NASA Astrophysics Data System (ADS)
Duchamp de Lageneste, Laurent; Pitsch, Heinz
2001-11-01
Level-set methods (G-equation) have been recently used in the context of RANS to model turbulent premixed (Hermann 2000) or partially premixed (Chen 1999) combustion. By directly taking into account unsteady effects, LES can be expected to improve predictions over RANS. Since the reaction zone thickness of premixed flames in technical devices is usually much smaller than the LES grid spacing, chemical reactions completely occur on the sub-grid scales and hence have to be modeled entirely. In the level-set methodology, the flame front is represented by an arbitrary iso-surface G0 of a scalar field G whose evolution is described by the so-called G-equation. This equation is only valid at G=G_0, and hence decoupled from other G levels. Heat release is then modeled using a flamelet approach in which temperature is determined as a function of G and the mixture-fraction Z. In the present study, the proposed approach has been formulated for LES and validated using data from a turbulent Bunsen burner experiment (Chen, Peters 1996). Simulation of an experimental Lean Premixed Prevapourised (LPP) dump combustor (Besson, Bruel 1999, 2000) under different premixed or partially premixed conditions will also be presented.
A Method to Measure Flame Index in Turbulent Partially-Premixed Flames
NASA Astrophysics Data System (ADS)
Rosenberg, David Ari
This dissertation describes the development of a diagnostic technique and data processing routine to measure the flame index in partially-premixed flames, called the Flame Index Measurement Method. Many modern combustion applications involve conditions in which the fuel and oxidizer are only partially mixed prior to entering the flame. These partially-premixed flames contain some regions of premixed and some regions of non-premixed flamelets. New computational approaches use the flame index concept: premixed regions are identified and a premixed model is applied; non-premixed regions are also identified and a non-premixed model is applied. The flame index is defined as the normalized dot product of the gradients of the fuel and oxidizer mass fractions; it is +1 in premixed flamelets and is -1 in non-premixed flamelets. Previously there had been no experimentally measured values of flame index available to assess the modeling approaches. A new method has been developed to measure the flame index using planar laser-induced fluorescence tracers to indicate the sign and direction of the fuel and oxygen gradients. Through the modeling of premixed and non-premixed flamelets, acetone was selected as a fuel tracer and nitrogen dioxide was selected as an oxygen tracer. The fluorescence properties of both acetone and nitrogen dioxide were studied. With acetone seeded into the fuel, and nitrogen dioxide seeded into the air, the Flame Index Measurement Method was evaluated in laminar premixed and non-premixed methane/acetone/air flames, as well as in a well-defined turbulent partially-premixed burner, the Gas Turbine Model Combustor (GTMC). The flame index was measured in the GTMC with methane, propane, and syngas flames. Statistics (mean, variance, and probability mass functions) of the flame index are reported for the highly-turbulent partially-premixed GTMC flames. Two new statistical quantities were developed that describe the probability for the occurrence of premixed
Partially premixed prevalorized kerosene spray combustion in turbulent flow
Chrigui, M.; Ahmadi, W.; Sadiki, A.; Janicka, J.; Moesl, K.
2010-04-15
A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)
NASA Astrophysics Data System (ADS)
Liu, Shuaishuai; Tong, Chenning
2013-11-01
Recent studies have shown that the subgrid-scale (SGS) mixture fraction and temperature in turbulent partially premixed flames have different structures for different SGS scalar variance. For large SGS variance the molecular transport and chemical reaction are tightly coupled while mixing models are greatly based on non-reactive scalars. To account for this coupling effect we use a method proposed by Bilger and Pope to decompose the temperature (a reactive scalar) into a flamelet part and the perturbations from it. The molecular transport of the former is in close form while the latter in unclosed. The diffusion and dissipation of the temperature perturbations are analyzed using high-resolution line images obtained in turbulent partially premixed (Sandia) flames. The results show that for flame regions that are nearly fully burning, the SGS mixing of the temperature perturbations is similar to that of a non-reactive scalar.
LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure
NASA Astrophysics Data System (ADS)
Wang, Qing; Wu, Hao; Ihme, Matthias
2015-11-01
The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.
Partially premixed flames in stagnating turbulence: The merging of planar triple flames
Bray, Ken; Champion, Michel; Libby, Paul A.
2008-07-15
The aim of this work, which takes a RANS perspective, is to consider the prospect of establishing a planar turbulent triple flame whose mean consists of two parallel premixed flame brushes separated by a nonpremixed flame brush. Experiments involving a counterflow between fuel-rich and fuel-lean turbulent streams are considered. A correlation of published experimental data is used to estimate premixed turbulent flame brush locations and brush thicknesses. Previously validated model calculations then allow an estimate to be made of the thickness of a central nonpremixed flame or mixing layer, a thickness which is shown to be strongly influenced by flame-turbulence interactions in the premixed flames. This thickness turns out to be orders-of-magnitude greater than the width of the hot burned gas region between the two premixed flames strongly suggesting that the three reacting flow regions will merge with each other. It is concluded that unlike the corresponding laminar counterflow planar turbulent triple flames will be difficult to establish in laboratory scale experiments. (author)
Premixed turbulent flame calculation
NASA Technical Reports Server (NTRS)
El-Tahry, S.; Rutland, C. J.; Ferziger, J. H.; Rogers, M. M.
1987-01-01
The importance of turbulent premixed flames in a variety of applications has led to a substantial amount of effort towards improving the understanding of these flames. Although these efforts have increased the understanding, many questions still remain. The use of direct numerical simulation (DNS) in solving these questions is examined.
Michel, Jean-Baptiste; Colin, Olivier; Veynante, Denis
2008-01-15
Correctly reproducing the autoignition and the chemical composition of partially premixed turbulent flames is a challenge for numerical simulations of industrial applications such as diesel engines. A new model DF-PCM (diffusion flame presumed conditional moment) is proposed based on a coupling between the FPI (flame prolongation of ILDM) tabulation method and the PCM (presumed conditional moment) approach. Because the flamelets used to build the table are laminar diffusion flames, DF-PCM cannot be used for industrial applications like Diesel engines due to excessive CPU requirements. Therefore two new models called AI-PCM (autoignition presumed conditional moment) and ADF-PCM (approximated diffusion flames presumed conditional moment) are developed to approximate it. These models differ from DF-PCM because the flamelet libraries used for the table rely on PSR calculations. Comparisons between DF-PCM, AI-PCM, and ADF-PCM are performed for two fuels, n-heptane, representative of diesel fuels, and methane, which does not exhibit a ''cool flame'' ignition regime. These comparisons show that laminar diffusion flames can be approximated by flamelets based on PSR calculations in terms of autoignition delays and steady state profiles of the progress variable. Moreover, the evolution of the mean progress variable of DF-PCM can be correctly estimated by the approximated models. However, as discussed in this paper, errors are larger for CO and CO{sub 2} mass fractions evolutions. Finally, an improvement to ADF-PCM, taking into account ignition delays, is proposed to better reproduce the ignition of very rich mixtures. (author)
NASA Astrophysics Data System (ADS)
Coriton, Bruno; Frank, Jonathan H.
2014-11-01
The effects of combustion on the strain rate field in turbulent jets were studied using 10 kHz tomographic particle image velocimetry (TPIV). Measurements were performed in a series of turbulent partially-premixed jet flames with increasing jet Reynolds numbers and increasing probabilities of localized extinction. Properties of the strain rate were analyzed including the relative ratios of principal strain rates, the preferential alignment of the principal strain rates with vorticity, and the strain rate clustering and intermittency. Comparisons with measurements in turbulent air jets revealed the effects of heat release on the structure and dynamics of the strain rate field. This material is based upon work supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.
Coriton, Bruno; Frank, Jonathan H.
2016-02-16
In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less
Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.
2011-01-01
Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less
Flame propagation in partially premixed conditions
NASA Astrophysics Data System (ADS)
Ruetsch, G.; Poinsot, T.; Veynante, D.; Trouvé, A.
1996-11-01
Turbulent flame propagation is studied under inhomogenously premixed conditions via data from direct numerical simulations. Departures from the premixed case are studied using four different configurations, ranging from one dimensional unsteady flames to turbulent three-dimensional simulations. Simulations are performed in these cases with various values of the mean equivalence ratio, fluctuations about the mean equivlalence ratio, correlation length scales, and probability denisty functions of the mixture composition. Propagation characteristics are described in terms of the flamelet approach, where the the main contribution of partial premixing on flame propagation is due to flame wrinkling relative to modification of the mean flamelet structure. This behavior is consistent over a broad range of conditions, with the exception being extreme departures from stoichiometric conditions where flamability limits are exceeded and flame quenching is observed.
Turbulent Premixed Flames in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.
Gravity Effects Observed In Partially Premixed Flames
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday
2003-01-01
Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.
Premixed turbulent flame propagation in microgravity
NASA Technical Reports Server (NTRS)
Menon, S.; Jagoda, J.; Sujith, R.
1995-01-01
To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.
Flame front configuration of turbulent premixed flames
Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke
1998-02-01
The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.
Active control for turbulent premixed flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-03-26
Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.
Can we characterize turbulence in premixed flames?
Lipatnikov, A.N.
2009-06-15
Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)
Dynamics and structure of turbulent premixed flames
NASA Technical Reports Server (NTRS)
Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.
1995-01-01
In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1999-01-01
A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.
Lagrangian formulation of turbulent premixed combustion.
Pagnini, Gianni; Bonomi, Ernesto
2011-07-22
The lagrangian point of view is adopted to study turbulent premixed combustion. The evolution of the volume fraction of combustion products is established by the Reynolds transport theorem. It emerges that the burned-mass fraction is led by the turbulent particle motion, by the flame front velocity, and by the mean curvature of the flame front. A physical requirement connecting particle turbulent dispersion and flame front velocity is obtained from equating the expansion rates of the flame front progression and of the unburned particles spread. The resulting description compares favorably with experimental data. In the case of a zero-curvature flame, with a non-markovian parabolic model for turbulent dispersion, the formulation yields the Zimont equation extended to all elapsed times and fully determined by turbulence characteristics. The exact solution of the extended Zimont equation is calculated and analyzed to bring out different regimes.
Displacement speeds in turbulent premixed flame simulations
Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.
2007-07-01
The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.
Numerical simulation of premixed turbulent methane combustion
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.
2001-12-14
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.
Simulation of lean premixed turbulent combustion
Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.
2006-06-25
There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.
Lifted Partially Premixed Flames in Microgravity
NASA Technical Reports Server (NTRS)
Lock, Andrew J.; Ganguly, Ranjan; Puri, Ishwar K.; Aggarwal, Suesh K.; Hegde, Uday
2004-01-01
Lifted Double and Triple flames are established in the UIC-NASA Partially Premixed microgravity rig. The flames examined in this paper are established above a coannular burner because its axisymmetric geometry allows for future implementation of other non-intrusive optical diagnostic techniques easily. Both burner-attached stable flames and lifted flames are established at normal and microgravity conditions in the drop tower facility.
Premixed turbulent combustion to opposed streams
Kostiuk, L.W.; Cheng, R.K.
1992-03-01
Premixed turbulent combustion in opposed streams has been studied experimentally by the use of two component laser doppler aneomometry. This flow geometry is part of a class of stagnating flows used to study turbulent combustion in recent years. It does not involve any surface near the flames because of the flow symmetry thus circumventing many of the effects of flame surface interaction. The mean non-reacting flow is found to be self-similar for all the conditions studied in this and the stagnation plate configuration. A homogeneous region of plane straining is produced in the vicinity of the stagnation and there is a strong interaction between the turbulence in the flow and the mean straining which can increase the rms velocity as the flow stagnates. The reacting flow fields are found to be symmetric about the free stagnation point. The traverses of mean axial velocity in the stagnation streamlines for reaction flows are not dramatically different from the non-reaction flows. These results differ from turbulent combustion experiments where the flow is stagnated by a flat plate. The extinction limits was studied for propane:air mixtures. 11 refs.
Multiple mapping conditioning for flames with partial premixing
Kronenburg, A.; Cleary, M.J.
2008-10-15
Fully closed multiple mapping conditioning (MMC) is used to model partially premixed flames in homogeneous, isotropic decaying turbulence where the partial premixing is caused by local extinction and reignition phenomena. Two reference variables that represent mixing and reaction progress, such as mixture fraction and sensible enthalpy, are used to emulate turbulent scalar fluctuations. Local extinction is achieved by a priori coupling between scalar dissipation and temperature fluctuations via a correlation function that is based on the conditionally averaged sensible enthalpy at stoichiometric composition. The proposed model provides closures for the joint PDF of mixture fraction and sensible enthalpy, for the conditional variance equation of a reactive scalar, and for the doubly conditioned dissipation terms. Model results are compared with DNS in three flame cases with varying levels of local extinction, up to global extinction. The joint PDF predicted by MMC is in fair agreement with DNS. It constitutes, however, a clear improvement over conventional models using preassumed distribution functions for the PDFs. The doubly conditioned dissipation terms are modeled well and the results for all major chemical species are in good agreement with DNS. Predictions for intermediate species are also satisfactory. (author)
Studies of premixed laminar and turbulent flames at microgravity
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1993-01-01
A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.
Flame front geometry in premixed turbulent flames
Shepherd, I.G. ); Ashurst, W.T. )
1991-12-01
Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.
The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model
NASA Astrophysics Data System (ADS)
Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo
2016-10-01
In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.
Kim, Jong-Ryul; Choi, Gyung-Min; Kim, Duck-Jool
2011-01-15
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)
Direct numerical simulation of a turbulent premixed flame
Hasegawa, Tatsuya; Morifuji, Tetsuya; Borghi, R.
1999-07-01
Direct numerical simulation of a stationary turbulent premixed flame with a single-step irreversible Arrhenius-type reaction is performed in order to understand detail physics of turbulent premixed flames and to evaluate modeling of turbulent premixed flame. The 6th-order central finite difference method is used in the streamwise direction with non-periodic boundaries, giving enough grid points in the domain to assure reasonable accuracy. The pseudo spectral method is used for transversal directions with periodic boundaries. The results obtained by their preliminary simulation is presented here with the initial turbulent intensity of u{prime}{sub 0}/u{sub L} = 4.8, the initial integral scale of l{sub t0}/{delta} = 8, and the density ratio of {rho}{sub u}/{rho}{sub b} = 7.53. The obtained flame is a developing wrinkled flame. Mean temperature, mean mass fraction, mean reaction rate and mean velocity components in space show a thickened flame region where the reaction rate appears at all points. Turbulent kinetic energy decays along the stream, but it increases somewhat in the flame region due to the increase of streamwise component of velocity fluctuation. The energy spectra in front of the flame region and behind it show that small scale decays by combustion and that the microscale and the Kolmogorov scale increase several times behind the flame region. Local structure of the turbulent flame is then analyzed.
Active Control for Statistically Stationary Turbulent PremixedFlame Simulations
Bell, J.B.; Day, M.S.; Grcar, J.F.; Lijewski, M.J.
2005-08-30
The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.
Spectral kinetic energy transfer in turbulent premixed reacting flows.
Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E
2016-05-01
Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.
Spectral kinetic energy transfer in turbulent premixed reacting flows
NASA Astrophysics Data System (ADS)
Towery, C. A. Z.; Poludnenko, A. Y.; Urzay, J.; O'Brien, J.; Ihme, M.; Hamlington, P. E.
2016-05-01
Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.
Stretching and quenching of flamelets in premixed turbulent combustion
Meneveau, C. ); Poinsot, T. )
1991-09-01
This paper reports on the stretch rate of flamelets in premixed turbulent combustion which is computed using detailed numerical simulations of vortex-flame interactions and a model for intermittent turbulence taking into account all possible turbulence scales acting on the flame front. Simulations of interactions between isolated vortices and a laminar flame front are used to obtain a relation between the characteristics of a given vortex and the actual flame stretch generated by this structure. Quenching conditions and quenching times are also given by these simulations. A net rate of stretch is then defined in the case of a complete turbulent flow field as the difference between the total rate of flame stretch and the quenching rate due to scales that have a high enough energy and a long enough lifetime to quench locally the flame front. The net rate of stretch is computed for a variety of parameters of interest in practical applications. It is a function of the large-scale turbulence parameters and the laminar flame speed and flame thickness and may be used as an input in most flamelet models for premixed turbulent combustion.
Computations of turbulent lean premixed combustion using conditional moment closure
NASA Astrophysics Data System (ADS)
Amzin, Shokri; Swaminathan, Nedunchezhian
2013-12-01
Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-ɛ model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC.
Analysis of flame surface density measurements in turbulent premixed combustion
Halter, Fabien; Chauveau, Christian; Goekalp, Iskender; Veynante, Denis
2009-03-15
In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)
Field Effects of Buoyancy on Lean Premixed Turbulent Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.
2003-01-01
The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This
Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames
Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.
