (as of October 1, 1999) network with regard to four major objectives of streamflow data; and on the basis of that evaluation, proposes a core network of streamflowgaging stations that best meets those objectives. The objectives are (1) regionalization (estimate flows or flow characteristics at ungaged sites in 11 hydrologically similar regions), (2) major flow (obtain flow rates and volumes in large streams), (3) outflow from the State (account for streamflow leaving the State), and (4) streamflow conditions assessment (assess current conditions with regard to long-term data, and define temporal trends in flow). The network analysis resulted in a proposed core network of 263 stations. Of those 263 stations, 43 were discontinued as of October 1, 1999, and 15 were partial-record stations. Fifty-five of the proposed core-network stations meet two of the four major objectives, 16 stations meet three objectives, and 1 station meets all four. One-hundred eighty-five stations with a median record length of 33 years were selected to meet the regionalization objective. Ninety-two stations with a median record length of about 62 years were selected to meet the major-flow objective. Twenty-six stations with a median record length of 59 years were selected to meet the outflow from the State objective. Fifty stations with a median record length of 53 years were selected to meet the streamflow conditions assessment objective.

  13. Determination of NEHRP Site Class of Seismic Recording Stations in the Northwest Himalayas and Its Adjoining Area Using HVSR Method

    NASA Astrophysics Data System (ADS)

    Harinarayan, N. H.; Kumar, Abhishek

    2018-01-01

    Local site characteristics play an important role in controlling the damage pattern during earthquakes (EQs). These site characteristics may vary from simple to complex and can be estimated by various field tests. In addition, extended Nakamura's method, which uses horizontal to vertical spectral ratio (HVSR) based on available EQ records also available for site class (SC) determination. In this study, SCs for 90 recording stations which are maintained by Program for Excellence in Strong Motion Studies (PESMOS), located in the northwestern Himalayas and the adjoining areas are determined using extended Nakamura's technique. Average HVSR curves obtained at majority of the recording stations are found matching with the existing literature. Predominant frequency ( f peak) from average HVSR curve at each recording station is then used for the determination of SC. Original SC given by PESMOS is purely based on geology and not based on comprehensive soil investigation exercise. In this study, the SC, which is based on the average HVSR curves is found matching with SC given by PESMOS for a majority of recording stations. However, for considerable number of recording stations, a mismatch is also found which is consistent with the existing literature. In addition, SC based on National Earthquake Hazard Reduction Program (NEHRP) scheme is proposed based on f peak for all the 90 recording stations.

  14. Water resources activities, Georgia District, 1986

    USGS Publications Warehouse

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  15. Surface water records of Texas, 1964

    USGS Publications Warehouse

    ,

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, miscellaneous sites, and base-flow studies within the State of Texas are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of Trigg Twichell, district chief, Water Resources Division. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water supply papers, entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Texas were contained in Parts 7 and 8 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs. Records will be published in Geological Survey water-supply papers at 5-year intervals.

  16. Hydrology of area 2, Eastern Coal Province, Pennsylvania and New York

    USGS Publications Warehouse

    Herb, W.J.; Brown, D.E.; Shaw, L.C.; Stoner, J.E.; Felbinger, J.K.

    1983-01-01

    Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resourcesrelated topics. The summation of the topical discussions provides a description of the hydrology of the area. The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area. Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mi;;sissippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining. Streamflow data are available for 18 continuousrecord stations; 1 crest-stage, partial-record station; 1 low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations. Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area. Statistics on low flow, mean flow, peak flow, and flow duration for gaging stations can be computed from recorded mean daily flows. Similar statistics can be estimated for ungaged streams by regression and graphical techniques. Five ground-water observation wells are being operated in Area 2. Ground-water levels fluctuate seasonally. Depth to water increases with well depth in upland areas and decreases with well depth in valleys. Well yields in the area range from less than 1 to more than 2,000 gallons per minute. Wells in unconsolidated materials usually have higher yields. Ground-water quality is adequate for most domestic purposes, except locally. Additional water-data information are available through: (1) The National Water Data Exchange, (2) The National Water Data Storage and Retrieva

  17. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Zarriello, Phillip J.

    2007-01-01

    A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v

  18. Water Resources Data for California, 1983. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.

    1985-01-01

    Water resources data for the 1983 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 154 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 20 streams and 18 wells; water levels for 165 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and federal agencies in California.

  19. Water Resources Data, California Water Year 1982, Volume 1. Southern Great Basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.

    1984-01-01

    Water-resources data for the 1982 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 160 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 20 streams and 20 wells; water levels for 174 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. 77 FR 31895 - Energy Northwest, Columbia Generating Station; Record of Decision and Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... no-action alternative. The factors considered in the record of decision can be found in the final... Generating Station; Record of Decision and Issuance of Renewed Facility Operating License for an Additional... the record of decision for the renewal of facility operating license No. NPF-21, consistent with the...

  1. Water Resources Data, Georgia, 2001, Volume 2: Continuous ground-water level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2001

    USGS Publications Warehouse

    Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.

  2. Spatial heterogeneity of climate change as an experiential basis for skepticism

    PubMed Central

    Kaufmann, Robert K.; Mann, Michael L.; Gopal, Sucharita; Liederman, Jackie A.; Howe, Peter D.; Pretis, Felix; Gilmore, Michelle

    2017-01-01

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that “global warming is happening.” This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved. PMID:27994143

  3. Spatial heterogeneity of climate change as an experiential basis for skepticism.

    PubMed

    Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle

    2017-01-03

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.

  4. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.L. Shindel; J.H. Klingler; J.P. Mangus

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of themore » National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)« less

  5. Water Resources Data for California, water year 1981: Vol. 1. Colorado River basin, Southern Great basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    ,

    1982-01-01

    Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Program to convert SUDS2ASC files to a single binary SEGY file

    USGS Publications Warehouse

    Goldman, Mark

    2000-01-01

    This program, SUDS2SEGY, converts and combines ASCII files created using SUDS2ASC Version 2.60, to a single SEGY file. SUDS2ASC has been used previously to create an ASCII file of three-component seismic data for an individual recording station. However, many seismic processing packages have difficulty reading in ASCII data. In addition, it may be cumbersome to process a separate file for each recording station, particularly if traces from different recording stations contain a different number of data samples and/or a different start time. This new program - SUDS2SEGY - combines these recording station files into a single SEGY file. In addition, SUDS2SEGY normalizes the trace times so that each trace starts at a given time and consists of a fixed number of samples. This normalization allows seismic data from many different stations to be read in as a single "data gather". SUDS2SEGY also produces a report summarizing the offset and maximum absolute amplitude for each component in a station file. These data are output separately to an ASCII file and can be subsequently input to a plotting package.

  7. Storage requirements for Georgia streams

    USGS Publications Warehouse

    Carter, Robert F.

    1983-01-01

    The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.

  8. Water resources data for Kansas, water year 1973; Part 2, Water quality records

    USGS Publications Warehouse

    Diaz, A.M.; Albert, C.D.

    1974-01-01

    Water-resources data for the 1973 water year for Kansas include records of data for the chemical and physical characteristics of surface and ground water. Data on the quality of surface water (chemical, microbiological, temperature, and sediment) were collected from designated sampling sites at predetermined intervals such as once daily, weekly, monthly, or less frequently, and at some sites data were recorded on punched paper tape at 60-minute intervals. Records are given for 70 sampling stations of which 7 are partial-record stations, and for 51 miscellaneous sites. Miscellaneous temperatures of streamflow are given for 77 gaging stations, and records of chemical analyses are given for 224 ground-water sites. Locations of surface water-quality stations are shown in Figure 1, page 2. Records for pertinent water-quality stations in bordering States are also included. The records were collected by the Water Resources Division of the U.S. Geological Survey under the direction of C. W. Lane, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Kansas. Kansas District personnel who contributed significantly to the collection and preparation of data included in this report were: B. L. Day, L. R. Shelton, M. L. Penny, L. R. Stringer, and D. J. Dark (Kansas State Department of Health).The Geological Survey has published records of chemical quality, suspended sediment, and water temperatures since 1941 in annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Beginning with the 1964 water year, water-quality records also have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. These records will be published later in Geological Survey water-supply papers.

  9. Cost-effectiveness of the stream-gaging program in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Jackson, N.M.

    1985-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.

  10. Water resources data for Michigan, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1973-01-01

    Surface-water records for the 1972 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  11. Water resources data for Michigan, water year 1971; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1972-01-01

    Surface-water records for the 1971 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  12. Water resources data for Michigan, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1974-01-01

    Surface-water records for the 1973 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  13. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  14. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  15. Water resources data for Michigan, water year 1974; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1975-01-01

    Surface-water records for the 1974 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan.Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series.Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and they are designed primarily for rapid release of data shortly after the end of the water year.

  16. Surface water records of Indiana, 1962

    USGS Publications Warehouse

    ,

    1962-01-01

    The surface-water records for the 1962 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Malcolm D. Hale, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Indiana were contained in Parts 3A, 4 and 5 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of coterminous United States will be further subdivided.

  17. Surface water records of Indiana, 1963

    USGS Publications Warehouse

    ,

    1963-01-01

    The surface-water records for the 1963 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Malcolm D. Hale, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Indiana were contained in Parts 3A, 4 and 5 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of coterminous United States will be further subdivided.

  18. Surface water records of Indiana, 1964

    USGS Publications Warehouse

    ,

    1964-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Malcolm D. Hale, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Indiana were contained in Parts 3A, 4 and 5 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of coterminous United States will be further subdivided.

  19. Surface water records of Indiana, 1961

    USGS Publications Warehouse

    ,

    1961-01-01

    The surface-water records for the 1961 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Malcolm D. Hale, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Indiana were contained in Parts 3A, 4 and 5 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of coterminous United States will be further subdivided.

  20. Statistical distributions of extreme dry spell in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Zin, Wan Zawiah Wan; Jemain, Abdul Aziz

    2010-11-01

    Statistical distributions of annual extreme (AE) series and partial duration (PD) series for dry-spell event are analyzed for a database of daily rainfall records of 50 rain-gauge stations in Peninsular Malaysia, with recording period extending from 1975 to 2004. The three-parameter generalized extreme value (GEV) and generalized Pareto (GP) distributions are considered to model both series. In both cases, the parameters of these two distributions are fitted by means of the L-moments method, which provides a robust estimation of them. The goodness-of-fit (GOF) between empirical data and theoretical distributions are then evaluated by means of the L-moment ratio diagram and several goodness-of-fit tests for each of the 50 stations. It is found that for the majority of stations, the AE and PD series are well fitted by the GEV and GP models, respectively. Based on the models that have been identified, we can reasonably predict the risks associated with extreme dry spells for various return periods.

  1. Surface water records of New Mexico, water year 1961

    USGS Publications Warehouse

    ,

    1962-01-01

    The surface-water records for the 1961 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. L. Heckler, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water supply papers entitled "Surface Water Supply of the United States." Since 1951 there has been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports On a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey watersupply paper at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  2. Water resources data for Indiana, 1965

    USGS Publications Warehouse

    ,

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Malcolm D. Hale, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Indiana were contained in Parts 3A, 4 and 5 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of coterminous United States will be further subdivided.

  3. Water Resources Data, New York, Water Year 1996; Volume 1. Eastern New York; Excluding Long Island

    USGS Publications Warehouse

    Butch, G.K.; Dalton, F.N.; Lent, H.G.; Murray, P.M.

    1997-01-01

    IntroductionWater-resources data for the 1996 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; ground-water levels; and precipitation quality. This volume contains records for water discharge at 122 gaging stations; stage only at 7 gaging stations; stage and contents at 4 gaging stations, and 18 other lakes and reservoirs; water quality at 28 gaging stations and 1 precipitation-quality station; and water levels at 3 observation wells. Also included are data for 33 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements and analyses in this volume. These data together with the data in Volumes 2 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State, Municipal, and Federal agencies in New York.Records of discharge and stage of streams, and contents and stage of lakes and reservoirs, were first published in a series of U.S. Geological Survey water-supply papers entitled, “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of water quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled “Quality of Surface Waters of the United States.” Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled “Ground-Water Levels in the United States.” Water-supply papers may be consulted in the libraries of the principal cities and universities in the United States or may be purchased from the U.S. Geological Survey, Branch of Distribution, 604 South Pickett Street, Alexandria, VA 22304.Since the 1961 water year, streamflow data and since the 1964 water year, water-quality data have been released by the Geological Survey in annual reports on a State-boundary basis. These reports provided rapid release of water data in each state shortly after the end of the water year. Through 1970 the data were also released in the water-supply paper series mentioned above.Streamflow and water-quality data beginning with the 1971 water year, and ground-water data beginning with the 1975 water year are published only in reports on a State-boundary basis. Beginning with the 1975 water year, these Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as “U.S. Geological Survey Water-Data Report NY-96-1.” Water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.Additional information, including current prices for ordering specific reports, may be obtained from the District Office at the address given on the back of the title page or by telephone (518) 285-5600.

  4. Single-Station Sigma for the Iranian Strong Motion Stations

    NASA Astrophysics Data System (ADS)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  5. Water resources data for Kansas, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1973-01-01

    Surface-water records for the 1972 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, L. E. Stuliken, C. 0. Peek, J. D. Craig, L. L. Jones, A. T. Klamm, J. P. Marshall, C. W. Kennedy, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, A. B. Evans, A. F. Browning, M. J. Goetz, M. L. Penny, and M. Pabst.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  6. Water resources data for Kansas, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1974-01-01

    Surface-water records for the 1973 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, C. 0. Peek, J. D. Craig, L. L. Jones, J. P. Marshall, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, L. M. Pope, F. D. Toepfer, A. F. Browning, M. L. Penny, M. Pabst, and L. R. Stringer.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  7. Floods of March 1982, Indiana, Michigan, and Ohio

    USGS Publications Warehouse

    Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.

    1984-01-01

    Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.

  8. Storage requirements for Arkansas streams

    USGS Publications Warehouse

    Patterson, James Lee

    1968-01-01

    The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.

  9. Cost effectiveness of the stream-gaging program in Louisiana

    USGS Publications Warehouse

    Herbert, R.A.; Carlson, D.D.

    1985-01-01

    This report documents the results of a study of the cost effectiveness of the stream-gaging program in Louisiana. Data uses and funding sources were identified for the 68 continuous-record stream gages currently (1984) in operation with a budget of $408,700. Three stream gages have uses specific to a short-term study with no need for continued data collection beyond the study. The remaining 65 stations should be maintained in the program for the foreseeable future. In addition to the current operation of continuous-record stations, a number of wells, flood-profile gages, crest-stage gages, and stage stations, are serviced on the continuous-record station routes; thus, increasing the current budget to $423,000. The average standard error of estimate for data collected at the stations is 34.6%. Standard errors computed in this study are one measure of streamflow errors, and can be used as guidelines in comparing the effectiveness of alternative networks. By using the routes and number of measurements prescribed by the ' Traveling Hydrographer Program, ' the standard error could be reduced to 31.5% with the current budget of $423,000. If the gaging resources are redistributed, the 34.6% overall level of accuracy at the 68 continuous-record sites and the servicing of the additional wells or gages could be maintained with a budget of approximately $410,000. (USGS)

  10. Water Resources Data, Montana, 2002

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2003-01-01

    Water resources data for Montana for the 2002 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This report contains discharge records for 244 streamflow-gaging stations; stage or content records for 9 lakes and large reservoirs and content for 31 smaller reservoirs; water-quality records for 142 streamflow stations (42 ungaged), 9 ground-water wells, and 3 lakes; precipitation records for 2 atmospheric-deposition stations; and water-level records for 53 observation wells. Additional water year 2002 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  11. Water resources data for New Mexico, water year 1965; Part 1. Surface water records

    USGS Publications Warehouse

    ,

    1966-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also Included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the fifth In a series presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled Surface Water Supply of the United States. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8 and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5~year intervals. These 5-year water-supply papers will show daily discharge and will be compi led On the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  12. Water resources data for New Mexico, water year 1968; Part 1. Surface water records

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the eighth in a series presenting, annually, basic data on surfacewater records by States. Through September 30, 1960, "the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States.!! Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs. The records will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  13. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  14. Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.; Reed, Lloyd A.

    2000-01-01

    Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.

  15. Review of the hydrologic data-collection network in the St Joseph River basin, Indiana

    USGS Publications Warehouse

    Crompton, E.J.; Peters, J.G.; Miller, R.L.; Stewart, J.A.; Banaszak, K.J.; Shedlock, R.J.

    1986-01-01

    The St. Joseph River Basin data-collection network in the St. Joseph River for streamflow, lake, ground water, and climatic stations was reviewed. The network review included only the 1700 sq mi part of the basin in Indiana. The streamflow network includes 11 continuous-record gaging stations and one partial-record station. Based on areal distribution, lake effect , contributing drainage area, and flow-record ratio, six of these stations can be used to describe regional hydrology. Gaging stations on lakes are used to collect long-term lake-level data on which to base legal lake levels, and to monitor lake-level fluctuations after legal levels are established. More hydrogeologic data are needed for determining the degree to which grouhd water affects lake levels. The current groundwater network comprises 15 observation wells and has four purposes: (1) to determine the interaction between groundwater and lakes; (2) to measure changes in groundwater levels near irrigation wells; (3) to measure water levels in wells at special purpose sites; and (4) to measure long-term changes in water levels in areas not affected by pumping. Seven wells near three lakes have provided sufficient information for correlating water levels in wells and lakes but are not adequate to quantify the effect of groundwater on lake levels. Water levels in five observation wells located in the vicinity of intensive irrigation are not noticeably affected by seasonal withdrawals. The National Weather Sevice operates eight climatic stations in the basin primarily to characterize regional climatic conditions and to aid in flood forecasting. The network meets network-density guidelines established by the World Meterological Organization for collection of precipitation and evaporation data but not guidelines suggested by the National Weather Service for density of precipitation gages in areas of significant convective rainfalls. (Author 's abstract)

  16. Ground Motion Uncertainty and Variability (single-station sigma): Insights from Euroseistest, Greece

    NASA Astrophysics Data System (ADS)

    Ktenidou, O. J.; Roumelioti, Z.; Abrahamson, N. A.; Cotton, F.; Pitilakis, K.

    2014-12-01

    Despite recent improvements in networks and data, the global aleatory uncertainty (sigma) in GMPEs is still large. One reason is the ergodic approach, where we combine data in space to make up for lack of data in time. By estimating the systematic site response, we can make site-specific GMPEs and use a lower, site-specific uncertainty: single-station sigma. In this study we use the EUROSEISTEST database (http://euroseisdb.civil.auth.gr), which has two distinct advantages: good existing knowledge of site conditions at all stations, and careful relocation of the recorded events. Constraining the site and source parameters as best we can, we minimise the within- and between-events components of the global, ergodic sigma. Following that, knowledge of the site response from empirical and theoretical approaches permits us to move on to single-station sigma. The variability per site is not clearly correlated to the site class. We show that in some cases knowledge of Vs30 is not sufficient, and that site-specific data are needed to capture the response, possibly due to 2D/3D effects from complex geometry. Our values of single-station sigma are low compared to the literature. This may be due to the good ray coverage we have in all directions for small, nearby records. Indeed, our single-station sigma values are similar to published single-path values, which means that they may correspond to a fully -rather than partially- non-ergodic approach. We find larger ground motion variability for short distances and small magnitudes. This may be related to the uncertainty in the depth affecting nearby records more, or to stress drop and causing trade-offs between the source and site terms for small magnitudes.

  17. Storm and flood of July 5, 1989, in northern New Castle County, Delaware

    USGS Publications Warehouse

    Paulachok, G.N.; Simmons, R.H.; Tallman, A.J.

    1995-01-01

    On July 5, 1989, intense rainfall from the remnants of Tropical Storm Allison caused severe flooding in northern New Castle County, Delaware. The flooding claimed three lives, and damage was estimated to be $5 million. Flood conditions were aggravated locally by rapid runoff from expansive urban areas. Record- breaking floods occurred on many streams in northern New Castle County. Peak discharges at three active, continuous-record streamflow-gaging stations, one active crest-stage station, and at two discontinued streamflow-gaging stations exceeded previously recorded maximums. Estimated recurrence intervals for peak flow at the three active, continuous-record streamflow stations exceeded 100 years. The U.S. Geological Survey conducted comprehensive post-flood surveys to determine peak water-surface elevations that occurred on affected streams and their tributaries during the flood of July 5, 1989. Detailed surveys were performed near bridge crossings to provide additional information on the extent and severity of the flooding and the effects of hydraulic constrictions on floodwaters.

  18. Reprocessed Southern Hemisphere Additional Ozonesondes (SHADOZ) Profiles (1998-2016): Method, Uncertainties and Comparisons with Satellite Total Ozone

    NASA Astrophysics Data System (ADS)

    Stauffer, R. M.; Thompson, A. M.; Witte, J. C.; Johnson, B.; Smit, H. G. J.

    2017-12-01

    The SHADOZ network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical stratospheric and tropospheric ozone. Beginning with nine stations in 1998, more than 7000 ozone and P-T-U profiles are available from 14 stations that have operated for at least a decade. In the past two years the SHADOZ records have been reprocessed to adjust for inconsistencies caused by varying ozonesonde instruments and operating techniques. We have followed consensus-based guidelines given by the international ozonesonde community and will release new records that include first estimates of uncertainties in the ozonesonde instrument system. The ozone uncertainty is a composite of uncertainties of the individual terms in the ozone partial pressure (PO3) equation, i.e., ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow-rate. Overall, SHADOZ PO3 uncertainties are 15% or less and peak around the tropopause (15±3km) where the ozone current can approach the detection limit of the sensor. The sonde total column ozone (TCO) uncertainty is estimated at ±15 DU or 5% of typical tropical TCO. When sonde-derived TCO is compared to overpasses from the EP/TOMS, OMI and OMPS satellites that cover 1998-2016, sonde-satellite offsets at 12 stations are 2% or less (Figure), well within the uncertainty of both satellite and sonde. This agreement is much improved over our earlier SHADOZ evaluations (2003, 2007 and 2012). Reprocessing has also led to more uniform stratospheric column amounts across sites within +19 degrees latitude and reduced profile bias.

  19. Statistical summaries of New Jersey streamflow records

    USGS Publications Warehouse

    Laskowski, Stanley L.

    1970-01-01

    In 1961 the U.S. Geological Survey prepared a report which was published by the State of New Jersey as Water Resources Circular 6, "New Jersey Streamflow Records analyzed with Electronic Computer" by Miller and McCall. Basic discharge data for periods of record through 1958 were analyzed for 59 stream-gaging stations in New Jersey and flow-duration, low-flow, and high-flow tables were presented.The purpose of the current report is to update and expand Circular 6 by presenting, with a few meaningful statistics and tables, the bulk of the information that may be obtained from the mass of streamflow records available. The records for 79 of approximately 110 stream-gaging stations presently or previously operated in New Jersey, plus records for three stations in Pennsylvania, and one in New York are presented in summarized form. In addition to inclusing a great number of stations in this report, more years of record and more tables are listed for each station. A description of the station, three arrangements of data summarizing the daily flow records and one table listing statistics of the monthly mean flows are provided. No data representing instantaneous extreme flows are given. Plotting positions for the three types of curves describing the characteristics of daily discharge are listed for each station. Statistical parameters are also presented so that alternate curves may be drawn.All stations included in this report have 5 or more years of record. The data presented herein are based on observed flow past the gaging station. For any station where the observed flow is affected by regulation or diversion, a "Remarks" paragraph, explaining the possible effect on the data, is included in the station description.Since any streamflow record is a sample in time, the data derived from these records can provide only a guide to expected future flows. For this reason the flow records are analyzed by statistical techniques, and the magnitude of sampling errors should be recognized.These analyzed data will be useful to a large number of municipal, state, and federal agencies, industries, utilities, engineers, and hydrologists concerned with the availability, conservation, control, and use of surface waters. The tabulated data and curves illustrated herein can be used to select sites for water supplies, to determine flood or drought storage requirements, and to appraise the adequacy of flows for dilution of wastes or generation of power. The statistical values presented herein can be used in computer programs available in many universities, Federal and State agencies, and engineering firms for a broad spectrum of research and other studies.

  20. Characterising Record Flooding in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a worrying reality for those who live in flood-prone areas, and to those who study the upper tail of flood events.

  1. Annual maximum and minimum lake levels for Indiana, 1942-85

    USGS Publications Warehouse

    Fowler, Kathleen K.

    1988-01-01

    Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record. 

  2. Montana Water Resources Data - 2003, Volume 2. Yellowstone and Upper Columbia River Basins and Ground-Water Levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2004-01-01

    Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content for 26 smaller reservoirs; water-quality records for 76 streamflow stations (11 ungaged), and 3 lakes; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  3. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2006-01-01

    Water resources data for Montana for the 2005 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 120 streamflow-gaging stations; stage or content records for 22 lakes and reservoirs; water-quality records for 86 streamflow stations (32 ungaged), and 25 ground-water wells; water-level records for 25 observation wells; and precipitation records for 2 atmospheric-deposition stations. Additional water year 2005 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  4. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 119 streamflow-gaging stations; stage or content records for 21 lakes and reservoirs; and water-quality records for 69 streamflow stations (17 ungaged), and 3 lake sites; water-level records for 51 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  5. Streamflow characteristics at hydrologic bench-mark stations

    USGS Publications Warehouse

    Lawrence, C.L.

    1987-01-01

    The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.

  6. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5- year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled “Quality of Surface Waters of the United States.” Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled “Ground-Water Levels in the United States.” Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as “U.S. Geological Survey Water-Data Report IA-01-1.” These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

  7. Rainfall, streamflow, and peak stage data collected at the Murfreesboro, Tennessee, gaging network, March 1989 through July 1992

    USGS Publications Warehouse

    Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.

    1992-01-01

    Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.

  8. Use of streamflow data to estimate base flowground-water recharge for Wisconsin

    USGS Publications Warehouse

    Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.

    2007-01-01

    The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.

  9. Estimated cause of extreme acceleration records at the KiK-net IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Ohmachi, Tatsuo; Inoue, Shusaku; Mizuno, Ken-Ichi; Yamada, Masato

    During the 2008 Iwate-Miyagi Nairiku earthquake in Japan (MJ =7.2), extremely high accelerations were recorded at the KiK-net IWTH25 (Ichinoseki-nishi) station. The peak acceleration in the vertical component of the surface record was about 4 g where g is acceleration due to gravity, and the upward acceleration in the surface record was much larger than the downward acceleration. Some researchers have suggested that the ground surface was tossed into the air like a body on a trampoline. However, additional features found in the surface record suggest rocking motion accompanied with downward impact of the station with the ground. For example, there are many vertical peaks that can be found to occur at the same time as the horizontal peaks. After obtaining information about the station, in-situ investigations, shake-table experiments, and numerical simulations were conducted to determine the fundamental characteristics of the rocking motion and to reproduce the acceleration time histories of the surface record by using the bore-hole record at a depth of 260 m as the input motion. Prior to the numerical simulation, the wave velocities of subsurface layers were evaluated from Fourier spectra of both records, which showed that the velocities were reduced considerably during the main shock. A 2-D FEM code capable of handling separation and impact between the elements was used for the numerical simulation. Simulation results are shown in Figs. 17 and 18 indicating the impact between the IWTH25 station and the ground at around 4 sec when the acceleration in the vertical direction was about 4 g. Three kinds of acceleration time histories are shown with fairly good agreement between the simulated and observed time histories, suggesting the influence of the station is included in the record. It is also indicated that the vertical acceleration at the free surface without the influence of the IWTH25 station is about 1.6 g.

  10. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.

  11. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  12. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.

  13. StreamStats: A water resources web application

    USGS Publications Warehouse

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  14. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?

    NASA Astrophysics Data System (ADS)

    Rings, Thorsten; Lehnertz, Klaus

    2016-09-01

    We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.

  15. Mean wind speed persistence over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    2018-07-01

    The wind speed persistence is an important factor in the assessment of wind energy potential. In this paper, we explore the persistence of Mean Wind Speed (MWS) with many years of record using Detrended Fluctuation Analysis (DFA) over China. The results illustrate that there exist irregular high-frequency fluctuations for daily MWS anomaly records. Long-term persistence of MWS is found for all meteorological observed sites. We also make some numerical tests in order to verify the significance of long-term persistence by shuffling the data records many times. These facts prove that the MWS anomaly records have long-term persistence over all the stations in China. The mean value 0.64 in DFA-exponents for all stations over China is also obviously higher than the value 0.53 according to interval threshold of 95% confidence level after shuffling the MWS records many times. In addition, the values of scaling exponent vary from station to station over China. Long-term persistence of MWS in spatial distributions seems to be downward trends from east to west China. Many factors may affect long-term persistence of MWS such as southwest monsoon, Tibetan Plateau landform and atmosphere-ocean-land interaction and so on. Possible physical mechanism need further analysis in the future.

  16. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  17. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008866 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009298 (21 May 2010) --- NASA astronauts Michael Good (partially obscured at left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  19. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008868 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  20. Detecting urban warming signals in climate records

    NASA Astrophysics Data System (ADS)

    He, Yuting; Jia, Gensuo; Hu, Yonghong; Zhou, Zijiang

    2013-07-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13°C rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30°C (10 yr)-1 in the last three decades.

  1. 42 CFR 35.17 - Fees and charges for copying, certification, search of records and related services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT General... clinical record or other document (through use of facility equipment): (a) Processing (searching, preparation of record and use of equipment), first page $3.25 (b) Each additional page .25 (2) Certification...

  2. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Watermore » Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.« less

  3. Monthly Surface Air Temperature Time Series Area-Averaged Over the 30-Degree Latitudinal Belts of the Globe

    DOE Data Explorer

    Lugina, K. M. [Department of Geography, St. Petersburg State University, St. Petersburg, Russia; Groisman, P. Ya. [National Climatic Data Center, Asheville, North Carolina USA); Vinnikov, K. Ya. [Department of Atmospheric Sciences, University of Maryland, College Park, Maryland (USA); Koknaeva, V. V. [State Hydrological Institute, St. Petersburg, Russia; Speranskaya, N. A. [State Hydrological Institute, St. Petersburg, Russia

    2006-01-01

    The mean monthly and annual values of surface air temperature compiled by Lugina et al. have been taken mainly from the World Weather Records, Monthly Climatic Data for the World, and Meteorological Data for Individual Years over the Northern Hemisphere Excluding the USSR. These published records were supplemented with information from different national publications. In the original archive, after removal of station records believed to be nonhomogeneous or biased, 301 and 265 stations were used to determine the mean temperature for the Northern and Southern hemispheres, respectively. The new version of the station temperature archive (used for evaluation of the zonally-averaged temperatures) was created in 1995. The change to the archive was required because data from some stations became unavailable for analyses in the 1990s. During this process, special care was taken to secure homogeneity of zonally averaged time series. When a station (or a group of stations) stopped reporting, a "new" station (or group of stations) was selected in the same region, and its data for the past 50 years were collected and added to the archive. The processing (area-averaging) was organized in such a way that each time series from a new station spans the reference period (1951-1975) and the years thereafter. It was determined that the addition of the new stations had essentially no effect on the zonally-averaged values for the pre-1990 period.

  4. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  5. An Updated Global Grid Point Surface Air Temperature Anomaly Data Set: 1851-1990 (revised 1991) (NDP-020)

    DOE Data Explorer

    Jones, P. D. [University of East Anglia, Norwich, United Kingdom; Raper, S. C.B. [University of East Anglia, Norwich, United Kingdom; Cherry, B. S.G. [University of East Anglia, Norwich, United Kingdom; Goodess, C. M. [University of East Anglia, Norwich, United Kingdom; Wigley, T. M. L. [University of East Anglia, Norwich, United Kingdom; Santer, B. [University of East Anglia, Norwich, United Kingdom; Kelly, P. M. [University of East Anglia, Norwich, United Kingdom; Bradley, R. S. [University of Massachusetts, Amherst, Massachusetts (USA); Diaz, H. F. [National Oceanic and Atmospheric Administration (NOAA), Environmental Research Laboratories, Boulder, CO (United States).