2008-04-15
The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)
Accelerative propagation and explosion triggering by expanding turbulent premixed flames.
Akkerman, V'yacheslav; Chaudhuri, Swetaprovo; Law, Chung K
2013-02-01
The dynamics and morphology of outwardly propagating, accelerating turbulent premixed flames and the effect of flame acceleration on explosion triggering are analyzed. Guided by recent theoretical results and substantiated by experiments, we find that an expanding flame front in an externally forced, near-isotropic turbulent environment exhibits accelerative propagation given by a well-defined power law based on the average global flame radius. In this context the limits of the power-law exponent and the effective turbulence intensity experienced by the flame are derived. The power-law exponent is found to be substantially larger than that for the hydrodynamically unstable cellular laminar flames, hence facilitating the possibility of detonation triggering in turbulent environments. For large length scales, hydrodynamic instability is expected to provide additional acceleration, thus further favoring the attainment of detonation triggering.
CH double-pulsed PLIF measurement in turbulent premixed flame
NASA Astrophysics Data System (ADS)
Tanahashi, M.; Taka, S.; Shimura, M.; Miyauchi, T.
2008-08-01
The flame displacement speeds in turbulent premixed flames have been measured directly by the CH double-pulsed planar laser-induced fluorescence (PLIF). The CH double-pulsed PLIF systems consist of two independent conventional CH PLIF measurement systems and laser beams from each laser system are led to same optical pass using the difference of polarization. The highly time-resolved measurements are conducted in relatively high Reynolds number turbulent premixed flames on a swirl-stabilized combustor. Since the time interval of the successive CH PLIF can be selected to any optimum value for the purpose intended, both of the large scale dynamics and local displacement of the flame front can be discussed. By selecting an appropriate time interval (100-200 μs), deformations of the flame front are captured clearly. Successive CH fluorescence images reveal the burning/generating process of the unburned mixtures or the handgrip structures in burnt gas, which have been predicted by three-dimensional direct numerical simulations of turbulent premixed flames. To evaluate the local flame displacement speed directly from the successive CH images, a flame front identification scheme and a displacement vector evaluation scheme are developed. Direct measurements of flame displacement speed are conducted by selecting a minute time interval (≈30 μs) for different Reynolds number ( Re λ = 63.1-115.0). Local flame displacement speeds coincide well for different Reynolds number cases. Furthermore, comparisons of the mean flame displacement speed and the mean fluid velocity show that the convection in the turbulent flames will affect the flame displacement speed for high Reynolds number flames.
Effect of dilatation on scalar dissipation in turbulent premixed flames
Swaminathan, N.; Bray, K.N.C.
2005-12-01
The scalar dissipation rate signifies the local mixing rate and thus plays a vital role in the modeling of reaction rate in turbulent flames. The local mixing rate is influenced by the turbulence, the chemical, and the molecular diffusion processes which are strongly coupled in turbulent premixed flames. Thus, a model for the mean scalar dissipation rate, and hence the mean reaction rate, should include the contributions of these processes. Earlier models for the scalar dissipation rate include only a turbulence time scale. In this study, we derive exact transport equations for the instantaneous and the mean scalar dissipation rates. Using these equations, a simple algebraic model for the mean scalar dissipation rate is obtained. This model includes a chemical as well as a turbulence time scale and its prediction compares well with direct numerical simulation results. Reynolds-averaged Navier-Stokes calculations of a test flame using the model obtained here show that the contribution of dilatation to local turbulent mixing rate is important to predict the propagation phenomenon.
Partially Premixed Flame (PPF) Research for Fire Safety
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Hegde, Uday
2004-01-01
Incipient fires typically occur after the partial premixing of fuel and oxidizer. The mixing of product species into the fuel/oxidizer mixture influences flame stabilization and fire spread. Therefore, it is important to characterize the impact of different levels of fuel/oxidizer/product mixing on flame stabilization, liftoff and extinguishment under different gravity conditions. With regard to fire protection, the agent concentration required to achieve flame suppression is an important consideration. The initial stage of an unwanted fire in a microgravity environment will depend on the level of partial premixing and the local conditions such as air currents generated by the fire itself and any forced ventilation (that influence agent and product mixing into the fire). The motivation of our investigation is to characterize these impacts in a systematic and fundamental manner.
Analysis of non-premixed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1987-01-01
Studies of chemical reactions occurring in turbulent flows are important in the understanding of combustion and other applications. Current numerical methods are limited in their applications due to the numerical resolution required to completely capture all length scales, but, despite the fact that realistic combustion cannot be solved completely, numerical simulations can be used to give insight into the interaction between the processes of turbulence and chemical reaction. The objective was to investigate the effects of turbulent motion on the effects of chemical reaction to gain some insight on the interaction of turbulence, molecular diffusion, and chemical reaction to support modeling efforts. A direct turbulence simulation spectral code was modified to include the effects of chemical reaction and applied to an initial value problem of chemical reaction between non-premixed species. The influence of hydrodynamics on the instantaneous structure of the reaction was investigated. The local scalar dissipation rates and the local reaction rates were examined to determine the influence of vorticity or rate of strain on the reaction and the structure of the scalar field.
Hydrodynamic instability and shear layer effects in turbulent premixed combustion
NASA Astrophysics Data System (ADS)
Schlimpert, S.; Feldhusen, A.; Grimmen, J. H.; Roidl, B.; Meinke, M.; Schröder, W.
2016-01-01
A turbulent premixed plane jet flame is analyzed by large-eddy simulations. The analysis shows that the flame front wrinkling is strongly influenced by the shear layer effect when the gas expansion effects are small leading to larger flame front amplitudes at the flame base than at high gas expansion ratios. However, the hydrodynamic instability effect induces a continuously increasing flame front amplitude which yields an enhanced flame pocket generation at the flame tip. Both phenomena influence the magnitude of the turbulent burning area and burning area rate response through the flame front deflections which are determined by the contribution coefficient. This coefficient represents the mutual interaction between the flame and the flow. At low gas expansion ratios, the total heat release rate spectra of the turbulent flame are wider in terms of dominant modes at Strouhal numbers which are linked to the mean flame height oscillations. Thus, at low gas expansion ratios, the vortex-flame interaction is less damped by the flame in the sense that vortices can perturb the flame front stronger. The total heat release rate trend of St-2.2 previously found for a round jet flame is also determined for the current slot jet at realistic gas expansion ratios indicating a general tendency to transfer energy from large to small flame structures. At high gas expansion ratios, an increasing Markstein length leads to an energy transfer between neighboring dominant modes in the low frequency range 1 < St < 10 and the burning area rate response becomes more important for the total heat release rate spectra of the turbulent slot flames which agrees with recent findings for a laminar premixed plane flame.
Freely propagating open premixed turbulent flames stabilized by swirl
Chan, C.K.; Lau, K.S.; Chin, W.K.; Cheng, R.K.
1991-12-01
A novel means has been developed for using weak swirl to stabilize freely propagating open premixed turbulent flames (swirl numbers between 0.05 to 0.3). By injecting a small amount of air tangentially into the co-flow of a concentric burner, stationary flames can be maintained above the burner exit for a large range of mixture, turbulence and flow conditions. The absence of physical surfaces in the vicinity of the flame provides free access to laser diagnostics. Laser Doppler anemometry and laser Mie scattering measurements of four flames with and without incident turbulence show that their features are typical of wrinkled laminar flames. The most distinct characteristics is that flame stabilization does not rely on flow recirculation. Centrifugal force induced by swirl causes flow divergence, and the flame is maintained at where the local mass flux balances the burning rate. The flame speeds can be estimated based on the centerline velocity vector, which is locally normal to the flame brush. This flame geometry is the closest approximation to the 1-D planar flame for determining fundamental properties to advance turbulent combustion theories. 18 refs.
Characteristics of Non-Premixed Turbulent Flames in Microgravity
NASA Technical Reports Server (NTRS)
Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.
2001-01-01
This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.
RANS/PDF and LES/FDF for prediction of turbulent premixed flames
NASA Astrophysics Data System (ADS)
Yilmaz, Server Levent
Probability density function (PDF) and filtered density function (FDF) methodologies are developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both simulations employ finite rate kinetics via a reduced methane chemistry mechanism to account for combustion. Prediction results are compared with experimental data, and are shown to capture some of the intricate physics of turbulent premixed combustion. Keywords. large eddy simulation, filtered density function, Reynolds-averaged Navier-Stokes, probability density function, turbulent reacting flows, lean premixed combustion.
Lewis number effects on turbulent premixed flame structure
Goix, P.J. , 230 - Mont-Saint-Aignan . URA CORIA); Shepherd, I.G. )
1992-09-01
The influence of the Lewis number on turbulent flame front geometry is investigated in a premixed turbulent stagnation point flame. A laser tomography technique is used to obtain the flame shape, a fractal analysis of the multiscale flame edges is performed and the distribution of local flame front curvature is determined. Lean H[sub 2]/Air and C[sub 3]H[sub 8]/Air mixtures with similar burning rates were investigated with Lewis numbers of 0.33 and 1.85 respectively. At the conditions studied the laminar H[sub 2]/Air mixture is unstable and a cellular structure is observed. Turbulence in the reactant is generated by a perforated plate and the turbulent length scale (3mm) and intensity (7%) at the nozzle exit are fixed. The equivalence ratio is set so that the burning velocity is the same for all the cases. Results show clearly that the turbulent flame surface area is dependent on the Lewis number. For a Lewis number less than unity surface area production is observed. The shape of the flame front curvature distribution is not found to be very sensitive to the Lewis number. For the H[sub 2]/Air mixture the distribution is skewed toward the positive values indicating the presence of cusps while for the C[sub 3]H[sub 8]/Air mixture the distribution is more symmetrical. In both cases the average curvature is found to be zero, and if the local burning speed varies linearly with curvature, the local positive and negative burning velocity variations due to curvature will balance.
Lewis number effects on turbulent premixed flame structure
Goix, P.J.; Shepherd, I.G.
1992-09-01
The influence of the Lewis number on turbulent flame front geometry is investigated in a premixed turbulent stagnation point flame. A laser tomography technique is used to obtain the flame shape, a fractal analysis of the multiscale flame edges is performed and the distribution of local flame front curvature is determined. Lean H{sub 2}/Air and C{sub 3}H{sub 8}/Air mixtures with similar burning rates were investigated with Lewis numbers of 0.33 and 1.85 respectively. At the conditions studied the laminar H{sub 2}/Air mixture is unstable and a cellular structure is observed. Turbulence in the reactant is generated by a perforated plate and the turbulent length scale (3mm) and intensity (7%) at the nozzle exit are fixed. The equivalence ratio is set so that the burning velocity is the same for all the cases. Results show clearly that the turbulent flame surface area is dependent on the Lewis number. For a Lewis number less than unity surface area production is observed. The shape of the flame front curvature distribution is not found to be very sensitive to the Lewis number. For the H{sub 2}/Air mixture the distribution is skewed toward the positive values indicating the presence of cusps while for the C{sub 3}H{sub 8}/Air mixture the distribution is more symmetrical. In both cases the average curvature is found to be zero, and if the local burning speed varies linearly with curvature, the local positive and negative burning velocity variations due to curvature will balance.
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames
Chakraborty, Nilanjan; Cant, R.S.
2009-07-15
The behaviour of the turbulent scalar flux in premixed flames has been studied using Direct Numerical Simulation (DNS) with emphasis on the effects of Lewis number in the context of Reynolds-averaged closure modelling. A database was obtained from DNS of three-dimensional freely propagating statistically planar turbulent premixed flames with simplified chemistry and a range of global Lewis numbers from 0.34 to 1.2. Under the same initial conditions of turbulence, flames with low Lewis numbers are found to exhibit counter-gradient transport, whereas flames with higher Lewis numbers tend to exhibit gradient transport. The Reynolds-averaged transport equation for the turbulent scalar flux is analysed in detail and the performance of existing models for the unclosed terms is assessed with respect to corresponding quantities extracted from DNS data. Based on this assessment, existing models which are able to address the effects of non-unity Lewis number on turbulent scalar flux transport are identified, and new or modified models are suggested wherever necessary. In this way, a complete set of closure models for the scalar flux transport equation is prescribed for use in Reynolds-Averaged Navier-Stokes simulations. (author)
Studies of Premixed Laminar and Turbulent Flames at Microgravity
NASA Technical Reports Server (NTRS)
Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.
1999-01-01
Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.
Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV
NASA Astrophysics Data System (ADS)
Steinberg, Adam M.; Driscoll, James F.; Ceccio, Steven L.
2008-06-01
A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.
Intermittent features of inertial particle distributions in turbulent premixed flames
NASA Astrophysics Data System (ADS)
Battista, F.; Picano, F.; Troiani, G.; Casciola, C. M.
2011-12-01
Clustering is widely observed in many turbulent flows, where it results from the inability of finite inertia particles to comply with the different time scales, which characterize a turbulent field. Depending on their inertia, particles are found to be instantaneously organized in clusters, whose size depends on the Kolmogorov-Stokes number and which presumably form as a consequence of particle ejection from persistent vortical structures. In reacting flows, the abrupt acceleration of the fluid across the thin flame front due to combustion adds new and unexpected features. The particles follow such acceleration with a certain time lag which, coupled with the flame front fluctuations, gives rise to an entirely different mechanism of cluster formation. As suggested in previous studies, a possible indicator of this preferential localization is the so-called clustering index, quantifying the departure of the actual particle arrangement from the Poissonian distribution. Most of the clustering is found in the flame brush region, where it cannot be explained by the standard arguments used in cold flows. Actually, the effect is significant also for very light particles, where the simple model we propose, based on the Bray-Moss-Libby formalism, is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect becomes larger and it is found to persist well within the region of the burned gases. The observed clustering is confirmed by a more precise analysis in terms of a generalization of the radial distribution function to inhomogeneous, anisotropic flows. The results taken from a direct numerical simulation with single step kinetics favorably compare with experiments on a premixed Bunsen turbulent flame. The present findings are expected to be of some relevance for the plenty of applications dealing with particles in presence of combustion, e.g., liquid droplet swarms for combustion temperature control, soot dynamics, or
Non-premixed flame-turbulence interaction in compressible turbulent flow
Livescu, D.; Madnia, C. K.
2002-01-01
Nonpremixed turbulent reacting flows are intrinsically difficult to model due to the strong coupling between turbulent motions and reaction. The large amount of heat released by a typical hydrocarbon flame leads to significant modifications of the thermodynamic variables and the molecular transport coefficients and thus alters the fluid dynamics. Additionally, in nonpremixed combustion, the flame has a complex spatial structure. Localized expansions and contractions occur, enhancing the dilatational motions. Therefore, the compressibility of the flow and the heat release are intimately related. However, fundamental studies of the role of compressibility on the scalar mixing and reaction are scarce. In this paper they present results concerning the fundamental aspects of the interaction between non-premixed flame and compressible turbulence.
The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction
NASA Astrophysics Data System (ADS)
Steinberg, Adam M.
The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models
Studies of Premixed Laminar and Turbulent Flames at Microgravity
NASA Technical Reports Server (NTRS)
Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.
2003-01-01
Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.
Transport of inertial particles in a turbulent premixed jet flame
NASA Astrophysics Data System (ADS)
Battista, F.; Picano, F.; Troiani, G.; Casciola, C. M.
2011-12-01
The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.
Blowoff dynamics of bluff body stabilized turbulent premixed flames
Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M.
2010-04-15
This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)
Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner
Biagioli, Fernando; Guethe, Felix; Schuermans, Bruno
2008-07-15
Previous work [Biagioli, F., Stabilization mechanism of turbulent premixed flames in strongly swirled flows, Combustion, Theory and Modelling 10 (3) (2006) 389-412; Guethe, F., Lachner, R., Schuermans, B., Biagioli, F., Geng, W., Inauen, A., Schenker, S., Bombach, R., Hubschmid, W., Flame imaging on the ALSTOM EV-burner: thermo acoustic pulsations and CFD-validation, in: AIAA Paper 2006-437 presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006] has shown that turbulent dry low NO{sub x} (partially premixed) flames in high swirl conical burners may be subject to a large change of their anchoring location at the symmetry axis when a critical value of the bulk equivalence ratio is reached, i.e. they are bi-stable. This flame behavior is linked here to combustion pressure dynamics measured in an atmospheric test rig for a prototype version of the Alstom EnVironmental (EV) conical burner. The link is made via the solution of the problem of the 'travelling flameholder', which shows that the unsteady displacement of the flame anchoring location implies an unsteady variation of the flame surface area and therefore unsteady heat release. The relevance of this source of unsteady heat release - which is different from more usual ones due to variations in turbulent burning rate and in the sensible enthalpy jump across the flame - to the generation of combustion dynamics in strongly swirled flows is confirmed here by the strong positive correlation between the tendency of the flame to be displaced and the measured amplitude of pressure pulsations. (author)
Studies of Premixed Laminar and Turbulent Flames at Microgravity
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1993-01-01
The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.
Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces
NASA Technical Reports Server (NTRS)
Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.
1994-01-01
In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.
Large-Eddy Simulations of Turbulent Premixed Bunsen Flames at Different Turbulence Levels
NASA Astrophysics Data System (ADS)
Duchampde Lageneste, Laurent; Pitsch, Heinz
2002-11-01
In a recent study we have formulated a level-set method based on the G-equation for Large-Eddy Simulation (LES) of premixed turbulent combustion and applied the model successfully in a simulation of the turbulent Bunsen flame,F3, experimentally investigated by Chen et al. (1996). This flame is nominally in the thin reaction zones regime. As a further validation of the model and to demonstrate the benefits of LES in turbulent combustion modeling, in the present work, we report on an LES of the F2-flame from the same series of experiments, which has a higher turbulence level and hence a higher Karlovitz number. This flame is still in the thin reaction zones regime, but locally reveals regions burning in the broken reaction zones regime. Results from the simulation will be compared with experimental data for temperature and axial velocity. The experimental data shows substantial differences between flames F2 and F3, which is well described by the simulation. Flame F2, for instance, shows an almost linear increase of the flame brush thickness with downstream distance from the nozzle, whereas flame F3 shows almost constant flame brush thickness.
Partially-Premixed Flames in Internal Combustion Engines
Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick
2003-11-05
This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers
Flamelet Model Application for Non-Premixed Turbulent Combustion
NASA Technical Reports Server (NTRS)
Secundov, A.; Bezgin, L.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Laskin, I.; Lomkov, K.; Tshepin, S.; Volkov, D.; Zaitsev, S.
1996-01-01
The current Final Report contains results of the study which was performed in Scientific Research Center 'ECOLEN' (Moscow, Russia). The study concerns the development and verification of non-expensive approach for modeling of supersonic turbulent diffusion flames based on flamelet consideration of the chemistry/turbulence interaction (FL approach). Research work included: development of the approach and CFD tests of the flamelet model for supersonic jet flames; development of the simplified procedure for solution of the flamelet equations based on partial equilibrium chemistry assumption; study of the flame ignition/extinction predictions provided by flamelet model. The performed investigation demonstrated that FL approach allowed to describe satisfactory main features of supersonic H 2/air jet flames. Model demonstrated also high capabilities for reduction of the computational expenses in CFD modeling of the supersonic flames taking into account detailed oxidation chemistry. However, some disadvantages and restrictions of the existing version of approach were found in this study. They were: (1) inaccuracy in predictions of the passive scalar statistics by our turbulence model for one of the considered test cases; and (2) applicability of the available version of the flamelet model to flames without large ignition delay distance only. Based on the results of the performed investigation, we formulated and submitted to the National Aeronautics and Space Administration our Project Proposal for the next step research directed toward further improvement of the FL approach.
The detailed flame structure of highly stretched turbulent premixed methane-air flames
Chen, Y.C.; Peters, N.; Schneemann, G.A.; Wruck, N.; Renz, U.; Mansour, M.S.
1996-11-01
The premixed stoichiometric turbulent methane flames are investigated on a piloted Bunsen burner with mean nozzle exit velocities of 65, 50, and 30 m/s. Advanced laser diagnostics of the flow field using two-component and two-point laser Doppler anemometer, as well as of the scalar fields with 2-D Rayleigh thermometry and line Raman/Rayleigh laser-induced predissociation fluorescence techniques, are applied to obtain both the instantaneous and mean flame structure in terms of velocity, temperature, and major species concentrations, as well as turbulent kinetic energy and length scales. The three flames cover the entire range of the distributed-reaction-zones regime from the borderline to the well-stirred reactor regime to the flamelet regime. Measurements were from X/D = 2.5 above the nozzle exit plane to X/D = 12.5 downstream. Thus, a complete database is established for comparison with the numerical predictions. Within the mixing layer between the unburnt gas and the pilot flame, the instantaneous temperatures are much lower than the adiabatic flame temperature due to the short residence time and heat loss to the burner. With increasing residence time the mean flame temperature increases in the axial direction. The radial mixing of the turbulence generated with the shear layers between the nozzle jet stream and surrounding pilot stream is suppressed, such that the turbulence kinetic energy remains nearly constant on the centerline. From the two-dimensional temperature fields instantaneous iso-temperature contours are plotted showing broad regions where burnt and unburnt gas are partially mixed. These regions are interpreted in terms of the quench scale {ell}{sub q} = ({epsilon}{tau}{sub c}{sup 3}){sup 1/2}. The measured values of the flame brush thickness are proportional to the quench scale for the two high-velocity flames, whereas the low-velocity flame exhibits essential flamelet behavior.
Schneider, E.; Maltsev, A.; Sadiki, A.; Janicka, J.
2008-03-15
In this work the potential of two combustion modeling approaches (BML and G-equation based models) for partially premixed flames in combustion systems of various complexities is investigated using URANS computations. The first configuration consists of a nonconfined swirled premixed methane/air flame (swirl number 0.75) exhibiting partially premixed effects due to coflowing. The system is studied either in the isothermal case or in the reacting mode and for different thermal powers. The second configuration represents a model GT combustion chamber and features the main properties of real GT combustors: a confined swirled flow with multiple recirculation zones and reattachment points, resulting in a partially premixed methane/air aerodynamically stabilized flame and an additional diffusion flame formed by the fuel and oxidizer not consumed in the premixed flame. This makes it possible to subject the modeling to variation of different parameters, such as confinement, Re-number or flame power, or adiabatic or nonadiabatic conditions. For this purpose an extended Bray-Moss-Libby model and a G-equation-based approach, both coupled to the mixture fraction transport equation to account for partially premixed effects, are used following the so-called conditional progress variable approach (CPVA). The radiation effects are also taken into account. To account for the turbulence-chemistry interaction, a (multivariate) presumed PDF approach is applied. The results are compared with LDV, Raman, and PLIF measurements. Beyond a pure validation, the URANS is used to capture the presence of the precessing vortex core and to analyze the performance of different modeling strategies of partially premixed combustion in capturing the expansion ratio, species formation conditioned on the flame front, and flame front stabilization. It appears that the combustion models used are able to achieve plausible results in the complex combustion systems under study, while the BML-based model
Study of Turbulent Premixed Flame Propagation using a Laminar Flamelet Model
NASA Technical Reports Server (NTRS)
Im, H. G.
1995-01-01
The laminar flamelet concept in turbulent reacting flows is considered applicable to many practical combustion systems (Linan & Williams 1993). For turbulent premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz number is less than unity, which is equivalent to stating that the characteristic thickness of the flame is less than that of a Kolmogorov eddy; this is known as the Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its laminar structure, and the effect of turbulent flow is merely to wrinkle and strain the flame front. The propagating wrinkled premixed flame can then be described as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt product.
LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor
NASA Astrophysics Data System (ADS)
Hernández, Ignacio; Staffelbach, Gabriel; Poinsot, Thierry; Román Casado, Juan C.; Kok, Jim B. W.
2013-01-01
Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments.
Subfilter scale combustion modelling for large eddy simulation of turbulent premixed flames
NASA Astrophysics Data System (ADS)
Shahbazian, Nasim
Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence-chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The modelling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress
Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Shahbazian, Nasim
Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress
The evolution equation for the flame surface density in turbulent premixed combustion
NASA Technical Reports Server (NTRS)
Trouve, Arnaud
1993-01-01
The mean reaction rate in flamelet models for turbulent premixed combustion depends on two basic quantities: a mean chemical rate, called the flamelet speed, and the flame surface density. Our previous work had been primarily focused on the problem of the structure and topology of turbulent premixed flames, and it was then determined that the flamelet speed, when space-averaged, is only weakly sensitive to the turbulent flow field. Consequently, the flame surface density is the key quantity that conveys most of the effects of the turbulence on the rate of energy release. In flamelet models, this quantity is obtained via a modeled transport equation called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact but unclosed formulation for the turbulent Sigma-equation. In the exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the turbulent flame stretch as well as the flame surface density is not available from experiments, and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the alternative approach to get basic information on these fundamental quantities. In the present work, three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, our objective is to extract the turbulent flame stretch from the DNS data base and then perform extensive comparisons with flamelet models. Thanks to the detailed information produced by the DNS-based analysis, it is expected that this type of comparison will not only
Kobayashi, Hideaki; Maruta, Kaoru; Niioka, Takashi; Nakashima, Teppei; Tamura, Takashi
1997-01-01
In order to explore the characteristics of turbulence and turbulent premixed flames in a high-pressure environment, a nozzle-type burner with a turbulence generator was installed in a high-pressure chamber. Turbulence measurements and combustion experiments were conducted with the chamber pressure up to 3.0 MPa. Methane-air mixtures were used for the combustion experiments and confirmed that the turbulent premixed flames were successfully stabilized. Flame observations were made using instantaneous Schlieren photographs and high-speed laser tomography. Turbulence measurements were conducted using a hot-wire anemometer installed in the high-pressure chamber. It was found that the scales of turbulence generated by perforated plates at elevated pressure are smaller than those at atmospheric pressure. From flame observations, the following features of the flames at elevated pressure were found: (1) wrinkles structures of the flames become very fine and complex, and the cusps become sharp as pressure rises; (2) the flamelet breaks at many points of the flames and the scales of broken flamelets become small; (3) small-scale parts of the flame front convex to the unburned mixture frequently occur and move quickly to the unburned side. The effects of ambient pressure on turbulence characteristics and possible mechanisms which produce the wrinkled structure of the fine scales and generate flame front disturbances in the high-pressure environment are discussed.
Relevance of the Bray number in the small-scale modeling of turbulent premixed flames
Mura, Arnaud; Champion, Michel
2009-03-15
The present study is devoted to the analysis of the influence of expansion phenomena on turbulent small scales in premixed reactive flows. It is shown that, under certain conditions, the expansion that takes place across wrinkled laminar flamelet can be sufficient to control the fluctuating velocity gradients and associated dissipation rate functions. These conditions are fixed by the respective values of a set of nondimensional parameters, namely the turbulence Reynolds number Re{sub T}, the Bray number, and the ratio between integral length scale of turbulence and thermal flame front thickness. A new criterion is introduced that makes it possible to delineate the influence of expansion phenomena on small-scale turbulent premixed reactive flows. The relevance of this criterion is analyzed in the light of experimental results represented in the classical diagram of combustion regime. The present analysis confirms that special care is required to represent and include the influence of expansion phenomena when using either RANS or LES closures to model turbulent premixed combustion. (author)
Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames
NASA Astrophysics Data System (ADS)
Wang, Haifeng
2016-03-01
Treating differential molecular diffusion correctly and accurately remains as a great challenge to the modeling of turbulent non-premixed combustion. The aim of this paper is to develop consistent modeling strategies for differential molecular diffusion in flamelet models. Two types of differential molecular diffusion models are introduced, linear differential diffusion models and nonlinear differential diffusion models. A multi-component turbulent mixing layer problem is analyzed in detail to gain insights into differential molecular diffusion and its characteristics, particularly the dependence of differential molecular diffusion on the Reynolds number and the Lewis number. These characteristics are then used to validate the differential molecular diffusion models. Finally, the new models are applied to the modeling of a series of laboratory-scale turbulent non-premixed jet flames with different Reynolds number (Sandia Flames B, C, and D) to further assess the models' performance.
Effect of turbulence characteristics on local flame structure of H2 air premixed flames
NASA Astrophysics Data System (ADS)
Nada, Y.; Tanahashi, M.; Miyauchi, T.
2004-04-01
Direct numerical simulations (DNS) of turbulent premixed flames are conducted to investigate effects of turbulence characteristics on the local flame structure. A detailed kinetic mechanism including 12 reactive species and 27 elementary reactions is used to represent the H2-air reaction in turbulence. Numerical conditions of DNS can be classified into a wrinkled-flamelets regime, a corrugated-flamelets regime and thin reaction zones near the boundary of Karlovitz number Ka=1.0 of the turbulent-combustion diagram. For all cases, the distribution of heat-release rate shows a three-dimensionally connected sheet-like feature, even though the heat-release rate highly fluctuates along the flamefront. The heat-release rate tends to increase at the flamefronts that are convex towards the burnt side. For the turbulent premixed flames in the corrugated-flamelets regime, the handgrip structure is produced by the intrusion of the coherent fine-scale eddy into the flame and the heat-release rate in this structure increases up to 1.2 times of that of a laminar flame. In the wrinkled-flamelets regime, the spire-like structure of the flamefront is created due to the coherent fine-scale eddies in turbulence. By identifying flame elements in turbulence, their statistical characteristics are also discussed. This article was chosen from Selected Proceedings of the Third International Symposium on Turbulence and Shear Flow Phenomena (Sendai, Japan, 24-27 June 2003) ed N Kasagi et al.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing
The Behavior of Methane-Air Partially Premixed Flames Under Normal- and Zero-G Conditions
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Choi, Chun Wai; Hegde, Uday
2001-01-01
Partially premixed flames (PPFs) represent a class of hybrid flames containing multiple reaction zones. These flames are established when less than stoichiometric quantity of oxidizer is molecularly mixed with the fuel stream before entering the reaction zone where additional oxidizer is available for complete combustion. This mode of combustion can be used to exploit the advantages of both nonpremixed and premixed flames regarding operational safety, lower pollutant emissions and flame stabilization. A double flame containing a fuel-rich premixed reaction zone, which is anchored by a nonpremixed reaction zone, is one example of a partially premixed flame. A triple flame is also a PPF that contains three reaction zones, namely, a fuel-rich premixed zone, a fuel-lean premixed zone, and a nonpremixed reaction zone. Herein we focus on two aspects of our investigation, one involving the development of optical diagnostics that can be used on a microgravity rig, which has been recently fabricated, and the other on the numerically predicted differences between normal- and zero-gravity PPFs. Both the measurements and simulations examine the detailed structure of methane-air PPFs stabilized on a Wolfhard-Parker slot burner.
NASA Astrophysics Data System (ADS)
Chen, Zhi; Ruan, Shaohong; Swaminathan, Nedunchezhian
2016-07-01
Three-dimensional (3D) unsteady Reynolds-averaged Navier-Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.
A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Pope, Stephen
2013-11-01
A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.
Local curvature measurements of a lean, partially premixed swirl-stabilised flame
NASA Astrophysics Data System (ADS)
Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.
2012-04-01
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is
Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames
Nogenmyr, K.J.; Bai, X.S.; Kiefer, J.; Li, Z.S.; Alden, M.
2010-05-15
The structures and dynamics of unsteady laminar partially premixed methane/air Bunsen flames are studied by means of numerical simulations, OH and CH PLIF imaging, and high speed chemiluminescence imaging employing a high framing speed intensified charge coupled device camera. The Bunsen burner has a diameter of 22 mm. Rich methane/air mixtures with an equivalence ratio of 1.5 are injected from the burner into atmosphere at different flow speeds ranging from 0.77 to 1.7 m/s, with Reynolds numbers based on the nozzle flow ranging from 1100 to 2500. The numerical simulations are based on a two-scalar flamelet manifold tabulation approach. Detailed chemistry is used to generate the flamelet manifold tabulation which relates the species concentrations, reaction rates, temperature and density to a distance function G and mixture fraction Z. Two distinct reaction zones are identified using CH and OH PLIF imaging and numerical simulations; one inner reaction zone corresponds to premixed flames on the rich side of the mixture and one outer reaction zone corresponds to mixing controlled diffusion flames on the lean side of the mixture. Under normal gravity conditions both the inner premixed flames and the outer diffusion flames are unsteady. The outer diffusion flames oscillate with a flickering frequency of about 15 Hz, which slightly increases with the burner exit velocity. The inner premixed flames are more random with much more small-scale wrinkling structures. Under zero gravity conditions the outer diffusion flames are stable whereas the inner premixed flames are unstable and highly wrinkled. It appears that the outer diffusion flames are governed by the Rayleigh-Taylor instability whereas the inner premixed flames are dictated by Landau-Darrieus instability. The two-scalar flamelet approach is shown to capture the basic structures and dynamics of the investigated unsteady partially premixed flames. (author)
A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion
Knudsen, E.; Pitsch, H.
2008-09-15
Turbulent premixed combustion is particularly difficult to describe using large eddy simulation (LES). In LES, premixed flame structures typically exist on subfilter length scales. Consequently, premixed LES models must be capable of describing how completely unresolved flame structures propagate under the influence of completely unresolved eddies. This description is usually accomplished through the implementation of a model for the turbulent burning velocity. Here, a dynamic model for describing the turbulent burning velocity in the context of LES is presented. This model uses a new surface filtering procedure that is consistent with standard LES filtering. Additionally, it only uses information that comes directly from the flame front. This latter attribute is important for two reasons. First, it guarantees that the model can be consistently applied when level set methods, where arbitrary constraints can be imposed on field variables away from fronts, are used to track the flame. Second, it forces the model to recognize that the physics governing flame front propagation are only valid locally at the front. Results showing model validation in the context of direct numerical simulation (DNS), and model application in the context of LES, are presented. (author)
Characteristics of Non-Premixed Turbulent Flames in Microgravity
NASA Technical Reports Server (NTRS)
Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.