    1991-01-01

    This NDP presents land-based monthly surface-air-temperature anomalies (departures from a 1951-1970 reference period mean) on a 5° latitude by 10° longitude global grid. Monthly surface-air-temperature anomalies (departures from a 1957-1975 reference period mean) for the Antarctic (grid points from 65°S to 85°S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and from the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in producing regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. The present updated version of this data set is identical to the earlier version for all records from 1851-1978 except for the addition of the Antarctic surface-air-temperature anomalies beginning in 1957. Beginning with the 1979 data, this package differs from the earlier version in several ways. Erroneous data for some sites have been corrected after a review of the actual station temperature data, and inconsistencies in the representation of missing values have been removed. For some grid locations, data have been added from stations that had not contributed to the original set. Data from satellites have also been used to correct station records where large discrepancies were evident. The present package also extends the record by adding monthly surface-air-temperature anomalies for the Northern (grid points from 85°N to 0°) and Southern (grid points from 5°S to 60°S) Hemispheres for 1985-1990. In addition, this updated package presents the monthly-mean-temperature records for the individual stations that were used to produce the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form.

  6. Updated techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada

    USGS Publications Warehouse

    Hess, Glen W.

    2002-01-01

    Techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada have been updated. These techniques were developed using streamflow records at six continuous-record sites, basin physical and climatic characteristics, and concurrent streamflow measurements at four partial-record sites. Two methods, the basin-characteristic method and the concurrent-measurement method, were developed to provide estimating techniques for selected streamflow characteristics at ungaged and partial-record sites in central Nevada. In the first method, logarithmic-regression analyses were used to relate monthly mean streamflows (from all months and by month) from continuous-record gaging sites of various percent exceedence levels or monthly mean streamflows (by month) to selected basin physical and climatic variables at ungaged sites. Analyses indicate that the total drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the equations developed from all months of monthly mean streamflow, the coefficient of determination averaged 0.84 and the standard error of estimate of the relations for the ungaged sites averaged 72 percent. For the equations derived from monthly means by month, the coefficient of determination averaged 0.72 and the standard error of estimate of the relations averaged 78 percent. If standard errors are compared, the relations developed in this study appear generally to be less accurate than those developed in a previous study. However, the new relations are based on additional data and the slight increase in error may be due to the wider range of streamflow for a longer period of record, 1995-2000. In the second method, streamflow measurements at partial-record sites were correlated with concurrent streamflows at nearby gaged sites by the use of linear-regression techniques. Statistical measures of results using the second method typically indicated greater accuracy than for the first method. However, to make estimates for individual months, the concurrent-measurement method requires several years additional streamflow data at more partial-record sites. Thus, exceedence values for individual months are not yet available due to the low number of concurrent-streamflow-measurement data available. Reliability, limitations, and applications of both estimating methods are described herein.

  7. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987 - November 1988

    USGS Publications Warehouse

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water quality station near the mouth of Little Clearfield Creek provided continuous record of stream stage, pH, specific conductance, and water temperature. Monthly water quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations, and suspended sediment concentrations. Seventeen partial record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented. (Author 's abstract)

  8. Historical record of Landsat global coverage

    USGS Publications Warehouse

    Goward, Samuel; Arvidson, Terry; Williams, Darrel; Faundeen, John; Irons, James; Franks, Shannon

    2006-01-01

    The long-term, 34+ year record of global Landsat remote sensing data is a critical resource to study the Earth system and human impacts on this system. The National Satellite Land Remote Sensing Data Archive (NSLRSDA) is charged by public law to: “maintain a permanent, comprehensive Government archive of global Landsat and other land remote sensing data for long-term monitoring and study of the changing global environment” (U.S. Congress, 1992). The advisory committee for NSLRSDA requested a detailed analysis of observation coverage within the U.S. Landsat holdings, as well as that acquired and held by International Cooperator (IC) stations. Our analyses, to date, have found gaps of varying magnitude in U.S. holdings of Landsat global coverage data, which appear to reflect technical or administrative variations in mission operations. In many cases it may be possible to partially fill these gaps in U.S. holdings through observations that were acquired and are now being held at International Cooperator stations.

  9. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  10. Recent variations in seasonality of temperature and precipitation in Canada, 1976-95

    NASA Astrophysics Data System (ADS)

    Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.

    2002-11-01

    A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.

  11. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  12. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  13. 76 FR 17162 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Notice of Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... that included the no-action alternative. The factors considered in the record of decision can be found... for an Additional 20-Year Period; Record of Decision Notice is hereby given that the U.S. Nuclear... renewed license and its technical specifications. The notice also serves as the record of decision for the...

  14. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  15. Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.

    2002-01-01

    Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  16. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  17. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  18. Water resources data, Utah, water year 1989

    USGS Publications Warehouse

    ReMillard, M.D.; Herbert, L.R.; Sandberg, G.W.; Birdwell, G.A.

    1990-01-01

    Water resources data for the 1989 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water quality of ground water. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 21 hydrologic stations and 217 wells; miscellaneous temperature measurements and field determinations for 147 stations; and water levels for 29 observations wells. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  19. SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.

    USGS Publications Warehouse

    Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.

    1985-01-01

    A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.

  20. USGS Hydro-Climatic Data Network 2009 (HCDN-2009)

    USGS Publications Warehouse

    Lins, Harry F.

    2012-01-01

    After nearly two decades of use without undergoing a systematic revalidation, questions have arisen as to whether many of the original stations still maintain their climate-sensitive status or even remain operational, as some are known to have closed. Some watersheds had been altered to the point that stations no longer meet the minimal disturbance criteria set forth in the original HCDN report. In addition, some sites that did not qualify as HCDN sites in 1988 (the last year of data evaluation) because their records were too short now have sufficiently long streamflow records for climate-sensitivity studies. Accordingly, a review of the existing network was initiated in 2009 in order to drop old stations and add new ones as appropriate.

  1. 75 FR 59742 - Public Land Order No. 7752; Partial Revocation of a Light Station Reservation; Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLOR-936000-L14300000-FQ0000; HAG-09-0002; WAOR-22197 K] Public Land Order No. 7752; Partial Revocation of a Light Station Reservation; Washington...: The reservation of public land for the Lime Kiln Light Station created by an Executive Order dated...

  2. Forward view of the ISS taken during final flyaround

    NASA Image and Video Library

    2001-04-29

    S100-E-5958 (29 April 2001) --- Backdropped against the blue and white Earth and sporting a readily visible new addition in the form of the Canadarm2 or space station robotic arm, the International Space Station (ISS) was photographed following separation from the Space Shuttle Endeavour. With six astronauts and a Rosaviakosmos cosmonaut aboard the shuttle, the spacecraft performed a fly-around survey of the station, which was inhabited by two astronauts and a Russian cosmonaut. The image was recorded with a digital still camera.

  3. Scaling behaviors of precipitation over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Li, Nana; Zhao, Xia

    2017-04-01

    Scaling behaviors in the precipitation time series derived from 1951 to 2009 over China are investigated by detrended fluctuation analysis (DFA) method. The results show that there exists long-term memory for the precipitation time series in some stations, where the values of the scaling exponent α are less than 0.62, implying weak persistence characteristics. The values of scaling exponent in other stations indicate random behaviors. In addition, the scaling exponent α in precipitation records varies from station to station over China. A numerical test is made to verify the significance in DFA exponents by shuffling the data records many times. We think it is significant when the values of scaling exponent before shuffled precipitation records are larger than the interval threshold for 95 % confidence level after shuffling precipitation records many times. By comparison, the daily precipitation records exhibit weak positively long-range correlation in a power law fashion mainly at the stations taking on zonal distributions in south China, upper and middle reaches of the Yellow River, northern part of northeast China. This may be related to the subtropical high. Furthermore, the values of scaling exponent which cannot pass the significance test do not show a clear distribution pattern. It seems that the stations are mainly distributed in coastal areas, southwest China, and southern part of north China. In fact, many complicated factors may affect the scaling behaviors of precipitation such as the system of the east and south Asian monsoon, the interaction between sea and land, and the big landform of the Tibetan Plateau. These results may provide a better prerequisite to long-term predictor of precipitation time series for different regions over China.

  4. Analysis of surface-water data network in Kansas for effectiveness in providing regional streamflow information; with a section on theory and application of generalized least squares

    USGS Publications Warehouse

    Medina, K.D.; Tasker, Gary D.

    1987-01-01

    This report documents the results of an analysis of the surface-water data network in Kansas for its effectiveness in providing regional streamflow information. The network was analyzed using generalized least squares regression. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-, low-, and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow-gaging-station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations, and (or) adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and for discontinued stations for which unregulated flow characteristics, as well as physical and climatic characteristics, were available. The State was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for the three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean-square error for each cost level could be obtained by adding new stations and discontinuing some current network stations. Large reductions in sampling mean-square error for low-flow information could be achieved in all three network areas, the reduction in western Kansas being the most dramatic. The addition of new stations would be most beneficial for mean-flow information in western Kansas. The reduction of sampling mean-square error for high-flow information would benefit most from the addition of new stations in western Kansas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas.

  5. Analysis of surface-water data network in Kansas for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Medina, K.D.; Tasker, Gary D.

    1985-01-01

    The surface water data network in Kansas was analyzed using generalized least squares regression for its effectiveness in providing regional streamflow information. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-flow, low-flow and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow gaging station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations; and/or adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and discontinued stations for which unregulated flow characteristics , as well as physical and climatic characteristics, were available. The state was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean square error for each cost level could be obtained by adding new stations and discontinuing some of the present network stations. Large reductions in sampling mean square error for low-flow information could be accomplished in all three network areas, with western Kansas having the most dramatic reduction. The addition of new stations would be most beneficial for man- flow information in western Kansas, and to lesser degrees in the other two areas. The reduction of sampling mean square error for high-flow information would benefit most from the addition of new stations in western Kansas, and the effect diminishes to lesser degrees in the other two areas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas. (Author 's abstract)

  6. International seismological data center: Preparation of an experimental data base

    NASA Astrophysics Data System (ADS)

    Israelson, H.; Jeppsson, I.; Barkeby, G.

    1980-11-01

    An experimental data base compiled for a temporary international seismological data center is presented. Data include recording and measurements at 60 globally distributed seismological stations for a one week period. Data for definition, location and magnitude estimation of seismic events are examined. Original digital records from 11 seismological research observatories around the world are also analyzed to provide additional identification data. It is shown that the routine measurement and reporting of data at seismological stations as proposed by the Seismic Experts Group at the UN Committee of Disarmament, is an onerous task that goes far beyond current seismological practices.

  7. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  8. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  9. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  10. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FM Broadcast Booster Stations § 74.1281 Station records. (a) The licensee of a station authorized... booster, except that the station records of a booster or translator licensed to the licensee of the...

  11. Water resources data, Pennsylvania, water year 2000. Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 16 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 11 streamflow gaging stations and 70 partial-record and project stations; and (4) water-level records for 30 ground-water network observation wells and water-quality analyses of ground water from 8 wells; and (5) water-quality analyses at 60 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-2." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published annually under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address on the back of the title page or by phoning the Scientific and Technical Products Section at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

  12. Water Resources Data, Pennsylvania, Water Year 1999. Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 16 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 11 streamflow gaging stations and 45 partial-record and project stations; and (4) water-level records for 30 ground-water network observation wells and water-quality analyses of ground water from 8 wells; and (5) water-quality analyses at 44 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented. Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-2." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published annually under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address on the back of the title page or by phoning the Scientific and Technical Products Section at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist (telephone (717) 730-6916) or FAX (717) 730-6997.

  13. Water Resources Data, Pennsylvania, Water Year 1999. Volume 3. Ohio and St. Lawrence River Basins

    USGS Publications Warehouse

    Siwicki, R.W.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 3, contains: (1) discharge records for 57 continuous-record streamflow-gaging stations, 5 partial-record stations, and 16 special study and miscellaneous streamflow sites; (2) elevation and contents records for 11 lakes and reservoirs; (3) water-quality records for 1 streamflow gaging station and 121 partial-record and project stations; and (4) water-level records for 15 ground-water network observation wells and. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-3." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published annually under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address on the back of the title page or by phoning the Scientific and Technical Products Section at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist (telephone (717) 730-6916) or FAX (717) 730-6997.

  14. Water Resources Data, Pennsylvania, Water Year 2001, Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 15 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 9 streamflow gaging stations and 73 partial-record and project stations; and (4) water-level records for 36 ground-water network observation wells and water-quality analyses of ground water from 8 wells; (5) water-quality analyses at 123 special study ground-water wells; and, (6) miscellaneous water-level measurements at 80 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-2." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published annually under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address on the back of the title page or by phoning the Scientific and Technical Products Section at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

  15. Small-scale variations of climate change in mountainous forested terrain - a regional study from H.J. Andrews Long Term Ecological Research site in Oregon, USA

    NASA Astrophysics Data System (ADS)

    Honzakova, Katerina; Hoffmann, Peter; Jones, Julia; Thomas, Christoph

    2017-04-01

    There has been conflicting evidence as to whether high elevations are experiencing more pronounced climate warming than lower elevations in mountainous regions. In this study we analyze temperature records from H.J. Andrews Long Term Ecological Research, Oregon, USA and several nearby areas, comprising together 28 stations located in Cascade Mountains. The data, starting in 1958, are first checked for quality and homogenized using the Standard Normal Homogeneity Test. As a reference, composite climate time series based on the Global Historic Climate Network is created and together with cross-referencing against station records used to correct breaks and shifts in the data. In the next step, we investigate temperature patterns of the study site from 1958 to 2016 and compare them for valley and hill stations. In particular, we explore seasonality and inter-annual variability of the records and trends of the last day of frost. Additionally, 'cold' sums (positive and negative) are calculated to obtain a link between temperature and ecosystems' responses (such as budbreaks). So far, valley stations seem to be more prone to climate change than ridge or summit stations, contrary to current thinking. Building on previous knowledge, we attempt to provide physical explanations for the temperature records, focusing on wind patterns and associated phenomena such as cold air drainage and pooling. To aid this we analyze wind speed and direction data available for some of the stations since 1996, including seasonality and inter-annual variability of the observed flows.

  16. Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges.

    PubMed

    Collins, David N; Davenport, Joshua L; Stoffel, Markus

    2013-12-01

    Climate records for locations across the southern slope of the Himalaya between 77°E and 91°E were selected together with discharge measurements from gauging stations on rivers draining partially-glacierised basins tributary to the Ganges, with a view to assessing impacts of climatic fluctuations on year-to-year variations of runoff during a sustained period of glacier decline. The aims were to describe temporal patterns of variation of glaciologically- and hydrologically-relevant climatic variables and of river flows from basins with differing percentages of ice-cover. Monthly precipitation and air temperature records, starting in the mid-nineteenth century at high elevation sites and minimising data gaps, were selected from stations in the Global Historical Climatology Network and CRUTEM3. Discharge data availability was limited to post 1960 for stations in Nepal and at Khab in the adjacent Sutlej basin. Strengths of climate-runoff relationships were assessed by correlation between overlapping portions of annual data records. Summer monsoon precipitation dominates runoff across the central Himalaya. Flow in tributaries of the Ganges in Nepal fluctuated from year to year but the general background level of flow was usually maintained from the 1960s to 2000s. Flow in the Sutlej, however, declined by 32% between the 1970s and 1990s, reflecting substantially reduced summer precipitation. Over the north-west Ganges-upper Sutlej area, monsoon precipitation declined by 30-40% from the 1960s to 2000s. Mean May-September air temperatures along the southern slope of the central Himalayas dipped from the 1960s, after a long period of slow warming or sustained temperatures, before rising rapidly from the mid-1970s so that in the 2000s summer air temperatures reached those achieved in earlier warmer periods. There are few measurements of runoff from highly-glacierised Himalayan headwater basins; runoff from one of which, Langtang Khola, was less than that of the monsoon-dominated Narayani river, in which basin Langtang is nested. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Relative sea level trend and variability in the central Mediterranean in the time span 1872-2014 from tide gauge data: implications for future projections

    NASA Astrophysics Data System (ADS)

    Anzidei, Marco; Vecchio, Antonio

    2015-04-01

    We used tidal data collected in the time span 1872-2014 from a set of historical and modern stations located in the central Mediterranean, along the coasts of Italy, France, Slovenia and Croatia. The longest records span across the last two or three centuries for the tidal stations of Genova, Marseille, Trieste and Venice. While data from Bakar, Dubrovink, Rovinji and Split, all located along the coast of the Adriatic sea, provide valid records for a time span about 50 years long. In addition to these stations, since 1998 become available for the Italian region new sea level data from the dense national tidal network (www.mareografico.it). These digital stations are collecting data continuously at 10 minute sampling interval with a nominal accuracy at 1 mm. Therefore, in addition to the historical stations, we have the opportunity to analyze a sea level data set that cover about the last 16 years. In this study we show and discuss the results of our analysis of sea level data for the central Mediterranean, providing new insights on sea level trend and variability for about the past 140 years. Finally, based on sea level data and IPCC reports, we provide future sea level projections for this region for the year 2100 with implications for coastal flooding of lowland areas.

  18. Nap polygraphic recordings after partial sleep deprivation in patients with suspected epileptic seizures.

    PubMed

    Peraita-Adrados, R; Gutierrez-Solana, L; Ruiz-Falcó, M L; García-Peñas, J J

    2001-02-01

    A review of the literature shows that nap recordings make a significant contribution to epilepsy studies, providing evidence of specific EEG findings in patients suspected of having epilepsy. In addition, sleep deprivation can cause paroxysmal EEG activity and clinical seizures. We studied retrospectively 686 patients, 51.8% males and 48.2% females, who had experienced at least one episode classified from the clinical point of view as epileptic in origin. They were divided into six age groups. Patients underwent a two-hour (1 P.M.-3 P.M.) nap-video-polygraphic recording (EEG 13 channels using the standard 10-20 system, EOG, ECG, EMG and respiration), following a partial sleep deprivation (1 to 3 h) the night before. A second recording was made in 40 patients. In 35.3% of patients, a complete sleep cycle was obtained; in 64.6% sufficient light and deep NREM sleep was obtained, but not REM stage; in 9.3%, we only observed drowsiness and stage 1 of sleep, and this group was excluded from the analysis. Interictal and/or ictal epileptic discharges were observed during the first nap recording in 245 patients (40.4% of the sample). In addition, in 40 patients (11%) with normal or inconclusive first nap EEG, a second recording was able to demonstrate epileptic abnormalities in 35% of cases. Because of its good cost/benefit ratio and availability in most western laboratories, we consider the 'nap plus partial sleep deprivation' method as advantageous over other activation procedures.

  19. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  20. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  1. Multi-Use seismic stations offer strong deterrent to clandestine nuclear weapons testing

    NASA Astrophysics Data System (ADS)

    Hennet, C. B.; Van der Vink, G. E.; Richards, P. G.; Adushkin, V. V.; Kopnichev, Y. F.; Geary, R.

    As the United States and other nations push for the signing of a Comprehensive Test Ban Treaty, representatives are meeting in Geneva this year to develop an International Seismic Monitoring System to verify compliance with the treaty's restrictions. In addition to the official monitoring system, regional networks developed for earthquake studies and basic research can provide a strong deterrent against clandestine testing. The recent release of information by the U.S. Department of Energy (DoE) on previously unannounced nuclear tests provides an opportunity to assess the ability of multi-use seismic networks to help monitor nuclear testing across the globe.Here we look at the extent to which the formerly unannounced tests were recorded and identified on the basis of publicly available seismographic data recorded by five seismic networks. The data were recorded by networks in southern Nevada and northern California at stations less than 1500 km from the Nevada Test Site (NTS), and two networks in the former Soviet Union at stations farther than 1500 km from the NTS.

  2. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  3. Borehole P- and S-wave velocity at thirteen stations in Southern California

    USGS Publications Warehouse

    Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.

    2001-01-01

    The U.S. Geological Survey (USGS), as part of a program to acquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g., Gibbs et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California, and one is located in San Bernardino, California. Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG), and Southwestern Academy (SWA) recorded significant aftershock data. These portable sites, with the exception of Santa Anita Golf Course, were co-sited with strong-motion recorders. Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (partially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame. Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers et al., 1998). No drill samples or cuttings were obtained from the other six sites, but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above. The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake (ML = 5.9), making it important from a scientific and engineering prospective (Brady et al., 1988; Shakal et al., 1988).

  4. View of the ISS taken during final flyaround of STS-100

    NASA Image and Video Library

    2001-04-29

    S100-E-5960 (29 April 2001) --- Backdropped against the blue and white Earth and sporting a readily visible new addition in the form of the Canadarm2 or space station robotic arm, the International Space Station (ISS) was photographed following separation from the Space Shuttle Endeavour. With six astronauts and a Rosaviakosmos cosmonaut aboard the shuttle, the spacecraft performed a fly-around survey of the station, which was inhabited by two astronauts and a Russian cosmonaut. The image was recorded with a digital still camera.

  5. View of the ISS taken during final flyaround of STS-100

    NASA Image and Video Library

    2001-04-29

    S100-E-5973 (29 April 2001) --- Backdropped against the blackness of space and sporting a readily visible new addition in the form of the Canadarm2 or space station robotic arm, the International Space Station (ISS) was photographed following separation from the Space Shuttle Endeavour. With six astronauts and a Rosaviakosmos cosmonaut aboard the shuttle, the spacecraft performed a fly-around survey of the station, which was inhabited by two astronauts and a Russian cosmonaut. The image was recorded with a digital still camera.

  6. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Additional 20-Year Period and Record of Decision Notice is hereby given that the U.S. Nuclear Regulatory... its technical specifications. The notice also serves as the record of decision for the renewal of... from coal, natural gas, combination of alternatives, and the no action alternative. The factors...

  7. 76 FR 11823 - Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Notice of Issuance of Renewed Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Additional 20-Year Period; Record of Decision Notice is hereby given that the U.S. Nuclear Regulatory... technical specifications. The notice also serves as the record of decision for the renewal of facility..., efficiency, wood-fired generation, and wind power; and non-renewal of the operating license. The factors...

  8. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  9. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2012-10-01 2012-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  10. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2011-10-01 2011-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  11. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2014-10-01 2014-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  12. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2013-10-01 2013-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  13. KSC-99pp0722

    NASA Image and Video Library

    1999-06-19

    At Launch Pad 17A, Cape Canaveral Air Station, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite (foreground) is partially covered by half of the fairing (behind it) that will protect it during launch. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study those elements to unlock the secrets of how galaxies evolve and to discover what the Universe was like when it was only a few minutes old

  14. Earth Observation

    NASA Image and Video Library

    2014-07-15

    ISS040-E-065857 (15 July 2014) --- One of the Expedition 40 crew members aboard the International Space Station recorded this colorful image of Aurora Australis on July 15, 2014. Achernar (just to the right of center) is the brightest and most easily recognizable star in this generally southward view. The orbital outpost was flying at an altitude of 225 nautical miles over a nadir point located at 51.6 degrees south latitude and 110.3 degrees east longitude. Two solar array panels are partially visible in an edge-on angle on the right side of the frame.

  15. Background Noise of the Aldeia da Serra Region (Portugal) from a temporary broad band network

    NASA Astrophysics Data System (ADS)

    Wachilala, Piedade; Borges, José; Caldeira, Bento; Bezzeghoud, Mourad

    2017-04-01

    In this study, we analyse seismic background noise to assess the effect of noise based on the detectability of a temporary network constituted by DOCTAR (Deep Ocean Test Array), who have been deployed in a period between 2011 and 2012 in Portugal mainland, and the Évora permanent seismic station. This network is constituted by 14 digital broadband stations (14 CMG-3ESP and one STS2 sensors) with a flat response between the 60 sec to 50 Hz, 24-bit and 120s to 60Hz respectively. The temporary network was operated in continuous recording mode (three-components) in a region located in the north of the region of Évora, within a radius of about 30 km around the village of Aldeia da Serra, region in which there is an important seismic activity in the context of Portugal mainland. We calculated power spectral densities of background noise for each station/component and compare them with high-noise model and low-noise model of Peterson (1993). We consider different for day and night local and for different periods of the year. Power spectral density estimates show moderate noise levels with all stations falling within the high and low bounds of Peterson (1993). Considering the results of the noise, we estimate the detection limit of each station and consequently the detectability of the network. From this information and taking in attention the events recorded during the period of DOCTAR operation we analyse the improvement promoted by this temporary network regarding the existent seismic networks to the local seismicity study. This work was partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project). We acknowledge GFZ Potsdam for providing part of the data used in this study.

  16. Modeling genetic and nongenetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors.

    PubMed

    Lu, Y; Vandehaar, M J; Spurlock, D M; Weigel, K A; Armentano, L E; Staples, C R; Connor, E E; Wang, Z; Coffey, M; Veerkamp, R F; de Haas, Y; Tempelman, R J

    2017-01-01

    Feed efficiency (FE), characterized as the fraction of feed nutrients converted into salable milk or meat, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or partial efficiencies (PE) involving the conversion of dry matter intake to milk energy and metabolic body weight may be highly heterogeneous across environments or management scenarios. In this study, a hierarchical Bayesian multivariate mixed model was proposed to jointly infer upon such heterogeneity at both genetic and nongenetic levels on PE and variance components (VC). The heterogeneity was modeled by embedding mixed effects specifications on PE and VC in addition to those directly specified on the component traits. We validated the model by simulation and applied it to a joint analysis of a dairy FE consortium data set with 5,088 Holstein cows from 13 research stations in Canada, the Netherlands, the United Kingdom, and the United States. Although no differences were detected among research stations for PE at the genetic level, some evidence was found of heterogeneity in residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration was observed with heritability estimates of FE ranging from 0.16 to 0.46 across stations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Stratton Sagebrush Hydrology Study Area: An annotated bibliography of research conducted 1968-1990

    USGS Publications Warehouse

    Burgess, Leah M.; Schoenecker, Kathryn A.

    2004-01-01

    This annotated bibliography provides an overview of research projects conducted on the Stratton Sagebrush Hydrology Study Area (Stratton) since its designation as such in 1967. Sources include the Rocky Mountain Forest and Range Experiment Station records storage room, Laramie, Wyoming, the USGS and USFS online reference libraries, and scientific journal databases at the University of Wyoming and Colorado State University. This annotated bibliography summarizes publications from research conducted at Stratton during the prime of its tenure as a research lab from 1968 to 1990. In addition, an appendix is included that catalogues all data on file at the Rocky Mountain Forest and Range Experiment Station in Laramie, Wyoming. Each file folder was searched and its contents recorded here for the researcher seeking original data sets, charts, photographs and records.

  18. Water resources data, Montana, water year 2005: Volume 1. Hudson Bay and upper Missouri River basins

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 134 streamflow-gaging stations; stage or content records for 18 lakes and reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 13 ground-water wells. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  19. Water Resources Data, Montana, 2003; Volume 1. Hudson Bay and Upper Missouri River Basins

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2004-01-01

    Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content for 5 smaller reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 7 ground-water wells. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  20. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  1. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  2. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  3. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  4. Particulate Matter 2.5 and Black Carbon concentrations in underground San Francisco Bay Area Rapid Transit stations

    NASA Astrophysics Data System (ADS)

    Gray, A.; Williams, N.; Quartey, R.; Quintana, M.; Bell, B.; Biswas, N.; Hunter, S.; Marks-Block, T.; Yu, X.

    2013-12-01

    A previous Particulate Matter (PM) 2.5 study within Bay Area Rapid Transit (BART) train stations found that concentrations of PM 2.5 at San Francisco's (SF) Embarcadero station were significantly high relative to within the rail system. To follow up on that study, PM 2.5 data was collected within other underground BART stations and the streets surrounding them using the DustTrak Aerosol monitor that measures concentrations every second. In addition, black carbon (BC) data was collected using a microAeth aerosol monitor that also measures concentrations every minute. During each day that measurements were made along three different train routes originating from West Oakland BART station: 1) toward the San Francisco Civic Center station: en route to the Lake Merritt station in Oakland; and toward the Downtown Berkeley station. All of these stations are located underground, and at each one the DustTrak instrument was taken from the train to the ticket level, and on each route data was collected outside of the stations. Black carbon (BC) concentrations were recorded only on the San Francisco route. The highest PM 2.5 concentrations were recorded at SF underground stations, particularly at Embarcadero where concentrations exceeded 100 μg/m3 at train level. These values were much greater than those obtained outside the station, which ranged between 10-20 μg/m3. Other stations along the route to Civic Center had values ranging from 30-64 μg/m3, higher than stations along the route to the Downtown Berkeley station (17-42 μg/m3 ) and the Lake Merritt station (10-38 μg/m3). PM concentrations outside of stations were lower, ranging from 14-33 μg/m3 and 8-27 μg/m3 outside 12th Street Oakland City Center and Lake Merritt stations respectively. Additionally, PM concentration was directly related to depth at all stations. For example, one day at Embarcadero the highest concentrations from train to middle to top level were 119, 84, and 59 μg/m3 respectively. We believe the differences in PM concentration between stations are attributed to the number of train lines at each station, the length of adjacent train tunnel, and access to open air at each station. Discussion of PM sources and BC data awaits further elemental analysis of particles collected on instruments' filters. Twenty-four hour sampling of underground BART station air quality is recommended to further understand long-term patterns and potential exposure risks to employees and commuters.

  5. A Sensitivity Analysis of Tsunami Inversions on the Number of Stations

    NASA Astrophysics Data System (ADS)

    An, Chao; Liu, Philip L.-F.; Meng, Lingsen

    2018-05-01

    Current finite-fault inversions of tsunami recordings generally adopt as many tsunami stations as possible to better constrain earthquake source parameters. In this study, inversions are evaluated by the waveform residual that measures the difference between model predictions and recordings, and the dependence of the quality of inversions on the number tsunami stations is derived. Results for the 2011 Tohoku event show that, if the tsunami stations are optimally located, the waveform residual decreases significantly with the number of stations when the number is 1 ˜ 4 and remains almost constant when the number is larger than 4, indicating that 2 ˜ 4 stations are able to recover the main characteristics of the earthquake source. The optimal location of tsunami stations is explained in the text. Similar analysis is applied to the Manila Trench in the South China Sea using artificially generated earthquakes and virtual tsunami stations. Results confirm that 2 ˜ 4 stations are necessary and sufficient to constrain the earthquake source parameters, and the optimal sites of stations are recommended in the text. The conclusion is useful for the design of new tsunami warning systems. Current strategies of tsunameter network design mainly focus on the early detection of tsunami waves from potential sources to coastal regions. We therefore recommend that, in addition to the current strategies, the waveform residual could also be taken into consideration so as to minimize the error of tsunami wave prediction for warning purposes.

  6. Peak-flow frequency estimates based on data through water year 2001 for selected streamflow-gaging stations in South Dakota

    USGS Publications Warehouse

    Sando, Steven K.; Driscoll, Daniel G.; Parrett, Charles

    2008-01-01

    Numerous users, including the South Dakota Department of Transportation, have continuing needs for peak-flow information for the design of highway infrastructure and many other purposes. This report documents results from a cooperative study between the South Dakota Department of Transportation and the U.S. Geological Survey to provide an update of peak-flow frequency estimates for South Dakota. Estimates of peak-flow magnitudes for 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals are reported for 272 streamflow-gaging stations, which include most gaging stations in South Dakota with 10 or more years of systematic peak-flow records through water year 2001. Recommended procedures described in Bulletin 17B were used as primary guidelines for developing peak-flow frequency estimates. The computer program PEAKFQ developed by the U.S. Geological Survey was used to run the frequency analyses. Flood frequencies for all stations were initially analyzed by using standard Bulletin 17B default procedures for fitting the log-Pearson III distribution. The resulting preliminary frequency curves were then plotted on a log-probability scale, and fits of the curves with systematic data were evaluated. In many cases, results of the default Bulletin 17B analyses were determined to be satisfactory. In other cases, however, the results could be improved by using various alternative procedures for frequency analysis. Alternative procedures for some stations included adjustments to skew coefficients or use of user-defined low-outlier criteria. Peak-flow records for many gaging stations are strongly influenced by low- or zero-flow values. This situation often results in a frequency curve that plots substantially above the systematic record data points at the upper end of the frequency curve. Adjustments to low-outlier criteria reduced the influence of very small peak flows and generally focused the analyses on the upper parts of the frequency curves (10- to 500-year recurrence intervals). The most common alternative procedures involved several different methods to extend systematic records, which was done primarily to address biases resulting from nonrepresentative climatic conditions during several specific periods of record and to reduce inconsistencies among multiple gaging stations along common stream channels with different periods of record. In some cases, records for proximal stations could be combined directly. In other cases, the two-station comparison procedure recommended in Bulletin 17B was used to adjust the mean and standard deviation of the logs of the systematic data for a target station on the basis of correlation with concurrent records from a nearby long-term index station. In some other cases, a 'mixed-station procedure' was used to adjust the log-distributional parameters for a target station, on the basis of correlation with one or more index stations, for the purpose of fitting the log-Pearson III distribution. Historical adjustment procedures were applied to peak-flow frequency analyses for 17 South Dakota gaging stations. A historical adjustment period extending back to 1881 (121 years) was used for 12 gaging stations in the James and Big Sioux River Basins, and various other adjustment periods were used for additional stations. Large peak flows that occurred in 1969 and 1997 accounted for 13 of the 17 historical adjustments. Other years for which historical peak flows were used include 1957, 1962, 1992, and 2001. A regional mixed-population analysis was developed to address complications associated with many high outliers for the Black Hills region. This analysis included definition of two populations of flood events. The population of flood events that composes the main body of peak flows for a given station is considered the 'ordinary-peaks population,' and the population of unusually large peak flows that plot substantially above the main body of peak flows on log-probability scale is co

  7. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to this...

  8. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to this...

  9. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to this...

  10. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to this...

  11. 47 CFR 101.217 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station records. 101.217 Section 101.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.217 Station records. Each licensee of a station subject to this...

  12. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for the STS, and from 8.3 to 25 Mt yield for Novaya Zemlya Test Site region. The peculiarities of the wave pattern and spectral content of the acoustic wave records, and relation regularities of acoustic wave amplitude and periods with explosion yield and distance were investigated. The created database can be applied in different monitoring tasks, such as infrasound stations calibration, discrimination of nuclear explosions, precision of nuclear explosions parameters, determination of the explosion yield etc.

  13. Surface-Water Data, Georgia, Water Year 1999

    USGS Publications Warehouse

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report GA-99-1.' These water-data reports are for sale in various formats, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

  14. Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Lorenz, D.L.

    1987-01-01

    Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.

  15. Seismology on drifting icebergs: Catching earthquakes, tsunamis, swell, and iceberg music

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Macayeal, D. R.

    2006-12-01

    For the past 3 years, we have operated seismometers on large icebergs either parked or drifting in the Ross Sea, with an additional station at Nascent, where the next section of the Ross Ice Shelf is expected to calf. Apart from their primary goal of studying in situ tremor generated inside the ice, presumed to arise during collisions and fragmentation, our stations have functioned as teleseismic observatories, despite a noisy environment in the 20-100 mHz frequency band, corresponding to the free bobbing and rolling of the icebergs. As expected, both P and Rayleigh waves from distant earthquakes are recorded on the vertical channels as unperturbed ground motion, with acceptable values of energy flux (P) or magnitude (Rayleigh); however, due to noise level at mantle periods, only Rayleigh waves from the largest events (Sumatra 2004; Nias 2005) could be quantified meaningfully. T waves from distant earthquakes along the EPR can be recorded, but the acoustic-to-seismic transition at the ice boundary is less effcient than at typical island stations. The 2004 Sumatra tsunami was recorded on all 3 components at the 3 stations; the inferred amplitudes (about 15 cm vertical and 1.3 m horizontal, peak-to-peak) are in general agreement with global simulations, and suggest that the bergs rode the tsunami without intrinsic deformation; a small tsunami is also detected for the Macquarie earthquake of 23 Dec. 2004. Our stations regularly recorded long wavetrains in the 40-60 mHz range, dispersed under the deep-water approximation, and corresponding to sea swell propagating across the entire ocean from major storms in the Northern and Equatorial Pacific. In the case of a major depression in the Gulf of Alaska in Late October 2005, recorded on the ice 6 days later, Iceberg B-15A underwent at the same time a severe fragmentation, leading to legitimate speculation on the role of storm waves in triggering its break-up. Finally, our stations recorded a large number of local signals originating in the ice masses, many of which characterized by clearly preferential eigenfrequencies in the 1-3 Hz range, accomnpanied by harmonics, and discussed in detail in a companion presentation (MacAyeal et al.).

  16. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  17. Precipitation variability of the Grand Canyon region, 1893 through 2009, and its implications for studying effects of gullying of Holocene terraces and associated archeological sites in Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, Richard; Bennett, Glenn E.; Fairley, Helen C.

    2014-01-01

    A daily precipitation dataset covering a large part of the American Southwest was compiled for online electronic distribution (http://pubs.usgs.gov/of/2014/1006/). The dataset contains 10.8 million observations spanning January 1893 through January 2009 from 846 weather stations in six states and 13 climate divisions. In addition to processing the data for distribution, water-year totals and other statistical parameters were calculated for each station with more than 2 years of observations. Division-wide total precipitation, expressed as the average deviation from the individual station means of a climate division, shows that the region—including the Grand Canyon, Arizona, area—has been affected by alternating multidecadal episodes of drought and wet conditions. In addition to compiling and analyzing the long-term regional precipitation data, a second dataset consisting of high-temporal-resolution precipitation measurements collected between November 2003 and January 2009 from 10 localities along the Colorado River in Grand Canyon was compiled. An exploratory study of these high-temporal-resolution precipitation measurements suggests that on a daily basis precipitation patterns are generally similar to those at a long-term weather station in the canyon, which in turn resembles the patterns at other long-term stations on the canyon rims; however, precipitation amounts recorded by the individual inner canyon weather stations can vary substantially from station to station. Daily and seasonal rainfall patterns apparent in these data are not random. For example, the inner canyon record, although short and fragmented, reveals three episodes of widespread, heavy precipitation in late summer 2004, early winter 2005, and summer 2007. The 2004 event and several others had sufficient rainfall to initiate potentially pervasive erosion of the late Holocene terraces and related archeological features located along the Colorado River in Grand Canyon.

  18. Refinement of parameters of weak nuclear explosions conducted at the Semipalatinsk test site on the basis of historical seismograms study

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2014-05-01

    Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters of explosions. MLV, mpv, and energy class K were determined for all underground nuclear explosions conducted at the STS using historical seismograms from Central Asia stations. Dependencies of regional magnitudes on yield were received for air and underground nuclear explosions. Thus, application of historical seismograms at regional distances allows to recover and replenish the seismic catalogues of past nuclear explosions for further use in scientific investigations and monitoring tasks.

  19. The strong ground motion in Mexico City: array and borehole data analysis.

    NASA Astrophysics Data System (ADS)

    Roullé, A.; Chávez-García, F. J.

    2003-04-01

    Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in 1994 by a temporal dense network installed in the firm rock zone of Mexico City were analysed using the same techniques. The results confirm the presence of a diffracting zone south of the valley. These results confirm the hypothesis of a possible interaction between the soft clay layers resonance and diffracted wavetrains of Rayleigh waves to explain both the amplification and the long duration of strong ground motion in Mexico City.

  20. Arkansas StreamStats: a U.S. Geological Survey web map application for basin characteristics and streamflow statistics

    USGS Publications Warehouse

    Pugh, Aaron L.

    2014-01-01

    Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.

  1. Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2008-01-01

    Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.

  2. Low-flow frequency and flow duration of selected South Carolina streams in the Pee Dee River basin through March 2007

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2009-01-01

    Part of the mission of the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina's water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams; this information is especially important for effectively managing the State's water resources during critical flow periods such as the severe drought that occurred between 1998 and 2002 and the most recent drought that occurred between 2006 and 2009. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. Under this agreement, the low-flow characteristics at continuous-record streamgaging stations will be updated in a systematic manner during the monitoring and assessment of the eight major basins in South Carolina as defined and grouped according to the South Carolina Department of Health and Environmental Control's Watershed Water Quality Management Strategy. Depending on the length of record available at the continuous-record streamgaging stations, low-flow frequency characteristics are estimated for annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day average flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years. Low-flow statistics are presented for 18 streamgaging stations in the Pee Dee River basin. In addition, daily flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also are presented for the stations. The low-flow characteristics were computed from records available through March 31, 2007. The last systematic update of low-flow characteristics in South Carolina occurred more than 20 years ago and included data through March 1987. Of the 17 streamgaging stations included in this study, 15 had low-flow characteristics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow characteristic for the minimum average flow for a 7-consecutive-day period with a 10-year recurrence interval from this study with the most recently published values indicated that 10 of the 15 streamgaging stations had values that were within ±25 percent of each other. Nine of the 15 streamgaging stations had negative percentage differences indicating the low-flow statistic had decreased since the previous study, 4 streamgaging stations had positive percent differences indicating that the low-flow statistic had increased since the previous study, and 2 streamgaging stations had a zero percent difference indicating no change since the previous study. The low-flow characteristics are influenced by length of record, hydrologic regime under which the record was collected, techniques used to do the analysis, and other changes that may have occurred in the watershed.

  3. KSC-07pd0642

    NASA Image and Video Library

    2007-03-15

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left, partially hidden) and Commander Pam Melroy (second from right in group), talk with members of the media and guests after a ceremony to unveil NASA's Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann

  4. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic instrumentation and strengthened antenna systems. The majority of the stations installed since 1980 were operated only temporarily (from one to several years) for special studies in various areas within the network. Due to reduced funding, the network was trimmed substantially in the summer of 1985 with the closure of 15 stations, 13 of which were located in and around the Yakataga seismic gap. To further reduce costs, two telephone circuits were dropped and multiple radio relays were installed in their place. This economy reduced the reliability of these telemetry links. In addition, data collection from the areas around Cordova and Yakutat was compromised by the necessity of relying on triggered event recording using PC-based systems (Rogers, 1993) that were not fully developed and which proved to be less reliable than anticipated.The principal means of recording throughout the time period of this catalog was 20-channel oscillographs on 16-mm film (Teledyne Geotech Develocorder, Model RF400 and 4000D). Initially one Develocorder was operated at the USGS Alaskan headquarters in Anchorage, but in 1972 recording was shifted to the National Oceanic and Atmospheric Administration (NOAA) Palmer Observatory (currently the West Coast and Alaska Tsunami Warning Center). The Develocorders were turned off at the end of May 1989, and after that time recording was done in digital format at the Geophysical Institute of the University of Alaska in Fairbanks (GIUA). Thus, this catalog covers the entire period of film recording.

  5. Understanding the distribution of strong motions and the damage caused during the September 19th, 2017 earthquake

    NASA Astrophysics Data System (ADS)

    Aguirre, J.; Ramirez-Guzman, L.; Leonardo Suárez, M.; Quintanar, L.

    2017-12-01

    On September 19, 2017, a normal fault earthquake of magnitude Mw 7.1 occurred 120 km from Mexico City. The quake generated large accelerations, more than 200 cm/s*s at least in two stations in Mexico City, where there was extensive damage. The damage pattern, which includes more than 40 building collapses, differs from the one induced by the 1985 Michoacan earthquake. While the observed accelerations in stations located in the Hill and Transition zones are the largest ever recorded, in the Lake zone the intensities were lower than those recorded in 1985. Even though the proximity of the epicenter could partially explain the accelerations, other factors need to be explored to understand the nuances of the ground motion. Unlike 1985, there is a substantially larger number of acceleration records in Mexico City, operated and maintained by different institutions. In this paper, we present the analysis of acceleration records and 3D numerical simulations to understand if effects such as focusing and directionality participate in the amplified motion. Finally, transfer functions between Lake and Hill zones and response and design spectral values are analyzed in regions where the building code requirements were exceeded. Acknowledgments: Records used in this research are obtained, processed and maintained by the National Autonomous University of Mexico through the Seismic Instrumentation Unit of the Institute of Engineering and the National Seismological Service of the Institute of Geophysics. The Centro de Intrumentacion y Registro Sismico A.C. (CIRES) kindly provided their records. This Project was funded in part by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  6. The Danish Greenland Magnetometer Chain - Status and Outlook

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2016-12-01

    DTU Space operates the Greenland magnetometer array, including 19 variometer stations whereof 3 are geomagnetic observatories. This array consists of a West Coast Chain with 13 stations including three observatories between 77.47 and 61.16 geographic North. On the East Coast 5 variometer stations are located between 81.6 and 65.6 geographic North. The Greenland Array covers polar cap, cusp and auroral regions. These data allow the monitoring of electromagnetic processes in the polar ionosphere and magnetosphere, and are a significant contribution to global data sets. The vast majority of the sensors now employed are the Danish FGE 3-axis linear-core fluxgate magnetometers designed and built under the supervision of Ole Rasmussen and later Lars William Pedersen. They are optimized for long-term stability (observatory-quality instruments) rather than high sensitivity. The stations use 16 bit A/D converters with 20s or 1s sampling rate, optimized for 1 minute mean data. Hence, the rms-noise is approximately 0.1 nT in the 1 mHz - 1 Hz band, the time accuracy is 1s and the final resolution is 0.25 nT for most data at 20s sampling rate and 0.125 nT for most data at 1s sampling rate. During setup, the sensor axes are oriented along local magnetic north (H), local magnetic east (E) and vertical down (Z). Sensors at some stations are equipped with a suspension which guarantees vertical alignment. The instruments run fully automatically and require (normally) no manual intervention. All stations use the FGE vector magnetometer. Greenland magnetometer data has been aquired in digital form since 1981. From 1981 through 1990 all stations recorded with 1-min sampling rate. In 1986 the acquisition systems was gradually modified in order to record with 20-s sampling rate. Modification was completed by 1991, and since then all stations run at 20-s sampling rate. In 1999 acquisition system was made capable to record at 1-s sampling in addition to the continued 20-s sampoling rate. In 2001 most stations were upgraded, and in the summer of 2002 the upgrade was completed. Now all stations have laptops as dataloggers recording at 1Hz. In this presentation, we provide a status overview of the chain and its role within the G-ESC.

  7. Analysis of the U.S. geological survey streamgaging network

    USGS Publications Warehouse

    Scott, A.G.

    1987-01-01

    This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19. 9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17. 8 percent. Additional study results are discussed.

  8. Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: Implications for infrasonic monitoring of remote explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Le Pichon, Alexis; Vergoz, Julien; Herry, Pascal; Lalande, Jean-Marie; Lee, Hee-il; Che, Il-Young; Rybin, Alexander

    2011-02-01

    Sarychev Peak (SP), located on Ostrov Matua, Kurils, erupted explosively during 11-16 June 2009. Whereas remote seismic stations did not record the eruption, we report atmospheric infrasound (acoustic wave ~ 0.01-20 Hz) observations of the eruption at seven infrasound arrays located at ranges of ~ 640-6400 km from SP. The infrasound arrays consist of stations of the International Monitoring System global infrasound network and additional stations operated by the Korea Institute of Geoscience and Mineral Resources. Signals at the three closest recording stations IS44 (643 km, Petropavlovsk-Kamchatskiy, Kamchatka Krai, Russia), IS45 (1690 km, Ussuriysk, Russia), and IS30 (1774 km, Isumi, Japan) represent a detailed record of the explosion chronology that correlates well with an eruption chronology based on satellite data (TERRA, NOAA, MTSAT). The eruption chronology inferred from infrasound data has a higher temporal resolution than that obtained with satellite data. Atmosphere-corrected infrasonic source locations determined from backazimuth cross-bearings of first-arrivals have a mean centroid ~ 15 km from the true location of SP. Scatter in source locations of up to ~ 100 km result from currently unresolved details of atmospheric propagation and source complexity. We observe systematic time-variations in trace-velocity, backazimuth deviation, and signal frequency content at IS44. Preliminary investigation of atmospheric propagation from SP to IS44 indicates that these variations can be attributed to solar tide variability in the thermosphere. It is well known that additional information about active volcanic processes can be learned by deploying infrasonic sensors with seismometers at erupting volcanoes. This study further highlights the significant potential of infrasound arrays for monitoring volcanic regions such as the Kurils that have only sparse seismic network coverage.

  9. Omega flight-test data reduction sequence. [computer programs for reduction of navigation data

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1974-01-01

    Computer programs for Omega data conversion, summary, and preparation for distribution are presented. Program logic and sample data formats are included, along with operational instructions for each program. Flight data (or data collected in flight format in the laboratory) is provided by the Ohio University Omega receiver base in the form of 6-bit binary words representing the phase of an Omega station with respect to the receiver's local clock. All eight Omega stations are measured in each 10-second Omega time frame. In addition, an event-marker bit and a time-slot D synchronizing bit are recorded. Program FDCON is used to remove data from the flight recorder tape and place it on data-processing cards for later use. Program FDSUM provides for computer plotting of selected LOP's, for single-station phase plots, and for printout of basic signal statistics for each Omega channel. Mean phase and standard deviation are printed, along with data from which a phase distribution can be plotted for each Omega station. Program DACOP simply copies the Omega data deck a controlled number of times, for distribution to users.

  10. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available. Acknowledgements: Seismograms recorded by KiK-net managed by National Research Institute for Earth Science and Disaster Prevention (NIED) were used in this study. This study was partially supported by JST J-RAPID program and JSPS KAKENHI Grant Numbers 24540449 and 23540449.

  11. Determination of baseline periods of record for selected streamflow-gaging stations in and near Oklahoma for use in modeling applications

    USGS Publications Warehouse

    Esralew, Rachel A.

    2010-01-01

    Use of historical streamflow data from a least-altered period of record can be used in calibration of various modeling applications that are used to characterize least-altered flow and predict the effects of proposed streamflow alteration. This information can be used to enhance water-resources planning. A baseline period of record was determined for selected streamflow-gaging stations that can be used as a calibration dataset for modeling applications. The baseline period of record was defined as a period that is least-altered by anthropogenic activity and has sufficient streamflow record length to represent extreme climate variability. Streamflow data from 171 stations in and near Oklahoma with a minimum of 10 complete water years of daily streamflow record through water year 2007 and drainage areas that were less than 2,500 square miles were considered for use in the baseline period analysis. The first step to determine the least-altered period of record was to evaluate station information by using previous publications, historical station record notes, and information gathered from oral and written communication with hydrographers familiar with selected stations. The second step was to indentify stations that had substantial effects from upstream regulation by evaluating the location and extent of dams in the drainage basin. The third step was (a) the analysis of annual hydrographs and included visual hydrograph analysis for selected stations with 20 or more years of streamflow record, (b) analysis of covariance of double-mass curves, and (c) Kendall's tau trend analysis to detect statistically significant trends in base flow, runoff, total flow, and base-flow index related to anthropogenic activity for selected stations with 15 or more years of streamflow record. A preliminary least-altered period of record for each stream was identified by removing the period of streamflow record when streams were substantially affected by anthropogenic activity. After streamflow record was removed from designation as a least-altered period, stations that did not have at least 10 years of remaining continuous streamflow record were considered to have an insufficient baseline period for modeling applications. An optimum minimum period of record was determined for each of the least-altered periods for each station to ensure a sufficient streamflow record length to provide a representative sample of annual climate variability. An optimum minimum period of 10 years or more was evaluated by analyzing the variability of annual precipitation for selected 5-, 10-, 15-, 25-, and 35-year periods for each of 20 climate divisions that contained stations used in the baseline period analysis. The distribution of annual precipitation was compared for each consecutive overlapping 5-year period to the period 1925-2007 by using a Wilcoxon rank-sum test. The least-altered period of record for stations was also compared to the period 1925-2007 by using a Wilcoxon rank-sum test. The results of this analysis were used to determine how many years of annual precipitation data were needed for the selected period to be statistically similar to the distribution of annual precipitation data for a long-term period, 1925-2007. Minimum optimum periods ranged from 10 to 35 years and varied by climate division. A final baseline period was determined for 111 stations that had a baseline period of at least 10 years of continuous streamflow record after the record-elimination process. A suitable baseline period of record for use in modeling applications could not be identified for 58 of the initial 171 stations because of substantial anthropogenic alteration of the stream or drainage basin and for 2 stations because the least-altered period of record was not representative of annual climate variability. The baseline period for each station was rated ?excellent?, ?good?, ?fair?, ?poor?, or ?no baseline period.? This rating was based on a qualitative evaluation of t

  12. Microclimate Exposures of Surface-Based Weather Stations: Implications For The Assessment of Long-Term Temperature Trends.

    NASA Astrophysics Data System (ADS)

    Davey, Christopher A.; Pielke, Roger A., Sr.

    2005-04-01

    The U.S. Historical Climate Network is a subset of surface weather observation stations selected from the National Weather Service cooperative station network. The criteria used to select these stations do not sufficiently address station exposure characteristics. In addition, the current metadata available for cooperative network stations generally do not describe site exposure characteristics in sufficient detail. This paper focuses on site exposures with respect to air temperature measurements. A total of 57 stations were photographically surveyed in eastern Colorado, comparing existing exposures to the standards endorsed by the World Meteorological Organization. The exposures of most sites surveyed, including U.S. Historical Climate Network sites, were observed to fall short of these standards. This raises a critical question about the use of many Historical Climate Network sites in the development of long-term climate records and the detection of climate trends. Some of these sites clearly have poor exposures and therefore should be considered for removal from the Historical Climate Network. Candidate replacement sites do exist and should be considered for addition into the network to replace the removed sites. Documentation as performed for this study should be conducted worldwide in order to determine the extent of spatially nonrepresentative exposures and possible temperature biases.


  13. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2007, to June 30, 2008; Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young, Stacie T.M.

    2008-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at four stations, and water-quality data at six stations, which include the four continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2007, and June 30, 2008. A total of 16 environmental samples were collected over two storms during July 1, 2007, to June 30, 2008, within the Halawa Stream drainage area. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some samples were analyzed for only a partial list of these analytes because an insufficient volume of sample was collected by the automatic samplers. Three additional quality-assurance/quality-control samples were collected concurrently with the storm samples. A total of 16 environmental samples were collected over four storms during July 1, 2007, to June 30, 2008 at the H-1 Storm Drain. All samples at this site were collected using an automatic sampler. Samples generally were analyzed for total suspended solids, nutrients, chemical oxygen demand, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc), although some samples were analyzed for only a partial list of these analytes. During the storm of January 29, 2008, 10 discrete samples were collected. Varying constituent concentrations were detected for the samples collected at different times during this storm event. Two quality-assurance/quality-control samples were collected concurrently with the storm samples. Three additional quality-assurance/quality-control samples were collected during routine sampler maintenance to check the effectiveness of equipment-cleaning procedures.

  14. Rotational motions for teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.

    2011-08-01

    We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.

  15. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    NASA Astrophysics Data System (ADS)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase velocities of multiple, interfering arrivals in one time window. We demonstrate how this property can be exploited to separate the wavefield into its elastic wave-modes and to isolate or suppress waves arriving from specific directions (directional filtering), both in a fully automated fashion.

  16. Cost-effectiveness of the streamflow-gaging program in Minnesota

    USGS Publications Warehouse

    Winterstein, T.A.; Arntson, A.D.

    1989-01-01

    It is recommended that, before this data-collection plan is implemented, the effects of the plan on the cost of collecting data be evaluated for (1) possible increased lost record because of the data collection plan, and (2) the possible need for additional trips to visit noncontinuous-record stations. It also is recommended that the data-accuracy needs of the funding agencies be considered before the plan is implemented.

  17. Seismic excitation by the space shuttle Columbia

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Anderson, D.L.; Heaton, T.H.

    1991-01-01

    SEISMIC stations in southern California recorded the atmospheric shock waves generated by the space shuttle Columbia on its return to the Edwards Air Force base on 13 August 1989 (Fig. 1). In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of ???2-3 seconds, which arrived 12.5 seconds before the shock wave (Fig. 2). This pulse was also recorded at the University of Southern California, near downtown Los Angeles, where it arrived 3 seconds after the shock wave. The origin of this pulse could not be readily identified. We show here that it was a seismic P wave excited by the motion of high-rise buildings in downtown Los Angeles, which were hit by the shock wave. The proximity of the natural period of the high-rise buildings to that of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave.

  18. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into five hydrogeologic terranes. This integrated database then was used to evaluate the ground-water potential of each hydrogeologic terrane. Lineament-trace analysis was used to help assess the ground-water development potential in the hydrogeologic terranes containing igneous rocks. Analyses suggest that areas with slopes greater than 15 degrees have relatively low ground-water development potential. The presence of fractures, independent of the topographic slope, may locally enhance the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The results of this study indicate that induced streamflow generally is needed to sustain low to moderate ground-water withdrawal rates in the five hydrogeologic terranes. The ground-water flow systems in the hydrogeologic terranes are only able to sustain small withdrawal rates that rarely exceed 50 gallons per minute. Areas with a high density of fractures, as could be the case at the intersection of lineament traces in the upper parts of the Rio Ca?as and Rio Yaguez watersheds, are worthy of exploratory drilling for ground-water development.

  19. The Los Alamos Seismic Network (LASN): Recent Network Upgrades and Northern New Mexico Earthquake Catalog Updates

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; House, L. S.; Greene, M.; Ten Cate, J. A.; Schultz-Fellenz, E. S.; Kelley, R.

    2012-12-01

    From the first data recorded in the fall of 1973 to now, the Los Alamos Seismograph Network (LASN) has operated for nearly 40 years. LASN data have been used to locate more than 2,500 earthquakes in north-central New Mexico. The network was installed for seismic verification research, as well as to monitor and locate earthquakes near Los Alamos National Laboratory (LANL). LASN stations are the only earthquake monitoring stations in New Mexico north of Albuquerque. In the late 1970s, LASN included 22 stations spread over a geographic area of 150 km (N-S) by 350 km (E-W), of northern New Mexico. In the early 1980s, the available funding limited the stations that could be operated to a set of 7, located within an area of about 15 km (N-S) by 15 km (E-W), centered on Los Alamos. Over the last 3 years, 6 additional stations have been installed, which have considerably expanded the spatial coverage of the network. These new stations take advantage of broadband state-of-the-art sensors as well as digital recording and telemetry technology. Currently, 7 stations have broadband, three-component seismometers with digital telemetry, and the remaining 6 have traditional 1 Hz short-period seismometers with analog telemetry. In addition, a vertical array of accelerometers was installed in a wellbore on LANL property. This borehole station has 3-component digital strong-motion sensors. In addition, four forensic strong-motion accelerometers (SMA) are operated at LANL facilities. With 3 of the new broadband stations in and around the nearby Valles Caldera, LASN is now able to monitor any very small volcano-seismic events that may be associated with the caldera. We will present a complete description of the current LASN station, instrumentation and telemetry configurations, as well as the data acquisition and event-detection software structure used to record events in Earthworm. More than 2,000 earthquakes were detected and located in north-central New Mexico during the first 11 years of LASN's operation (1973 to 1984). With the subsequent downsizing of the network, only 1-2 earthquakes per month were detected and located within about 150 km of Los Alamos. Over 850 of these nearby earthquakes have been located from 1973 to present. We recently updated the LASN earthquake catalog for north-central New Mexico up through 2011 and most of 2012. This involved re-assessing phase picks and ensuring that all locations are derived using updated station locations and the best available velocity model. We are also looking at subsets of the catalog that include earthquake swarms and clusters and applying relative location techniques to obtain high-precision re-locations for these events. Most events that were detected and located by LASN have magnitudes less than 1.5 and do not appear in the catalogs of any other network. We will present a newly updated map of north-central New Mexico seismicity based on these recent efforts.

  20. Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Carlson, Carl S.

    2009-01-01

    A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.

  1. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data at two sampling stations, Quebrada Blasina in Carolina and the Rio Grande de Loiza, downstream from the town of Trujillo Alto, indicate that the sanitary quality of Quebrada Blasina is and has generally been poor for more than a decade. The sanitary quality of the Rio Grande de Loiza has generally been in compliance with the water-quality goal standard fecal coliform concentrations established in July 1990 by the Puerto Rico Environmental Quality Board. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Carolina into five hydrogeologic terranes. This integrated database was then used to evaluate the ground-water potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be locally important in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. Potentiometric-surface elevations recorded in piezometers installed in the coastal area during this study were used to define ground-water flow directions in the hydrogeologic terranes composed of coastal plain clastic and limestone units. The resultant potentiometric map indicates that the coastal plain aquifer and streams in the lowland parts of the municipio of Carolina are hydraulically connected. The potentiometric map also indicates that ground-water discharge to the Rio Grande de Loiza, downstream from highway PR-3, has been enhanced by dredging of the streambed for

  2. Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations

    USGS Publications Warehouse

    Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.

    2002-01-01

    It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.

  3. Shape And Size Of (90) Antiope Derived From An Exceptional Stellar Occultation On July 19 2011

    NASA Astrophysics Data System (ADS)

    Colas, F.; Berthier, J.; Vachier, F.; Marchis, F.; Jenniskens, P. M.; Enriquez, J. E.; Burns, K.; Descamps, P.; George, A.; Degenhardt, S.; Dunham, D.; Maley, P.; Merline, W. J.; Owen, W. M.; Timerson, B.; Preston, S.; Venable, R.; Allain, M.; Cawthon, R.; Cooper, J. R.; Fixelle, J.; Hicks, S.; Meldman-Floch, W. L.; Minteer, J.; Phillips, M.

    2011-12-01

    On July 19 2011 UT, the (90) Antiope double system occulted a 6.7-mag star (LQ Aquarii) with a path predicted to pass over much of northern California. The shape and separation of the components were predicted based on Descamps et al. (2009) model, plus additional Keck AO observations (Merline, Neyman, Tamblyn, Owen) collected on July 13 and 15, 2011 UT. Through a large collaboration in cooperation with the IOTA we organized a campaign of bservations involving 42 observers and 92 stations spread along the path of the occultation in northern California, Nevada, and Idaho to sample both components. The stellar occultation was successfully recorded by 41 stations with a maximum duration of ~33 s. A preliminary analysis of the data that are being processed and analyzed shows that an improved shape model of both components could be derived based on this campaign. We will present the final analysis of this campaign, which allow us to derive a more accurate period and separation for the binary system and also an improved density. We will discuss the origin of (90) Antiope based on the detection of a large concavity, possibly interpreted as a large impact crater on one of the components, already suggested by Descamps et al (2009). This research is partially supported by the NSF grant AAG-0807468, NASA grant NNX11AD62G and CNRS. We thank the many other members of IOTA who took part in this campaign.

  4. Daily Snow Depth Measurements from 195 Stations in the United States (1997) (NDP-059)

    DOE Data Explorer

    Easterling, D. R. [NOAA, National Climatic Data Center; Jamason, P. [NOAA, National Climatic Data Center; Bowman, D. P. [NOAA, National Climatic Data Center; Hughes, P. Y. [NOAA, National Climatic Data Center; Mason, E. H. [NOAA, National Climatic Data Center; Allison, L. J. [ORNL, Carbon Dioxide Information Analysis Center (CDIAC)

    1997-02-01

    This data package provides daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893-1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station's daily data values for a period of one month, including data source, measurement, and quality flags. The snow depth data have undergone extensive manual and automated quality assurance checks by NCDC and the Carbon Dioxide Information Analysis Center (CDIAC). These reviews involved examining the data for completeness, reasonableness, and accuracy, and included comparison of some data records with records in NCDC's Summary of the Day First Order online database. Since the snow depth measurements have been taken at NWS first-order stations that have long periods of record, they should prove useful in monitoring climate change.