1999-01-01
The momentum of the fuel (and/or air) jet is important in classifying gas-jet diffusion flame behavior. Normal-gravity data on gas-jet flames show that the flame height (non-dimensionalized with respect to an effective diameter) can be correlated to a density weighted Froude number in the buoyancy-dominated limit. In the momentum-dominated limit this non-dimensional flame height asymptotes to a constant value. The momentum-dominated limit under normal gravity conditions is usually obtained for very high injection velocities which in turn results in high values of the injection Reynolds number. This results in a complicated flame structure because of the large number of turbulence scales involved. In order to gain better insight into the structure of these flames it would be useful to reduce the injection Reynolds number while still maintaining turbulent conditions. This can be done in microgravity where momentum-dominated turbulent flames are obtained at much smaller velocities than in normal gravity. In this paper, experimental results on the effects of nozzle diameter and fuel dilution on flame height are discussed. The experimental values are compared with predictions from a numerical procedure utilizing the standard k-epsilon turbulence model. Flame height scaling with nozzle size and dilution is established. Differences between model predictions and measurements are presented. In order to explain these differences, evolutions of turbulent spectra and Taylor microscale along the flame axis are considered.
NASA Astrophysics Data System (ADS)
Lee, Chin Yik; Li, Larry Kin Bong; Juniper, Matthew P.; Cant, Robert Stewart
2016-01-01
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier-Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various
Conditional statistics in a turbulent premixed flame derived from direct numerical simulation
NASA Technical Reports Server (NTRS)
Mantel, Thierry; Bilger, Robert W.
1994-01-01
The objective of this paper is to briefly introduce conditional moment closure (CMC) methods for premixed systems and to derive the transport equation for the conditional species mass fraction conditioned on the progress variable based on the enthalpy. Our statistical analysis will be based on the 3-D DNS database of Trouve and Poinsot available at the Center for Turbulence Research. The initial conditions and characteristics (turbulence, thermo-diffusive properties) as well as the numerical method utilized in the DNS of Trouve and Poinsot are presented, and some details concerning our statistical analysis are also given. From the analysis of DNS results, the effects of the position in the flame brush, of the Damkoehler and Lewis numbers on the conditional mean scalar dissipation, and conditional mean velocity are presented and discussed. Information concerning unconditional turbulent fluxes are also presented. The anomaly found in previous studies of counter-gradient diffusion for the turbulent flux of the progress variable is investigated.
Study and modeling of finite rate chemistry effects in turbulent non-premixed flames
NASA Technical Reports Server (NTRS)
Vervisch, Luc
1993-01-01
The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.
A ring stabilizer for lean premixed turbulent flames
Johnson, M.R.; Kostiuk, L.W.; Cheng, R.K.
1998-08-01
In previous experiments on conical flame behavior in microgravity, which were conducted in drop-towers and in airplanes, the use of a pilot flame was not an option. To permit combustion of stable lean premixed conical flames without a pilot, a ring stabilizer was developed. Although similar types of bluff-body stabilization have been used in the past, the ring stabilizer is somewhat unique. It is designed to fit inside the burner exit port and has demonstrated to be highly effective in stabilizing flames over a very wide range of conditions (including ultra-lean flames at high flow-rates) without adversely affecting flame emissions. Unlike a simple rod stabilizer or a stagnation flame system, the benefit of having the stabilizer conform to the burner port is that there is very little leakage of the unburned fuel. The purpose of this brief communication is to offer this simple and highly useful device to the combustion research community. Presented are highlights of a parametric study that measured the stabilization limits and pollutant emissions of several different rings, and demonstrated their potential for use in practical systems.
Measurements of premixed-flame turbulence generation and modification in a Taylor-Couette burner
Arjomand-Kermani, Amir M.; Aldredge, Ralph C.
2007-10-15
Turbulent, premixed lean methane-air flames were studied experimentally in a Taylor-Couette burner, extending the previous work of non-reacting turbulent-flow measurements. A laser-Doppler velocimetry system is employed to measure velocity fluctuations in the circumferential direction at the center of the annulus where mean velocities are nearly zero. Turbulence parameters such as the intensities, approximated integral and micro-time and length scales and one-dimensional frequency spectra are obtained for the flow-field ahead and behind the flame front. The frequency spectra exhibit a -5/3 slope reaffirming isotropic characteristics. It is found that there is an increase in intensity, turbulence Reynolds number and energy across a broad range of frequencies behind the flame along with a shift toward larger scales. However, there appears to be a decrease in amplification of the intensities and turbulence Reynolds number with increasing pre-ignition turbulence in the burner (generated by counter-rotation of the cylinder walls). Results suggest that the presence of flame-generated turbulence in the TC burner is sensitive to both pre-ignition turbulence and equivalence ratio. (author)
The evolution equation for the flame surface density in turbulent premixed combustion
NASA Technical Reports Server (NTRS)
Trouve, A.; Poinsot, T.
1992-01-01
One central ingredient in flamelet models for turbulent premixed combustion is the flame surface density. This quantity conveys most of the effects of the turbulence on the rate of energy release and is obtained via a modeled transport equation, called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact, but unclosed, formulation for the turbulent Sigma-equation. In this exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the flame surface density and the turbulent flame stretch are not available from experiments and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the obvious, complementary approach to get basic information on these fundamental quantities. Three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, the effects of the Lewis number on the rate of production of flame surface area are described in great detail and meaningful comparisons with flamelet models can be performed. The analysis reveals in particular the tendency of the models to overpredict flame surface dissipation as well as their inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the detailed information produced by a DNS-based analysis, this type of comparison not only underscores the shortcomings of current models but also suggests ways to improve them.
Geometrical properties of turbulent premixed flames and other corrugated interfaces
NASA Astrophysics Data System (ADS)
Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.
2016-01-01
This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar
Geometrical properties of turbulent premixed flames and other corrugated interfaces.
Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I
2016-01-01
This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar
Field Effects of Buoyancy on Lean Premixed Turbulent Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Dimalanta, R.; Wernet, M. P.; Greenberg, P. S.
2001-01-01
Buoyancy affects the entire flowfield of steady turbulent flames and this aspect of flame buoyancy coupling is largely unexplored by experiments or by theory. Open flames and flames within large confinements are free to expand and interact with the surrounding environment. In addition to fluid and combustion conditions, their aerodynamic flowfields are determined by the flame brush orientation and geometry, wake of the stabilizer, enclosure size, and of course, the gravitational field. Because the flowfield consists mainly of cold reactants (mostly in the nearfield) and hot products (mostly in the farfield), buoyancy effects are manifested in the farfield region. In upward pointing flames, an obvious effect is a favorable axial pressure gradient that accelerates the products thereby increasing the axial aerodynamic stretch rate. Intrinsic to turbulent flows, changes in mean aerodynamic stretch also couple to the fluctuating pressure field. Consequently, buoyancy can influence the turbulence intensities upstream and downstream of the flame. Flame wrinkling process, and heat release rate are also directly affected. This backward coupling mechanism is the so-called elliptic problem. To resolve the field effects of buoyancy would require the solution of three-dimensional non-linear Navier Stokes equations with full specification of the upstream, wall and downstream boundary conditions.
The influence of Lewis number and nonhomogeneous mixture on premixed turbulent flame structure
NASA Technical Reports Server (NTRS)
Haworth, D. C.; Poinsot, T. J.
1990-01-01
The structure of a premixed flame front in two-dimensional turbulence is investigated using full numerical simulation including heat release, variable fluid properties, and one-step Arrhenius chemistry. Non-unity Lewis number (Le) effects are described by comparing the local instantaneous turbulent flame structure to the steady one dimensional laminar flame structure for the same thermochemical parameters. Flame surface area, mean reactant consumption rate per unit area of flame, turbulent flame speed, and statistical descriptions of the flame geometry are also reported. Principal findings are that the local flame structure correlates strongly with the local flame curvature, while global properties depend both on strain and on curvature. Preliminary results for cases with nonhomogeneous reactant mixture strength are reported. Here, the emphasis is on the ability of a propagating flame to recover after encountering a fuel-lean pocket in an otherwise homogeneous mixture. Both one dimensional and two dimensional cases are described.
The production of premixed flame surface area in turbulent shear flow
NASA Technical Reports Server (NTRS)
Trouve, A.
1993-01-01
In the present work, we use three-dimensional Direct Numerical Simulation (DNS) of premixed flames in turbulent shear flow to characterize the effect of a mean shear motion on flame surface production. The shear is uniform in the unburnt gas, and simulations are performed for different values of the mean shear rate, S. The data base is then used to estimate and compare the different terms appearing in the Sigma-equation as a function of S. The analysis gives in particular the relative weights f the turbulent flow and mean flow components, a(sub T) and A(sub T), of the flame surface production term. This comparison indicates whether the dominant effects of a mean flow velocity gradient on flame surface area are implicit and scale with the modified turbulent flow parameters, kappa and epsilon, or explicit and scale directly with the rate of deformation.
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Bedat, B.; Yegian, D. T.; Greenberg, P.
1999-01-01
Open laboratory turbulent flames used for investigating fundamental flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in open flames, buoyancy effects are usually not considered in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with the mean and the fluctuating pressure fields. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, and flame geometry.
Geometrical properties of turbulent premixed flames and other corrugated interfaces.
Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I
2016-01-01
This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar
The conditional moment closure method for modeling lean premixed turbulent combustion
NASA Astrophysics Data System (ADS)
Martin, Scott Montgomery
Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from
Steinberg, Adam M.; Driscoll, James F.
2010-07-15
Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgrid strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be
DNS and modeling of the interaction between turbulent premixed flames and walls
NASA Technical Reports Server (NTRS)
Poinsot, T. J.; Haworth, D. C.
1992-01-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.
Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion
Poinsot, T.J.; Haworth, D.C.; Bruneaux, G. . Inst. de Mecanique des Fluides de Toulouse General Motors Research, Warren, MI Inst. Francais du Petrole, Rueil Malmaison )
1993-10-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a law-of-the-wall'' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame -- wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step. Preliminary tests of this model are presented for the case of a spark-ignited piston engine.
NASA Astrophysics Data System (ADS)
Hernandez Perez, Francisco Emanuel
Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to computationally describe and represent turbulent combustion processes. However, a considerable complication of LES for turbulent premixed combustion is that chemical reactions occur in a thin reacting layer at small scales which cannot be entirely resolved on computational grids and need to be modelled. In this thesis, subfilter-scale (SFS) modelling for LES of lean H 2-enriched methane-air turbulent premixed combustion was investigated. Two- and three-dimensional fully-compressible LES solvers for a thermally perfect reactive mixture of gases were developed and systematically validated. Two modelling strategies for the chemistry-turbulence interaction were pursued: the artificially thickened flame model with a power-law SFS wrinkling approach and the presumed conditional moment (PCM) coupled with the flame prolongation of intrinsic low-dimensional manifold (FPI) chemistry tabulation technique. Freely propagating and Bunsen-type flames corresponding to stoichiometric and lean premixed mixtures were considered. Validation of the LES solvers was carried out by comparing predicted solutions with experimental data and other published numerical results. Head-to-head comparisons of different SFS approaches, including a transported flame surface density (FSD) model, allowed to identify weaknesses and strengths of the various models. Based on the predictive capabilities of the models examined, the PCM-FPI model was selected for the study of hydrogen-enrichment of methane. A new progress of reaction variable was proposed to account for NO. The importance of transporting species with different diffusion coefficients was demonstrated, in particular for H2. The proposed approach was
Understanding and predicting soot generation in turbulent non-premixed jet flames.
Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.
2010-10-01
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model
Stochastic modeling of unsteady extinction in turbulent non-premixed combustion
Lackmann, T.; Hewson, J. C.; Knaus, R. C.; Kerstein, A. R.; Oevermann, M.
2016-07-19
Turbulent fluctuations of the scalar dissipation rate have a major impact on extinction in non-premixed combustion. Recently, an unsteady extinction criterion has been developed (Hewson, 2013) that predicts extinction dependent on the duration and the magnitude of dissipation rate fluctuations exceeding a critical quenching value; this quantity is referred to as the dissipation impulse. Furthermore, the magnitude of the dissipation impulse corresponding to unsteady extinction is related to the difficulty with which a flamelet is exintguished, based on the steady-state S-curve.
Chen, Yung-Cheng; Kim, Munki; Han, Jeongjae; Yun, Sangwook; Yoon, Youngbin
2008-08-15
A new definition of turbulent consumption speed is proposed in this work that is based on the heat release rate integral, rather than the mass burning rate integral. Its detailed derivation and the assumptions involved are discussed in a general context that applies to all properly defined reaction progress variables. The major advantage of the proposed definition is that it does not require the thin-flame assumption, in contrast to previous definitions. Experimental determination of the local turbulent displacement speed, S{sub D}, and the local turbulent consumption speed, S{sub C}, is also demonstrated with the particle image velocimetry technique in three turbulent premixed stagnation flames. The turbulence intensity of these flames is of the same order of the laminar burning velocity. Based on the current data, a model equation for the local mean heat release rate is proposed. The relationship between S{sub D} and S{sub C} is discussed along with a possible modeling approach for the turbulent displacement speed. (author)
Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame
NASA Technical Reports Server (NTRS)
Cheng, Robert K.; Bedat, Benoit
1997-01-01
Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to
Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames
NASA Astrophysics Data System (ADS)
Sitte, Michael Philip; Bach, Ellen; Kariuki, James; Bauer, Hans-Jörg; Mastorakos, Epaminondas
2016-05-01
The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work on non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability Pign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high Pign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model's flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the ST-versus-u‧ curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.
NASA Astrophysics Data System (ADS)
Thiesset, Fabien; Maurice, Guillaume; Halter, Fabien; Mazellier, Nicolas; Chauveau, Christian; Gökalp, Iskender
2016-05-01
We propose a model for assessing the unresolved wrinkling factor in the large eddy simulation of turbulent premixed combustion. It relies essentially on a power-law dependence of the wrinkling factor on the filter size and an original expression for the 'active' corrugating strain rate. The latter is written as the turbulent strain multiplied by an efficiency function that accounts for viscous effects and the kinematic constraint of Peters. This yields functional expressions for the fractal dimension and the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for the wrinkling factor that incorporates finite Reynolds number effects is further proposed. Finally, the model is successfully assessed on an experimental filtered database.
Finite rate chemistry and presumed PDF models for premixed turbulent combustion
Bray, K.N.C.; Swaminathan, N.; Champion, M.; Libby, P.A.
2006-09-15
The sensitivity of the prediction of mean reaction rates in turbulent premixed flames to presumed PDF shape is studied. Three different presumed PDF shapes are considered: (i) a beta function PDF, (ii) a twin delta function PDF, and (iii) a PDF based on unstrained laminar flame properties. The unstrained laminar flame has the same thermochemistry as the turbulent flame. Emphasis is placed on capturing the finite rate chemistry effects and obtaining a simple expression for the mean reaction rate. It is shown that, as the PDFs approach their bimodal limit, the mean reaction rate expressions obtained using the above three PDFs reduce to a common form. These expressions differ only in the numerical value of a multiplying factor. Predictions are compared with DNS data. Under the conditions of this comparison, the beta function and twin delta function PDFs lead to significant errors, while the PDF based on properties of an unstrained laminar flame gives good agreement with the DNS. (author)
Systematically reduced rate mechanisms and presumed PDF models for premixed turbulent combustion
Bray, Ken; Champion, Michel; Libby, Paul A.
2010-03-15
The use of reduced kinetic mechanisms in models for turbulent premixed flames, at large but finite Damkoehler numbers, is described. Taking as examples the two cases of hydrogen-air and methane-air systems for which there exist reduced kinetic schemes characterized by two independent scalar variables only, it is shown that the mean chemical production rate can be in a general way expressed as the product of a mixing factor, depending on the segregation of species due to turbulence, with a reaction rate factor. In this latter factor the probability density function (PDF) of the two scalars appears only as a constant integral quantity. The extension of this analysis to systems involving more than two independent scalars is envisaged. The general result is applied to the two specific cases of interior PDF's modelled by (i) a single Dirac delta function and (ii) a laminar flamelet. (author)
NASA Technical Reports Server (NTRS)
Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.
1994-01-01
Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).
Miles, P.C.; Gouldin, F.C.
1996-12-01
An experimental technique for obtaining simultaneous measurements of fluid velocity and flamelet position in premixed flames is described and applied in a turbulent V-flame. The flamelet position information is used to calculate conditional velocity statistics, conditional on both zone (reactants or products) as well as conditional on distance from the flamelet. The conditional zone statistics demonstrate that increases (or decreases) in turbulence across the flame are dependent on axial position and location within the flame brush. The product- zone conditional covariance, coupled with the measured conditional mean velocity profiles, indicate that turbulence generation by shear may be a significant contribution to product zone turbulence levels. Velocity statistics conditional on distance from the flamelet demonstrate a considerable interaction between the flamelet and velocity field. Man and rms velocities vary significantly with proximity to the flamelet, such that differences in velocities which which occur just across the flamelet surface. The change in rms velocities just across the flamelet is found to be anisotropic, with the largest increase (smallest decrease) occurring in the axial velocity component. Rms velocities conditional on flamelet position further support the hypothesis that increased product gas velocity fluctuations may have a significant component associated with turbulence generation by mean shear.
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.
1999-01-01
Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.
Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry
NASA Technical Reports Server (NTRS)
Cheng, Robert K.
2003-01-01
Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)
NASA Astrophysics Data System (ADS)
Huh, Kang Y.; Kwon, Jaesung; Lee, Dongkyu
2013-07-01
A new conditional averaging method is introduced in terms of the reaction progress variable, c, and its derivatives of successively higher orders, Σ _f^' (or -∂c/∂n) and ∂2c/∂n2, in high Damköhler number (Da) turbulent premixed combustion. c is continuous and differentiable in space so that conditional averages may be defined for flamelets of finite thicknesses as well as for infinitesimally thin flamelets. A coupled set of transport equations are derived with corresponding conditional coefficient terms for mean reaction progress variable, bar c, and flame surface density (FSD), Σf. Statistics for all component terms are consistent with previous results and show the same qualitative trends irrespective of compressibility by the new averaging practice. It is shown that the maximum FSD, Σmax, occurs at the location where the relationship, nabla ^2 bar c + < {nabla \\cdot {n}} rangle _f Σ _f = 0, holds in a flame brush. An analytical expression is derived for Σmax under the assumption of constant tangential strain rate and linear variation of mean curvature and mean displacement speed, ⟨Sd⟩f, in the bar c space. Σmax becomes equal to one fourth ⟨|∇.n|⟩f or half the mean absolute curvature for fully turbulent flames with the magnitude of ⟨n⟩f close to zero. Once the turbulent burning velocity, ST, is determined by asymptotic behavior at the leading edge, the brush thickness, ℓF, may be obtained from local and integral relationships for the product, ℓFΣmax, in a steadily propagating one-dimensional flame. The newly proposed relationships reproduce proper trends of variation for ST, Σmax, and ℓF against measurement data in literature. They are validated to show good agreement with direct numerical simulation (DNS) results of the Lewis number equal to unity for freely propagating incompressible and stagnating compressible turbulent premixed flames.
Liftoff characteristics of partially premixed flames under normal and microgravity conditions
Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K.; Qin, Xiao; Puri, Ishwar K.; Hegde, Uday
2005-11-01
An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.
Krishnan, S. R.; inivasan, K. K.
2010-09-14
Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NO_{x}). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NO_{x} trends, which showed the lowest NO_{x} emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak
NASA Astrophysics Data System (ADS)
Wang, P.; Fröhlich, J.; Maas, U.
Lean premixed combustion is employed to reduce emission, but can exhibit undesired effects such as lean blow-off and thermo-acoustic resonance. To cope with these, burners with strong swirl are utilized for flame stabilization. In the resulting complex flow system, flow instabilities are observed in both experiments and simulations. To date, large eddy simulation (LES) is becoming a widely used approach for understanding the properties of turbulent flow phenomena. However, LES of lean premixed combustion still constitutes an open challenge. Many turbulent combustion modeling methods have been developed for LES of such flows [1, 2]. Two types of them are the thickened flame (TF) model [3] and the flame surface density (FSD) model [4]. However, none of these models is ideal and suitable for all kinds of flame configurations. A detailed comparison was made between the TF and FSD by Lin et al. [5] for freely propagating premixed flames in homogeneous isotropic decaying turbulent fields, and qualitative agreement between them was found. In the present work, the performances of the two cited turbulent combustion models, TF and FSD, in simulating the lean premixed swirl flames in an industrial gas trubine model combustor is compared against the well-documented experiment data obtained by Meier et al. [6].
Large-Eddy Simulation of Premixed Turbulent Combustion Using the G-Equation
NASA Astrophysics Data System (ADS)
Duchamp de Lageneste, Laurent; Pitsch, Heinz
2000-11-01
Large eddy simulation (LES) of premixed turbulent combustion is now considered to be a promising field. It has the potential to improve predictions of reacting flows over classical Reynolds-averaged Navier-Stokes (RANS) approaches which lack precision. The difficulties associated with large eddy simulations of such flows are related to the fact that the reaction zone is usually much smaller than the LES grid. In the present study, a level-set approach is used to describe turbulent flame propagation. In this method, the flame is represented by an iso-surface of a scalar field described by the G-equation. The main problem in this method is to specify the turbulent burning velocity which replaces the chemical source term appearing in progress variable approaches. An expression for this quantity, valid in both the corrugated flamelet and thin reaction zone regime has recently been proposed in the context of RANS by Peters (Journal of Fluid Mechanics 1999). In the present work a formulation of the G-equation and the subgrid part of the turbulent burning velocity will be given. In particular, the G-field is treated as a distance function in order to be able to define quantities as strain or curvature. Periodic reinitializations are performed to maintain this structure and avoid the use of an artificial diffusion term. To validate the model, computational results from the large eddy simulation of a bunsen-burner flame is compared with experimental data.
Numerical simulations of turbulent premixed H2/O2/N2 flames with complex chemistry
NASA Technical Reports Server (NTRS)
Baum, M.; Poinsot, T. J.; Haworth, D. C.
1992-01-01
Premixed stoichiometric H2/O2/N2 flames propagating in two-dimensional turbulence were studied using direct numerical simulation (simulations in which all fluid and thermochemical scales are fully resolved) including realistic chemical kinetics and molecular transport. Results are compared with earlier zero-chemistry (flame sheet) and one-step chemistry simulations. Consistent with the simpler models, the turbulent flame with realistic chemistry aligns preferentially with extensive strain rates in the tangent plane and flame curvature probability density functions are close to symmetric with near-zero means. By contrast to simple-chemistry results with non-unity Lewis numbers (ratio of thermal to species diffusivity), local flame structure does not correlate with curvature but rather with tangential strain rate. Turbulent straining results in substantial thinning of the flame relative to the steady unstrained laminar case. Heat release and H2O2 contours remain thin and connected ('flamelet-like') while species including H-atom and OH are more diffuse. Peak OH concentration occurs well behind the peak heat-release zone. The feasibility of incorporating realistic chemistry into full turbulence simulations to address issues such as pollutant formation in hydrocarbon-air flames is suggested.
Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor
Nandula, S.P.; Pitz, R.W.; Barlow, R.S.
1995-10-01
Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.
Studies in premixed combustion
Sivashinsky, G.I.
1992-01-01
This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)
A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames
NASA Astrophysics Data System (ADS)
Lipatnikov, A. N.; Nishiki, S.; Hasegawa, T.
2014-10-01
Database obtained earlier in 3D Direct Numerical Simulations (DNS) of statistically stationary, 1D, planar turbulent flames characterized by three different density ratios σ is processed in order to investigate vorticity transformation in premixed combustion under conditions of moderately weak turbulence (rms turbulent velocity and laminar flame speed are roughly equal to one another). In cases H and M characterized by σ = 7.53 and 5.0, respectively, anisotropic generation of vorticity within the flame brush is reported. In order to study physical mechanisms that control this phenomenon, various terms in vorticity and enstrophy balance equations are analyzed, with both mean terms and terms conditioned on a particular value c of the combustion progress variable being addressed. Results indicate an important role played by baroclinic torque and dilatation in transformation of average vorticity and enstrophy within both flamelets and flame brush. Besides these widely recognized physical mechanisms, two other effects are documented. First, viscous stresses redistribute enstrophy within flamelets, but play a minor role in the balance of the mean enstrophy overline{Ω } within turbulent flame brush. Second, negative correlation overline{mathbf {u}^' } \\cdot nabla Ω ^' }} between fluctuations in velocity u and enstrophy gradient contributes substantially to an increase in the mean overline{Ω } within turbulent flame brush. This negative correlation is mainly controlled by the positive correlation between fluctuations in the enstrophy and dilatation and, therefore, dilatation fluctuations substantially reduce the damping effect of the mean dilatation on the vorticity and enstrophy fields. In case L characterized by σ = 2.5, these effects are weakly pronounced and overline{Ω } is reduced mainly due to viscosity. Under conditions of the present DNS, vortex stretching plays a minor role in the balance of vorticity and enstrophy within turbulent flame brush in all three
Flame front surface characteristics in turbulent premixed propane/air combustion
Guelder, O.L.; Smallwood, G.J.; Wong, R.; Snelling, D.R.; Smith, R.; Deschamps, B.M.; Sautet, J.C.
2000-03-01
The characteristics of the flame front surfaces in turbulent premixed propane/air flames were investigated. Flame front images were obtained using laser-induced fluorescence (LIF) of OH and Mie scattering on two Bunsen-type burners of 11.2-mm and 22.4-mm diameters. Nondimensional turbulence intensity, u{prime}/S{sub L}, was varied from 0.9 to 15, and the Reynolds number, based on the integral length scale, varied from 40 to 467. Approximately 100 images were recorded for each experimental condition. Fractal parameters (fractal dimension, inner and outer cutoffs) and corresponding standard deviations were determined by analysis of the flame front images using the caliper technique. The fractal dimensions derived from OH and Mie scattering images are almost identical. However, inner and outer cutoffs from OH images are consistently higher than those obtained from Mie scattering. The self-similar region of the flame front wrinkling is about a decade for all flames studied. In the nondimensional turbulence intensity range from 1 to 15, it was found that the mean fractal dimension is about 2.2 and it does not show any dependence on turbulence intensity. This contradicts the findings of the previous studies that showed that the fractal dimension asymptotically reaches to 2.35--2.37 when the nondimensional turbulence intensity u{prime}/S{sub L} exceeds 3. It is shown that the reason for this discrepancy is the image analysis method used in the previous studies. Examples are given to show the inadequacy of the circle method used in previous studies for extraction of fractal parameters from flame front images. The fractal parameters obtained so far, in this and previous studies, are not capable of correctly predicting the turbulent burning velocity using the available fractal area closure model.
Characterization and modeling of premixed turbulent n-heptane ames in the thin reaction zone regime
NASA Astrophysics Data System (ADS)
Savard, Bruno
n-heptane/air premixed turbulent flames in the high-Karlovitz portion of the thin reaction zone regime are characterized and modeled in this thesis using Direct Numerical Simulations (DNS) with detailed chemistry. In order to perform these simulations, a time-integration scheme that can efficiently handle the stiffness of the equations solved is developed first. A first simulation with unity Lewis number is considered in order to assess the effect of turbulence on the flame in the absence of differential diffusion. A second simulation with non-unity Lewis numbers is considered to study how turbulence affects differential diffusion. In the absence of differential diffusion, minimal departure from the 1D unstretched flame structure (species vs. temperature profiles) is observed. In the non-unity Lewis number case, the flame structure lies between that of 1D unstretched flames with "laminar'' non-unity Lewis numbers and unity Lewis number. This is attributed to effective Lewis numbers resulting from intense turbulent mixing and a first model is proposed. The reaction zone is shown to be thin for both flames, yet large chemical source term fluctuations are observed. The fuel consumption rate is found to be only weakly correlated with stretch, although local extinctions in the non-unity Lewis number case are well correlated with high curvature. These results explain the apparent turbulent flame speeds. Other variables that better correlate with this fuel burning rate are identified through a coordinate transformation. It is shown that the unity Lewis number turbulent flames can be accurately described by a set of 1D (in progress variable space) flamelet equations parameterized by the dissipation rate of the progress variable. In the non-unity Lewis number flames, the flamelet equations suggest a dependence on a second parameter, the diffusion of the progress variable. A new tabulation approach is proposed for the simulation of such flames with these dimensionally
Large eddy simulation of soot formation in a turbulent non-premixed jet flame
El-Asrag, Hossam; Menon, Suresh
2009-02-15
A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)
NASA Astrophysics Data System (ADS)
Yuan, Xiao-Chuan; Glover, Keith
2013-11-01
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided.
The influence of pressure on the control of premixed turbulent flames using an electric field
Sakhrieh, A.; Dinkelacker, F.; Leipertz, A.; Lins, G.; Hammer, T.; Branston, D.W.
2005-11-01
Previous investigations of the effects of electric fields on flames have shown the potential for stabilizing flames and reducing emissions with comparatively little effort, but were restricted to atmospheric pressure. In the present work the influence of the electric field on premixed turbulent jet flames at increased pressure is investigated. Besides the question of whether field effects persist at elevated pressure, it is of interest to find physically based scaling laws. The current work describes experiments with premixed turbulent seven-hole Bunsen-jet flames for pressures between 1 and 10 bar, where the exit velocity was held constant, and where electric fields of varied strength and direction were applied to the flame. Concentrations of CO, NO, and NO{sub 2} were measured in the exhaust gas section. Experiments show that the electric field influence is clearly visible for increased pressures, without any indication that 10 bar should be an upper limit. CO emissions could be reduced by about 95%, irrespective of pressure. The decrease of CO was accompanied by an increase of NO{sub x} by about 25%. Both of these effects can be understood qualitatively within the framework of a one-dimensional model. For reduced voltages up to 3.5 kV/bar the model correctly describes the current-voltage characteristics and leads to the conclusion that high pressure should favor rather than hamper electric field effects on flames. The electric power required for a CO reduction of 95% amounted to 0.1% of the thermal power. The improvement of the lean blowoff limit upon application of an electric field observed so far ranges from 1 to 3% and increases with pressure.
Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames
NASA Astrophysics Data System (ADS)
Chakraborty, Nilanjan; Konstantinou, Ilias; Lipatnikov, Andrei
2016-01-01
The effects of Lewis number Le on both vorticity and enstrophy transport within the flame brush have been analysed using direct numerical simulation data of freely propagating statistically planar turbulent premixed flames, representing the thin reaction zone regime of premixed turbulent combustion. In the simulations, Le was ranged from 0.34 to 1.2 by keeping the laminar flame speed, thermal thickness, Damköhler, Karlovitz, and Reynolds numbers unchanged. The enstrophy has been shown to decay significantly from the unburned to the burned gas side of the flame brush in the Le ≈ 1.0 flames. However, a considerable amount of enstrophy generation within the flame brush has been observed for the Le = 0.34 case and a similar qualitative behaviour has been observed in a much smaller extent for the Le = 0.6 case. The vorticity components have been shown to exhibit anisotropic behaviour within the flame brush, and the extent of anisotropy increases with decreasing Le. The baroclinic torque term has been shown to be principally responsible for this anisotropic behaviour. The vortex stretching and viscous dissipation terms have been found to be the leading order contributors to the enstrophy transport for all cases, but the baroclinic torque and the sink term due to dilatation play increasingly important role for flames with decreasing Le. Furthermore, the correlation between the fluctuations of enstrophy and dilatation rate has been shown to play an important role in determining the material derivative of enstrophy based on the mean flow in the case of a low Le.
Monte-Carlo computation of turbulent premixed methane/air ignition
NASA Astrophysics Data System (ADS)
Carmen, Christina Lieselotte
The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.
NASA Technical Reports Server (NTRS)
Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.
1994-01-01
Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.
A simple one-step chemistry model for partially premixed hydrocarbon combustion
Fernandez-Tarrazo, Eduardo; Sanchez, Antonio L.; Linan, Amable; Williams, Forman A.
2006-10-15
This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)
Turbulence, combustion, pollutant, and stability characterization of a premixed, step combustor
NASA Technical Reports Server (NTRS)
Ganji, A. T.; Sawyer, R. F.
1980-01-01
A two dimensional combustion tunnel was constructed to study a lean premixed turbulent propane/air flame stablized behind a rearward facing step. Studied were: (1) the existence and importance of large coherent structures in turbulent reacting and nonreacting free shear layers behind the steps; (2) the effect of inlet temperature and reference velocity on combustion efficiency; (3) CO, NO2 and NO sub x production in the flame; and (4) the blowout and upstream propagation of the flame. In the ranges studied, the large coherent structures dominated both the reacting and the nonreacting free shear layers behind the step. The growth of the vortices and the propagation of the flamer were intimately linked. Vortex pairing was observed to be one of the mechanisms for introduction of fresh reactants into the shear layer and growth of the shear layer. Probe composition measurements of the flame showed that, in the recirculation zone, the reaction was above 99 percent complete, CO and unburnt hydrocarbons were above the equilibrium level NO sub x concentration was far below the equilibrium level and NO2 comprised a negligible fraction of NO sub x.