  5. Observations and modeling of seismic background noise

    USGS Publications Warehouse

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network deployed by the California Institute of Technology in cooperation with other institutions.A map showing the approximate locations of the stations used in this study is provided in Figure 1. One might hope for a better distribution of stations in the southern hemisphere, especially Africa and South America, in order to look for regional variations in seismic noise (apart from the major differences between continental, coastal and island sites). Unfortunately, anyone looking for subtle regional variations in seismic noise is probably going to be disappointed by the spectral data presented in this report because much of the station data appear to be dominated by local disturbances caused by instrumental, environmental, cultural, or surf noise. Better instruments and better instrument siting, or a well-funded field program, will be needed before a global isoseismal noise map can be produced. However, by assembling a composite of background noise from a large network of stations, many of the local station variables are masked, and it is possible to create generalized spectral plots of Earth noise for hypothetical quiet and noisy station sites.

  6. Strains Around Abutment Teeth with Different Attachments Used for Implant-Assisted Distal Extension Partial Overdentures: An In Vitro Study.

    PubMed

    ELsyad, Moustafa Abdou; Omran, Abdelbaset Omar; Fouad, Mohammed Mohammed

    2017-01-01

    The aim of this study was to evaluate and compare strain around abutment teeth with different attachments used for implant-assisted distal extension partial overdentures (IADEPODs). A mandibular Kennedy class I acrylic model (remaining teeth from first premolar to first premolar) was constructed. A conventional partial denture was constructed over the model (control, group 1). Two laboratory implants were then placed bilaterally in the first molar areas parallel to each other and perpendicular to the residual ridge. Three additional experimental partial overdentures (PODs) were constructed and connected to the implants using ball (group 2), magnetic (group 3), and Locator (group 4) attachments. Three linear strain gauges were bonded buccal, lingual, and distal to the first premolar abutment tooth at the right (loading) and the left (nonloading) sides. For each group, a universal testing device was used to apply a unilateral vertical static load (50 N) on the first molar area, and the strain was recorded using a multichannel digital strainometer. Significant differences between groups and between sites of strain gauges were detected. Strains recorded for all groups were compressive (negative) in nature. Group 1 demonstrated the highest strain, followed by group 3 and group 4; group 2 recorded the lowest strain. For group 2, the highest strain was recoded at the lingual nonloading side. For group 1, group 3, and group 4, the highest strain was recorded at the buccal loading side. Within the limitation of the present study, ball attachments used to retain IADEPODs to the implants were associated with lower strains around abutment teeth than Locator and magnetic attachments. The highest strain was recorded with conventional partial dentures. © 2015 by the American College of Prosthodontists.

  7. Solar array panels seen from JPM window

    NASA Image and Video Library

    2008-06-10

    S124-E-008618 (10 June 2008) --- A partial view of International Space Station solar panels and Earth's atmosphere are photographed by a STS-124 crewmember on the International Space Station while Space Shuttle Discovery is docked with the station.

  8. Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana

    USGS Publications Warehouse

    Stewart, J.A.; Miller, R.L.; Butch, G.K.

    1986-01-01

    Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)

  9. The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data (NDP-041)

    DOE Data Explorer

    Vose, Russell S. [Carbon Dioxide Information Analysis Center (CDIAC),; Schmoyer, Richard L.; Steurer, Peter M. [National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center, Asheville, NC (USA); Peterson, Thomas C. [National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center, Asheville, NC (USA); Heim, Richard [National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center, Asheville, NC (USA); Karl, Thomas R. [National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center, Asheville, NC (USA); Eischeid, Jon K. [Cooperative Institute for Research in Environmental Sciences, Boulder, CO (USA)

    1992-01-01

    The GHCN data base contains mean monthly temperature data (in tenths of degrees celsius) for 6039 stations throughout the world. The majority (61%) have records for fewer than 50 years, but a significant proportion (10%) have records in excess of 100 years. It also contains total monthly precipitation data (in tenths of millimeters) for 7533 stations throughout the world. A slight majority (55%) have records in excess of 50 years, and a significant proportion (13%) have records in excess of 100 years. Also in this content is mean monthly sea level pressure data (in tenths of millibars) for 1883 stations throughout the world. The monthly station pressure data from those stations is also available here.

  10. Historical Sunshine and Cloud Data in the United States (revised 1991) (NDP-021)

    DOE Data Explorer

    Steurer, Peter M. [National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC (USA); Karl, Thomas R. [National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC (USA)

    2012-01-01

    This data base presents monthly sunshine data from 240 U.S. stations (including Puerto Rico and nine Pacific Islands) and monthly cloud amount data from 197 U.S. stations. The longest periods of record are 1891 through 1987 for the sunshine data and 1871 through 1987 for the cloud data. The sunshine data were derived from measurements taken by a variety of sunshine-recording instruments. The cloud data were derived from land-based estimates of fractional cloud amount, which were made with observation practices that have varied during the period of record. Station number, station name, latitude, and longitude are given for all stations in each network. The sunshine data include monthly and annual total hours of recorded sunshine, monthly and annual maximum possible hours of sunshine, monthly and annual percentages of possible sunshine (hours recorded/hours possible), and dates of use for specific types of sunshine recorders at each station. The cloud data contain monthly and annual cloud amount (in percent of sky cover).

  11. Cost effectiveness of the stream-gaging program in Pennsylvania

    USGS Publications Warehouse

    Flippo, H.N.; Behrendt, T.E.

    1985-01-01

    This report documents a cost-effectiveness study of the stream-gaging program in Pennsylvania. Data uses and funding were identified for 223 continuous-record stream gages operated in 1983; four are planned for discontinuance at the close of water-year 1985; two are suggested for conversion, at the beginning of the 1985 water year, for the collection of only continuous stage records. Two of 11 special-purpose short-term gages are recommended for continuation when the supporting project ends; eight of these gages are to be discontinued and the other will be converted to a partial-record type. Current operation costs for the 212 stations recommended for continued operation is $1,199,000 per year in 1983. The average standard error of estimation for instantaneous streamflow is 15.2%. An overall average standard error of 9.8% could be attained on a budget of $1,271,000, which is 6% greater than the 1983 budget, by adopted cost-effective stream-gaging operations. (USGS)

  12. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    NASA Astrophysics Data System (ADS)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  13. Lively Earthquake Activity in North-Eastern Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter H.

    2016-04-01

    The seismograph at the Danish military outpost, Station Nord (NOR) in North East Greenland, records many regional/local earthquakes every day. Most of these events originate at the Arctic plate boundary between the Eurasian and the North American plates. The plate boundary has a particularly active segment approximately 200 km from the seismograph. Additionally we find a seismically very active region 20-30 km from NOR on the Kronprins Christian Land peninsula. The BB seismograph at NOR was installed in 2002 and later upgraded with real-time telemetry as part of the GLISN-project. Since late 2013 data from NOR have been included in routine processing at GEUS. Phase readings on some of the older data, primarily 2002-2003, have been carried out previously in connection with other projects. As a result, phase readings for more than 6000 local events, recorded exclusively at NOR, were found in the GEUS data base. During the years 2004 to 2007 four locations were occupied by temporary BB seismographs on the North coast of Greenland as part of the Law of the Sea preparatory work. Data from these stations have not previously been analyzed for local and regional events. In this study we combine the recordings from NOR with phase readings from the temporary seismographs in Northern Greenland. The local events on Kronprins Christian Land range in magnitude from less than 2 to a 4.8 event widely recorded in the region and felt by the personnel at Station Nord on August 30, 2005. Station Nord is located in the seismically most active region of Greenland.

  14. Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)

    DOE Data Explorer

    Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre

    1990-01-01

    The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  16. River catchment rainfall series analysis using additive Holt-Winters method

    NASA Astrophysics Data System (ADS)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  17. Usability of ocean-bottom seismograms for broadband waveform tomography

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Sigloch, Karin

    2013-04-01

    Recordings made by broadband seismometers on the ocean-bottom are generally noisier than recordings of land stations using the same sensor type. The primary reason is that oceanic recordings are more affected by microseismic noise, which originates in the oceans. A similar drawback applies to data from stations on oceanic islands. The frequency band between 0.05 Hz and 0.2 Hz is most affected by microseismic noise -- unfortunately a large overlap with the band that is most useful in highly-resolving body-wave tomography when using land stations. On the other hand, waveform inversion methods, unlike traditional ray theory, do not necessarily depend on the availability of clean, pulse-like broadband signals across the entire frequency range. For example in finite-frequency tomography, the method of our choice, modelling procedures permit the exclusion of unusable frequency bands on a case-by-case basis. Hence we investigate to what extent seismograms from the ocean-bottom and from island stations can be used for broadband waveform inversion of teleseismic P-waves, as compared to continental land stations. We have re-analyzed data from one of the largest onshore-offshore, broadband, long-term seismological experiment to date: the Hawaiian PLUME project (Wolfe et al. 2009, Laske 2009). The data quality was studied in eight overlapping frequency bands (dominant periods between 30.0 s and 2.7 s), for year-long records from 62 ocean-bottom stations (January 2005 - June 2007), complemented by seismograms from 74 regional island stations and 236 continental stations from four different networks on the Pacific-rim, recorded in the same time frame. P-wave seismograms from 103 earthquakes of moment magnitude 6.2 and above, recorded at epicentral distances of 32° to 85° to Hawaii were assessed in this study. The quality of the recorded data was evaluated by calculating the cross-correlation coefficient between the first 1.5 dominant periods of real and predicted waveforms, in eight frequency passbands and on the broadband waveform, after careful correction for source parameters and source time function (Sigloch and Nolet 2006). As expected, permanent continental stations were quieter than permanent island stations in the Pacific, (independent of frequency band), and island stations were quieter than ocean-bottom stations. Relative data quality for both types of oceanic stations is lowest for dominant periods between 11s and 3 s. We present statistics for the fraction of usable data, as a function of station type, frequency band, and sensor type. In the lowest frequency band 55%, 71% and 90% of the data recorded by the PLUME stations, island stations and land stations, respectively, can be used for seismic tomography. These values drop with increasing frequency, to a minimum of 12% for the island stations, 8% for OBS stations and 33% for the land stations. We also compare data quality by OBS sensor type (Nanometrics T-40, Nanometrics T-240, Güralp CMG-3T). We find that frequency bands around 2.7 s and between 20.0 to 30.0 s have low noise levels but have not been used for tomography by the project PIs. A multiple-frequency waveform inversion including these additional bands and wave paths, as well as a larger number of earthquakes (101 versus 97 and 59 used in the original studies by Wolfe et al. 2009 and Wolfe et al. 2011) should be able to improve the resolution of the velocity structure in the upper and lower mantle beneath the Hawaiian hotspot. References: Laske, G., Collins, J. A., Wolfe, C. J., Solomon, S. C., Detrick, R. S., Orcutt, J. A., Bercovici, D., Hauri, E. H. (2009). Probing the Hawaiian hotspot with new broadband ocean bottom instruments. Eos Trans. AGU, 90(41), 362-363. Sigloch, K., & Nolet, G. (2006). Measuring finite-frequency body-wave amplitudes and traveltimes. Geophysical Journal International, 167(1), 271-287, doi:10.1111/j.1365-246X.2006.03116.x Wolfe, C.J, Solomon, S.C., Laske G., Collins, J.A., Detrick, R.S., Orcutt, J.A., Bercovici, D., and Hauri, E.H. (2009) Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science (New York, N.Y.), 326(5958), 1388-1390. Wolfe, C.J, Solomon, S.C., Laske G., Collins, J.A., Detrick, R.S., Orcutt, J.A., Bercovici, D., and Hauri, E.H. (2011) Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth and Planetary Science Letters, 303(3-4), 267-280.

  18. Russian system of countermeasures on board of the International Space Station (ISS): the first results

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, Inessa B.; Grigoriev, Anatoly I.

    2004-08-01

    The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in-and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.

  19. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  20. BARENTS16: a 1-D velocity model for the western Barents Sea

    NASA Astrophysics Data System (ADS)

    Pirli, Myrto; Schweitzer, Johannes

    2018-01-01

    A minimum 1-D seismic velocity model for routine seismic event location purposes was determined for the area of the western Barents Sea, using a modified version of the VELEST code. The resulting model, BARENTS16, and corresponding station corrections were produced using data from stations at regional distances, the vast majority located in the periphery of the recorded seismic activity, due to the unfavorable land-sea distribution. Recorded seismicity is approached through the listings of a joint bulletin, resulting from the merging of several international and regional bulletins for the region, as well as additional parametric data from temporary deployments. We discuss the challenges posed by this extreme network-seismicity geometry in terms of velocity estimation resolution and result stability. Although the conditions do not facilitate the estimation of meaningful station corrections at the farthermost stations, and even well-resolved corrections do not have a convincing contribution, we show that the process can still converge to a stable velocity average for the crust and upper mantle, in good agreement with a priori information about the regional structure and geology, which reduces adequately errors in event location estimates.

  1. Current Development at the Southern California Earthquake Data Center (SCEDC)

    NASA Astrophysics Data System (ADS)

    Appel, V. L.; Clayton, R. W.

    2005-12-01

    Over the past year, the SCEDC completed or is near completion of three featured projects: Station Information System (SIS) Development: The SIS will provide users with an interface into complete and accurate station metadata for all current and historic data at the SCEDC. The goal of this project is to develop a system that can interact with a single database source to enter, update and retrieve station metadata easily and efficiently. The system will provide accurate station/channel information for active stations to the SCSN real-time processing system, as will as station/channel information for stations that have parametric data at the SCEDC i.e., for users retrieving data via STP. Additionally, the SIS will supply information required to generate dataless SEED and COSMOS V0 volumes and allow stations to be added to the system with a minimum, but incomplete set of information using predefined defaults that can be easily updated as more information becomes available. Finally, the system will facilitate statewide metadata exchange for both real-time processing and provide a common approach to CISN historic station metadata. Moment Tensor Solutions: The SCEDC is currently archiving and delivering Moment Magnitudes and Moment Tensor Solutions (MTS) produced by the SCSN in real-time and post-processing solutions for events spanning back to 1999. The automatic MTS runs on all local events with magnitudes > 3.0, and all regional events > 3.5. The distributed solution automatically creates links from all USGS Simpson Maps to a text e-mail summary solution, creates a .gif image of the solution, and updates the moment tensor database tables at the SCEDC. Searchable Scanned Waveforms Site: The Caltech Seismological Lab has made available 12,223 scanned images of pre-digital analog recordings of major earthquakes recorded in Southern California between 1962 and 1992 at http://www.data.scec.org/research/scans/. The SCEDC has developed a searchable web interface that allows users to search the available files, select multiple files for download and then retrieve a zipped file containing the results. Scanned images of paper records for M>3.5 southern California earthquakes and several significant teleseisms are available for download via the SCEDC through this search tool.

  2. Global land information system (GLIS) access to worldwide Landsat data

    USGS Publications Warehouse

    Smith, Timothy B.; Goodale, Katherine L.

    1993-01-01

    The Landsat Technical Working Group (LTWG) and the Landsat Ground Station Operations Working Group (LGSOWG) have encouraged Landsat receiving stations around the world to share information about their data holdings through the exchange of metadata records. Receiving stations forward their metadata records to the U.S. Geological Survey's EROS Data Center (EDC) on a quarterly basis. The EDC maintains the records for each station, coordinates changes to the database, and provides metadata to the stations as requested. The result is a comprehensive international database listing most of the world's Landsat data acquisitions This exchange of information began in the early 1980's with the inclusion in the EDC database os scenes acquired by a receiving station in Italy. Through the years other stations have agreed to participate; currently ten of the seventeen stations actively share their metadata records. Coverage maps have been generated to depict the status of the database. The Worldwide Landsat database is also available though the Global Land Information System (GLIS).

  3. Trends in selected streamflow statistics at 19 long-term streamflow-gaging stations indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico, 1922-2009

    USGS Publications Warehouse

    Barbie, Dana L.; Wehmeyer, Loren L.

    2012-01-01

    Trends in selected streamflow statistics during 1922-2009 were evaluated at 19 long-term streamflow-gaging stations considered indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico. The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated streamflow data from streamflow-gaging stations with more than 50 years of record that were active as of 2009. The outflows into Arkansas and Louisiana were represented by 3 streamflow-gaging stations, and outflows into the Gulf of Mexico, including Galveston Bay, were represented by 16 streamflow-gaging stations. Monotonic trend analyses were done using the following three streamflow statistics generated from daily mean values of streamflow: (1) annual mean daily discharge, (2) annual maximum daily discharge, and (3) annual minimum daily discharge. The trend analyses were based on the nonparametric Kendall's Tau test, which is useful for the detection of monotonic upward or downward trends with time. A total of 69 trend analyses by Kendall's Tau were computed - 19 periods of streamflow multiplied by the 3 streamflow statistics plus 12 additional trend analyses because the periods of record for 2 streamflow-gaging stations were divided into periods representing pre- and post-reservoir impoundment. Unless otherwise described, each trend analysis used the entire period of record for each streamflow-gaging station. The monotonic trend analysis detected 11 statistically significant downward trends, 37 instances of no trend, and 21 statistically significant upward trends. One general region studied, which seemingly has relatively more upward trends for many of the streamflow statistics analyzed, includes the rivers and associated creeks and bayous to Galveston Bay in the Houston metropolitan area. Lastly, the most western river basins considered (the Nueces and Rio Grande) had statistically significant downward trends for many of the streamflow statistics analyzed.

  4. New strong motion network in Georgia: basis for specifying seismic hazard

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-07

    Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  6. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  7. Can additional urban development have major impacts on streamflow of a peri-urban catchment? A case study from Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Nunes, João; Steenhuis, Tammo; de Lima, João; Coelho, Celeste; Ferreira, António

    2016-04-01

    It is well known that urban development brings about changes in hydrological response. Relatively little, however, is known about impacts on streamflow during urban development in the Mediterranean climate. This paper examines changes in streamflow resulting from the construction of an enterprise park, a major road and apartment blocks in a small partially urbanized peri-urban catchment (6.2 km2) in central Portugal. These developments led to an increase in urban area from 32% to 40% over a five-year period (hydrological years 2008/09-2012/13). In the initial two-year period minor land-use changes increased impervious surfaces from 12.8% to 13.2%. The subsequent three-year period led to a further 17.2% increase in impervious area. Streamflow was recorded by a V-notch weir at the catchment outlet. Rainfall was recorded at a weather station 0.5km north of the catchment, and by five tipping-bucket raingauges installed in January 2011 within the study catchment. Annual runoff and storm runoff coefficients ranged from 14% to 21% and 9% to 14%, respectively, recorded in 2011/12 and 2012/13. Although these differences in runoff were caused in part by variation in rainfall, the comparison between 2009/10 (pre-) and 2012/13 (post-additional urban development), with broadly similar rainfall (887mm vs 947mm, respectively) and evapotranspiration (740mm vs 746mm), showed a 43% increase in storm runoff (from 90mm to 129mm), resulting from additional overland flow generated largely by the 4.4% increase in impervious surfaces. The additional urban development also led to changes in hydrograph parameters. The increase in storm runoff was not progressive over the study period, but regression lines of storm runoff against rainstorm parameters exhibited higher vertical positions in 2012/13 than 2008/09. Increasing peak flows, however, were more progressive over the study period, with annual regression lines displaying higher vertical positions, but with a clear distance between pre- and post- additional urban development periods. Response time to rainfall reduced from 60-75 minutes to 40 minutes and recession time fell from 21.3-29.5 h to 7.4-8.7 h, respectively. The relatively low runoff and storm runoff coefficients given the extent of urban land-use is due to the dispersed urban pattern and movement of at least part of the overland flow from impervious surfaces into pervious soils (within urban areas and/or downslope woodland and abandoned fields). High soil permeability, linked to the sandstone and limestone bedrock, favours the establishment of water sinks. The additional extension of observed urban development during the study period, however, also included partial routing of overland flow from additional impervious surfaces into the stream network, enhancing flow connectivity, thus, increasing storm runoff and providing quicker hydrologic response. Urban planning should consider the landscape mosaic of peri-urban areas in order to maximize water infiltration and minimize the impacts on streamflow regime and urban flooding.

  8. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  9. Reconstruction of Flooding Events for the Central Valley, California from Instrumental and Documentary Weather Records

    NASA Astrophysics Data System (ADS)

    Dodds, S. F.; Mock, C. J.

    2009-12-01

    All available instrumental winter precipitation data for the Central Valley of California back to 1850 were digitized and analyzed to construct continuous time series. Many of these data, in paper or microfilm format, extend prior to modern National Weather Service Cooperative Data Program and Historical Climate Network data, and were recorded by volunteer observers from networks such as the US Army Surgeon General, Smithsonian Institution, and US Army Signal Service. Given incomplete individual records temporally, detailed documentary data from newspapers, personal diaries and journals, ship logbooks, and weather enthusiasts’ instrumental data, were used in conjunction with instrumental data to reconstruct precipitation frequency per month and season, continuous days of precipitation, and to identify anomalous precipitation events. Multilinear regression techniques, using surrounding stations and the relationships between modern and historical records, bridge timeframes lacking data and provided homogeneous nature of time series. The metadata for each station was carefully screened, and notes were made about any possible changes to the instrumentation, location of instruments, or an untrained observer to verify that anomalous events were not recorded incorrectly. Precipitation in the Central Valley varies throughout the entire region, but waterways link the differing elevations and latitudes. This study integrates the individual station data with additional accounts of flood descriptions through unique newspaper and journal data. River heights and flood extent inundating cities, agricultural lands, and individual homes are often recorded within unique documentary sources, which add to the understanding of flood occurrence within this area. Comparisons were also made between dam and levee construction through time and how waters are diverted through cities in natural and anthropogenically changed environments. Some precipitation that lead to flooding events that occur in the Central Valley in the mid-19th century through the early 20th century are more outstanding at some particular stations than the modern records include. Several years that are included in the study are 1850, 1862, 1868, 1878, 1881, 1890, and 1907. These flood years were compared to the modern record and reconstructed through time series and maps. Incorporating the extent and effects these anomalous events in future climate studies could improve models and preparedness for the future floods.

  10. Operation of hydrologic data collection stations by the U.S. Geological Survey in 1987

    USGS Publications Warehouse

    Condes de la Torre, Alberto

    1987-01-01

    The U.S. Geological Survey operates hydrologic data collection stations nationwide which serve the needs of all levels of government, the private sector, and the general public, for water resources information. During fiscal year 1987, surface water discharge was determined at 10,624 stations; stage data on streams, reservoirs, and lakes were recorded at 1,806 stations; and various surface water quality characteristics were determined at 2,901 stations. In addition, groundwater levels were measured at 32,588 stations, and the quality of groundwater was determined at 9,120 stations. Data on sediment were collected daily at 174 stations and on a periodic basis at 878 stations. Information on precipitation quantity was collected at 909 stations, and the quality of precipitation was analyzed at 78 stations. Data collection platforms for satellite telemetry of hydrologic information were used at 2,292 Geological Survey stations. Funding for the hydrologic stations was derived, either solely or from a combination, from three major sources - the Geological Survey 's Federal Program appropriation, the Federal-State Cooperative Program, and reimbursements from other Federal agencies. The number of hydrologic stations operated by the Geological Survey declined from fiscal year 1983 to 1987. The number of surface water discharge stations were reduced by 452 stations; surface water quality stations declined by 925 stations; groundwater level stations declined by 1,051 stations; while groundwater quality stations increased by 1,472 stations. (Author 's abstract)

  11. Hydraulic Geometry Characteristics of Continuous-Record Streamflow-Gaging Stations on Four Urban Watersheds Along the Main Stem of Gwynns Falls, Baltimore County and Baltimore City, Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; Fisher, Gary T.

    2007-01-01

    Four continuous-record streamflow-gaging stations are currently being operated by the U.S. Geological Survey on the main stem of Gwynns Falls in western Baltimore County and Baltimore City, Maryland. The four streamflow-gaging stations drain urban or suburban watersheds with significantly different drainage areas. In addition to providing continuous- record discharge data at these four locations, operation of these stations also provides a long-term record of channel geometry variables such as cross-sectional area, channel width, mean channel depth, and mean velocity that are obtained from physical measurement of the discharge at a variety of flow conditions. Hydraulic geometry analyses were performed using discharge-measurement data from four continuous-record streamflow-gaging stations on the main stem of Gwynns Falls. Simple linear regression was used to develop relations that (1) quantify changes in cross-sectional area, channel width, mean channel depth, and mean velocity with changes in discharge at each station, and (2) quantify changes in these variables in the Gwynns Falls watershed with changes in drainage area and annual mean discharge. Results of the hydraulic geometry analyses indicated that mean velocity is more responsive to changes in discharge than channel width and mean channel depth for all four streamflow-gaging stations on the main stem of Gwynns Falls. For the two largest and most developed watersheds, on Gwynns Falls at Villa Nova, and Gwynns Falls at Washington Boulevard at Baltimore, the slope of the regression lines, or hydraulic exponents, indicated that mean velocity was more responsive to changes in discharge than any of the other hydraulic variables that were analyzed. This was true even when considering changes in cross-sectional area with discharge, which incorporates the combined effects of channel width and mean channel depth. A comparison of hydraulic exponents for Gwynns Falls to average values from previous work indicated that the velocity exponents for all four stations on the Gwynns Falls are larger than the average value of 0.34. For stations 01589300 and 01589352, the exponents for mean velocity are about twice as large as the average value. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and annual mean discharge indicated that channel width is much more responsive to changes in drainage area and annual mean discharge than are mean channel depth or mean velocity. Cross-sectional area, which combines the effects of channel width and mean channel depth, was also found to be highly responsive to changes in drainage area and annual mean discharge.

  12. 49 CFR 192.741 - Pressure limiting and regulating stations: Telemetering or recording gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure limiting and regulating stations... STANDARDS Maintenance § 192.741 Pressure limiting and regulating stations: Telemetering or recording gauges. (a) Each distribution system supplied by more than one district pressure regulating station must be...

  13. Evaluation of selected surface-water-quality stations in Wyoming

    USGS Publications Warehouse

    Rucker, S.J.; DeLong, L.L.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, has conducted a surface-water-quality program in Wyoming since 1965. The purpose has been to determine the chemical quality of the water in terms of the major dissolved constituents (salinity). Changing agricultural techniques and energy development have stimulated a need for an expanded program involving additional types of data. This report determines the adequacy of the data collected thus far to describe the chemical quality. The sampling program was evaluated by determining how well the data describe the dissolved-solids load of the streams. Monthly mean loads were estimated at 16 stations throughout the network where daily streamflow and daily specific conductance were available. Monthly loads were then compared with loads estimated from daily streamflow and data derived from analyses of samples collected on a monthly basis at these same stations. Agreement was good. Solute-load hydrographs were constructed for 37 stations and from some reaches where streamflow records were available. Because stations where no discharge records are available are not amenable to this type of analysis, data collected at these stations are of limited usefulness. This report covers analyses of data for all qualifying sites in Wyoming except those in the Green River Basin, which were analyzed in U.S. Geological Survey Water Resources Investigations 77-103. The salinity in most of the streams evaluated is adequately described by the data collected. Reduced sampling is feasible, and time and money can be diverted to collecting other data. (USGS)

  14. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, runoff from livestock pens, and seepage from pits containing animal wastes. Long-term fecal coliform data at two sampling stations on the Rio de la Plata indicate that since 1984, the geometric mean of five consecutive samples commonly has been at or below 2,000 colonies per 100 milliliters (established as the sanitary quality goal in Puerto Rico for Class SD type waters). At the sampling station upstream of Comerio, the geometric mean concentration has been near 500 colonies per 100 milliliters; downstream of the town of Comerio, the geometric mean concentration has been near 2,000 colonies per 100 milliliters concentration. The data at these stations also indicate that fecal coliform concentrations increase commonly above 2,000 colonies per 100 milliliters during storm-runoff events, ranging from 1,000 to 100,000 colonies per 100 milliliters at both stations. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Comerio into five hydrogeologic terranes. The integrated database was then used to evaluate the ground-water development potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be important locally in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The integrated hydrogeologic approach used in this study can serve as an important tool for regulatory agencies of Puerto Rico and the municipio of Comerio to evaluate the ground-water resource development potential, examine ground- and surface-water interaction, and determine the effect of land-use practices on ground-water quantity and quality. Stream low-flow statistics document the general hydrology under current land and water uses. Low-flow characteristics may substantially change as a re

  15. Adjusted peak-flow frequency estimates for selected streamflow-gaging stations in or near Montana based on data through water year 2011: Chapter D in Montana StreamStats

    USGS Publications Warehouse

    Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were adjusted by weighting with frequency estimates from RREs using the WIE program for 438 selected gaging stations in Montana. These 438 selected gaging stations (1) had periods of record less than or equal to 40 years, (2) represented unregulated or minor regulation conditions, and (3) had drainage areas less than about 2,750 square miles.The weighted-average frequency estimates obtained by weighting with RREs generally are considered to provide improved frequency estimates. In some cases, there are substantial differences among the at-site frequency estimates, the regression-equation frequency estimates, and the weighted-average frequency estimates. In these cases, thoughtful consideration should be applied when selecting the appropriate frequency estimate. Some factors that might be considered when selecting the appropriate frequency estimate include (1) whether the specific gaging station has peak-flow characteristics that distinguish it from most other gaging stations used in developing the RREs for the hydrologic region; and (2) the length of the peak-flow record and the general climatic characteristics during the period when the peak-flow data were collected. For critical structure-design applications, a conservative approach would be to select the higher of the at-site frequency estimate and the weighted-average frequency estimate.The mixed-station MOVE.1 procedure generally was applied in cases where three or more gaging stations were located on the same large river and some of the gaging stations could not be adjusted using the weighted-average method because of regulation or drainage areas too large for application of RREs. The mixed-station MOVE.1 procedure was applied to 66 selected gaging stations on 19 large rivers.The general approach for using mixed-station record extension procedures to adjust at-site frequencies involved (1) determining appropriate base periods for the gaging stations on the large rivers, (2) synthesizing peak-flow data for the gaging stations with incomplete peak-flow records during the base periods by using the mixed-station MOVE.1 procedure, and (3) conducting frequency analysis on the combined recorded and synthesized peak-flow data for each gaging station. Frequency estimates for the combined recorded and synthesized datasets for 66 gaging stations with incomplete peak-flow records during the base periods are presented. The uncertainties in the mixed-station record extension results are difficult to directly quantify; thus, it is important to understand the intended use of the estimated frequencies based on analysis of the combined recorded and synthesized datasets. The estimated frequencies are considered general estimates of frequency relations among gaging stations on the same stream channel that might be expected if the gaging stations had been gaged during the same long-term base period. However, because the mixed-station record extension procedures involve secondary statistical analysis with accompanying errors, the uncertainty of the frequency estimates is larger than would be obtained by collecting systematic records for the same number of years in the base period.

  16. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    USGS Publications Warehouse

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  17. Calibration of an M L scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009

    NASA Astrophysics Data System (ADS)

    Saunders, Ian; Ottemöller, Lars; Brandt, Martin B. C.; Fourie, Christoffel J. S.

    2013-04-01

    A relation to determine local magnitude ( M L) based on the original Richter definition is empirically derived from synthetic Wood-Anderson seismograms recorded by the South African National Seismograph Network. In total, 263 earthquakes in the distance range 10 to 1,000 km, representing 1,681 trace amplitudes measured in nanometers from synthesized Wood-Anderson records on the vertical channel were considered to derive an attenuation relation appropriate for South Africa through multiple regression analysis. Additionally, station corrections were determined for 26 stations during the regression analysis resulting in values ranging between -0.31 and 0.50. The most appropriate M L scale for South Africa from this study satisfies the equation: {M_{{{L}}}} = {{lo}}{{{g}}_{{10}}}(A) + 1.149{{lo}}{{{g}}_{{10}}}(R) + 0.00063R + 2.04 - S The anelastic attenuation term derived from this study indicates that ground motion attenuation is significantly different from Southern California but comparable with stable continental regions.

  18. Tropospheric Ozone Over a Tropical Atlantic Station in the Northern Hemisphere: Paramaribo, Surinam (6 deg N, 55 deg W)

    NASA Technical Reports Server (NTRS)

    Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.

    2003-01-01

    We present an analysis of 2.5 years of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6 deg N,55 deg W). This is currently one of only three ozone sounding stations in the northern hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is part of the Southern Hemisphere ADditional Ozone Sounding program (SHADOZ). Due to its position close to the equator, the Inter Tropical Convergence Zone (ITCZ) passes over Paramaribo twice per year, which results in a semi-annual seasonality of many parameters including relative humidity and ozone. The dataset from Paramaribo is used to: (1) evaluate ozone variability relative to precipitation, atmospheric circulation patterns and biomass burning; (2) contrast ozone at the NH equatorial Atlantic with that at nearby southern hemisphere (SH) stations Natal (6 deg S,35 deg W) and Ascension (8 deg S,14 deg W); (3) compare the seasonality of tropospheric ozone with a satellite-derived ozone product: Tropical Tropospheric Ozone Columns from the Modified Residual method (MR-TTOC). We find that Paramaribo is a distinctly Atlantic station. Despite its position north of the equator, it resembles nearby SH stations during most of the year. Transport patterns in the lower and middle troposphere during February and March differ from SH stations, which leads to a seasonality of ozone with two maxima. MR-TTOC over Paramaribo does not match the observed seasonality of ozone due to the use of a SH ozone sonde climatology in the MR method. The Paramaribo ozone record is used to suggest an improvement for northern hemisphere MR-TTOC retrievals. We conclude that station Paramaribo shows unique features in the region, and clearly adds new information to the existing SHADOZ record.

  19. Real-Time Data Management, IP Telemetry, Data Integration, and Data Center Operations for the Source Physics Experiment (SPE), Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Plank, G.; Slater, D.; Torrisi, J.; Presser, R.; Williams, M.; Smith, K. D.

    2012-12-01

    The Nevada Seismological Laboratory (NSL) manages time-series data and high-throughput IP telemetry for the National Center for Nuclear Security (NCNS) Source Physics Experiment (SPE), underway on the Nevada National Security Site (NNSS). During active-source experiments, SPE's heterogeneous systems record over 350 channels of a variety of data types including seismic, infrasound, acoustic, and electro-magnetic. During the interim periods, broadband and short period instruments record approximately 200 channels of continuous, high-sample-rate seismic data. Frequent changes in sensor and station configurations create a challenging meta-data environment. Meta-data account for complete operational histories, including sensor types, serial numbers, gains, sample rates, orientations, instrument responses, data-logger types etc. To date, these catalogue 217 stations, over 40 different sensor types, and over 1000 unique recording configurations (epochs). Facilities for processing, backup, and distribution of time-series data currently span four Linux servers, 60Tb of disk capacity, and two data centers. Bandwidth, physical security, and redundant power and cooling systems for acquisition, processing, and backup servers are provided by NSL's Reno data center. The Nevada System of Higher Education (NSHE) System Computer Services (SCS) in Las Vegas provides similar facilities for the distribution server. NSL staff handle setup, maintenance, and security of all data management systems. SPE PIs have remote access to meta-data, raw data, and CSS3.0 compilations, via SSL-based transfers such as rsync or secure-copy, as well as shell access for data browsing and limited processing. Meta-data are continuously updated and posted on the Las Vegas distribution server as station histories are better understood and errors are corrected. Raw time series and refined CSS3.0 data compilations with standardized formats are transferred to the Las Vegas data server as available. For better data availability and station monitoring, SPE is beginning to leverage NSL's wide-area digital IP network with nine SPE stations and six Rock Valley area stations that stream continuous recordings in real time to the NSL Reno data center. These stations, in addition to eight regional legacy stations supported by National Security Technologies (NSTec), are integrated with NSL's regional monitoring network and constrain a high-quality local earthquake catalog for NNSS. The telemetered stations provide critical capabilities for SPE, and infrastructure for earthquake response on NNSS as well as southern Nevada and the Las Vegas area.

  20. Investigation on the Reference Evapotranspiration Distribution at Regional Scale By Alternative Methods to Compute the FAO Penman-Monteith Equation

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Mancosu, N.; Spano, D.

    2014-12-01

    This study derived the summer (June-August) reference evapotranspiration distribution map for Sardinia (Italy) based on weather station data and use of the geographic information system (GIS). A modified daily Penman-Monteith equation from the Food and Agriculture Organization of the United Nations (UN-FAO) and the American Society of Civil Engineers Environmental and Water Resources Institute (ASCE-EWRI) was used to calculate the Standardized Reference Evapotranspiration (ETos) for all weather stations having a "full" set of required data for the calculations. For stations having only temperature data (partial stations), the Hargreaves-Samani equation was used to estimate the reference evapotranspiration for a grass surface (ETo). The ETos and ETo results were different depending on the local climate, so two methods to estimate ETos from the ETo were tested. Substitution of missing solar radiation, wind speed, and humidity data from a nearby station within a similar microclimate was found to give better results than using a calibration factor that related ETos and ETo. Therefore, the substitution method was used to estimate ETos at "partial" stations having only temperature data. The combination of 63 full and partial stations was sufficient to use GIS to map ETos for Sardinia. Three interpolation methods were studied, and the ordinary kriging model fitted the observed data better than a radial basis function or the inverse distance weighting method. Using station data points to create a regional map simplified the zonation of ETos when large scale computations were needed. Making a distinction based on ETos classes allows the simulation of crop water requirements for large areas and it can potentially lead to improved irrigation management and water savings. It also provides a baseline to investigate possible impact of climate change.

  1. The multiparameter station at Galeras Volcano (Colombia): concept and realization

    NASA Astrophysics Data System (ADS)

    Seidl, Dieter; Hellweg, Margaret; Calvache, Marta; Gomez, Diego; Ortega, Adriana; Torres, Roberto; Böker, Franz; Buttkus, Burkhard; Faber, Eckhard; Greinwald, Siegfried

    2003-07-01

    Volcanoes are complex systems, in which the interaction of many different physical and chemical factors and processes contribute to changes in activity. In the past 40 years, our ability to observe and quantify short-term changes in a volcano's activity has improved due to the installation of seismometers and tiltmeters and the continuous records they provide. However, due to instrumental limitations, the observations have mainly been used phenomenologically, to draw inferences about possible changes on the basis of previous experience. Since 1995, the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) and the Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS) have been working to develop and deploy a multiparameter (MP) station on Galeras Volcano, Colombia. This station is designed to concurrently measure various geophysical and geochemical parameters. It includes three broadband seismometers at the crater rim, as well as a more remotely located, broadband seismic reference. At other locations in the crater or on the rim, electromagnetic probes, an infrasound sensor and a weather station are operating. The data from these sensors are digitized at each site with 24-bit digitizers and transmitted by spread-spectrum radio, via repeater when necessary, to the Observatorio Vulcanológico y Sismológico (OVP) in the city of Pasto. There they are received and displayed on a networked personal computer and recorded continuously. The data flow into the routine analysis procedures of the OVP and the continuous data are archived on CD. In addition to the other sensors, a system of specially developed sensors continuously monitors the chemistry and physics of the gases at fumaroles on the active cone. The data from this system are also transmitted in realtime to OVP and recorded. The continuous recordings of the MP station are supplemented by regular thermographic measurements of the surface temperature in the crater using an infrared camera. Joint analysis and interpretation of the data streams from the many sensors of the MP station will improve our understanding of the physical processes occurring in Galeras Volcano.

  2. Stage measurement at gaging stations

    USGS Publications Warehouse

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  3. Career Field Experience: A Look at On-site Usage by High School Communication Class.

    ERIC Educational Resources Information Center

    Kaye, Thomas

    The career field experience program at a midwestern high school places broadcasting students on location for observation of the profession and optional job training or work. In addition to radio and television stations, field locations include advertising agencies with production studios, corporate production facilities, recording studios, cable…

  4. Flight Investigation of Effects of Transition, Landing Approaches, Partial-Power Vertical Descents, and Droop-Stop Pounding on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1959-01-01

    Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.

  5. A 31-day battery-operated recording weather station.

    Treesearch

    Richard J. Barney

    1972-01-01

    The battery-powered recording weather station measures and records wet bulb temperature, dry bulb temperature, wind travel, and rainfall for 31 days. Assembly procedures and cost of supplies and components are discussed.

  6. Tomographic evidence for recent extension in the Bentley Subglacial Trench and a hotspot beneath Marie Byrd Land

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D. A.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.

    2013-12-01

    Here we present the first regional P and S wave relative velocity models of the upper mantle beneath much of West Antarctica using P and S wave relative travel time residuals from teleseismic events recorded by seismographs from the POLENET/ANET project. 21 of the seismographs form a sparse backbone network co-located with continuously recording GPS stations at rock sites throughout West Antarctica, and 17 stations formed a seismic transect extending from the Whitmore Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land (MBL) with a station spacing of 90-100 km. Corrections for heterogeneities above the Moho, including the ice sheet, are applied to the relative travel time residuals using the receiver function models of Chaput et al., [submitted, 2013]. Both P and S wave velocity models indicate velocities faster than the mean of the model beneath the Whitmore Mountains that may be interpreted as thicker, colder lithosphere relative to the rest of West Antarctica. Slow velocity anomalies are observed beneath the Bentley Subglacial Trench (BST) and MBL. Slow velocities extending from the Moho to the transition zone beneath MBL are centered beneath the Mt Sidley volcano and coincide with high topography that is not isostatically supported by the crust [Chaput et al., submitted, 2013]. The slowest velocities occur at 200-300 km depth and are consistent with warm, low viscosity mantle that provides topographic support for the elevated MBL volcanic dome. Poor vertical resolution, typical of body wave tomography, hampers the models ability to resolve whether the anomaly beneath MBL is strictly an upper mantle hotspot or a classic mantle plume that extends into the lower mantle. The shallow (≤ 100 km depth) slow anomaly beneath the BST coincides with a region of thin crust and likely reflects a localized region of Cenozoic extension in the WARS that may have undergone a last phase of extension in the Neogene [Garnot et al., 2013]. Anomalously high heat flow reported by Fudge et al.[2012] at the WAIS divide ice core is also consistent with recent Neogene extension and a thermal perturbation suggested by both P and S tomography models. In general, the strong heterogeneities in our models are predominantly interpreted as reflecting upper mantle temperature variations in addition to possible mantle partial melting beneath MBL.

  7. Hydrologic Record Extension of Water-Level Data in the Everglades Depth Estimation Network (EDEN) Using Artificial Neural Network Models, 2000-2006

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.

    2007-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystem Science provides support for EDEN and the goal of providing quality assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the water-surface models, 25 real-time water-level gaging stations were added to the network of 253 established water-level gaging stations. To incorporate the data from the newly added stations to the 7-year EDEN database in the greater Everglades, the short-term water-level records (generally less than 1 year) needed to be simulated back in time (hindcasted) to be concurrent with data from the established gaging stations in the database. A three-step modeling approach using artificial neural network models was used to estimate the water levels at the new stations. The artificial neural network models used static variables that represent the gaging station location and percent vegetation in addition to dynamic variables that represent water-level data from the established EDEN gaging stations. The final step of the modeling approach was to simulate the computed error of the initial estimate to increase the accuracy of the final water-level estimate. The three-step modeling approach for estimating water levels at the new EDEN gaging stations produced satisfactory results. The coefficients of determination (R2) for 21 of the 25 estimates were greater than 0.95, and all of the estimates (25 of 25) were greater than 0.82. The model estimates showed good agreement with the measured data. For some new EDEN stations with limited measured data, the record extension (hindcasts) included periods beyond the range of the data used to train the artificial neural network models. The comparison of the hindcasts with long-term water-level data proximal to the new EDEN gaging stations indicated that the water-level estimates were reasonable. The percent model error (root mean square error divided by the range of the measured data) was less than 6 percent, and for the majority of stations (20 of 25), the percent model error was less than 1 percent.

  8. Graphical correlation of gaging-station records

    USGS Publications Warehouse

    Searcy, James K.

    1960-01-01

    A gaging-station record is a sample of the rate of flow of a stream at a given site. This sample can be used to estimate the magnitude and distribution of future flows if the record is long enough to be representative of the long-term flow of the stream. The reliability of a short-term record for estimating future flow characteristics can be improved through correlation with a long-term record. Correlation can be either numerical or graphical, but graphical correlation of gaging-station records has several advantages. The graphical correlation method is described in a step-by-step procedure with an illustrative problem of simple correlation, illustrative problems of three examples of multiple correlation--removing seasonal effect--and two examples of correlation of one record with two other records. Except in the problem on removal of seasonal effect, the same group of stations is used in the illustrative problems. The purpose of the problems is to illustrate the method--not to show the improvement that can result from multiple correlation as compared with simple correlation. Hydrologic factors determine whether a usable relation exists between gaging-station records. Statistics is only a tool for evaluating and using an existing relation, and the investigator must be guided by a knowledge of hydrology.

  9. Status of coral reef species at Chabahar Bay, Sistan and Baluchistan, Iran.

    PubMed

    Teymour, Rad A; Sanjani, M S

    2010-04-15

    This study was carried out in the coral growing zone at Chabahar Bay where it located at 25 degrees 17' N and 60 degrees 36'E. It is called horseshoe Bay, because of its semicircle shape. Some destroyer factors have been affected on the health of coral reefs in Chabahar Bay. Port constructions, dredging operations, spearfishing, anchorages and scuba diving activities were distinguished as the most important problems of coral reef in Chabahar Bay. This study was conducted in order to access Semi-Qualitative Indexes of corals in different areas of Chabahar Bay. Five stations were chosen in east and north part of the Bay, where the most construction activities happened. Rectangular Transect and CoralWatch Racket were used to determine the status of the corals. During study, two classes of Hexacoralia and Octocoralia with 15 families were recorded. Twenty one species of hard coral and 10 species of soft coral were recorded. Hexacoralia was recorded the higher number of family with 10 families and 21 species and Octocoralia was recorded the lower with 5 families and 10 species. Hard corals were dominant. The ranges of qualitative indexes showed, of five stations, three of them (stations 2, 4, 5) showed Good Development and two stations (stations 1, 3) showed Fair Development. For the Condition Index, two stations showed Good Condition (stations 1, 5) and two stations showed Fair Condition (stations 2, 3). Only station 4 showed Poor Condition. The ranges of the Succession Index Showed, four stations (stations 1, 2, 3, 4) were in Very poor Succession and one station (stations 5) showed Poor Succession.

  10. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    PubMed Central

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  11. Spatial capture–recapture with partial identity: An application to camera traps

    USGS Publications Warehouse

    Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R.

    2018-01-01

    Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.

  12. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2004 to June 30, 2005

    USGS Publications Warehouse

    Young, Stacie T.M.; Ball, Marcael T.J.

    2005-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at two stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2004 and June 30, 2005. A total of 15 samples was collected over three storms during July 1, 2004 to June 30, 2005. In general, an attempt was made to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. However, all three storms were partially sampled because either not all stations were sampled or not all composite samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Chromium and nickel were added to the analysis starting October 1, 2004. Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  13. Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York

    USGS Publications Warehouse

    Kappel, W.M.; Harding, W.E.

    1987-01-01

    Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)

  14. 42 CFR 35.11 - Clinical records; confidential.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Clinical records; confidential. 35.11 Section 35.11... EXAMINATIONS HOSPITAL AND STATION MANAGEMENT General § 35.11 Clinical records; confidential. A complete clinical record shall be maintained for each patient admitted to a station or hospital of the Service. Such...

  15. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  16. Peak-flow frequency estimates through 1994 for gaged streams in South Dakota

    USGS Publications Warehouse

    Burr, M.J.; Korkow, K.L.

    1996-01-01

    Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.

  17. Using Acceleration Records as Diffuse Fields for Tomography of the Valley of Mexico City: Synthetic Results

    NASA Astrophysics Data System (ADS)

    Baena, M.; Perton, M.; Molina-Villegas, J. C.; Sanchez-Sesma, F. J.

    2013-12-01

    In order to improve the understanding of the seismic response of Mexico City Valley, we have proposed to perform a tomography study of the seismic wave velocities. For that purpose, we used a collection of acceleration seismograms (corresponding to earthquakes with magnitudes ranging from 4.5 to 8.1 and various epicentral distances to the City) recorded since 1985 in 83 stations distributed across the Valley. The H/V spectral ratios (obtained from average autocorrelations) strongly suggest these movements belong to a 3D generalized diffuse field. Thus, we interpret that cross-correlations between the signals of station pairs are proportional to the imaginary part of the corresponding Green function. Finally, the dispersion curves are constructed from the Green function which lead to the tomography. Other tomographies have already been made around the world using either the seismic coda or seismic noise. We used instead the ensemble of many earthquakes from distant sources that have undergone multiple scattering by the heterogeneities of the Earth and assume the wave fields are equipartitioned. The purpose of the present study is to describe the different steps of the data processing by using synthetic models. The wave propagation within an alluvial basin is simulated using the Indirect Boundary Element Method (IBEM) in 2D configuration for the propagation of P and SV waves. The theoretical Green function for a station pair is obtained by placing a unit force at one station and a receiver at the other. The valley illumination is composed by incoming waves which are simulated using distant independent sources and several diffractors. Data process is validated by the correct retrieval the theoretical Green function. We present here the in-plane Green function for the P-SV case and show the dispersion curves constructed from the cross-correlations compared with analytic results for a layer over a half-space. ACKNOWLEDGEMENTS. This study is partially supported by AXA Research Fund and by DGAPA-UNAM under Project IN104712.

  18. Fog in the coastal region of southern Brazil: seasonal variations

    NASA Astrophysics Data System (ADS)

    Krusche, N.; Gomes, C.

    2009-05-01

    Fog forecasting, especially advection fog, is important because a large port is located at Rio Grande, 32° S and 52° W. Fogs discontinue the cargo transport and prevent entrance of ships in the port, causing great financial loss. Atmospheric and oceanographic conditions associated to fog formation are been investigated, especially those that happen during advection fog. The result of this characterization will facilitate the forecast using mesoscale numerical models. The research started with a climatology of fog in the region, in two locations which are 2° of latitude apart, with an average temperature difference of 3°C. The observation of fog is a standard record at conventional meteorological stations. Data from this study was obtained from the Meteorological Station of Rio Grande, which belongs to the Instituto Nacional de Meteorologia network, and from the Meteorological Station operated by the Division of Meteorology of Department of Airspace Control in Porto Alegre. The period of this study is from January 1990 to December 2005. The distribution of the monthly total of fog observations shows that they occur mainly between May and August, with maximum in June. In all seasons of the year the total number of fogs is greater than in Porto Alegre in Rio Grande. There was a decrease in the average annual number of fogs from the 90s to the last five years of research, which can be attributed to urbanization around the places of observation. It increases the temperature in the layers closer to the soil and decreases the available moisture, making the occurrence of radiation fog. Atmospheric and oceanographic conditions, prevalent during these occurrences, will be examined next. The another goal is to compare the data of advection fog in Rio Grande, obtained from images of the type ARGUS in Cassino beach, with those recorded by Meteorological Station. This work is partially financed by FINEP and CAPES.

  19. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  20. An N-methyl-D-aspartate receptor-independent excitatory action of partial reduction of extracellular [Mg2+] in CA1-region of rat hippocampal slices.

    PubMed

    Hamon, B; Stanton, P K; Heinemann, U

    1987-03-31

    Partial reduction of [Mg2+]o from 2 to 1 mM markedly enhanced neuronal responses evoked by Schaffer collateral-commissural fiber stimulation in the CA1-region of rat hippocampal slices. The amplitude of extracellular population potentials recorded in the CA1-pyramidal cell layer and maximum dV/dt of extracellular population EPSP's recorded in the CA1-pyramidal apical dendritic layer were both increased. However, unlike findings from slices where Mg2+ was completely removed from the bathing medium, there was no spontaneous or evoked epileptiform activity, and the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (2-APV) did not antagonize the enhancement of evoked responses. These results indicate that, in addition to the participation of NMDA receptors in the epileptiform activity observed when Mg2+ is completely removed from the bathing medium, there is also an NMDA receptor-independent excitatory action of partial reduction of [Mg2+]o in hippocampal slices.

  1. Presurgical evaluation for partial epilepsy: Relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J. Jr.; Henry, T.R.; Risinger, M.W.

    1990-11-01

    One hundred fifty-three patients with medically refractory partial epilepsy underwent chronic stereotactic depth-electrode EEG (SEEG) evaluations after being studied by positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and scalp-sphenoidal EEG telemetry. We carried out retrospective standardized reviews of local cerebral metabolism and scalp-sphenoidal ictal onsets to determine when SEEG recordings revealed additional useful information. FDG-PET localization was misleading in only 3 patients with temporal lobe SEEG ictal onsets for whom extratemporal or contralateral hypometabolism could be attributed to obvious nonepileptic structural defects. Two patients with predominantly temporal hypometabolism may have had frontal epileptogenic regions, but ultimate localization remains uncertain. Scalp-sphenoidalmore » ictal onsets were misleading in 5 patients. For 37 patients with congruent focal scalp-sphenoidal ictal onsets and temporal hypometabolic zones, SEEG recordings never demonstrated extratemporal or contralateral epileptogenic regions; however, 3 of these patients had nondiagnostic SEEG evaluations. The results of subsequent subdural grid recordings indicated that at least 1 of these patients may have been denied beneficial surgery as a result of an equivocal SEEG evaluation. Weighing risks and benefits, it is concluded that anterior temporal lobectomy is justified without chronic intracranial recording when specific criteria for focal scalp-sphenoidal ictal EEG onsets are met, localized hypometabolism predominantly involves the same temporal lobe, and no other conflicting information has been obtained from additional tests of focal functional deficit, structural imaging, or seizure semiology.« less

  2. Effect of urbanization activities towards the formation of urban heat island in Cameron Highlands, Malaysia

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. H.; Latiff, N. A. A.; Ismail, K.; Isa, N. K. M.

    2018-04-01

    This study carried out to study the effect of urbanization activities towards the formation of Urban Heat Islands (UHI) in Cameron Highlands (CH).The aim of this study is to identify the formation of UHI in CH following the urbanization activities. This study also involved two main data that are primary through field survey and secondary data from collection data. In addition, this study was used qualitative and quantitative method. The data was taken two times a day, at a day and night between the hours of 12:00 to 14:00 and 19:00 to 21:00. Data in this study analyzed by using correlation analysis and analysis of Geographic Information Systems (GIS) which known as interpolation. Result found the formation of UHI in CH was concentrated at city centre namely in Pekan Tanah Rata. From the whole average value, city centre was recorded the highest reading of temperatures which is 30.5°C, while reading of temperature for subtown and suburban was recorded 28.6°C and 23.8°C. Average of humidity in CH during the day was recorded as highest reading in the suburban area namely Tringkap Bee Farm (station 11) which is 58.4%. Then, average of humidity in CH at night was recorded highest reading in the suburban area namely Habu Mini Market 91 (station 9) which the value is 83.2%. The reading of wind speed in CH during the day recorded the highest reading day at the suburban namely Tringkap Bee Farm (station 11) which the value is 2.3 m/s. While, following the reading of wind speed in CH at night, suburban namely Habu Mini Market 91(station 9) was recorded the highest reading which is 0.8 m/s. The Intensity of Urban Heat Island in CH during the day was recorded 2.8°C, while at night intensity of UHI was recorded 1.4°C. Overall, the urbanization activities in CH had caused the formation of UHI. Therefore, measures of legislation such as protect forest from development by control the urbanization activities need to be implemented so that the formation of UHI can be reduced and overcome.

  3. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stations and voice communications of other crewmembers on the flight deck when directed to those stations... pilot stations. The microphone specified in this paragraph must be so located and, if necessary, the... are intelligible when recorded under flight cockpit noise conditions and played back. The level of...

  4. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stations and voice communications of other crewmembers on the flight deck when directed to those stations... as practicable when recorded under flight cockpit noise conditions and played back. Repeated aural or... pilot station. (2) For the second channel from each boom, mask, or hand-held microphone, headset, or...

  5. 47 CFR 74.1281 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and..., place of business, or other suitable place, in one of the communities of license of the translator or booster, except that the station records of a booster or translator licensed to the licensee of the...

  6. Image of the Moon taken by Expedition 13

    NASA Image and Video Library

    2006-09-07

    ISS013-E-78721 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.

  7. Image of the Moon taken by Expedition 13

    NASA Image and Video Library

    2006-09-07

    ISS013-E-78708 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.

  8. Image of the Moon taken by Expedition 13

    NASA Image and Video Library

    2006-09-07

    ISS013-E-78724 (7 Sept. 2006) --- A partial lunar eclipse is featured in this image photographed by an Expedition 13 crewmember on the International Space Station as the station flew over the southern Indian Ocean.

  9. View northeast toward west side of building 68. View partially ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast toward west side of building 68. View partially obscured by automobiles and storage structures. - Naval Air Station North Island, Seaplane Hangars, Roe Street, North Island, San Diego, San Diego County, CA

  10. Statistical summaries of streamflow in Oklahoma through 1999

    USGS Publications Warehouse

    Tortorelli, R.L.

    2002-01-01

    Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.

  11. Water Resources Data, Massachusetts and Rhode Island, Water Year 2003

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Driskell, T.R.; Ramsbey, L.R.

    2004-01-01

    Water resources data for the 2003 water year for Massachusetts and Rhode Island consists of records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; and water levels of ground-water wells. This report contains discharge records for 108 gaging stations, stage records for 2 gaging stations, stage records for 3 ponds; monthend contents of 1 reservoir, precipitation totals at 8 gaging stations; water quality for 27 gaging stations, air temperature at 2 climatological stations; water levels for 129 observation wells, and ground-water quality for 15 wells. Miscellaneous hydrologic data were collected at various sites that were not a part of the systematic data-collection program and are published as miscellaneous discharge measurements and miscellaneous surface-water-quality data. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.

  12. Water resources data for Massachusetts and Rhode Island, water year 2004

    USGS Publications Warehouse

    Socolow, R.S.; Comeau, L.Y.; Murino, Domenic

    2005-01-01

    This report includes records of stage, discharge, and water quality of streams; contents and elevation of lakes and ponds; and water levels of ground-water wells. This volume contains discharge records for 112 gaging stations; stage records for 2 gaging stations; stage records for 2 ponds; month-end contents of 1 reservoir; precipitation totals at 6 gaging stations; water quality for 21 gaging stations; air temperature at 2 climatological stations; and water levels for 131 observation wells. Locations of these sites are shown in figures 1 and 2. Hydrologic data were collected at many sites that were not involved in the systematic data-collection program; these data are published as miscellaneous discharge measurements, miscellaneous surface-water-quality, and miscellaneous ground-water-quality data. The data in this report represent that part of the National Water Information System (NWIS) operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.

  13. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV... other suitable place, in one of the communities of license of the translator or booster, except that the...

  14. Quality Control Methodology Of A Surface Wind Observational Database In North Eastern North America

    NASA Astrophysics Data System (ADS)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Conte, Jorge; Beltrami, Hugo

    2016-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. The database consists of 526 sites (486 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions with uneven measurement units and changing measuring procedures, instrumentation and heights. The records span from 1953 to 2010. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. The first phases deal with problems often related with data recording and management: (1) compilation stage dealing with the detection of typographical errors, decoding problems, site displacements and unification of institutional practices; (2) detection of erroneous data sequence duplications within a station or among different ones; (3) detection of errors related with physically unrealistic data measurements. The last phases are focused on instrumental errors: (4) problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; (5) high variability related erroneous records; (6) standardization of wind speed record biases due to changing measurement heights, detection of wind speed biases on week to monthly timescales, and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Additionally, around 15.9% wind speed records and 2.4% of wind direction data have been also corrected.

  15. U.S. Geological Survey Real-Time River Data Applications

    USGS Publications Warehouse

    Morlock, Scott E.

    1998-01-01

    Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.

  16. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  17. Tampa Electric Company Polk Power Station IGCC project: Project status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less

  18. A technique to detect microclimatic inhomogeneities in historical temperature records

    NASA Astrophysics Data System (ADS)

    Runnalls, K. E.; Oke, T. R.

    2003-04-01

    A technique to identify inhomogeneities in historical temperature records caused by microclimatic changes to the surroundings of a climate station (e.g. minor instrument relocations, vegetation growth/removal, construction of houses, roads, runways) is presented. The technique uses daily maximum and minimum temperatures to estimate the magnitude of nocturnal cooling. The test station is compared to a nearby reference station by constructing time series of monthly "cooling ratios". It is argued that the cooling ratio is a particularly sensitive measure of microclimatic differences between neighbouring climate stations. Firstly, because microclimatic character is best expressed at night in stable conditions. Secondly, because larger-scale climatic influences common to both stations are removed by the use of a ratio and, because the ratio can be shown to be invariant in the mean with weather variables such as wind and cloud. Inflections (change points) in time series of cooling ratios therefore signal microclimatic change in one of the station records. Hurst rescaling is applied to the time series to aid in the identification of change points, which can then be compared to documented station history events, if sufficient metatdata is available. Results for a variety of air temperature records, ranging from rural to urban stations, are presented to illustrate the applicability of the technique.

  19. Wave Pattern Peculiarities of Different Types of Explosions Conducted at Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2014-05-01

    The historical seismograms of the explosions conducted at the STS in 1949 - 1989 are of great interest for the researchers in the field of monitoring. Large number of air (86), surface (30) and underground nuclear explosions were conducted here in boreholes and tunnels (340). In addition to nuclear explosions, large chemical explosions were conducted at the Test Site. It is known that tectonic earthquakes occur on the Test Site territory and near it. Since 2005 the Institute of Geophysical Researches conducts works on digitizing the historical seismograms of nuclear explosions. Currently, the database contains more than 6000 digitized seismograms of nuclear explosions used for investigative monitoring tasks, major part of them (4000) are events from the STS region. Dynamic parameters of records of air, surface and underground nuclear explosions, as well as large chemical explosions with compact charge laying were investigated for seismic stations located on the territory of Kazakhstan using digitized records of the STS events. In addition, the comparison between salvo wave pattern and single explosions was conducted. The records of permanent and temporary seismic stations (epicentral distances range 100 - 800 km) were used for the investigations. Explosions spectra were analyzed, specific features of each class of events were found. The seismograms analysis shows that the wave pattern depends significantly on the explosion site and on the source type.

  20. Cost-effectiveness of the streamflow-gaging program in Wyoming

    USGS Publications Warehouse

    Druse, S.A.; Wahl, K.L.

    1988-01-01

    This report documents the results of a cost-effectiveness study of the streamflow-gaging program in Wyoming. Regression analysis or hydrologic flow-routing techniques were considered for 24 combinations of stations from a 139-station network operated in 1984 to investigate suitability of techniques for simulating streamflow records. Only one station was determined to have sufficient accuracy in the regression analysis to consider discontinuance of the gage. The evaluation of the gaging-station network, which included the use of associated uncertainty in streamflow records, is limited to the nonwinter operation of the 47 stations operated by the Riverton Field Office of the U.S. Geological Survey. The current (1987) travel routes and measurement frequencies require a budget of $264,000 and result in an average standard error in streamflow records of 13.2%. Changes in routes and station visits using the same budget, could optimally reduce the standard error by 1.6%. Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget increased the optimal average standard error/station from 11.6 to 15.5%, and a $400,000 budget could reduce it to 6.6%. For all budgets considered, lost record accounts for about 40% of the average standard error. (USGS)

  1. Low-flow analysis and selected flow statistics representative of 1930-2002 for streamflow-gaging stations in or near West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2006-01-01

    Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent greater. Statistics computed for the individual station's record period may not represent the statistics computed for the period 1930 to 2002 because (1) station records are available predominantly after about 1970 when minimum flows were greater than the average between 1930 and 2002 and (2) some short-term station records are mostly during dry periods, whereas others are mostly during wet periods. A criterion-based sampling of the individual station's record periods at stations was taken to reduce the effects of statistics computed for the entire record periods not representing the statistics computed for 1930-2002. The criterion used to sample the entire record periods is based on a comparison between the regional minimum flows and the minimum flows at the stations. Criterion-based sampling of the available record periods was superior to record-extension techniques for this study because more stations were selected and areal distribution of stations was more widespread. Principal component and correlation analyses of the minimum flows at 20 stations in or near West Virginia identify three regions of the State encompassing stations with similar patterns of minimum flows: the Lower Appalachian Plateaus, the Upper Appalachian Plateaus, and the Eastern Panhandle. All record periods of 10 years or greater between 1930 and 2002 where the average of the regional minimum flows are nearly equal to the average for 1930-2002 are determined as representative of 1930-2002. Selected statistics are presented for the longest representative record period that matches the record period for 77 stations in West Virginia and 40 stations near West Virginia. These statistics can be used to develop equations for estimating flow in ungaged stream locations.