Numerical prediction of turbulent flame stability in premixed/prevaporized (HSCT) combustors
NASA Technical Reports Server (NTRS)
Winowich, Nicholas S.
1990-01-01
A numerical analysis of combustion instabilities that induce flashback in a lean, premixed, prevaporized dump combustor is performed. KIVA-II, a finite volume CFD code for the modeling of transient, multidimensional, chemically reactive flows, serves as the principal analytical tool. The experiment of Proctor and T'ien is used as a reference for developing the computational model. An experimentally derived combustion instability mechanism is presented on the basis of the observations of Proctor and T'ien and other investigators of instabilities in low speed (M less than 0.1) dump combustors. The analysis comprises two independent procedures that begin from a calculated stable flame: The first is a linear increase of the equivalence ratio and the second is the linear decrease of the inflow velocity. The objective is to observe changes in the aerothermochemical features of the flow field prior to flashback. It was found that only the linear increase of the equivalence ratio elicits a calculated flashback result. Though this result did not exhibit large scale coherent vortices in the turbulent shear layer coincident with a flame flickering mode as was observed experimentally, there were interesting acoustic effects which were resolved quite well in the calculation. A discussion of the k-e turbulence model used by KIVA-II is prompted by the absence of combustion instabilities in the model as the inflow velocity is linearly decreased. Finally, recommendations are made for further numerical analysis that may improve correlation with experimentally observed combustion instabilities.
NASA Astrophysics Data System (ADS)
Ramji, Sarah Ann
Improved understanding of turbulence-flame interactions in premixed combustion can be achieved using fully 3D time-resolved multi-kHz multi-scalar experimental measurements. These interactions may be represented by the evolution of various Lagrangian quantities described by theoretical Lagrangian Fluid Elements (LFEs). The data used in this work came from two experimental campaigns that used simultaneous T-PIV and OH/CH2O PLIF, at Sandia National Labs and the Air Force Research Lab at Wright-Patterson. In this thesis, an algorithm to accurately track LFEs through this 4D experimental space has been developed and verified by cross-correlation with the T-PIV seed particle fields. A novel method to measure the local instantaneous displacement speed in 3D has been developed, using this algorithm to track control masses of fluid that interact with the flame front. Statistics of the displacement speed have been presented, and the effects of local turbulence and flame topological properties on the displacement speed have been studied.
Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods
NASA Astrophysics Data System (ADS)
Rowinski, David H.; Pope, Stephen B.
2013-08-01
A computational study is performed on a series of four piloted, lean, premixed turbulent jet flames. These flames use the Sydney Piloted Premixed Jet Burner (PPJB), and with jet velocities of 50, 100, 150 and 200 m/s are denoted PM150, PM1100, PM1150 and PM1200, respectively. Calculations are performed using the RANSPDF and LESPDF methodologies, with different treatments of molecular diffusion, with detailed chemistry and flamelet-based chemistry modelling, and using different imposed boundary conditions. The sensitivities of the calculations to these different aspects of the modelling are compared and discussed. Comparisons are made to experimental data and to previously-performed calculations. It is found that, given suitable boundary conditions and treatment of molecular diffusion, excellent agreement between the calculations and experimental measurements of the mean and variance fields can be achieved for PM150 and PM1100. The application of a recently developed implementation of molecular diffusion results in a large improvement in the computed variance fields in the LESPDF calculations. The inclusion of differential diffusion in the LESPDF calculations provides insight on the behaviour in the near-field region of the jet, but its effects are found to be confined to this region and to the species CO, OH and H2. A major discrepancy observed in many previous calculations of these flames is an overprediction of reaction progress in PM1150 and PM1200, and this discrepancy is also observed in the LESPDF calculations; however, a parametric study of the LESPDF mixing model reveals that, with a sufficiently large mixing frequency, calculations of these two flames are capable of yielding improved reaction progress in good qualitative agreement with the mean and RMS scalar measurements up to an x/D of 30. Lastly, the merits of each computational methodology are discussed in light of their computational costs.
Paul, Bireswar; Datta, Amitava; Datta, Aparna; Saha, Abhijit
2009-12-15
An experimental study has been performed to detect the occurrence of nanosized carbon particulates below the soot laden zone of a co-flowing partially premixed flame. Samples have been extracted from different points across the flame and passed through DI water. Absorption and fluorescence spectroscopies have been performed with the collected water suspensions. The occurrence of carbon nanoparticles is evident across the inner flame front. In addition, evidence of naphthalene has also been found inside the inner rich premixed flame. The concentration of naphthalene decreases while that of the carbon nanoparticles increases as the inner flame front is reached. The stability of the nanoparticles in the sample has been ensured by observing that the change in fluorescence quantum yield from the sample over a long duration is small. The band gap energy has been evaluated using the absorption data to characterize the likely structures of the particles in the collected suspension. Two kinds of particles having different zones of band gap energy are found in the flame. Dynamic light scattering measurements show that the particle size grows with the increase in height in the lower part of the flame. While, at 3 and 6 mm elevations the particles are observed to be below 2.5 nm in diameter, the particles at 10 mm elevation are found in the size range of 2.5-5.5 nm. (author)
Impact of heat release on strain rate field in turbulent premixed Bunsen flames
Coriton, Bruno Rene Leon; Frank, Jonathan H.
2016-08-10
The effects of combustion on the strain rate field are investigated in turbulent premixed CH4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts of heatmore » release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the
NASA Astrophysics Data System (ADS)
Day, M. S.; Bell, J. B.; Cheng, R. K.; Tachibana, S.; Beckner, V. E.; Lijewski, M. J.
2009-07-01
One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.
Experimental investigation of the dynamics and structure of lean-premixed turbulent combustion
NASA Astrophysics Data System (ADS)
Yuen, Frank Tat Cheong
2009-12-01
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from φ = 0:7 to 1.0 for propane flames, and from φ = 0:6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/ SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/ SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/ SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/S L regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dkappa
An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2000-11-01
The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.
Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas
Qamar, N.H.; Alwahabi, Z.T.; King, K.D.; Chan, Q.N.; Nathan, G.J.; Roekaerts, D.
2009-07-15
Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)
LIF measurements of turbulent premixed flames in a high pressure environment
Kobayashi, Hideaki; Oyachi, Yasuo; Maruta, Kaoru
1999-07-01
The effects of pressure on OH-LIF characteristics of laminar and turbulent premixed flames were investigated. OH-LIF experiments were performed for methane-air mixtures using burner flames stabilized in high-pressure chambers. An OPO tunable laser pumped by a Nd-YAG laser were used and A{sup 2}{Sigma}{sup +}-X{sup 2} II (0,0) and (1,0) band of OH radical were measured. For laminar flames, OH-LIF excitation spectrum was measured by scanning the laser wavelength at pressures up to 1.0 MPa. The overlap-integral profiles between Gaussian profiles of the laser and Voigt profiles of the absorption line were calculated, and the effects of pressure and laser linewidth on FWHM and intensities of the LIF excitation spectrum were compared with experimental data. Results show that the effects of pressure on the FWHM and peak intensity of overlap integral profiles agree qualitatively with those on the measured LIF excitation spectrum, indicating that the decrease in LIF intensity of the flame at high-pressure is dominated by the broadening of the absorption line shapes. The LIF intensity decreases with increasing linewidth of the laser. A narrow-band laser is effective in order to obtain higher LIF intensity at ordinary pressure but the linewidth of the laser has no significant effect at high pressures.
Chaudhuri, Swetaprovo; Cetegen, Baki M.
2009-03-15
Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH{sup *} emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies ranged from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u{sup '}/U{sub m}{approx}0.3) for U{sub m}=5 m/ s where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented. (author)
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1981-01-01
An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.
NASA Astrophysics Data System (ADS)
Salehi, M. M.; Bushe, W. K.; Daun, K. J.
2012-04-01
Conditional Source-term Estimation (CSE) is a closure model for turbulence-chemistry interactions. This model uses the first-order CMC hypothesis to close the chemical reaction source terms. The conditional scalar field is estimated by solving an integral equation using inverse methods. It was originally developed and has been used extensively in non-premixed combustion. This work is the first application of this combustion model for a premixed flame. CSE is coupled with a Trajectory Generated Low-Dimensional Manifold (TGLDM) model for chemistry. The CSE-TGLDM combustion model is used in a RANS code to simulate a turbulent premixed Bunsen burner. Along with this combustion model, a similar model which relies on the flamelet assumption is also used for comparison. The results of these two approaches in the prediction of the velocity field, temperature and species mass fractions are compared together. Although the flamelet model is less computationally expensive, the CSE combustion model is more general and does not have the limiting assumption underlying the flamelet model.
Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.
2010-03-15
The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)
Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines
Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.
2012-05-09
Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.
NASA Astrophysics Data System (ADS)
Nikolaevich Lipatnikov, Andrei; Nishiki, Shinnosuke; Hasegawa, Tatsuya
2015-05-01
The linear relation between the mean rate of product creation and the mean scalar dissipation rate, derived in the seminal paper by K.N.C. Bray ['The interaction between turbulence and combustion', Proceedings of the Combustion Institute, Vol. 17 (1979), pp. 223-233], is the cornerstone for models of premixed turbulent combustion that deal with the dissipation rate in order to close the reaction rate. In the present work, this linear relation is straightforwardly validated by analysing data computed earlier in the 3D Direct Numerical Simulation (DNS) of three statistically stationary, 1D, planar turbulent flames associated with the flamelet regime of premixed combustion. Although the linear relation does not hold at the leading and trailing edges of the mean flame brush, such a result is expected within the framework of Bray's theory. However, the present DNS yields substantially larger (smaller) values of an input parameter cm (or K2 = 1/(2cm - 1)), involved by the studied linear relation, when compared to the commonly used value of cm = 0.7 (or K2 = 2.5). To gain further insight into the issue and into the eventual dependence of cm on mixture composition, the DNS data are combined with the results of numerical simulations of stationary, 1D, planar laminar methane-air flames with complex chemistry, with the results being reported in terms of differently defined combustion progress variables c, i.e. the normalised temperature, density, or mole fraction of CH4, O2, CO2 or H2O. Such a study indicates the dependence of cm both on the definition of c and on the equivalence ratio. Nevertheless, K2 and cm can be estimated by processing the results of simulations of counterpart laminar premixed flames. Similar conclusions were also drawn by skipping the DNS data, but invoking a presumed beta probability density function in order to evaluate cm for the differently defined c's and various equivalence ratios.
Control of the low-load region in partially premixed combustion
NASA Astrophysics Data System (ADS)
Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per
2016-09-01
Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.
Blowoff behavior of bluff body stabilized flames in vitiated and partially premixed flows
NASA Astrophysics Data System (ADS)
Tuttle, Steven G.
Turbulent flame holding and blowoff characteristics of bluff body stabilized flames were measured in an enclosed rectangular duct with a triangular flame holder in vitiated, premixed and unvitiated, asymmetrically stratified flows. Blowoff stability margins were characterized, with chemiluminescence measurements performed by high-speed imaging to capture flame dynamics during blow off. As the equivalence ratio was decreased, local extinction along the shear layer flames occurred with greater frequency and proximity to the wake stagnation zone. Decreased equivalence ratio resulted in extinction events at the trailing edge of the stagnation zone, where reactants were convected into the recirculation zone and burned. Eventually, increasing reactant dilution of the recirculation zone either increased the ignition time scale or the lowered the strain tolerance of the propagating flames in the flame anchoring region, resulting in lift-off or extinction, and the near field shear layer flames convected to the wake stagnation zone, where they continued to propagate. From there, the flames were convected upstream into the recirculation zone, where they were eventually quenched. Simultaneous PIV and OH PLIF measurements captured the flame edge location and aerodynamic behavior as blowoff was approached. Two-dimensional hydrodynamic stretch alone the flame front and flow field vorticity maps were extracted from the combined PIV/OH PLIF data. The distribution of flame stretch shifted to greater values as the equivalence ratio decreased. Asymmetric fuel distributions, measured with acetone LW, were found to increase the equivalence ratio at blow off from that found with uniformly-fueled flows. This was attributed to the greater wake instability and extinction of the lean-side flames. The asymmetrically fueled flames were more susceptible to thermoacoustic instabilities when the shedding frequency was near an acoustic eigenmode of the exhaust duct, due to the decreased
Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.
2015-05-12
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has
Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.
2015-05-12
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to createmore » a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study
NASA Astrophysics Data System (ADS)
Kwon, Jaesung; Huh, Kang Y.
2014-09-01
DNS is performed to analyse the effects of Lewis number (Le), density ratio and gravity in stagnating turbulent premixed flames. The results show good agreement with those of Lee and Huh (Combustion and Flame, Vol. 159, 2012, pp. 1576-1591) with respect to the turbulent burning velocity, ST, in terms of turbulent diffusivity, flamelet thickness, mean curvature and displacement speed at the leading edge. In all four stagnating flames studied, a mean tangential strain rate resulting in a mean flamelet thickness smaller than the unstretched laminar flame thickness leads to an increase in ST. A flame cusp of positive curvature involves a superadiabatic burned gas temperature due to diffusive-thermal instability for an Le less than unity. Wrinkling tends to be suppressed at a larger density ratio, not enhanced by hydrodynamic instability, in the stagnating flow configuration. Turbulence is produced, resulting in highly anisotropic turbulence with heavier unburned gas accelerating through a flame brush by Rayleigh-Taylor instability. Results are also provided on brush thickness, flame surface density and conditional velocities in burned and unburned gas and on flame surfaces to represent the internal brush structures for all four test flames.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1980-01-01
An experimental and analytical study of the combustion of partially vaporized fuel-air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected in this study showed near linear increases in nitric oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on nitric oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.
NASA Astrophysics Data System (ADS)
Dietzsch, Felix; Gauding, Michael; Hasse, Christian
2014-11-01
By means of Direct Numerical Simulation we have investigated the influence of differential diffusion for non-premixed oxygen-enhanced turbulent flames. Oxygen-enhanced conversion usually yields higher amounts of H2 as compared to conventional air combustion. It is well known that H2 as a very diffusive species leads to differential diffusion effects. In addition to the diffusive transport mixing processes are also often controlled by turbulent transport. Previous investigations of a turbulent CH4/H2 oxygen-enhanced jet flame have shown that in mixture fraction space it is important to distinguish between regions of equal diffusivities and detailed transport. These findings are of particular interest when performing Large-Eddy simulations applying a flamelet approach. Using this approach a LES study was performed of the aforementioned flame considering differential diffusion. Therefore, flamelet equations including differential diffusion via non-unity constant Lewis numbers were solved. However, this study showed that keeping the non-unity Lewis numbers constant, is not sufficient to capture the diffusion phenomena in this particular flame. Direct Numerical Simulations have been conducted in order to investigate how Lewis numbers are affected in mixture fraction space. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant: pr83xa.
Tonse, Shaheen R.; Brown, Nancy J.
2003-02-26
The dimensionality (D) of manifolds of active chemical composition space has been measured using three different approaches: the Hausdorff geometrical binning method, Principal Component Analysis, and the Grassberger-Procaccia cumulative distribution method. A series of artificial manifolds is also generated using a Monte Carlo approach to discern the advantages and limitations of the three methods. Dimensionality is quantified for different levels of turbulent intensity in a simulation of the interactions of a 2D premixed hydrogen flame with a localized region of turbulence superimposed over the cold region upstream of the flame front. The simulations are conducted using an adaptive mesh refinement code for low Mach number reacting flows. By treating the N{sub s} species and temperature of the local thermo-chemical state as a point in multi-dimensional chemical composition space, a snapshot of a flame region is mapped into chemical composition space to generate the manifold associated with the 2-D flame system. An increase in D was observed with increasing turbulent intensity for all three methods. Although each method provides useful information, the Grassberger-Procaccia method is subject to fewer artifacts than the other two thereby providing the most reliable quantification of D.
Stochastic partial differential equations in turbulence related problems
NASA Technical Reports Server (NTRS)
Chow, P.-L.
1978-01-01
The theory of stochastic partial differential equations (PDEs) and problems relating to turbulence are discussed by employing the theories of Brownian motion and diffusion in infinite dimensions, functional differential equations, and functional integration. Relevant results in probablistic analysis, especially Gaussian measures in function spaces and the theory of stochastic PDEs of Ito type, are taken into account. Linear stochastic PDEs are analyzed through linearized Navier-Stokes equations with a random forcing. Stochastic equations for waves in random media as well as model equations in turbulent transport theory are considered. Markovian models in fully developed turbulence are discussed from a stochastic equation viewpoint.
Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie
2015-04-14
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less
Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie
2015-04-14
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Wey, Ming-Jyh
1990-01-01
Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.