  2. 18 CFR 401.102 - Partial disclosure of records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Partial disclosure of records. 401.102 Section 401.102 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.102 Partial...

  3. Real-time GPS integration for prototype earthquake early warning and near-field imaging of the earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Given, D.; King, N. E.; Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Gomberg, J. S.

    2011-12-01

    Over the past several years, USGS has developed the infrastructure for integrating real-time GPS with seismic data in order to improve our ability to respond to earthquakes and volcanic activity. As part of this effort, we have tested real-time GPS processing software components , and identified the most robust and scalable options. Simultaneously, additional near-field monitoring stations have been built using a new station design that combines dual-frequency GPS with high quality strong-motion sensors and dataloggers. Several existing stations have been upgraded in this way, using USGS Multi-Hazards Demonstration Project and American Recovery and Reinvestment Act funds in southern California. In particular, existing seismic stations have been augmented by the addition of GPS and vice versa. The focus of new instrumentation as well as datalogger and telemetry upgrades to date has been along the southern San Andreas fault in hopes of 1) capturing a large and potentially damaging rupture in progress and augmenting inputs to earthquake early warning systems, and 2) recovering high quality recordings on scale of large dynamic displacement waveforms, static displacements and immediate and long-term post-seismic transient deformation. Obtaining definitive records of large ground motions close to a large San Andreas or Cascadia rupture (or volcanic activity) would be a fundamentally important contribution to understanding near-source large ground motions and the physics of earthquakes, including the rupture process and friction associated with crack propagation and healing. Soon, telemetry upgrades will be completed in Cascadia and throughout the Plate Boundary Observatory as well. By collaborating with other groups on open-source automation system development, we will be ready to process the newly available real-time GPS data streams and to fold these data in with existing strong-motion and other seismic data. Data from these same stations will also serve the very practical purpose of enabling earthquake early warning and greatly improving rapid finite-fault source modeling. Multiple uses of the effectively very broad-band data obtained by these stations, for operational and research purposes, are bound to occur especially because all data will be freely, openly and instantly available.

  4. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Schmidlin, F. J.; Oltmans, S. J.; Smit, H. G. J.

    2004-01-01

    Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 ozone profiles over eleven southern hemisphere tropical and subtropical stations. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used to measure ozone. The data are archived at: &ttp://croc.gsfc.nasa.gov/shadoz>. In analysis of ozonesonde imprecision within the SHADOZ dataset, Thompson et al. [JGR, 108,8238,20031 we pointed out that variations in ozonesonde technique (sensor solution strength, instrument manufacturer, data processing) could lead to station-to-station biases within the SHADOZ dataset. Imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. First, SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release). As for TOMS version 7, satellite total ozone is usually higher than the integrated column amount from the sounding. Discrepancies between the sonde and satellite datasets decline two percentage points on average, compared to version 7 TOMS offsets. Second, the SHADOZ station data are compared to results of chamber simulations (JOSE-2000, Juelich Ozonesonde Intercomparison Experiment) in which the various SHADOZ techniques were evaluated. The range of JOSE column deviations from a standard instrument (-10%) in the chamber resembles that of the SHADOZ station data. It appears that some systematic variations in the SHADOZ ozone record are accounted for by differences in solution strength, data processing and instrument type (manufacturer).

  5. Low-flow characteristics and profiles for the Rocky River in the Yadkin-Pee Dee River basin, North Carolina, through 2002

    USGS Publications Warehouse

    Weaver, J. Curtis; Fine, Jason M.

    2003-01-01

    An understanding of the magnitude and frequency of low-flow discharges is an important part of protecting surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized for 12 continuous-record gaging stations and 44 partial-record measuring sites in the Rocky River basin in North Carolina. Records of discharge collected through the 2002 water year at continuous-record gaging stations and through the 2001 water year at partial-record measuring sites were used. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, which is similar to 7Q10 discharge but is based only on flow during the winter months of November through March; and (5) 7Q2 low-flow discharge. The Rocky River basin drains 1,413 square miles (mi2) of the southern Piedmont Province in North Carolina. The Rocky River is about 91 miles long and merges with the Yadkin River in eastern Stanly County to form the Pee Dee River, which discharges into the Atlantic Ocean in South Carolina. Low-flow characteristics compiled for selected sites in the Rocky River basin indicated that the potential for sustained base flows in the upper half of the basin is relatively higher than for streams in the lower half of the basin. The upper half of the basin is underlain by the Charlotte Belt, where streams have been identified as having moderate potentials for sustained base flows. In the lower half of the basin, many streams were noted as having little to no potential for sustained base flows. Much of the decrease in base-flow potential is attributed to the underlying rock types of the Carolina Slate Belt. Of the 19 sites in the basin having minimal (defined as less than 0.05 cubic foot per second) or zero 7Q10 discharges, 18 sites are located in the lower half of the basin underlain by the Carolina Slate Belt. Assessment of these 18 sites indicates that streams that have drainage areas less than about 25 square miles are likely to have minimal or zero 7Q10 discharges. No drainage-area threshold for minimal or zero 7Q10 discharges was identified for the upper half of the basin, which is underlain by the Charlotte Belt. Tributaries to the Rocky River include the West Branch Rocky River (22.8 mi2), Clarke Creek (28.2 mi2), Mallard Creek (41.2 mi2), Coddle Creek (78.8 mi2), Reedy Creek (43.0 mi2), Irish Buffalo/Coldwater Creeks (110 mi2), Dutch Buffalo Creek (99 mi2), Long Creek (200 mi2), Richardson Creek (234 mi2), and Lanes Creek (135 mi2). In the 20-mile reach upstream from the mouth (about 22 percent of the river length), the drainage area increases by 648 mi2, or about 46 percent of the total drainage area as a result of the confluences with Long Creek, Richardson Creek, and Lanes Creek. Low-flow discharge profiles for the Rocky River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included. At the gaging stations above Irish Buffalo Creek and near Stanfield, the 7Q10 discharges are 25.2 and 42.3 cubic feet per second, corresponding to 0.09 and 0.07 cubic feet per second per square mile, respectively. At the gaging station near Norwood, the 7Q10 discharge is 45.8 cubic feet per second, equivalent to 0.03 cubic foot per second per square mile. Low-flow discharge profiles reflect the presence of several major flow diversions in the reaches upstream from Stanfield and an apparent losing reach between the continuous-record gaging stations near Stanfield and Norwood, North Carolina.

  6. Evaluation of thermograph data for California streams

    USGS Publications Warehouse

    Limerinos, J.T.

    1978-01-01

    Statistical analysis of water-temperature data from California streams indicates that, for most purposes, long-term operation of thermographs (automatic water-temperature recording instruments) does not provide a more useful record than either short-term operation of such instruments or periodic measurements. Harmonic analyses were made of thermograph records 5 to 14 years in length from 82 stations. More than 80 percent of the annual variation in water temperature is explained by the harmonic function for 77 of the 82 stations. Harmonic coefficients based on 8 years of thermograph record at 12 stations varied only slightly from coefficients computed using two equally split 4-year records. At five stations where both thermograph and periodic (10 to 23 measurements per year) data were collected concurrently, harmonic coefficients for periodic data were defined nearly as well as those for thermograph data. Results of this analysis indicate that, except where detailed surveillance of water temperatures is required or where there is a chance of temporal change, thermograph operations can be reduced substantially without affecting the usefulness of temperature records.

  7. 31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION GROUNDS, DEER ISLAND. METROPOLITAN SEWERAGE COMMISSION, JUNE 1896. Photocopy of image of aperture card 4977-1. Aperture cards and original drawings at Massachusetts Water Resources Authority Archives, Building 39, Charlestown Navy Yard, Boston, MA - Deer Island Pumping Station, Boston, Suffolk County, MA

  8. Water Resources Data, Pennsylvania, Water Year 1999. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 74 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 29 gaging stations and 11 ungaged streamsites; (4) water-quality records for 87 special-study stations;(5) water-level records for 55 network observation wells; and (6) water-quality analyses of ground water from 11 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

  9. Water Resources Data, Pennsylvania, Water Year 2001. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2002-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 77 continuous-record streamflow-gaging stations, 7 partial-record stations, and 46 special study and miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 11 ungaged streamsites; (4) water-quality records for 27 special-study stations; (5) water-level records for 56 network observation wells; and (6) water-quality analyses of ground water from 111 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

  10. Water resources data, Pennsylvania, water year 2000, Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 76 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 14 ungaged streamsites; (4) water-quality records for 77 special-study stations; (5) water-level records for 53 network observation wells; and (6) water-quality analyses of ground water from 101 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginningwith the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

  11. [From data entry to data presentation at a clinical workstation--experiences with Anesthesia Information Management Systems (AIMS)].

    PubMed

    Benson, M; Junger, A; Quinzio, L; Michel, A; Sciuk, G; Fuchs, C; Marquardt, K; Hempelmannn, G

    2000-09-01

    Anesthesia Information Management Systems (AIMS) are required to supply large amounts of data for various purposes such as performance recording, quality assurance, training, operating room management and research. It was our objective to establish an AIMS that enables every member of the department to independently access queries at his/her work station and at the same time allows the presentation of data in a suitable manner in order to increase the transfer of different information to the clinical workstation. Apple Macintosh Clients (Apple Computer, Inc. Cupertino, California) and the file- and database servers were installed into the already partially existing hospital network. The most important components installed on each computer are the anesthesia documenting software NarkoData (ProLogic GmbH, Erkrath), HIS client software and a HTML browser. More than 250 queries for easy evaluation were formulated with the software Voyant (Brossco Systems, Espoo, Finland). Together with the documentation they are the evaluation module of the AIMS. Today, more than 20,000 anesthesia procedures are recorded each year at 112 decentralised workstations with the AIMS. In 1998, 90.8% of the 20,383 performed anesthetic procedures were recorded online and 9.2% entered postopeatively into the system. With a corresponding user access it is possible to receive all available patient data at each single anesthesiological workstation via HIS (diagnoses, laboratory results) anytime. The available information includes previous anesthesia records, statistics and all data available from the hospitals intranet. This additional information is of great advantage in comparison to previous working conditions. The implementation of an AIMS allowed to greatly enhance the quota but also the quality of documentation and an increased flow of information at the anesthesia workstation. The circuit between data entry and the presentation and evaluation of data, statistics and results directly available at the clinical workstation was put into practice.

  12. Effect of health-promoting posters placed on the platforms of two train stations in Copenhagen, Denmark, on the choice between taking the stairs or the escalators: a secondary publication.

    PubMed

    Iversen, M K; Händel, M N; Jensen, E N; Frederiksen, P; Heitmann, B L

    2007-06-01

    The purpose of this study was to determine whether posters placed on the platforms of two train stations in Copenhagen, promoting use of the stairs, would encourage people to use the stairs rather than the adjacent escalator. An additional purpose was to see if the effect of the intervention was maintained for a week after the poster was removed. The number of people using stairs and escalators at Copenhagen Central Station and Østerport Train Station in Copenhagen was recorded before and during posters promoting stair use were placed on the platforms, and a week after the posters were removed. Two years after the posters were removed, data were collected for 1 week at Østerport Train Station (long-term post-intervention). At Copenhagen Central Station, the overall stair use increased from 12% before the intervention to 16% (P<0.0001) during the intervention, giving an odds ratio (OR) of 1.5 for stair use. At Østerport Train Station in Copenhagen, the overall stair use increased from 23 to 31% during the intervention (P<0.0001), and dropped to 27% (P<0.0001) after the intervention (during the intervention, OR=1.5 (P<0.0001); after the intervention, OR=1.2 (P<0.0001)). At the long-term post-intervention recording, the overall stair use was 25%, which was not significantly different from the stair use found before the intervention. Posters promoting stair use placed on the platforms of train stations can result in increased stair use, during and after 1 week of intervention, and thereby seem useful only when up and immediately following intervention in changing health-promoting behavior among Danish men and women. These results agree well with results from other countries.

  13. VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST (with scale stick) - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  14. VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PARTIAL FRONT ELEVATION OF MARINE BARRACKS, LOOKING NORTHEAST (without scale stick). - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  15. Playback Station #2 for Cal Net and 5-day-recorder tapes

    USGS Publications Warehouse

    Eaton, Jerry P.

    1978-01-01

    A second system (Playback Station #2) has been set up to play back Cal Net 1" tapes and 5-day-recorder 1/2" tapes. As with the first playback system (Playback Station #1) the tapes are played back on a Bell and Howell VR3700B tape deck and the records are written out on a 16-channel direct-writing Siemens "0scillomink." Separate reproduce heads, tape guides, and tape tension sensor rollers are required for playing back 111 tapes and 1/2" tapes, but changing these tape deck components is a simple task that requires only a few minutes. The discriminators, patch panels, selector switches, filters, time code translators, and signal conditioning circuits for the time code translators and for the tape-speed-compensation signal are all mounted in an equipment rack that stands beside the playback tape deck. Changing playback speeds (15/16 ips or 3 3/4 ips) or changing from Cal Net tapes to 5-day-recorder tapes requires only flipping a few switches and/or changing a few patch cables on the patch panel (in addition to changing the reproduce heads, etc., to change from 1" tape to 1/2" tape). For the Cal Net tapes, the system provides for playback of 9 data channels (680 Hz thru 3060 Hz plus 400 Hz) and 3 time signals (IRIG-E, IRIG-C, and WWVB) at both 15/16 ips (x1 speed) and 3 3/4 ips (x4 speed). Available modes of compensation (using either a 4688 Hz reference or a 3125 Hz reference) are subtractive, capstan, capstan plus subtractive, or no compensation.

  16. Hydrologic data for the Great and Denbow heaths in eastern Maine, October 1980 through September 1981

    USGS Publications Warehouse

    Nichols, Wallace J.; Smath, J.A.; Adamik, J.T.

    1983-01-01

    Hydrologic data collected on the Great and Denbow Heaths, Maine, include precipitation, pan evaporation, air temperatures, streamflow, groundwater levels, and water quality constituents. These data were collected for a peat bog hydrology study conducted in cooperation with the Maine Geological Survey. The data network consisted of climate information from three rain gages, an evaporation pan, and two maximum-minimum thermometers; surface water information from two continuous gaging stations and 19 partial record sites; groundwater information from an observation well equipped with a continuous recorder and 106 piezometers; and water quality information from 13 wells and seven surface water sites. Water quality constituents include: field determinations of pH, specific conductance, and temperature, and laboratory determinations of common inorganic cations and anions, trace elements, and selected organic compounds. Methods used for the collection and analyses of data included standard Survey techniques modified for the unique hydrologic environment of the study area. (Author 's abstract)

  17. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  18. Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States (U.S.Historical Climatology Network) (NDP-019)

    DOE Data Explorer

    Menne, M. J. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Williams, Jr., C. N. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Vose, R. S. [National Climatic Data Center, National Oceanic and Atmospheric Administration

    2016-01-01

    The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate change. Furthermore, it has been widely used in analyzing U.S. climte. The period of record varies for each station. USHCN stations were chosen using a number of criteria including length of record, percent of missing data, number of station moves and other station changes that may affect data homogeneity, and resulting network spatial coverage. Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s (Quinlan et al. 1987). At that time, in response to the need for an accurate, unbiased, modern historical climate record for the United States, the Global Change Research Program of the U.S. Department of Energy and NCDC chose a network of 1219 stations in the contiguous United States that would become a key baseline data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was made available free of charge from CDIAC. Since then it has been comprehensively updated several times [e.g., Karl et al. (1990) and Easterling et al. (1996)]. The initial USHCN daily data set was made available through CDIAC via Hughes et al. (1992) and contained a 138-station subset of the USHCN. This product was updated by Easterling et al. (1999) and expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all 1218 stations in the USHCN.

  19. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2005 to June 30, 2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young-Smith, Stacie T. M.

    2006-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous discharge data at one station, continuous streamflow data at two stations, and water-quality data at five stations, which include the continuous discharge and streamflow stations. This report summarizes rainfall, discharge, streamflow, and water-quality data collected between July 1, 2005 and June 30, 2006. A total of 23 samples was collected over five storms during July 1, 2005 to June 30, 2006. The goal was to collect grab samples nearly simultaneously at all five stations, and flow-weighted time-composite samples at the three stations equipped with automatic samplers; however, all five storms were partially sampled owing to lack of flow at the time of sampling at some sites, or because some samples collected by the automatic sampler did not represent water from the storm. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  20. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, Norwood B.; Walker, J.F.

    1992-01-01

    Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  1. An evaluation of water-quality data obtained at four streamflow daily-record stations in Idaho

    USGS Publications Warehouse

    Dyer, Kenneth L.

    1973-01-01

    Chemical data for four stream-gaging stations in Idaho, each having 6 to 22 years of available records, were analyzed to determine functional relations between concentrations of the major inorganic constituents, specific conductance, and stream discharge. Three of the four stations had sufficient available record for assessing changes in constituent relations with time. The records for each long-term station were subdivided into segments of approximately 5 years each. Plots and regression equations were derived for each record segment to show the relations of each major constituent value to levels of specific conductance and stream discharge. At only one stations, Boise River at Notus, was there was an apparent significant change in chemical characteristics with time. Between 1940 and 1951, the percentages of chloride and sulfate in solution at this station declined appreciably and were largely replaced by bicarbonate. In general, there were highly significant correlations between the major inorganic ions and specific conductance, although those observed at Bear River at Border were distinctly poorer than those observed for the other stations. Corresponding correlations between the major ions and discharge were almost always less significant than those observed between the same ions and specific conductance. The common ion-discharge relations observed on the Snake River near Heise were more highly correlated before 1957 than thereafter--probably because of changes induced by the construction of Palisades Dam. A similar decline in correlation of common ion-discharge relations was observed at the Snake River at King Hill station after 1957, and this also might be attributable to changes in water regulation at various upstream impoundments.

  2. Test and calibration of the Digital World-Wide Standardized Seismograph

    USGS Publications Warehouse

    Peterson, Jon; Hutt, Charles R.

    1982-01-01

    During the past decade there has been steady progress in the modernization of the global seismograph network operated by the U.S. Geological Survey (USGS). The World-Wide Standardized Seismograph Network (WWSSN) has been augmented by new stations with advanced instrumentation, including the Seismic Research Observatories (SRO) and the modified High-Gain Long-Period (ASRO) stations. One goal in the modernization effort has been to improve signal resolution in the long-period band. A second goal has been to generate a global digital data base to support contemporary computer-based analysis and research. In 1976, a Panel on Seismograph Networks was established by the Committee on Seismology of the National Academy of Sciences to review progress in network seismology and recommend actions that would lead to an improved global data base for seismology. One recommendation in the Panel report (Engdahl, 1977) called for upgrading selected WWSSN stations by the installation of digital recorders. This was viewed as an economical way of expanding the digital network, which had proven itself to be a very promising new tool for earthquake and explosion research. Funds for the development and assembly of 15 digital recorders were provided to the USGS by the Defense Advanced Research Projects Agency and an ad Inoc panel of scientists was convened by the Committee on Seismology to advise the USGS on the selection of stations to be upgraded and on data recording requirements, A total of 19 digital World-Wide Standardized Seismograph (DWWSS) systems will be operational when all are installed. The additional systems were made available through purchase by the USGS and other organizations; for example, the University of Bergen purchased and installed a DWWSS-type recorder and agreed to furnish the USGS with the data. A list of operational and planned DWWSS network stations is given in Table 1.1.As one might expect, the digital recorder turned out to be somewhat more sophisticated than the original concept. It was decided to record three components of long-period data continuously, three components of intermediateperiod data in an event mode, and the vertical-component short-period data in and event mode (with the capability of adding short-period horizontal channels in the future). Special amplifiers were developed for use with the WWSS seismometers, and a 16-bit fixed-point analog-to-digital converter was chosen to provide increased resolution (as opposed to a 16-bit gain-ranged encoder). The microprocessor-based digital recording systems were developed and assembled at the USGS Albuquerque Seismological Laboratory (ASL) and ASL-based technicians began installation at WWSSN stations in 1980.The current and proposed locations of the DWWSSN stations, together with other stations in the Global Digital Seismograph Network (GDSN), are shown on the map in Figure 1.1. A system was operated at Albuquerque for about 18 months, serving as a test bed for evaluation studies. Although the network hardware has been available for some time, the installation of the DWWSSN has proceeded slowly. The National Science Foundation supported installation of six stations and the USGS is funding installation of most of the others; however, the network completion date is conjectural because of funding uncertainties.The DWWSSN stations are supported with supplies and technical assistance from ASL (subject to availability of funds). Data recorded on magnetic tapes are mailed to ASL where they are reviewed for quality, then merged with other GDSN station data on the network-day tapes. Hoffman (1980) provides a description of the network-day tape format. Zirbes and Buland (1981) have developed and published user software for reading and interpreting the day tapes. This report will serve several purposes. One is to provide nominal system transfer functions and calibration information that are needed in the analysis of DWWSSN data. A second purpose is to report on an evaluation of operating characteristics (calibration stability, noise levels, and linearity) that may limit the usefulness of the data and to determine if modifications may be needed to improve the data. It is not an exhaustive study in this respect. We continue to depend mostly on data user feedback to point out deficiencies and we solicit comments whenever anomalies are observed in the data.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  4. Seasonal precipitation extreme indices in mainland Portugal: trends and variability in the period 1941-2007

    NASA Astrophysics Data System (ADS)

    Santo, Fátima E.; Ramos, Alexandre M.; de Lima, M. Isabel P.; Trigo, Ricardo M.

    2013-04-01

    Changes in the precipitation regimes are expected to be accompanied by variations in the occurrence of extreme events, which in turn could be related to low frequency variability. The impact on the society and environment requires that the regional specificities are understood. For mainland Portugal, this work reports the results of the analysis of trends in selected precipitation indices calculated from daily precipitation data from 57 meteorological stations, recorded in the period 1941-2007; additionally we have also investigated the correlations between these indices and several modes of low frequency variability over the area. We focus on exploring regional differences and seasonal variations in the intensity, frequency and duration of extreme precipitation events. The precipitation indices were assessed at the seasonal scale and calculated at both the station and regional scales. Results sometimes highlight marked changes in seasonal precipitation and show that: i) trends in spring and autumn have opposite signals: statistically significant drying trends in the spring are accompanied by a reduction in precipitation extremes; in autumn, wetting trends are detected for all precipitation indices, although overall they are not significant at the 5% level; ii) there seems to be a tendency for a reduction in the duration of the rainy season; iii) the North Atlantic Oscillation (NAO) is the mode of variability that has the highest influence on precipitation extremes over mainland Portugal, particularly in the winter and autumn, and is one of the most important teleconnection patterns in all seasons. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  5. Analysis of Trends in the Seasonal Cycle of Atmospheric CO2 in the Northern Hemisphere from 1958 to 2010

    NASA Astrophysics Data System (ADS)

    Piper, S. C.; Keeling, R. F.; Patra, P. K.; Welp, L. R.

    2011-12-01

    We present an analysis of the trends and interannual variations in the phase and amplitude of the seasonal cycle of atmospheric CO2 at Northern Hemisphere stations of the Scripps network from 1958 to 2010. The seasonal cycle here primarily reflects biospheric activity over large land regions and provides a strong constraint on NEE. The analysis includes observational records at Pt. Barrow (71°N), La Jolla (33°N), and Kumukahi (20°N), in addition to Mauna Loa (20°N), Station Papa (50°N), and Alert, Canada (82°N). We compare observations with forward atmospheric transport simulations which employ interannually-varying reanalyzed winds with seasonally variable terrestrial biospheric, oceanic and fossil fuel sources to account for atmospheric transport. The observed increase in seasonal amplitude since 1958 has varied among stations and with time at each station. The temporal changes often have not been coherent among stations. The amplitude increased less than 10% at Mauna Loa and 45% at Barrow, Alaska from the 1960s. The record at Alert, which started in 1986, appears to match variations at Barrow, and recent measurements at Station Papa in the Alaskan Gyre suggest an increase intermediate between that of Mauna Loa and Point Barrow. The most striking increase has been at midlatitudes at La Jolla, about 60% since the late 1950s in part resulting from changes in local meteorological conditions. For Barrow and Mauna Loa, the amplitude increased rapidly from 1970 to 1990, after which it slowed significantly at Barrow, and decreased at Mauna Loa. The variations at Alert were similar to those at Barrow suggesting that both records are representative of large-scale Arctic air masses. Kumukahi and Mauna Loa are located at the same latitude but different altitudes. For common years of record in 1980-2000, the amplitude at both stations varied interannually but without a long term trend. After 2000, however, the amplitude at Mauna Loa increased dramatically to 2004 and decreased to 2009, while the amplitude at Kumukahi increased slowly. These differences reflect different influences of source regions and transport at the two stations. Climate variations are an important driver for both the long term trend and shorter term interannual variations in the seasonal amplitude. However, several studies for short periods suggest that atmospheric transport has an important influence. Model simulations with interannually-varying winds for the entire Mauna Loa record, from 1958 to 2010, indicate that the long-term advance in the observed phase at Mauna Loa, by about 8 days in 50 years, is produced by atmospheric transport up until 1990, but not afterward. Observed variations in the seasonal amplitude however are poorly simulated suggesting that variations in terrestrial sources, perhaps driven by temperature before 1990 and drought afterwards may be important as suggested in previous studies. Findings for the remaining stations will be presented. As a whole, temporal and spatial variations in amplitude and phase reflect a complex interplay of climate-driven changes in sources and atmospheric transport.

  6. Filling the monitoring gaps across the US Arctic by permanently adopting USArray stations

    NASA Astrophysics Data System (ADS)

    Buurman, H.; West, M. E.

    2017-12-01

    The USArray project represents a truly unique opportunity to fundamentally change geophysical monitoring in the US Arctic. The addition of more than 200 stations capable of recording seismic, infrasound, ground temperature and meteorologic data has brought a diverse group of organizations to the table, fostering new connections and collaborations between scientists whose paths otherwise would not cross. With the array slated for removal beginning in 2019, there is a window of opportunity to advocate for permanently retaining a subset of the USArray stations. The Alaska Earthquake Center has drafted a plan to permanently adopt a subset of the USArray stations and maintain them as part of the seismic network in Alaska. The expanded seismic network would substantially improve on the Alaska Earthquake Center's ongoing mission to advance Alaska's resilience to earthquake hazards. By continuing to provide public climate and infrasound data, the Alaska Earthquake Center would also fill important gaps in the weather, wildfire and climate research monitoring networks across Alaska. The many challenges in adopting USArray stations include choosing which stations to retain, upgrading the power systems to have 24/7 data transmission through the long Alaskan winter months, and lowering the costs of continuous telemetry.

  7. Hydrodynamic Characteristics and Salinity Patterns in Estero Bay, Lee County, Florida

    USGS Publications Warehouse

    Byrne, Michael J.; Gabaldon, Jessica N.

    2008-01-01

    Estero Bay is an estuary (about 12 miles long and 3 miles wide) on the southwestern Florida coast, with several inlets connecting the bay to the Gulf of Mexico and numerous freshwater tributaries. Continuous stage and salinity data were recorded at eight gaging stations in Estero Bay estuary from October 2001 to September 2005. Continuous water velocity data were recorded at six of these stations for the purpose of measuring discharge. In addition, turbidity data were recorded at four stations, suspended sediment concentration were measured at three stations, and wind measurements were taken at one station. Salinity surveys, within and around Estero Bay, were conducted 15 times from July 2002 to January 2004. The average daily discharge ranged from 35,000 to -34,000 ft3/s (cubic feet per second) at Big Carlos Pass, 10,800 to -11,200 ft3/s at Matanzas Pass, 2,200 to -2,900 ft3/s at Big Hickory Pass, 680 to -700 ft3/s at Mullock Creek, 330 to -370 ft3/s at Estero River, and 190 to -180 ft3/s at Imperial River. Flood tide is expressed as negative discharge and ebb flow as positive discharge. Reduced salinity at Matanzas Pass was negatively correlated (R2 = 0.48) to freshwater discharge from the Caloosahatchee River at Franklin Locks (S-79). Matanzas Pass is hydrologically linked to Hell Peckney Bay; therefore, water-quality problems associated with the Caloosahatchee River also affect Hell Peckney Bay. Rocky Bay was significantly less saline than Coconut Point and Matanzas Pass was significantly less saline than Ostego Bay, based on data from the salinity surveys. The quality-checked and edited continuous data and the salinity maps have been compiled and are stored on the U.S. Geological Survey South Florida Information Access (SOFIA) website (http://sofia.usgs.gov).

  8. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  9. Temporal changes of the inner core from waveform doublets

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  10. Flooding in Illinois, April-June 2002

    USGS Publications Warehouse

    Avery, Charles; Smith, D.F.

    2002-01-01

    Widespread flooding occurred throughout most of Illinois in spring 2002 as a result of multiple intense rainstorms that moved through the State during an extended 2-month period from the third week in April through the month of May in central and southern Illinois, the first week in June in northern Illinois, and the second week in June in west-central Illinois. The scale of flooding was highly variable in time and intensity throughout the State. A Federal disaster was declared for central and southern Illinois to deal with the extensive damage incurred during the severe weather, and to provide emergency aid relief. Discharge and stage records for the flood periods described above are presented for 193 streamflow-gaging stations throughout Illinois and in drainages just upstream of the State. New maximum instantaneous discharge was recorded at 12 stations during this flood period, and new maximum stage was recorded at 15 stations. Flood stage was exceeded for at least 1 day during this 2-month period at 67 of the 82 stations with established flood-stage elevations given by the National Weather Service. Of the 162 streamflowgaging stations with an established flood-frequency distribution, a 5-year or greater flood discharge was recorded at 87 stations, and a 100-year or greater flood discharge occurred at six stations.

  11. Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.

    2017-12-01

    In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.

  12. Flood of April 2007 and Flood-Frequency Estimates at Streamflow-Gaging Stations in Western Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2009-01-01

    A spring nor'easter affected the East Coast of the United States from April 15 to 18, 2007. In Connecticut, rainfall varied from 3 inches to more than 7 inches. The combined effects of heavy rainfall over a short duration, high winds, and high tides led to widespread flooding, storm damage, power outages, evacuations, and disruptions to traffic and commerce. The storm caused at least 18 fatalities (none in Connecticut). A Presidential Disaster Declaration was issued on May 11, 2007, for two counties in western Connecticut - Fairfield and Litchfield. This report documents hydrologic and meteorologic aspects of the April 2007 flood and includes estimates of the magnitude of the peak discharges and peak stages during the flood at 28 streamflow-gaging stations in western Connecticut. These data were used to perform flood-frequency analyses. Flood-frequency estimates provided in this report are expressed in terms of exceedance probabilities (the probability of a flood reaching or exceeding a particular magnitude in any year). Flood-frequency estimates for the 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 exceedance probabilities (also expressed as 50-, 20-, 10-, 4-, 2-, 1-, and 0.2- percent exceedance probability, respectively) were computed for 24 of the 28 streamflow-gaging stations. Exceedance probabilities can further be expressed in terms of recurrence intervals (2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval, respectively). Flood-frequency estimates computed in this study were compared to the flood-frequency estimates used to derive the water-surface profiles in previously published Federal Emergency Management Agency (FEMA) Flood Insurance Studies. The estimates in this report update and supersede previously published flood-frequency estimates for streamflowgaging stations in Connecticut by incorporating additional years of annual peak discharges, including the peaks for the April 2007 flood. In the southwest coastal region of Connecticut, the April 2007 peak discharges for streamflow-gaging stations with records extending back to 1955 were the second highest peak discharges on record; the 1955 annual peak discharges are the highest peak discharges in the station records. In the Housatonic and South Central Coast Basins, the April 2007 peak discharges for streamflow-gaging stations with records extending back to 1930 or earlier ranked between the fourth and eighth highest discharges on record, with the 1936, 1938, and 1955 floods as the largest floods in the station records. The peak discharges for the April 2007 flood have exceedance probabilities ranging between 0.10 to 0.02 (a 10- to 2-percent chance of being exceeded in a given year, respectively) with the majority (80 percent) of the stations having exceedance probabilities between 0.10 to 0.04. At three stations - Norwalk River at South Wilton, Pootatuck River at Sandy Hook, and Still River at Robertsville - the April 2007 peak discharges have an exceedance probability of 0.02. Flood-frequency estimates made after the April 2007 flood were compared to flood-frequency estimates used to derive the water-surface profiles (also called flood profiles) in FEMA Flood Insurance Studies developed for communities. In general, the comparison indicated that at the 0.10 exceedance probability (a 10-percent change of being exceeded in a given year), the discharges from the current (2007) flood-frequency analysis are larger than the discharges in the FEMA Flood Insurance Studies, with a median change of about +10 percent. In contrast, at the 0.01 exceedance probability (a 1-percent change of being exceeded in a year), the discharges from the current flood-frequency analysis are smaller than the discharges in the FEMA Flood Insurance Studies, with a median change of about -13 percent. Several stations had more than + 25 percent change in discharges at the 0.10 exceedance probability and are in the following communities: Winchester (Still River at Robertsv

  13. Streamflow statistics for selected streams in North Dakota, Minnesota, Manitoba, and Saskatchewan

    USGS Publications Warehouse

    Williams-Sether, Tara

    2012-01-01

    Statistical summaries of streamflow data for the periods of record through water year 2009 for selected active and discontinued U.S. Geological Survey streamflow-gaging stations in North Dakota, Minnesota, Manitoba, and Saskatchewan were compiled. The summaries for each streamflow-gaging station include a brief station description, a graph of the annual peak and annual mean discharge for the period of record, statistics of monthly and annual mean discharges, monthly and annual flow durations, probability of occurrence of annual high discharges, annual peak discharge and corresponding gage height for the period of record, and monthly and annual mean discharges for the period of record.

  14. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required.

  15. Computer systems for automatic earthquake detection

    USGS Publications Warehouse

    Stewart, S.W.

    1974-01-01

    U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously. 

  16. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  17. Climate Data Bases of the People's Republic of China 1841-1988 (TR-055)

    DOE Data Explorer

    Kaiser, Dale. [Oak Ridge National Lab, Oak Ridge, TN (USA); Carbon Dioxide Analysis Center (CDIAC); Tao, Shiyan [Chinese Academy of Sciences, Beijing, China; Fu, Congbin [Chinese Academy of Sciences, Beijing, China; Zeng, Zhaomei [Chinese Academy of Sciences (CAS), Beijing, China; Zhang, Qingyun [Chinese Academy of Sciences (CAS), Beijing (China); Wang, Wei-Chyung [University at Albany, State University of New York, Albany, New York (USA); Atmospheric Science Research Center; Karl, Thomas [National Oceanic and Atmospheric Administration, Asheville, North Carolina (USA); Global Climate Laboratory, National Climatic Data Center

    1993-01-01

    A data base containing meteorological observations from the People's Republic of China (PRC) is described. These data were compiled in accordance with a joint research agreement signed by the U.S. Department of Energy and the PRC Chinese Academy of Sciences (CAS) on August 19, 1987. CAS's Institute of Atmospheric Physics (Beijing, PRC) has provided records from 296 stations, organized into five data sets: (1) a 60-station data set containing monthly measurements of barometric pressure, surface air temperature, precipitation amount, relative humidity, sunshine duration, cloud amount, wind direction and speed, and number of days with snow cover; (2) a 205-station data set containing monthly mean temperatures and monthly precipitation totals; (3) a 40-station subset of the 205-station data set containing monthly mean maximum and minimum temperatures and monthly extreme maximum and minimum temperatures; (4) a 180-station data set containing daily precipitation totals; and (5) a 147-station data set containing 10-day precipitation totals. Sixteen stations from these data sets (13 from the 60-station set and 3 from the 205-station set) have temperature and/or precipitation records that begin prior to 1900, whereas the remaining stations began observing in the early to mid-1900s. Records from most stations extend through 1988. (Note: Users interested in the TR055 60-station data set should acquire expanded and updated data from CDIAC's NDP-039, Two Long-Term Instrumental Climatic Data Bases of the People's Republic of China)

  18. Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording

    PubMed Central

    Eliseyev, Andrey; Aksenova, Tetiana

    2016-01-01

    In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417

  19. Surface Water Records of Colorado

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1962-01-01

    The surface-water records for the 1962 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of J. W. Odell, district engineer, Surface Water Branch.

  20. Low-Frequency Amplitudes Observed in a Set of the Strongest Recorded Ground Motions (Invited)

    NASA Astrophysics Data System (ADS)

    Anderson, J. G.; Koketsu, K.; Miyake, H.

    2010-12-01

    Anderson (2010) compiled a set of “exceptional” ground motion characterized by peak acceleration that exceeds 500 gal on at least one component or peak velocity that exceeds 50 cm/s on at least one component. With the addition of more recent data, there are now over 280 openly available records that meet these criteria. These data are examined to find to the empirical upper bound of observed pseudo-acceleration (PSA) response spectra and smoothed Fourier amplitude spectra. Statistics of amplitudes of PSA and of low-pass filtered acceleration and velocity have also been determined. Amplitudes recorded at the Kawaguchi-cho station (40 km) at 5-6 second period from the 1964 Niigata earthquake (Mw=8.3) are within ~20% of the current empirical limit of ground motions observed from all earthquakes in the data set including those from the near field. An even more impressive example is that amplitudes recorded at the SCT station (~300 km from the fault) with period of about 2 seconds, during the 1985 Michoacan, Mexico, earthquake (Mw=8.0), are about the same as the current empirical limit of ground motions observed from near field records. These examples support the idea that the hazard caused by long-period ground motions, amplified by basins and site conditions, is not sufficiently appreciated. Reference: Anderson, J. G. (2010), Bull. Seism. Soc. Am. 100, 1-36.

  1. Regional crustal structures along several paths in India and its surrounding regions using local P- and S-wave travel times and regional waveforms recorded from the March 28, 1999 Chamoli earthquake sequence

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Ichinose, G. A.; Kayal, J. R.; Bhattacharya, S. N.; Shukla, A. K.

    2001-12-01

    The March 28, 1999 Chamoli earthquake (Mw 6.8) in northwest India generated a large sequence of aftershocks (M_ w> 4.0) which were recorded by a temporary network ofshort-period stations deployed by various organizations, namely India Meteorological Department (IMD), Geological Survey of India (GSI), National Geophysical Research Institute (NGRI) and Wadia Institute of Himalayan Geology (WIHG) in India. We inverted the local P- and S-wave arrival times from about 20 local stations jointly for all available aftershocks implementing a technique which optimizes both earthquake locations and crustal velocity model. Of these, seven events were recorded by more than 5 stations locating within 5o of the epicenters withazimuthal gap not greater than 90o. We used these events to compute the station correctionsfor local stations and applied these station corrections to relocate the entire sequence of the Chamoli aftershocks. The relocation vectors which indicate the direction toward which the events would move from the reference locations (in this case the GSI locations) suggest that for the majority of the seismic events they show movement towards the epicentral locations of the mainshock. The new locations of these events also show improvements in the error ellipse measurements. We have also investigated variations in crustal models using regional broadband seismograms from the mainshock recorded by the IMD stations in India (IMD, 2000). Using a crustal model developed earlier by Bhattacharya using surface-wave dispersion for northern India as a starting model, we conducted a systematic analysis of surface-wave dispersion characteristics recorded at these broadband stations. We synthesized f-k seismograms andexamined the relative amplitude of the Pnl waves to the surface waves and their absolutetravel-time differences. We used focal mechanism and depth that were independently determined by modeling teleseismic depth phases, pP and sP, and by modeling regional seismograms recorded by broadband stations of a temporary network of the INDEPTH experiment operated in China near the station LSA. This investigation suggests that data along different paths toward the Indian subcontinent require different thicknesses for the crustal structure to account for varying thicknesses of the sediment of the Gangetic basin. We are currently examining the surface-wave dispersions recorded by stations of the INDEPTH experiment and at HYB in India. We will present results from investigations of these broadband seismograms and comparison of these results with those determined earlier by various investigators using the limited WWSSN seismograms.

  2. Closeup view of leeds and northrup strip chart recorders used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of leeds and northrup strip chart recorders used to indicate power usage on certain portions of the system. Note model board builders plaque which reads Kellogg Switchboard and Supply Company- Chicago, USA at left center of photograph. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  3. Ambient noise levels and characterization in Aegean region, Turkey

    NASA Astrophysics Data System (ADS)

    Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil

    2018-03-01

    We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.

  4. 47 CFR 73.1820 - Station log.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... part. (iii) An entry of each test and activation of the Emergency Alert System (EAS) pursuant to the... functions may be utilized to record entries in the station log Provided: (1) The recording devices do not...

  5. Seismological evidence of the Hales discontinuity in northeast India

    NASA Astrophysics Data System (ADS)

    Anand, Aakash; Bora, Dipok K.; Borah, Kajaljyoti; Madhab Borgohain, Jayanta

    2018-04-01

    The crust and upper mantle shear wave velocity structure beneath the northeast India is estimated by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data recorded at nine broadband seismic stations. The Assam valley and the Shillong-Mikir plateau are the two important tectonic blocks in the northeast India, which are surrounded by the Himalayan collision zone in the north, Indo-Burma subduction zone in the east and by the Bengal basin in the south. The joint inversion followed by forward modeling reveal crustal thicknesses of 30-34 km beneath the Shillong plateau, 36 km beneath the Mikir hills and 38-40 km beneath the Assam valley with an average shear wave velocity (Vs) of 3.4-3.5 km/s. The estimated low upper mantle shear wave velocity (Vsn) 4.2-4.3 km/s may be due to the rock composition or grain size or increased temperature and partial melt (<1%) in the upper mantle, or an effect of all. Also, we report for the first time, the existence of the Hales discontinuity at depths 56-74 km with Vs ∼4.4-4.6 km/s. Variable depth of the Hales discontinuity may be explained by the geotherm and/or addition of Cr3+ and Fe2+ in the spinel-garnet system.

  6. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    NASA Astrophysics Data System (ADS)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  7. Sediment yields of streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1975-01-01

    This report summarizes sediment data collected at 11 sites in the Umpqua River basin from 1956 to 1973 and updates a report by C. A. Onions (1969) of estimated sediment yields in the basin from 1956-67.  Onions' report points out that the suspended-sediment data, collected during the 1956-67 period, were insufficient to compute reliable sediment yields.  Therefore, the U.S, Geological Survey, in cooperation with Douglas County, collected additional data from 1969 to 1973 to improve the water discharge-sediment discharge relationships at these sites.  These data are published in "Water resources data for Oregon, Part 2, Water quality records," 1970 through 1973 water years.  In addition to the 10 original sites, data were collected during this period from the Umpqua River near Elkton station, and a summary of the data for that station is included in table 1.

  8. Field Testing, Installation, and Calibration of a new Data Acquisition System for the USGS-Stanford-Berkley Ultra-Low Frequency Electromagnetic (ULFEM) Array

    NASA Astrophysics Data System (ADS)

    Creasy, N.; Gardner, J.; Spritzer, J. M.; Keneally, I.; Glen, J. M.; McPhee, D.; Klemperer, S. L.

    2013-12-01

    Since 2006, Stanford University, USGS, and UC Berkeley collaboratively maintain five permanent stations, to measure electric and magnetic data from 0.01 to 40Hz. Each station consists of three orthogonal coil magnetometers and two orthogonal 100m electrodes. The acquisition of ULFEM data helps study possible correlations between electromagnetic fields and seismic events related to the San Andreas Fault system. The current data acquisition system uses a Quanterra Q330 analog-to-digital converter. In 2010, we began development of a new 24-bit digitizing system known as the ULFEM 2010 digitizer in order to replace the Q330. The design of the new recorder was to be more economical and better tailored to the ULFEM network by providing power, calibration, and improved protection from lightning. However, the prototype had many problems, including a daily phase shift, amplifying error, and a time delay of 15 seconds (Bowden, et al., AGU, 2010). Currently, comparative testing of an improved prototype, ULFEM 2013, and the Q330 is taking place at the Jasper Ridge ULFEM station. The ULFEM 2013 contains eight channels that record input from three coil magnetometers, four electrodes, and temperature. Testing is ongoing and involves comparing the coil magnetometer and electrode signals processed by the Q330 and ULFEM 2013 digitizer. Data from the two systems will be compared in the time and frequency domains, and analyses will include calculating error and cross correlations. The ULFEM 2013 digitizer provides power to the magnetometer sensors as well as a calibration coil system (CCS). Every 24 hours, the CCS sends a calibration signal to calibration induction coils fitted to each of the three orthogonal magnetometers with the aim of testing the sensors' sensitivity and accuracy. The CCS produces a frequency sweep of 0.08, 0.51, 5, and 10Hz, creating a field nearly ten times greater than the Earth's field. The CCS consists of open source hardware and an amplifying frequency generator. Another ongoing effort to calibrate the ULFEM stations uses ground motion produced by distant earthquakes. Because of our stations' relatively close proximity (approximately 70km apart), teleseismic earthquakes at epicentral distances produce near-identical long-period seismic arrivals at each ULFEM station. The ground motion generated by the surface waves of distant earthquakes causes displacement of the induction coils, inducing magnetic anomalies in the recorded data. Because the ground motion has nearly the same characteristics at each station, the magnetic anomalies observed should have similar amplitudes regardless of the station (though modulated by the local conductivity structure at each site). To identify these coseismic signals, magnetic data were compared against seismic data from each station. Magnetic signals are clearly visible due to passage of Love and Rayleigh waves from teleseismic earthquakes of magnitude >7.4 and their relative amplitudes provide additional confirmation of the stability of our coils and recording system prior to the installation of the CCS.

  9. Design and clinical evaluation of a high-capacity digital image archival library and high-speed network for the replacement of cinefilm in the cardiac angiography environment

    NASA Astrophysics Data System (ADS)

    Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.

    1993-09-01

    An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.

  10. Cost-effectiveness of the stream-gaging program in Kentucky

    USGS Publications Warehouse

    Ruhl, K.J.

    1989-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in Kentucky. The total surface-water program includes 97 daily-discharge stations , 12 stage-only stations, and 35 crest-stage stations and is operated on a budget of $950,700. One station used for research lacks adequate source of funding and should be discontinued when the research ends. Most stations in the network are multiple-use with 65 stations operated for the purpose of defining hydrologic systems, 48 for project operation, 47 for definition of regional hydrology, and 43 for hydrologic forecasting purposes. Eighteen stations support water quality monitoring activities, one station is used for planning and design, and one station is used for research. The average standard error of estimation of streamflow records was determined only for stations in the Louisville Subdistrict. Under current operating policy, with a budget of $223,500, the average standard error of estimation is 28.5%. Altering the travel routes and measurement frequency to reduce the amount of lost stage record would allow a slight decrease in standard error to 26.9%. The results indicate that the collection of streamflow records in the Louisville Subdistrict is cost effective in its present mode of operation. In the Louisville Subdistrict, a minimum budget of $214,200 is required to operate the current network at an average standard error of 32.7%. A budget less than this does not permit proper service and maintenance of the gages and recorders. The maximum budget analyzed was $268,200, which would result in an average standard error of 16.9% indicating that if the budget was increased by 20%, the percent standard error would be reduced 40 %. (USGS)

  11. Seismic refraction profile, Kingdom of Saudi Arabia: field operations, instrumentation, and initial results

    USGS Publications Warehouse

    Blank, H. Richard; Healy, J.H.; Roller, John; Lamson, Ralph; Fisher, Fred; McClearn, Robert; Allen, Steve

    1979-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the USGS along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Paleozoic and Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used--five on land, with charges placed mostly below water table in drill holes, and one at sea, with charges placed on the sea floor and fired from a ship. The total charge consumed was slightly in excess of 61 metric tons in 21 discrete firings. Seismic energy was recorded by means of a set of 100 newly developed portable seismic stations. Each station consists of a standard 2-Hz vertical geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. The stations were deployed in groups of 20 by five observer teams, each generally consisting of two scientist-technicians and a surveyor-guide. On the day prior to deployment, the instruments were calibrated and programmed for automatic operation by means of a specially designed device called a hand-held tester. At each of ten pre-selected recording time windows on a designated firing day, the instruments were programmed to turn on, stabilize, record internal calibration signals, record the seismic signals at three levels of amplification, and then deactivate. After the final window in the firing sequence, all instruments were retrieved and their data tapes removed for processing. A specially designed, field tape- dubbing system was utilized at shot point camps to organize and edit data recorded on the cassette tapes. The main functions of this system are to concatenate all data from each shot on any given day onto a single shot tape, and to provide hard copy for monitoring recorder performance so that any problems can be corrected prior to the next deployment. Composite digital record sections were produced from the dubbed tapes for each shot point by a portable processing and plotting system. The heart of this system is a DEC PDP 11VO3 computer, which controls a cassette playback unit identical to those used in the recorders and dubbers, a set of discriminators, a time-code translator, a digitizer, and a digital plotter. The system was used to maintain various informational data sets and to produce tabulations and listings of various sorts during the field operations, in addition to its main task of producing digital record sections. Two master clocks, both set to time signals broadcast by the British Broadcasting Corporation, provided absolute time for the recording operations. One was located on the ship and the other was stationed at a base camp on the mainland. The land-based master clock was used to set three additional master clocks located at the other active shot points a few days in advance of each firing, and these clocks were then used to set the internal clocks in the portable seismic stations via the hand-held tester. A master clock signal was also linked to the firing system at each shot point for determination of the absolute shot instant. It is possible to construct a generalized crustal model from examination of the six shot point composite record sections obtained in the field. Such a model rests upon a number of simplifying assumptions and will almost certainly be modified at a later stage of interpretation. The main assumptions are that the crust consists of two homogeneous isotropic layers having no velocity inversion,, that the Mohorovicic discontinuity is sharp, and that effects of surface inhomogeneities and elevation changes can be ignored. The main characteristics of the tentative model are the following: (1) The thickness of th

  12. A historical perspective on precipitation, drought severity, and streamflow in Texas during 1951-56 and 2011

    USGS Publications Warehouse

    Winters, Karl E.

    2013-01-01

    Annual mean streamflow and streamflow-duration curves for the 1951–56 and 2011 water years were assessed for 19 unregulated U.S. Geological Survey (USGS) streamflow-gaging stations. At eight of these streamflow-gaging stations, the annual mean streamflow was lower in 2011 than for any year during 1951–56; many of these stations are located in eastern Texas. Annual mean streamflows for streamflow-gaging stations in the Guadalupe, Blanco, and upper Frio River Basins were lower in 1956 than in 2011. The streamflow-duration curves for many streamflow-gaging stations indicate a lack of (or diminished) storm runoff during 2011. Low streamflows (those exceeded 90 to 95 percent of days) were lower for 1956 than for 2011 at seven streamflow-gaging stations. For most of these stations, the lowest of the low streamflows during 1951–56 occurred in 1956. During March to September 2011, record daily lows were measured at USGS streamflow-gaging station 08041500 Village Creek near Kountze, Tex., which has more than 70 years of record. Many other USGS streamflow-gaging stations in Texas started the 2011 water year with normal streamflow but by the end of the water year were flowing at near-record lows.

  13. Two-station comparison of peak flows to improve flood-frequency estimates for seven streamflow-gaging stations in the Salmon and Clearwater River Basins, Central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2003-01-01

    Improved flood-frequency estimates for short-term (10 or fewer years of record) streamflow-gaging stations were needed to support instream flow studies by the U.S. Forest Service, which are focused on quantifying water rights necessary to maintain or restore productive fish habitat. Because peak-flow data for short-term gaging stations can be biased by having been collected during an unusually wet, dry, or otherwise unrepresentative period of record, the data may not represent the full range of potential floods at a site. To test whether peak-flow estimates for short-term gaging stations could be improved, the two-station comparison method was used to adjust the logarithmic mean and logarithmic standard deviation of peak flows for seven short-term gaging stations in the Salmon and Clearwater River Basins, central Idaho. Correlation coefficients determined from regression of peak flows for paired short-term and long-term (more than 10 years of record) gaging stations over a concurrent period of record indicated that the mean and standard deviation of peak flows for all short-term gaging stations would be improved. Flood-frequency estimates for seven short-term gaging stations were determined using the adjusted mean and standard deviation. The original (unadjusted) flood-frequency estimates for three of the seven short-term gaging stations differed from the adjusted estimates by less than 10 percent, probably because the data were collected during periods representing the full range of peak flows. Unadjusted flood-frequency estimates for four short-term gaging stations differed from the adjusted estimates by more than 10 percent; unadjusted estimates for Little Slate Creek and Salmon River near Obsidian differed from adjusted estimates by nearly 30 percent. These large differences probably are attributable to unrepresentative periods of peak-flow data collection.

  14. Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

    USGS Publications Warehouse

    Curran, Janet H.; Meyer, David F.; Tasker, Gary D.

    2003-01-01

    Estimates of the magnitude and frequency of peak streamflow are needed across Alaska for floodplain management, cost-effective design of floodway structures such as bridges and culverts, and other water-resource management issues. Peak-streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were computed for 301 streamflow-gaging and partial-record stations in Alaska and 60 stations in conterminous basins of Canada. Flows were analyzed from data through the 1999 water year using a log-Pearson Type III analysis. The State was divided into seven hydrologically distinct streamflow analysis regions for this analysis, in conjunction with a concurrent study of low and high flows. New generalized skew coefficients were developed for each region using station skew coefficients for stations with at least 25 years of systematic peak-streamflow data. Equations for estimating peak streamflows at ungaged locations were developed for Alaska and conterminous basins in Canada using a generalized least-squares regression model. A set of predictive equations for estimating the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows was developed for each streamflow analysis region from peak-streamflow magnitudes and physical and climatic basin characteristics. These equations may be used for unregulated streams without flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics. Basin characteristics should be obtained using methods similar to those used in this report to preserve the statistical integrity of the equations.

  15. The performance of the stations of the Romanian seismic network in monitoring the local seismic activity

    NASA Astrophysics Data System (ADS)

    Ardeleanu, Luminita Angela; Neagoe, Cristian

    2014-05-01

    The seismic survey of the territory of Romania is mainly performed by the national seismic network operated by the National Institute for Earth Physics of Bucharest. After successive developments and upgrades, the network consists at present of 123 permanent stations equipped with high quality digital instruments (Kinemetrics K2, Quantera Q330, Quantera Q330HR, PS6-24 and Basalt digitizers) - 102 real time and 20 off-line stations - which cover the whole territory of the country. All permanent stations are supplied with 3 component accelerometers (episenzor type), while the real time stations are in addition provided with broadband (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2) or short period (SH-1, S13, Mark l4c, Ranger, GS21, L22_VEL) velocity sensors. Several communication systems are currently used for the real time data transmission: an analog line in UHF band, a line through GPRS (General Packet Radio Service), a dedicated line through satellite, and a dedicated line provided by the Romanian Special Telecommunication Service. During the period January 1, 2006 - June 30, 2013, 5936 shallow depth seismic events - earthquakes and quarry blasts - with local magnitude ML ≥ 1.2 were localized on the Romanian territory, or in its immediate vicinity, using the records of the national seismic network; 1467 subcrustal earthquakes (depth ≥ 60 km) with magnitude ML ≥ 1.9 were also localized in the Vrancea region, at the bend of the Eastern Carpathians. The goal of the present study is to evaluate the individual contribution of the real time seismic stations to the monitoring of the local seismicity. The performance of each station is estimated by taking into consideration the fraction of events that are localised using the station records, compared to the total number of events of the catalogue, occurred during the time of station operation. Taking into account the nonuniform space distribution of earthquakes, the location of the site and the recovery rate of reliable data are defining elements for the usefulness of a particular station. Our analysis provides a measure of station reliability, essential indicator for decisions regarding the increasing of effectiveness and future development of the Romanian seismic network.

  16. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    NASA Astrophysics Data System (ADS)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  17. Earth Observation

    NASA Image and Video Library

    2014-06-23

    ISS040-E-017377 (23 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station recorded this image showing several states in the USA and a small part of Mexico, including Baja California, on June 23, 2014. Parts of Nevada are visible in the bottom of the frame. The area in the Mojave Desert where many space shuttle missions successfully ended is visible near the scene's center. The Gulf of Cortez and several hundred miles of the Pacific coast line of Mexico and California are visible in the top portion of the photo. The heavily populated Los Angeles Basin is just above the Mojave site of shuttle landings, with the San Diego area partially obscured by the docked Russian Soyuz vehicle in the foreground. The Salton Sea is just above left center frame.

  18. Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida

    USGS Publications Warehouse

    Giese, G.L.; Franklin, M.A.

    1996-01-01

    Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.

  19. Midwest Generation, Waukegan Generating Station; Order Partially Denying And Partially Granting Petition For Objection To Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database.

  20. S-wave velocities of the lithosphere-asthenosphere system in the Lesser Antilles from the joint inversion of surface wave dispersion and receiver function analysis

    NASA Astrophysics Data System (ADS)

    González, O'Leary; Clouard, Valerie; Tait, Stephen; Panza, Giuliano F.

    2018-06-01

    We present an overview of S-wave velocities (Vs) within the crust and upper mantle of the Lesser Antilles as determined with 19 seismic broadband stations. Receiver functions (RF) have been computed from teleseismic recordings of earthquakes, and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. Local smoothness optimization (LSO) procedure has been applied, combined with an H-K stacking method, the spatial distribution of hypocenters of local earthquakes and of the energy they released, in order to identify an optimum 1D model of Vs below each station. Several features of the Caribbean plate and its interaction with the Atlantic subducting slab are visible in the resulting models: (a) relatively thick oceanic crust below these stations ranges from 21 km to 33 km, being slight thinner in the middle of the island arc; (b) crustal low velocity zones are present below stations SABA, SEUS, SKI, SMRT, CBE, DSD, GCMP and TDBA; (c) lithospheric thickness range from 40 km to 105 km but lithosphere-asthenosphere boundary was not straightforward to correlate between stations; (d) the aseismic mantle wedge between the Caribbean seismic lithosphere and the subducted slab varies in thickness as well as Vs values which are, in general, lower below the West of Martinique than below the West of Guadeloupe; (e) the depth of the subducted slab beneath the volcanic arc, appears to be greater to the North, and relatively shallower below some stations (e.g. DLPL, SAM, BIM and FDF) than was estimated in previous studies based on the depth-distribution of seismicity; f) the WBZ is >10-15 km deeper than the top of the slab below the Central Lesser Antilles (Martinique and Dominica) where the presence of partial melt in the mantle wedge seems also to be more evident.

  1. The International Plate Boundary Observatory Chile (IPOC) in the northern Chile seismic gap

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, A.; Sodoudi, F.; Manzanares, A.; Ritter, O.; Klotz, J.; Chong-Diaz, G.; Barrientos, S.; Villotte, J.-P.; Oncken, O.

    2009-04-01

    Fast convergence between the oceanic Nazca and the continental South American plate is accommodated by recurrent rupture of large segments of the two plates' interface. The resulting earthquakes are among the largest and, for their sizes, most frequent on Earth. Along the Chilean and southern Peruvian margin, all segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.8 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the north and south broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake encroached the southern part of the gap in 2007. The IPOC project intends to investigate this segment of the Nazca-South American plate boundary, on which a strong to devastating earthquake is expected to occur within the next years, by monitoring at a variety of time-scales deformation, seismicity, and magnetotelluric fields in the subduction zone at the closing stages of the interseismic cycle before and possibly during occurrence of a big earthquake. For that purpose, installation of long-term observatories in Northern Chile started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (Paris, France), and the German Research Centre for Geosciences (GFZ, Potsdam, Germany). Currently we are operating 14 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. To cope with the high resolution and dynamic of the sensors and data acquisition, site installation was accomplished with special care. At each station a cavern was blasted into the bedrock up to 5 meters deep to ensure stable conditions for measurements. Currently five stations are additionally recording continuously GPS signals, another five are also recording meteorological data, and another seven are equipped with Magneto-Telluric (MT) probes (fluxgate magnetometers and electrode lines). It is planned to extend the multi-parameter observation to as many stations as possible. So far ten of the stations are sending continuous data via satellite links (VSAT) to the GEOFON data host at the GFZ. We will be reporting first results on seismicity, transient deformation and MT from the first two years of recording.

  2. Surface water records of Colorado, 1961

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1961-01-01

    The surface-water records for the 1961 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. T. Miller, district engineer, Surface Water Branch, succeeded by J. W. Odell.

  3. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  4. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  5. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  6. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  7. 47 CFR 74.1265 - Posting of station license.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...

  8. Low-Q structure related to partially saturated pores within the reservoir beneath The Geysers area in the northern California

    NASA Astrophysics Data System (ADS)

    Matsubara, M.

    2011-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) owing to withdrawal of steam from the reservoir. I perform attenuation tomography in this region to investigate the state of vapor and liquid within the reservoir. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismograms of 1,231 events whose focal mechanism are determined among 65,810 events recorded by the Northern California Earthquake Data Center from 2002 to 2008 in the target region. The band-pass filtered seismograms are analyzed for collecting the maximum amplitude data. There are 26 stations that have a three-component seismometer among 47 seismic stations. I use the P- and S-wave maximum amplitudes during the two seconds after the arrival of those waves in order to avoid coda effects. A total of 8,545 P- and 1,168 S-wave amplitude data for 949 earthquakes recorded at 47 stations are available for the analysis using the attenuation tomographic method derived from the velocity tomographic method (Matsubara et al., 2005, 2008) in which spatial velocity correlation and station corrections are introduced to the original code of Zhao et al. (1992). I use 3-D velocity structure obtained by Thurber et al. (2009). The initial Q value is set to 150, corresponding to the average Q of the northern California (Ford et al., 2010). At sea level, low-Q zones are found extending from the middle of the steam reservoir within the main greywacke to the south part of the reservoir. At a depth of 1 km below sea level, a low-Q zone is located solely in the southern part of the reservoir. However, at a depth of 2 km a low-Q zone is located beneath the northern part of the reservoir. At depths of 1 to 3 km a felsite batholith in the deeper portions of the reservoir, and it corresponds with a high-Q zone. A vertical cross section shows the low-Q zone is consistent with the reservoir as it extends through the main greywacke and into the uppermost part of the felsite. Most of the felsite has high-Q, however, the portion of the reservoir that extends into the felsite has low-Q. The Geysers geothermal area is bounded by Collayomi fault zone to the northeast and the Mercuryville fault zone to the southwest. The Geysers Peak fault runs from northwest to southeast about 3 km southwest of the Mercuryville fault. The Mercuryville fault dips to northeast and the Geysers Peak fault dips to southwest. High-Q zone is located between these faults and the width of this zone broadens as the depth increases corresponding to the fault geometry. The presence of liquid water introduces high-Vp/Vs, however, steam rich zones become low-Vp/Vs. Near the transition zone between the water and steam, laboratory experiments indicate that the amplitude becomes extremely small (Ito et al., 1979). A partially saturated zone has lower Q than a fully saturated zone, and a dry zone has high-Q. A low-Q zone with low-Vp/Vs corresponding to the reservoir indicates that the reservoir is partially saturated with steam and water near transition zone.

  9. The quasi-biennial vertical oscillations at global GPS stations: identification by ensemble empirical mode decomposition.

    PubMed

    Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu

    2015-10-14

    Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations.