NASA Astrophysics Data System (ADS)
Liu, Yu
2015-09-01
The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Wey, Ming-Jyh
1990-01-01
Two-dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.
Partially coherent beam propagation in atmospheric turbulence [invited].
Gbur, Greg
2014-09-01
Partially coherent beams hold much promise in free-space optical communications for their resistance to the deleterious effects of atmospheric turbulence. We describe the basic theoretical and computational tools used to investigate these effects, and review the research to date.
Shy, S.S.; Yang, S.I.; Lin, W.J.; Su, R.C.
2005-10-01
This paper presents turbulent burning velocities, S{sub T}, of several premixed CH{sub 4}/diluent/air flames at the same laminar burning velocity S{sub L}=0.1 m/s for two equivalence ratios f=0.7 and 1.4 near flammability limits with consideration of radiation heat losses from small (N{sub 2} diluted) to large (CO{sub 2} diluted). Experiments are carried out in a cruciform burner, in which the long vertical vessel is used to provide a downward propagating premixed flame and the large horizontal vessel equipped with a pair of counterrotating fans and perforated plates can be used to generate an intense isotropic turbulence in the central region between the two perforated plates. Turbulent flame speeds are measured by four different arrangements of pairs of ion-probe sensors at different positions from the top to the bottom of the central region in the burner. It is found that the effect of gas velocity on S{sub T} measured in the central region can be neglected. Simultaneous measurements using the pressure transducer and ion-probe sensors show that the pressure rise due to turbulent burning has little influence on S{sub T}. These measurements prove the accuracy of the S{sub T} data. At f=0.7, the percentage of [(S{sub T}/S{sub L}){sub CO{sub 2}}-(S{sub T}/S{sub L}){sub N{sub 2}}]/(S{sub T}/S{sub L}){sub N{sub 2}} decreases gradually from -4 to -17% when values of u{sup '}/S{sub L} increase from 4 to 46, while at f=1.4 such decrease is much more abrupt from -19 to -53% when values of u{sup '}/S{sub L} only increase from 4 to 18. The larger the radiation losses, the smaller the values of S{sub T}. This decreasing effect is augmented by increasing u{sup '}/S{sub L} and is particularly pronounced for rich CH{sub 4} flames. When u{sup '}/S{sub L}=18, lean CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames have much higher, 3.6 and/or 1.8 times higher, values of S{sub T}/S{sub L} than rich CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames, respectively. It is found that
Weiss, M.; Zarzalis, N.; Suntz, R.
2008-09-15
Effects of turbulent flame stretch on mean local laminar burning velocity of flamelets, u{sub n}, were investigated experimentally in an explosion vessel at normal temperature and pressure. In this context, the wrinkling, A{sub t}/A{sub l}, and the burning velocity, u{sub t}, of turbulent flames were measured simultaneously. With the flamelet assumption the mean local laminar burning velocity of flamelets, u{sub n}=u{sub t} x (A{sub t}/A{sub l}){sup -1}, was calculated for different turbulence intensities. The results were compared to the influence of stretch on spherically expanding laminar flames. For spherically expanding laminar flames the stretched laminar burning velocity, u{sub n}, varied linearly with the Karlovitz stretch factor, yielding Markstein numbers that depend on the mixture composition. Six different mixtures with positive and negative Markstein numbers were investigated. The measurements of the mean local laminar burning velocity of turbulent flamelets were used to derive an efficiency parameter, I, which reflects the impact of the Markstein number and turbulent flame stretch - expressed by the turbulent Karlovitz stretch factor - on the local laminar burning velocity of flamelets. The results showed that the efficiency is reduced with increasing turbulence intensity and the reduction can be correlated to unsteady effects. (author)
NASA Astrophysics Data System (ADS)
Keppeler, Roman; Pfitzner, Michael
2015-01-01
An algebraic model is derived that accounts for the effects of non-resolved Landau-Darrieus and thermo-diffusive instabilities on the propagation speed of fully premixed laminar and turbulent flame fronts in the Large Eddy Simulation (LES) context provided that the laminar flame speed appears as a model parameter in the LES combustion model. The model is derived assuming fractal characteristics of flames which exhibit cellular structures due to instabilities. The smallest and largest unstable wavelengths are computed employing a dispersion relation for nominally planar flames. Values for the fractal dimension characterising the flame structures are taken from the literature. A phenomenological model accounts for the stabilising effect of strain. Based on experimental data, a correlation for a critical strain rate, which indicates the onset of instabilities, is formulated. To validate the new model which accounts for instabilities on the effective speed of laminar flame propagation, laminar expanding spherical methane-air flames at p = 5 bar and p = 10 bar are simulated in the LES context. Values for the fractal dimension, as proposed in the literature, are varied. The predicted flame propagation speed is in very good agreement with experimental data when applying a fractal dimension of about D = 2.06. The critical strain turns out to be a suitable parameter to indicate the onset of instabilities and to quantify the influence of instabilities. Simulations applying a second model proposed by Bradley and valid for spherically expanding flames show similar results. LES of turbulent Bunsen flames at 1, 5 and 10 bar, which are characterised by u‧/s0L < 1, are performed to evaluate the derived instability model for turbulent flames. The simulated flames (from the Kobayashi database) have already been experimentally investigated in the context of Landau-Darrieus and thermo-diffusive instabilities. In agreement with conclusions from these investigations, for the
Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor
Chorpening, B.T.; Thornton, J.D.; Huckaby, E.D.; Benson, K.J.
2007-04-01
To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented that operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blow off, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25 m/s 82 ft/ s . The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber
Local consumption speed of turbulent premixed flames - An analysis of ''memory effects''
Hemchandra, Santosh; Lieuwen, Tim
2010-05-15
The local turbulent flame speed of an attached flame is not only a function of the local flow and flame conditions, but also of upstream conditions - i.e., it is ''non-local'' or exhibits ''memory''. Non-locality adds an additional degree of freedom to the classic problem of a freely propagating flame propagating normally to the time averaged flow. Non-locality occurs due to mean tangential flow along the flame brush, which causes flame wrinkles to translate downstream. As such, the wrinkling of the flame at any given point is not only a function of the local velocity disturbance, but also a superposition of flame surface perturbations from locations upstream at previous times. This causes the correlation length scale of turbulent flame wrinkles to differ from that of the underlying turbulent velocity fluctuations. The objective of this paper is to provide a physical description of the key flame kinematic processes that cause these non-local effects. Two approaches are adopted in this work. First, analytical solutions of the G-equation that explicitly describe the effect of non-locality in the low turbulence limit are developed. Second, numerical computations of the G-equation are performed that demonstrate the role of non-linearity in flame surface kinematics at higher turbulence intensities. Finally, these predictions are shown to be consistent with data from a turbulent Bunsen flame. (author)
The structure and stability of the laminar counter-flow partially premixed methane/air triple flame
Lockett, R.D.; Boulanger, B.; Harding, S.C.; Greenhalgh, D.A.
1999-10-01
The flame stability map defining the regime of existence of a counter-flowing laminar partially premixed methane-air triple flame has been determined using OH planar laser-induced fluorescence (PLIF). The stability limits were determined through the observation of flame merging and flame extinction, a function of rich and lean equivalence ratios, and mean axial strain rate. Relatively quantitative OH species profiles and Rayleigh scattering profiles have been measured for three flame conditions. Axial flow velocity profiles, and nozzle exit velocity profiles have been determined for two of the three conditions using 1-D laser Doppler velocimetry (LDV). The diffusion flame extinction axial velocity profile has been measured, and the local extinction axial strain rate has been determined to be 710 s{sup {minus}1}.
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Pope, Stephen B.
2014-05-01
A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.
NASA Astrophysics Data System (ADS)
Jaishree, J.; Haworth, D. C.
2012-06-01
Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method
Demonstration of a burner for the investigation of partially premixed low-temperature flames
Struckmeier, U.; Lucassen, A.; Kohse-Hoeinghaus, K.; Hansen, N.; Wada, T.; Peters, N.
2010-10-15
A burner, which stabilizes near-one-dimensional low-temperature flames at atmospheric pressure, was designed to access the combustion regime near 1500 K for quantitative species diagnostics. Combustion temperatures between 1300 and 1800 K in argon-diluted methane-oxygen flames were achieved by preheating the burner and adapting the inert gas flow. Mass spectrometry with electron ionization was used to determine mole fractions profiles of reactants, products, and intermediates. Combustion parameters were varied including stoichiometry, diluent mole fraction and preheat temperature. Mole fraction profiles resemble those taken in regular premixed flat flames. A number of C{sub 1}- and C{sub 2}-intermediates as well as some oxygenated species were identified. Higher-mass species (m/z > 42) were not detected in the low-temperature methane-oxygen flames which contain 90% argon in the cold gases. (author)
Structure of turbulent non-premixed flames modeled with two-step chemistry
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.
Tang, B.H.Y.; Chan, C.K.
2006-10-15
In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)
Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin
2009-12-15
This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)
Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame
Kanga, D.M.; Fernandez, V.; Culick, F.E.C.; Ratner, A.
2009-01-15
This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)
Flamelet modelling of propane--air chemistry in turbulent non-premixed combustion
Askari-Sardhai, A.; Liew, S.K.; Moss, J.B.
1985-01-01
This short paper describes the application of the flamelet modelling approach to the prediction of the species concentration field in a turbulent propane-air flame. The structure of the laminar flamelet, the microscopic element in the model, is computed using a semi-global expression for fuel disappearance in conjunction with an established reaction scheme for the oxidation of CO and H/sub 2/. Detailed predictions for a turbulent jet-flame are compared with available experimental data. The significant measure of non-equilibrium which the flamelet introduces leads to substantial improvements in the prediction of CO, H/sub 2/, and C/sub 3/H/sub 8/ mass fractions in comparison with the simplest alternative model, that of full chemical equilibrium.
Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels
NASA Astrophysics Data System (ADS)
Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.
2011-07-01
Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.
Evolution equation for the flame surface density in turbulent premixed combustion
Trouve, A.; Poinsot, T.
1994-11-01
An exact evolution equation for the flame surface density, the Sigma-equation, describes the basic physical mechanisms like production by hydrodynamic straining and destruction by propagation effects. Here, direct numerical simulation (DNS) is used to estimate the different terms appearing in the Sigma-equation. The simulations are performed for various mixture Lewis number to modify the strength and nature of the flame-flow coupling. The source and sink terms for the flame surface density are resolved spatially across the turbulent flame brush using the DNS-based analysis. Direct comparisons with flamelet models are also performed. Some areas where the model needs improvement are identified.
A novel plasma heater for auto-ignition studies of turbulent non-premixed flows
NASA Astrophysics Data System (ADS)
Eitel, Felix; Pareja, Jhon; Geyer, Dirk; Johchi, Ayane; Michel, Florian; Elsäßer, Wolfgang; Dreizler, Andreas
2015-10-01
In this paper, the development and characterization of a novel test rig for auto-ignition (AI) studies of a fuel jet propagating into a hot turbulent co-flow is reported. The test rig, based on microwave plasma heating, is capable of achieving co-flow temperatures up to 1300 K and velocities up to 40 {ms}^{-1}. Important boundary conditions at nozzle exit such as temperature, species, and velocity field were determined to prove the capabilities and limitations of the test rig. Liftoff height (LOH) measurements of {CH}_4, {C}_2{H}_4, and {CH}4/{H}2 jets, propagating into a turbulent heated air co-flow, were taken using chemiluminescence imaging. Effects of the temperature and Reynolds number ( Re) of co-flow and jet were also studied. Results showed that the flame stabilization mechanism is supported substantially by AI rather than pure flame propagation. While the co-flow temperature dominates the AI process, the Re and temperature of the jet just have a small impact on the LOH.
NASA Astrophysics Data System (ADS)
Lee, Jaeseo; Lee, Gwang G.; Huh, Kang Y.
2014-12-01
This paper presents validation of new analytical expressions for the turbulent burning velocity, ST, based on asymptotic behavior at the leading edge (LE) in turbulent premixed combustion. Reaction and density variation are assumed to be negligible at the LE to avoid the cold boundary difficulty in the statistically steady state. Good agreement is shown for the slopes, dST/du', with respect to Lc/δf at low turbulence, with both normalized by those of the reference cases. δf is the inverse of the maximum gradient of reaction progress variable through an unstretched laminar flame, and Lc is the characteristic length scale given as burner diameter or measured integral length scale. Comparison is made for thirty-five datasets involving different fuels, equivalence ratios, H2 fractions in fuel, pressures, and integral length scales from eight references [R. C. Aldredge et al., "Premixed-flame propagation in turbulent Taylor-Couette flow," Combust. Flame 115, 395 (1998); M. Lawes et al., "The turbulent burning velocity of iso-octane/air mixtures," Combust. Flame 159, 1949 (2012); H. Kido et al., "Influence of local flame displacement velocity on turbulent burning velocity," Proc. Combust. Inst. 29, 1855 (2002); J. Wang et al., "Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa," Exp. Therm. Fluid Sci. 50, 90 (2013); H. Kobayashi et al., "Experimental study on general correlation of turbulent burning velocity at high pressure," Proc. Combust. Inst. 27, 941 (1998); C. W. Chiu et al., "High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers," Int. J. Hydrogen Energy 37, 10935 (2012); P. Venkateswaran et al., "Pressure and fuel effects on turbulent consumption speeds of H2/CO blends," Proc. Combust. Inst. 34, 1527 (2013); M. Fairweather et al., "Turbulent burning rates of methane and methane-hydrogen mixtures," Combust. Flame 156, 780 (2009)]. The turbulent
NASA Astrophysics Data System (ADS)
Chakraborty, Nilanjan; Klein, Markus
2008-08-01
Flame surface density (FSD) based reaction rate closure is one of the most important approaches in turbulent premixed flame modeling. The algebraic models for FSD based on power laws often require information about the fractal dimension D and the inner cut-off scale ηi. In the present study, two three-dimensional direct numerical simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames are analyzed among which the flame in one case belongs to the corrugated flamelet (CF) regime, whereas the other falls well within the thin reaction zone (TRZ) regime. It is found that D for the flame in the TRZ regime is greater than the value obtained for the flame in the CF regime. For the flame within the TRZ regime, the fractal dimension is found to be 7/3, which is the same as D for a material surface in a turbulent environment. For the flame in the CF regime, ηi is found to scale with the Gibson scale, whereas ηi is found to scale with the Kolmogorov length scale for the flame in the TRZ regime. Based on these observations a new algebraic model for FSD is proposed, where D and ηi are expressed as functions of Karlovitz number. The performances of the new and existing algebraic models for FSD are compared with the corresponding values obtained from DNS databases.
NASA Astrophysics Data System (ADS)
El-Asrag, Hossam A.; Braun, Markus; Masri, Assaad R.
2016-07-01
The paper presents Large Eddy Simulations (LESs) for the Sydney ethanol piloted turbulent dilute spray flames ETF2, ETF6, and ETF7. The Flamelet Generated Manifold (FGM) approach is employed to predict mixing and burning of the evaporating fuel droplets. A methodology to match the experimental inflow spray profiles is presented. The spray statistical time-averaged results show reasonable agreement with mean and RMS data. The Particle Size Distribution (PSD) shows a good match downstream of the nozzle exit and up to x/D = 10. At x/D = 20 and 30 the PSD is under-predicted for droplets with mean diameter D10 > 20μm and over-predicted for the smaller size droplets. The simulations reasonably predict the reported mean flame structure and length. The effect of increasing the carrier velocity (ETF2-ETF7) or decreasing the liquid fuel injection mass flow rate (ETF2-ETF6) is found to result in a leaner, shorter flame and stronger spray-flow interactions. Higher tendency to local extinction is observed for ETF7 which is closer to blow-off compared to ETF2 and has higher scalar dissipation rates, higher range of Stokes number, and faster droplet response. The possible sources of LES-FGM deviations from the measurements are discussed and highlighted. In particular, the spray time-averaged statistical error contribution is quantified and the impact of the inflow uncertainty is studied. Sensitivity analysis to the pre-vaporized nozzle fuel mass fraction show that such small inflow perturbations (by ± 2% for the ETF2 flame) have a strong impact on the flame structure, and the droplets' dynamics. Conditional scatter plots show that the flame exhibits wide range of mixing conditions and bimodal mixing lines particularly at upstream locations (x/D < 20), where the injected droplets are still penetrating the centerline. This is relaxed further downstream as droplets gradually evaporate and burn in a diffusion like mode.
Partially turbulated trailing edge cooling passages for gas turbine nozzles
Thatcher, Jonathan Carl; Burdgick, Steven Sebastian
2001-01-01
A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.
NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss
Mokhov, A.V.; Levinsky, H.B.
1999-09-01
Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.