  10. The Quasi-Biennial Vertical Oscillations at Global GPS Stations: Identification by Ensemble Empirical Mode Decomposition

    PubMed Central

    Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu

    2015-01-01

    Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations. PMID:26473882

  11. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  12. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  13. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  14. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  15. Changes in Fish Assemblages following the Establishment of a Network of No-Take Marine Reserves and Partially-Protected Areas

    PubMed Central

    Kelaher, Brendan P.; Coleman, Melinda A.; Broad, Allison; Rees, Matthew J.; Jordan, Alan; Davis, Andrew R.

    2014-01-01

    Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection. PMID:24454934

  16. USSR Report Earth Sciences.

    DTIC Science & Technology

    1987-05-22

    Autonomous Digital Recording Tiltmeter Station (V. M. Ivshin, V. S. Kuznetsov, et al.; VULKANOLOGIYA I SEYSMOLOGIYA, No 6, Nov-Dec 86) 83 Influence of...2 Western. 6508/12955 CS0: 1865/303 UDC 550.34.038.8:528.087.4 AUTONOMOUS DIGITAL RECORDING TILTMETER STATION Moscow VULKANOLOGIYA I...point in the Kamchatka region, an autonomous tiltmeter station has been developed on the basis of the TM-1V tiltmeter . Measured data are registered

  17. Phenotyping sensory nerve endings in vitro in the mouse

    PubMed Central

    Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W

    2014-01-01

    This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088

  18. Wide Area Assessment Demonstration of LiDAR and Orthophotography at Borrego Maneuver Area, Phase II Innovative Multi-Sensor Airborne Wide Area Assessment of UXO Sites, Version 2.0

    DTIC Science & Technology

    2007-12-03

    and reference datums, in addition to other field positioning tasks. 3.5.3. Navigation Systems An Applanix 510 A/V POS system was co-mounted with...Cal and POS EO from Applanix Corp. lmageStation Suite from Z/1 Imaging Images: Camera and Data Recorder · I SAT Aerial Triangulation Software

  19. 77 FR 35080 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...., Pilgrim Nuclear Power Station; Record of Decision and Issuance of Renewed Facility Operating License No... as the record of decision for the renewal of facility operating license No. DPR-35, consistent with... referenced. NRC's PDR: You may examine and purchase copies of public documents at the NRC's PDR, Room O1-F21...

  20. Cost effectiveness of the stream-gaging program in Ohio

    USGS Publications Warehouse

    Shindel, H.L.; Bartlett, W.P.

    1986-01-01

    This report documents the results of the cost effectiveness of the stream-gaging program in Ohio. Data uses and funding sources were identified for 107 continuous stream gages currently being operated by the U.S. Geological Survey in Ohio with a budget of $682,000; this budget includes field work for other projects and excludes stations jointly operated with the Miami Conservancy District. No stream gage were identified as having insufficient reason to continue their operation; nor were any station identified as having uses specifically only for short-term studies. All 107 station should be maintained in the program for the foreseeable future. The average standard error of estimation of stream flow records is 29.2 percent at its present level of funding. A minimum budget of $679,000 is required to operate the 107-gage program; a budget less than this does no permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 31.1 percent The maximum budget analyzed was $1,282,000, which resulted in an average standard error of 11.1 percent. A need for additional gages has been identified by the other agencies that cooperate in the program. It is suggested that these gage be installed as funds can be made available.

  1. Reduced heart rate variability during sleep in long-duration spaceflight.

    PubMed

    Xu, D; Shoemaker, J K; Blaber, A P; Arbeille, P; Fraser, K; Hughson, R L

    2013-07-15

    Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 ± 8.9 beats per minute (bpm) compared with preflight 53.3 ± 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.

  2. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.

  3. 78 FR 69360 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List: Partial... and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the State of California... Corp Air Station Superfund Site without prior Notice of Intent for Partial Deletion because EPA views...

  4. User's manual for a computer program for the emulation/simulation of a space station Environmental Control and Life Support System (ESCM)

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    This manual describes how to use the Emulation Simulation Computer Model (ESCM). Based on G189A, ESCM computes the transient performance of a Space Station atmospheric revitalization subsystem (ARS) with CO2 removal provided by a solid amine water desorbed subsystem called SAWD. Many performance parameters are computed some of which are cabin CO2 partial pressure, relative humidity, temperature, O2 partial pressure, and dew point. The program allows the user to simulate various possible combinations of man loading, metabolic profiles, cabin volumes and certain hypothesized failures that could occur.

  5. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.

  6. Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.

  7. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.

  8. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant differences along the northwest edge that may indicate large strains across that edge of the basin. The length of each record after the main S wave are all longer at basin stations compared to those outside. This increase in duration of ground shaking is probably caused by amplification of ground motion at basin stations, although coda Q (0.67 - 1.30 Hz) is slightly larger inside the basin compared to those at local stations outside the basin. Durations correlate with depth to basement. These motions are in the range that can induce damage in buildings and may have contributed to the structural collapse of multistory buildings in the Taipei basin.

  9. Preliminary peak stage and streamflow data at selected streamgaging stations in North Carolina and South Carolina for flooding following Hurricane Matthew, October 2016

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Robbins, Jeanne C.

    2016-12-19

    The passage of Hurricane Matthew across the central and eastern regions of North Carolina and South Carolina during October 7–9, 2016, resulted in heavy rainfall that caused major flooding in parts of the eastern Piedmont in North Carolina and coastal regions of both States. Rainfall totals of 3 to 8 inches and 8 to more than 15 inches were widespread throughout the central and eastern regions, respectively. U.S. Geological Survey streamgages recorded peaks of record at 26 locations, including 11 sites with long-term periods of 30 or more years of record. A total of 44 additional locations had peak streamflows that ranked in the top 5 for the period of record. Additionally, among 23 U.S. Geological Survey streamgages within the affected basins in North Carolina where stage-only data are collected, new peak stages were recorded at 5 locations during the flooding. U.S. Geological Survey personnel made 102 streamflow measurements at 60 locations in both States to verify, update, or extend existing rating curves (which are used to determine stage-discharge relations) during the October 2016 flood event.

  10. District heating and cooling systems for communities through power plant retrofit distribution network. Volume 3. Final report, September 1, 1978-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less

  11. Compressional Wave Q in the Uppermost Mantle Beneath the Tibetan Plateau Measured Using Pn Wave Spectra

    NASA Astrophysics Data System (ADS)

    Xie, J.

    2003-12-01

    Pn waves from three near-colocated seismic events in the eastern Tarim Basin are well-recorded by the INDEPTH III and II arrays, which are deployed from northern to southern Tibet with a small east-west spread (between ˜88 and 91° E). The paths run southward and sample the Tibetan mantle with epicentral distances increasing from 870 to 1540 km. These waves have spectral contents that are distinctly different from those collected from the Kyrghistan network (KNET), to which the paths traverse westward through the eastern Tienshan. Pn Q beneath Tibet and Tienshan must therefore be different. Xie and Patton (1999,JGR, 104, 941-954) have simultaneously estimated source spectra of the co-located events, and path-averaged Pn Q to the KNET stations. Under a simplified geometrical spreading of Δ -1.3, they have estimated Q0 and η (Pn Q at 1 Hz and its frequency dependence) to KNET to be about 360 and 0.5, respectively. Using those estimates as a priori knowledge, we estimate that Q0 and η are ~180 and 0.3 along paths to northern Tibet, and ˜260 and 0.0 along paths to southern Tibet. The southward increase of Q0 correlates well with a similar increase in Pn velocity contained in previous tomographic images. Additionally, we measured Pn Q using a two-station method along two profiles (from station SANG to TUNL, and GANZ to MAQI) deployed during the 1991-1992 Sino-US Tibetan Plateau experiment. Both profiles are located to the east of 92° E. Along profile SANG-TUNL, we estimate Q0 and η to be ˜270 and 0.0, respectively. The Q0 value is rather high, but correlates well with the high Pn velocities of > 8.1 km/s re-measured in this study. Our results suggest that the zone of low Pn Q0 and velocity in northern Tibet, which is likely caused by high mantle temperature and partial melting, is confined to the west of 92° E. This is so despite that the zone of high Sn attenuation extends to further east.

  12. 29 CFR 1904.1 - Partial exemption for employers with 10 or fewer employees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Scope § 1904.1... injury and illness records unless OSHA or the BLS informs you in writing that you must keep records under..., you must keep OSHA injury and illness records unless your establishment is classified as a partially...

  13. 29 CFR 1904.1 - Partial exemption for employers with 10 or fewer employees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Scope § 1904.1... injury and illness records unless OSHA or the BLS informs you in writing that you must keep records under..., you must keep OSHA injury and illness records unless your establishment is classified as a partially...

  14. Ionospheric Scintillations from Conjugate Stations during the 2015 St. Patrick Storm.

    NASA Astrophysics Data System (ADS)

    D'angelo, G.; Piersanti, M.; Alfonsi, L.; Spogli, L.

    2016-12-01

    The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by means of specially modified GNSS (Global Navigation Satellite Systems) receivers capable to sample the received signals at 50 Hz. Thanks to the availability of data acquired by such kind of devices, we had the opportunity to investigate the ionospheric response, in terms of GPS phase scintillations, recorded at ground in Antarctica and in the Arctic. In particular, we analyzed data from Eureka (79.99°N, 274.10°E) and Concordia (75.10°S, 123.35°E) stations to look at the conjugate response of the ionosphere to the most intense storm of the current solar cycle. We found an asymmetric response of the intensity of the phase scintillations recorded at the same Universal Time (UT) by the two stations during the main phase of the storm. While we found a completely asymmetric response (in terms of hemisphere, UT and intensity) during the recovery phase. By using the POES and GOES magnetospheric field and electron density data, we evaluated the magnetospheric field and the electron flux responses to the storm. We used the TS04 (Tsyganenko and Sitnov, 2005) model prevision to estimate the current configurations that better reproduce the actual magnetospheric observations. Additionally, we adopted the Rankine-Hugoniot conditions, applied to L1 satellites measurements, to assess the normal direction of the interplanetary shock. The proposed multi-disciplinary approach revealed to be a powerful tool to explain the symmetric/asymmetric response of the scintillations occurrence over the two conjugated stations. The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by means of specially modified GNSS (Global Navigation Satellite Systems) receivers capable to sample the received signals at 50 Hz. Thanks to the availability of data acquired by such kind of devices, we had the opportunity to investigate the ionospheric response, in terms of GPS phase scintillations, recorded at ground in Antarctica and in the Arctic. In particular, we analyzed data from Eureka (79.99°N, 274.10°E) and Concordia (75.10°S, 123.35°E) stations to look at the conjugate response of the ionosphere to the most intense storm of the current solar cycle. We found an asymmetric response of the intensity of the phase scintillations recorded at the same Universal Time (UT) by the two stations during the main phase of the storm. While we found a completely asymmetric response (in terms of hemisphere, UT and intensity) during the recovery phase. By using the POES and GOES magnetospheric field and electron density data, we evaluated the magnetospheric field and the electron flux responses to the storm. We used the TS04 (Tsyganenko and Sitnov, 2005) model prevision to estimate the current configurations that better reproduce the actual magnetospheric observations. Additionally, we adopted the Rankine-Hugoniot conditions, applied to L1 satellites measurements, to assess the normal direction of the interplanetary shock. The proposed multi-disciplinary approach revealed to be a powerful tool to explain the symmetric/asymmetric response of the scintillations occurrence over the two conjugated stations.

  15. Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station

    NASA Technical Reports Server (NTRS)

    Kirby, Randy L.; Mann, David; Prenger, Stephen G.; Craig, Wayne; Greenwood, Andrew; Morsics, Jonathan; Fricker, Charles H.; Quach, Son; Lechese, Paul

    2003-01-01

    United Space Alliance (USA) developed and used a new software development method to meet technical, schedule, and budget challenges faced during the development and delivery of the new Shuttle Telemetry Ground Station at Kennedy Space Center. This method, called Collaborative Software Development, enabled KSC to effectively leverage industrial software and build additional capabilities to meet shuttle system and operational requirements. Application of this method resulted in reduced time to market, reduced development cost, improved product quality, and improved programmer competence while developing technologies of benefit to a small company in California (AP Labs Inc.). Many modifications were made to the baseline software product (VMEwindow), which improved its quality and functionality. In addition, six new software capabilities were developed, which are the subject of this article and add useful functionality to the VMEwindow environment. These new software programs are written in C or VXWorks and are used in conjunction with other ground station software packages, such as VMEwindow, Matlab, Dataviews, and PVWave. The Space Shuttle Telemetry Ground Station receives frequency-modulation (FM) and pulse-code-modulated (PCM) signals from the shuttle and support equipment. The hardware architecture (see figure) includes Sun workstations connected to multiple PCM- and FM-processing VersaModule Eurocard (VME) chassis. A reflective memory network transports raw data from PCM Processors (PCMPs) to the programmable digital-to-analog (D/A) converters, strip chart recorders, and analysis and controller workstations.

  16. An assessment of low flows in streams in northeastern Wyoming

    USGS Publications Warehouse

    Armentrout, G.W.; Wilson, J.F.

    1987-01-01

    Low flows were assessed and summarized in the following basins in northeastern Wyoming: Little Bighorn, Tongue, Powder, Little Missouri, Belle Fourche, Cheyenne, and Niobrara River, and about 200 river miles of the North Platte River and its tributaries. Only existing data from streamflow stations and miscellaneous observation sites during the period, 1930-80, were used. Data for a few stations in Montana and South Dakota were used in the analysis. Data were available for 56 perennial streams, 38 intermittent streams, and 34 ephemeral streams. The distribution of minimum observed flows of record at all stations and sites and the 7-day, 10-year low flows at mountain stations and main-stem plains stations are shown on a map. Seven day low flows were determined by fitting the log Pearsons Type III distribution to the data; results are tabulated only for the stations with at least 10 years of record that included at least one major drought. Most streams that originate in the foothills and plains have no flow during part of every year, and are typical of much of the study area. For stations on these streams , the frequency of the annual maximum number of consecutive days of no flow was determined, as an indicator of the likelihood of extended periods of no flow or drought. For estimates at ungaged sites on streams in the Bighorn Mountains only, a simple regression of 7-day, 10-year low flow on drainage area has a standard error of 64%, based on 19 stations with drainage areas of 2 to 200 sq mi. The 7-day, 10-year low flow in main-stem streams can be interpolated from graphs of 7-day, 10-year low flow versus distance along the main channel. Additional studies of low flow are needed. The data base, particularly synoptic baseflow information, needs considerable expansion. Also, the use of storage-analysis procedures should be considered as a means of assessing the availability of water in streams that otherwise are fully appropriated or that are ephemeral. (Author 's abstract)

  17. Space Station Reboost with Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vas, Irwin E.; Kelly, Thomas J.; Scarl, Ethan A.

    1999-01-01

    This paper presents the results of a study of an electrodynamic tether system to reboost the International Space Station (ISS). One recommendation is to use a partially bare tether for electron collection. Locations are suggested as to where the tether system is to be attached at the space station. The effects of the tether system on the microgravity environment may actually be beneficial, because the system can neutralize aerodrag during quiescent periods and, if deployed from a movable boom, can permit optimization of laboratory positioning with respect to acceleration contours. Alternative approaches to tether deployment and retrieval are discussed. It is shown that a relatively short tether system, 7 km long, operating at a power level of 5 kW could provide cumulative savings or over a billion dollars during a 10-year period ending in 2012. This savings is the direct result of a reduction in the number or nights that would otherwise be required to deliver propellant for reboost, with larger cost savings for higher tether usage. In addition to economic considerations, an electrodynamic tether promises a practical backup system that could ensure ISS survival in the event of an (otherwise) catastrophic delay in propellant delivery.

  18. Technical note: The US Dobson station network data record prior to 2015, re-evaluation of NDACC and WOUDC archived records with WinDobson processing software

    NASA Astrophysics Data System (ADS)

    Evans, Robert D.; Petropavlovskikh, Irina; McClure-Begley, Audra; McConville, Glen; Quincy, Dorothy; Miyagawa, Koji

    2017-10-01

    The United States government has operated Dobson ozone spectrophotometers at various sites, starting during the International Geophysical Year (1 July 1957 to 31 December 1958). A network of stations for long-term monitoring of the total column content (thickness of the ozone layer) of the atmosphere was established in the early 1960s and eventually grew to 16 stations, 14 of which are still operational and submit data to the United States of America's National Oceanic and Atmospheric Administration (NOAA). Seven of these sites are also part of the Network for the Detection of Atmospheric Composition Change (NDACC), an organization that maintains its own data archive. Due to recent changes in data processing software the entire dataset was re-evaluated for possible changes. To evaluate and minimize potential changes caused by the new processing software, the reprocessed data record was compared to the original data record archived in the World Ozone and UV Data Center (WOUDC) in Toronto, Canada. The history of the observations at the individual stations, the instruments used for the NOAA network monitoring at the station, the method for reducing zenith-sky observations to total ozone, and calibration procedures were re-evaluated using data quality control tools built into the new software. At the completion of the evaluation, the new datasets are to be published as an update to the WOUDC and NDACC archives, and the entire dataset is to be made available to the scientific community. The procedure for reprocessing Dobson data and the results of the reanalysis on the archived record are presented in this paper. A summary of historical changes to 14 station records is also provided.

  19. Limited Surface Observations Climatic Summary (LISOCS), Bo Baker AAF, Germany.

    DTIC Science & Technology

    1987-11-01

    MSC 0109711 N 47 46 1011 36 ELEV 2350 FT EDOT PARTS 1 - 5 HOURS SUMMARIZED: 0600 - 2100 LST PERIOD 01 RECORD : HOURLY OBSERVATIONS; NOv 76 - OCT 86...LIMITED SURFACE OS.RATIONS CLINAIIC SUNMAIES--LISOCS ASkVILLL NC 20501 HOURLY gSCKVauIOMSs ALL RECORD O4 RECORD SPECIaL OBSERVaTIONS RECORDED ON TPE...MEIWA STATIONS i|SININS IN JAN 19081 AND SYNOPTIC WEPORTING STATIONS RECORDED ON TH4E AN$ F0DAS 10110A AND TRARSMI 1ED LONGLINE ONLY TE HIGHEST ORDEP OF

  20. [Information system in the cardio polyclinic].

    PubMed

    Mihajlović, Marina; Zivković, Marija

    2014-03-01

    The cardiologic polyclinic information system ensures effective management of business processes in the polyclinic. Medical nurse provides health care to a patient with the support of the information system, which enables recording the patient's identity, admission, participation fee charges, billing for the services provided, patients' orders for noninvasive diagnostic methods, and implementation of diagnostic methods. The nurse enters patient's personal information at every work station, updates the existing records, and has an opportunity to add notes and insights to the results of patient's diagnostic tests and doctors' opinions for patients in the polyclinic. Additionally, the nurse records the services and supplies provided, and these entries are used for billing and service charges. This information is accessible at every work station to authorized persons exclusively. The implementation of the information system enables medical nurses working at the reception desk and in nurses' consulting room to record administrative data and data related to diagnostic analysis at the moment and at the place they happen. A personal password is required to access these data. In this way, the patient admission recording is facilitated, and in case the patient needs to be contacted, communication with him/her is improved, and finally, writing reports and data analysis are simplified. Apart from the advantages, there also are problems such as inadequate staff education and insufficient reliability of the information infrastructure, which if overloaded, can slow down the system, and this is time consuming for both health workers and patients.

  1. Floods of August and September 1971 in Maryland and Delaware

    USGS Publications Warehouse

    Carpenter, D.H.

    1974-01-01

    Flood discharge data are presented for 75 gaging stations and for 6 miscellaneous sites. New peaks of record occurred at 32 of the gaging stations. The maximum unit peak discharge rate recorded was 2,400 cubic fee t per second per square mile.

  2. Nest Records of Wreathed Hornbill (Rhyticeros undulates) in Gunung Gentong Station, Mount Ungaran Central Java

    NASA Astrophysics Data System (ADS)

    Rahayuningsih, M.; Kartijomo, NE; Retnaningsih, A.; Munir, M.; Dahlan, J.

    2017-04-01

    The remaining forest of Mount Ungaran, Central Javais the suitable habitat of Wreathed Hornbill (Rhyticeros undulatus), especially for a nesting site. The objective of the study was to analyse the nest record and characteristics of habitat around the nest, especially in Gunung Gentong station. The research was conducted from 2010-2016 using exploration method. The methodhabitat profile of the vertical structure tree canopy was taken by plot size 60 × 20 m. Measurements were taken to the standing of vegetation, canopy closure, the direction of the canopy, height canopy, a former branch of the vegetation height, and stem diameter. The Result of the study showed that Gunung Gentong is one of the research station that we have been recorded for nesting site on 2010-2015. Atotal of the nest record on Gunung Genting station was 10 nests. Estimate the elevation of nest location between 939-1240 AMSL. The tree species that used for nesting was Syzygium glabatrum, Syzygium antisepticum, Ceratoxylon formosum, and Ficus sp

  3. Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2014-05-01

    Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.

  4. Monitoring environmental effects of shale gas exploitation at Wysin in Poland.

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Mirek, Janusz; Bialon, Wojciech; Cielesta, Szymon; Lasak, Mateusz; Cesca, Simone; Lopez Comino, Jose Angel; Dahm, Torsten; Scarpa, Roberto; Gunning, Andrew; Montcoudiol, Nelly; Isherwood, Catherine; Jaroslawski, Janusz; Guzikowski, Jakub

    2017-04-01

    Environmental effects of shale gas exploration and exploitation are extensively studied in the framework of "Shale Gas Exploration and Exploitation Induced Risks" project (SHEER, H2020-LCE 16-2014-1). One of the main component of this study is on-site monitoring of the effects at Wysin shale-gas play of Polish Oil and Gas Company in Poland. This includes monitoring of seismicity and water and air quality. Surface seismic monitoring network consists of 6 surface broadband (BB) seismometers and 25 surface short-period (SP) seismometers The SPs are assembled into three small aperture arrays with 9, 8 and 8 stations, respectively, distributed in a triangle geometry at a distance of about 2-4 km from the hydrofracturing rig. Each array is complemented with one BB station. The three remaining BBs are located up to about 5 km from the rig. In addition 3 borehole broadband seismometers are located in three shallow boreholes. The groundwater monitoring makes use of four wells, which reach a main underground water reservoir. Three complementary datasets are collected: continuous monitoring of borehole data, laboratory analyses of water samples and field monitoring of water quality parameters. The continuous monitoring makes use of down-hole probes, which have been installed in each borehole. The probes record absolute pressure, temperature and electrical conductivity. In addition, a barometric probe has been installed above ground to record atmospheric pressure in order to allow conversion of absolute pressure to a water level. After collection, water samples are sent to an accredited laboratory for analysis. The field monitoring is undertaken during the sampling visits. Whilst the borehole is being purged, physico-chemical parameters are monitored using a multi-parameter probe. This measures and records temperature, specific conductivity, pH, dissolved oxygen and oxidation-reduction potential within the water. Hydrocarbon gas content within the water is below detection limits for methane, ethane, ethene and propane gases. Air pollution monitoring is performed by means of an automatic station. The station is situated east from the Wysin rig at the distance of some 1200 m. This distance is appropriate in order not to measure a direct emission of pollutants. The station monitors the content of NO, NO2, NOx, CO, PM10, O3, CO2, CH4, NMHC and Radon. At the beginning of SHEER project in May 2015, there was one vertical well at the site, reaching gas-bearing shale formations at the nearly 4km depth. Further on two horizontal wells, each of about 1.7km length, were drilled (late Autumn 2015) and fracked (June - August, 2016). This time table has provided the opportunity to record background seismicity and baseline levels of water and air quality, and then to record the immediate and delayed effects of hydrofracturing operations. The monitoring will continue at least 1.5 year after completion of technological activity at the site. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  5. Evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas

    USGS Publications Warehouse

    Medina, K.D.; Geiger, C.O.

    1984-01-01

    The results of an evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas are documented. Data uses and funding sources were identified for the 140 complete record streamflow-gaging stations operated in Kansas during 1983 with a budget of $793,780. As a result of the evaluation of the needs and uses of data from the stream-gaging program, it was found that the 140 gaging stations were needed to meet these data requirements. The average standard error of estimation of streamflow records was 20.8 percent, assuming the 1983 budget and operating schedule of 6-week interval visitations and based on 85 of the 140 stations. It was shown that this overall level of accuracy could be improved to 18.9 percent by altering the 1983 schedule of station visitations. A minimum budget of $760 ,000, with a corresponding average error of estimation of 24.9 percent, is required to operate the 1983 program. None of the stations investigated were suitable for the application of alternative methods for simulating discharge records. Improved instrumentation can have a very positive impact on streamflow uncertainties by decreasing lost record. (USGS)

  6. Statistical summaries of streamflow data for selected gaging stations on and near the Idaho National Engineering Laboratory, Idaho, through September 1990

    USGS Publications Warehouse

    Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.

    1993-01-01

    Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.

  7. Use and availability of continuous streamflow records in Wyoming

    USGS Publications Warehouse

    Schuetz, J.R.

    1986-01-01

    This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)

  8. Comparing Three-Dimensional Geophysical Models of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Ulberg, C. W.; Vidale, J. E.; Levander, A.; Kiser, E.; Abers, G. A.; Crosbie, K.; Mann, M. E.; Moran, S. C.; Denlinger, R. P.; Thelen, W. A.; Hansen, S. M.; Schmandt, B.; Schultz, A.; Bowles-martinez, E.; Bedrosian, P.; Peacock, J.; Hill, G.

    2017-12-01

    The iMUSH project integrates active- and passive-source seismic experiments with magnetotelluric (MT) observations and petrology to better understand the structure and dynamics of the Mount St. Helens (MSH) magmatic system from the subducted plate to the surface. The geophysical experiments included a two-year, 70-element broadband array with 10-km station spacing within 50 km of the MSH edifice, 23 shots recorded by geophones at 6000 sites including 900 Nodal stations, and 147 wideband MT stations with 6-km nominal station spacing. We have determined 3-D models of P-wave, S-wave and P/S-wave velocity as well as 3-D electrical resistivity. Our models from independent data sets and methodologies exhibit remarkable similarity. A narrow low-VP and VS anomaly as well as a high VP/VS and conductivity anomaly is well imaged by nearly all methods at about 6-15 km beneath MSH and coincides with a previously inferred magma storage volume. The St. Helens seismic zone (SHZ), which cuts through MSH with a NNW-SSE orientation, coincides with a narrow, vertical, planar zone of high electrical conductivity and low VP from the near surface to 15 km depth where we lose resolution. The continental Moho shows strong reflectivity east of the SHZ, but is weak to non-existent to the west, perhaps because this marks the eastern edge of hydrous mineral stability in the cold mantle wedge. Farther north, a similar high-conductivity feature is imaged along the west Rainer seismic zone. High Vp/Vs and high electrical conductivity extend under the Indian Heaven volcanic field at depths of 5-15 km, potentially associated with regions of partial melt and/or fluids. Mid- to lower-crustal velocities are generally fast to the west of MSH, consistent with the presence of the accreted Siletz terrane, and slow to the east suggesting both a change in composition and higher temperatures. Moderate lower-crustal resistivity is also present to the east, and is consistent with a small degree of partial melt. Several plutons, including the Spirit Lake, Spud Mountain and Silver Star plutons, are clearly imaged as high wave speeds and high resistivity anomalies in the upper crust, while the Chehalis Basin and Morton Anticline exhibit very low wave speeds and extremely low resistivities, indicative of marine to transitional Tertiary sediments.

  9. Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin

    USGS Publications Warehouse

    Wandle, S.W.; Lippert, R.G.

    1984-01-01

    The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  10. Ditching Investigation of a 1/24-Scale Model of the Boeing B-47 Airplane

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J.; Windham, John O.

    1950-01-01

    An investigation of a 1/24-scale dynamically similar model of the Boeing B-47 airplane was made to determine the ditching characteristics and proper ditching technique for the airplane. Various conditions of damage, landing attitude, flap setting, and speed were investigated. The behavior of the model was determined from visual observations, motion-picture records, and time-history deceleration records. The results of the investigation are presented in table form, photographs, and curves. The airplane should be ditched at the lowest speed and highest attitude consistent with adequate control; the flaps should be full down. The airplane will probably make a deep but fairly smooth run. The fuselage bottom will be damaged and partially filled with water; consequently, crew members should be assigned ditching stations near an exit in the upper or forward part of the fuselage. The nacelles may be expected to be torn away from the wing. In calm water the maximum decelerations will be about 3g and the landing run will be about 6 fuselage lengths.

  11. 21 CFR 20.22 - Partial disclosure of records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC INFORMATION General Policy § 20.22 Partial disclosure of records. (a) If a record contains both disclosable and nondisclosable information, the nondisclosable information will be deleted and the remaining...

  12. 21 CFR 20.22 - Partial disclosure of records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC INFORMATION General Policy § 20.22 Partial disclosure of records. (a) If a record contains both disclosable and nondisclosable information, the nondisclosable information will be deleted and the remaining...

  13. 21 CFR 20.22 - Partial disclosure of records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC INFORMATION General Policy § 20.22 Partial disclosure of records. (a) If a record contains both disclosable and nondisclosable information, the nondisclosable information will be deleted and the remaining...

  14. 21 CFR 20.22 - Partial disclosure of records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC INFORMATION General Policy § 20.22 Partial disclosure of records. (a) If a record contains both disclosable and nondisclosable information, the nondisclosable information will be deleted and the remaining...

  15. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    NASA Astrophysics Data System (ADS)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  16. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  17. Clinical factors and clinical variation influencing the reproducibility of interocclusal recording methods.

    PubMed

    Eriksson, A; Ockert-Eriksson, G; Lockowandt, P; Eriksson, O

    2002-04-13

    The reproducibility of clinical records of the occlusion was assessed in three dimensions using mounted casts. Three distinct areas were examined: 1) mandibular positions (intercuspal position (IP) or retruded contact position (RCP)), 2) materials used in recording the occlusion, 3) clinical variation. Interocclusal records were made in a random order of three patients: one fixed prosthodontics case, one removable partial denture case and one complete denture case, with two different types of waxes, record rims, two different brands of vinyl polysiloxanes and one irreversible hydrocolloid. Private practice and Karolinska Institute, Huddinge, Sweden. One general dental practitioner and three voluntary patients. Point estimation of variance components indicate that 70-93% of the variation of the positions of the mounted casts are caused by: 1) clinical variation for all three cases and in three directions, 2) the influence of recording materials 0-29%, and 3) mandibular positions (IP/RCP) 0-11%. The ranges of the positions of the mounted casts were lower for the dentate case (0.04-1.39 mm) than for the partially dentate case (0.17-2.65 mm), which in turn was lower than those for the edentulous case (1.42-5.59 mm). Clinical variation seems to dominate the variation in positions of mounting casts when making interocclusal records, rather than mandibular position or the recording materials used. Therefore a dentist who makes one single interocclusal record cannot presume that it will reproduce the interocclusal relationship intended, which in the present study was most obvious for the edentulous case. The results showed that impression materials stabilised by a tray did not differ significantly from waxes and record rims concerning the reproducibility. Therefore the stabilised impression materials are an alternative, which also give additional advantages like reduction of appointments as well as superior accuracy.

  18. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    USGS Publications Warehouse

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and levees on peak flood discharges are in part offsetting one another along the modeled river segments and likely other substantially leveed segments of the Mississippi River.

  19. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, Jonathan W. F.; Ickes, Brian S.; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-07-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a 1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and levees on peak flood discharges are in part offsetting one another along the modeled river segments and likely other substantially leveed segments of the Mississippi River.

  20. 78 FR 29292 - Partial Approval and Partial Disapproval of Air Quality State Implementation Plans; Arizona...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Technology (BART) controls for four sources. These sources are Freeport-McMoRan Incorporated (FMMI) Miami... Electric Power Cooperative (AEPCO) Apache Generating Station. However, we are proposing to disapprove other...) The initials BART mean or refer to Best Available Retrofit Technology. (5) The term Class I area...

Top