Qin, Zhiyuan; Tao, Rumao; Zhou, Pu; Xu, Xiaojun; Liu, Zejin
2013-11-20
Based on partially coherent Bessel-Gaussian beams (BGBs), the coherence evolution of the partially coherent beams carrying optical vortices in non-Kolmogorov turbulence is investigated in detail. The analytical formulas for the spatial coherence length of partially coherent BGBs with optical vortices in non-Kolmogorov turbulence have been derived by using the combination of a coherence superposition approximation of decentered Gaussian beams and the extended Huygens-Fresnel principle. The influences of beam and turbulence parameters on spatial coherence are investigated by numerical examples. Numerical results reveal that the coherence of the partially coherent laser beam with vortices is independent of the optical vortices, and the spatial correlation length of the beams does not decrease monotonically during propagation in non-Kolmogorov turbulence. Within a certain propagation distance, the coherence of the partially coherent beam will improve, and the improvement of the coherence of the partially coherent beams is closely related to the beam and turbulence parameters.
NOx Formation in a Premixed Syngas Flame
Yilmaz, S.L.; Givi, P.; Strakey, P.; Casleton, K.
2006-11-01
Reduction of NOx is a subject of significant current interest in stationary gas turbines. The objective of this study is to examine the effects of turbulence on non-thermal NOx formation in a syngas flame. This is archived by a detailed parametric study via PDF simulations of a partially stirred reactor and a dumped axisymmetric premixed flame. Several different detailed and reduced kinetics schemes are considered. The simulated results demonstrate the strong dependence of combustion process on turbulence. It is shown that the amount of NOx formation is significantly influenced by the inlet conditions. That is, the turbulence intensity can be tweaked to attain optimal ultra-low NOx emissions at a given temperature.
NASA Astrophysics Data System (ADS)
Ding, Chaoliang; Pan, Liuzhan; Lü, Baida
2009-10-01
Taking the spectrally partially coherent Gaussian Schell-model pulsed (GSMP) beam as a typical example of spatially and spectrally partially coherent pulsed beams, an analytical expression for the spectrum of diffracted spectrally partially coherent GSMP beams propagating through atmospheric turbulence is derived by using the method of the complex Gaussian function expansion, and used to study the spectral switches of spectrally partially coherent GSMP beams in atmospheric turbulence. Numerical calculation results are given to illustrate the dependence of spectral switches on the refraction index structure constant and temporal coherent length. The results are interpreted physically.
NASA Astrophysics Data System (ADS)
Allison, Patton Manuel
Partially-premixed, swirl combustion is applied in gas turbine combustors to achieve flame stabilization and reduced emission production. However, this method is also inherently sensitive to combustion instabilities which can cause large pressure, velocity, and heat release fluctuations. This thesis investigates thermoacoustic coupling created by flow-flame dynamics in a gas turbine model combustor (GTMC) for a variety of fuels and operating flow rates. Several naturally occurring instability modes were identified to control the acoustic response of the system, including Helmholtz resonances from the plenum and convective-acoustic effects which cause equivalence ratio oscillations. Laser Doppler velocimetry was used to measure radial flow in the GTMC, which can set up flow-fields which create loudly resonating flat-shaped flames, in comparison to quiet V-shaped flames. Flame location and shape altered convective time delays which determine the relative phases of pressure and heat release oscillations. Simultaneous pressure and chemiluminescence imaging showed that the heat release, pressure fluctuations, and flame motion are all coupled at the same instability frequency. Videos of the flame motion also revealed that the precessing vortex core (PVC), created by the swirling flow, influences the rocking behavior of the flame. Acetone was added to the fuel to act as a tracer in fluorescence measurements which indicated the localization of unburned fuel. It was discovered that fuel was distributed in lobes which corresponded to locations surrounding the shear layer outside of the central recirculation zone, and that the relative distribution of the lobes adjusted to forcing by the flow. Finally, high-speed formaldehyde planar laser-induced fluorescence was applied to study the motion of preheat zone surfaces in response to the oscillations of the instability. The flame surface density and wrinkling fluctuated at the acoustic frequency and displayed dampened motions
Observations of turbulence in a partially stratified estuary
Stagey, M.T.; Monismith, Stephen G.; Burau, J.R.
1999-01-01
The authors present a field study of estuarine turbulence in which profiles of Reynolds stresses were directly measured using an ADCP throughout a 25-h tidal day. The dataset that is discussed quantifies turbulent mixing for a water column in northern San Francisco Bay that experiences a sequence of states that includes a weak ebb and flood that are stratified, followed by a strong, and eventually unstratified, ebb and flood. These measurements show that energetic turbulence is confined to a bottom mixed layer by the overlying stratification. Examination of individual Reynolds stress profiles along with profiles of Richardson number and turbulent Froude number shows that the water column can be divided into regions based on the relative importance of buoyancy effects. Using the measured turbulence production rate P, the dissipation rate e. is estimated. The observed turbulence had values of e/vN2 > 20 all of the time and e/vN2 > 200 most of the time, suggesting that the observed motions were buoyancy affected turbulence rather than internal waves. However, at times, turbulent Froude numbers in much of the upper-water column were less than one, indicating important stratification effects. Taken as a whole, the data show that stratification affects the turbulent velocity variance q2 most severely; that is, observed reductions in u'w' are largely associated with small values of q2 rather than with a dramatic reduction in the efficiency with which turbulent motions produce momentum fluxes. Finally, the dataset is compared to predictions made using the popular Mellor-Yamada level 2.5 closure. These comparisons show that the model tends to underestimate the turbulent kinetic energy in regions of strong stratification where the turbulence is strongly inhomogeneous and to overestimate the turbulent kinetic energy in weakly stratified regions. The length scale does not appear to compensate for these errors, and, as a result, similar errors are seen in the eddy viscosity
The performance of heterodyne detection system for partially coherent beams in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Chengqiang, Li; Tingfeng, Wang; Heyong, Zhang; Jingjiang, Xie; Lisheng, Liu; Shuai, Zhao; Jin, Guo
2015-12-01
The performance of heterodyne system is discussed for partially coherent beams in turbulent atmosphere by introducing turbulence spectrum of refractive-index fluctuations. Several analytic formulae for the heterodyne detection system using the partially coherent Gaussian Schell-model beam are presented. Based on Tatarskii spectrum model, some numerical results are given for the variation in the heterodyne efficiency with the misalignment angle, detector diameter, turbulence conditions, and parameters of the overlapping beams. According to the numerical results, we find that the turbulent atmosphere degrades the heterodyne efficiency significantly, and the variation in heterodyne efficiency is even slower against the misalignment angle in turbulence. For the deterministic received signal and the detector, the performance of the heterodyne detection can be adjusted by controlling the local oscillator signal parameters.
Premixed direct injection nozzle
Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve
2011-02-15
An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.
NASA Astrophysics Data System (ADS)
Efimov, Anatoly
2016-03-01
A partially coherent beam (PCB) is modulated at 1 Gbps with pseudorandom bit sequence data stream and propagated through laboratory turbulence. Eye diagrams are measured and compared to those resulting from a fully coherent beam propagated through the same turbulence. Reduced scintillations of the PCB, as measured separately, expectedly result in a higher quality eye as compared to that of a fully coherent beam. Experimental data is supported by numerical modeling. This work demonstrates the feasibility and simplicity of using PCBs for Gbps data rate free-space optical communication through turbulent atmosphere.
NASA Astrophysics Data System (ADS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-08-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Studies in premixed combustion. Progress report, November 1, 1990--October 31, 1992
Sivashinsky, G.I.
1992-08-01
This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)
Chen, J.H.; Echekki, T.; Kollmann, W.
1999-01-01
The mechanism of unburnt pocket formation in an unsteady two-dimensional premixed lean methane-air flame is investigated using direct numerical simulations. Theoretical results for nonlinear diffusion equations combined with analytical examples are used to interpret some of the results. Flame structure and propagation show three distinct stages of pocket formation: (1) flame channel closing involving head-on quenching of flames, (2) cusp recovery, and (3) pocket burnout. The flame channel closing and subsequent pocket burnout are mutual annihilation events that feature curvature, diffusion normal to the flame front, unsteady strain rate effects, and singularities in flame propagation and stretch rate. The results show that during channel closing and pocket burnout thermo-diffusive and chemical interactions result in the acceleration of the flames prior to annihilation; the time scales associated with the final stage of mutual annihilation and the initial stage of cusp recovery are significantly smaller than diffusive and convective time scales. Peak radical concentrations resulting from flame channel closing and pocket burnout exceed peak laminar values by as much as 25%. After the merging of the fuel consumption layers, radical production and flame structure shifts more towards an H{sub 2}/CO/O{sub 2} system at the expense of hydrocarbon reactions. Species thermodiffusive interaction times are shorter than the unstrained one-dimensional counterpart due to unsteady strain and convection. Curvature effects on the flame propagation are prominent during pocket burnout and cusp recovery. The recovery stage shows strong dependence on diffusion of radicals left from the channel closing stage. This diffusion is amplified by the strong curvature of the flame cusp.
Xu, Yonggen; Li, Yude; Zhao, Xile
2015-09-01
Propagation properties of partially coherent elegant Laguerre-Gaussian beam (PC-eLGB) and partially coherent standard Laguerre-Gaussian beam (PC-sLGB) through the turbulent atmosphere are studied. Analytical formulas for the intensity and effective beam width (EBW) of the PC-eLGB and PC-sLGB through the turbulent atmosphere are derived based on the extended Huygens-Fresnel principle. The propagation properties of PC-eLGB and PC-sLGB through the turbulent atmosphere are studied numerically and comparatively. It is shown that the intensities of the PC-eLGB and PC-sLGB are less affected by the turbulent atmosphere than the fully coherent Laguerre-Gaussian beam. The spreading (EBW and divergent angle of the far field) of PC-eLGB and PC-sLGB with the different mode orders (m,n) is slower in the free space than in the turbulent atmosphere, and the PC-sLGB spreads more rapidly than the PC-eLGB through the free space and the turbulent atmosphere. The study results will be useful for free space optical communications.
Chen, Ziyang; Cui, Shengwei; Zhang, Lei; Sun, Cunzhi; Xiong, Mengsu; Pu, Jixiong
2014-07-28
The scintillation index of a Gaussian beam and radially polarized beams in turbulent atmosphere is experimentally investigated. The scintillation index of a Gaussian beam and a completely coherent radially polarized beam increases with increasing propagation distance from 0 to 400m. The influence of the coherence of partially coherent radially polarized beam on the scintillation is studied. The result shows that the scintillation index of a partially coherent radially polarized beam can be smaller than that of a completely coherent beam.
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, Yaochuan; Yin, Hongming
2016-04-01
The partially coherent four-petal Gaussian vortex beam is introduced and described by analytical expressions. The analytical propagation equation for partially coherent four-petal Gaussian vortex beam in turbulent atmosphere is derived by using the extended Huygens-Fresnel diffraction integral formula. The influences of refraction index structure, beam order n, topological charge M and the coherence length on the average intensity distributions of beam are investigated by numerical examples.
NASA Astrophysics Data System (ADS)
Chakraborty, Nilanjan; Lipatnikov, Andrei N.
2013-04-01
The effects of global Lewis number Le on the statistics of fluid velocity components conditional in unburned reactants and fully burned products in the context of Reynolds Averaged Navier Stokes simulations have been analysed using a Direct Numerical Simulations (DNS) database of statistically planar turbulent premixed flames with a low Damköhler number and Lewis number ranging from 0.34 to 1.2. The conditional velocity statistics extracted from DNS data have been analysed with respect to the well-known Bray-Moss-Libby (BML) expressions which were derived based on bi-modal probability density function of reaction progress variable for high Damköhler number flames. It has been shown that the Lewis number substantially affects the mean velocity and the velocity fluctuation correlation conditional in products, with the effect being particularly pronounced for low Le. As far as the mean velocity and the velocity fluctuation correlation conditional in reactants are concerned, the BML expressions agree reasonably well with the DNS data reported in the present work. Based on a priori analysis of present and previously reported DNS data, the BML expressions have been empirically modified here in order to account for Lewis number effects, and the non-bimodal distribution of reaction progress variable. Moreover, it has been demonstrated for the first time that surface averaged velocity components and Reynolds stresses conditional in unburned reactants can be modelled without invoking expressions involving the Lewis number, as these surface averaged conditional quantities remain approximately equal to their conditionally averaged counterparts in the unburned mixture.
NASA Astrophysics Data System (ADS)
Li, Ya-Qing; Wu, Zhen-Sen
2012-05-01
On the basis of the extended Huygens—Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector, the characteristics of the partially coherent Gaussian Schell-model (GSM) beams propagating in slanted atmospheric turbulence are studied. Using the cross- spectral density function (CSDF), we derive the expressions for the effective beam radius, the spreading angle, and the average intensity. The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically. The influences of the coherence degree, the propagation distance, the propagation height, and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: New approach to turbulence modeling; Second moment closure analysis of the backstep flow database; Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers; Turbulent flame propagation in partially premixed flames; Ensemble averaged dynamic modeling. Also included a study of the turbulence structures of wall-bounded shear flows; Simulation and modeling of the elliptic streamline flow.
NASA Astrophysics Data System (ADS)
Yan, Xiang; Zhang, Peng-Fei; Zhang, Jing-Hui; Qiao, Chun-Hong; Fan, Cheng-Yu
2016-08-01
Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained. It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 61405205).
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.
Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.
Dan, Youquan; Zhang, Bin
2008-09-29
The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.
Boxx, I.; Stoehr, M.; Meier, W.; Carter, C.
2010-08-15
This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scale flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing; Cheng, Qi; Zhang, Dan
2016-06-10
The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment. PMID:27409021
NASA Astrophysics Data System (ADS)
Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda
2016-11-01
For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.
Multiple tube premixing device
Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David
2013-08-13
The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.
Multiple tube premixing device
Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David
2012-12-11
The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.
Dudorov, V V; Kolosov, V V
2003-11-30
The propagation of a partially coherent (random) wave field in inhomogeneous media is considered. The equation for the second-order coherence function is solved by the ray diffraction method and an algorithm is obtained for taking into account the effect of refraction (linear and nonlinear) as well as the turbulence of refractive index fluctuations on the variation of beam radius and the coherence radius during propagation of radiation with an arbitrary initial coherence on atmospheric paths. (laser applications and other topics in quantum electronics)
NASA Astrophysics Data System (ADS)
Luo, Dahai; Yan, Chao; Wang, Xiaoyong
2015-02-01
Separation commonly exists in the flows around flight vehicles and also in the internal combustor flows. Simulation of high-speed turbulent-separated flows using a reliable computational design tool is crucial for the development of supersonic and hypersonic vehicles. In this paper, we present the computational results of supersonic base and ramped-cavity flows at high Reynolds numbers using the partially averaged Navier-Stokes (PANS) method. The current PANS models are based on the Menter SST turbulence model and also the Wilcox k-ω model. Results from PANS simulations are compared in detail with the available experimental data. The effect of the resolution control parameter fk (the ratio of unresolved-to-total kinetic energy) relevant to the PANS method is investigated. More turbulent flow structures are resolved as expected with decreasing fk, but it does not mean better results can be obtained. Spatially varying and dynamically updated fk in PANS simulations has been performed. Results from variable fk PANS simulations show good agreement with the experiment and great improvement when compared to Reynolds averaged Navier-Stokes (RANS) computation and constant fk PANS simulations.
Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M.; Bai, X.S.
2010-06-15
High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the
NASA Astrophysics Data System (ADS)
Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver
2014-03-01
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.
Gershgorin, B.; Majda, A.J.
2011-02-20
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
Chaos in an imperfectly premixed model combustor
Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.
2015-02-15
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.
Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin
2015-01-26
Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance. PMID:25835869
Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin
2015-01-26
Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance.
Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels
In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.
Li, Jianlong; Lü, Baida; Zhu, Shifu
2009-07-01
The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
A filtered tabulated chemistry model for LES of premixed combustion
Fiorina, B.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D.; Vicquelin, R.
2010-03-15
A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed. (author)
Numerical investigation of turbulent bubbly wakes created by the ventilated partial cavity
NASA Astrophysics Data System (ADS)
Xiang, Min; Zhang, WeiHua; Cheung, S. C. P.; Tu, JiYuan
2012-02-01
This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity. A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress. Based on the Eulerian-Eulerian two-fluid modeling framework, a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region. Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements. The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect. The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction. As the bubbles develop downstream, the coleascense and breakup rate gradually reach balance, resulting in the stable bubble diameter. A close examination of the flow structures, gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.
Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Abdol-Hamid, Khaled S.
2005-01-01
Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like hybrid models, is to resolve large scale structures at reasonable computational expense. The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the unresolved-to-total ratios of kinetic energy (f(sub k)) and dissipation (f(sub epsilon)). The unresolved-scale stress is modeled with the Boussinesq approximation and modeled transport equations are solved for the unresolved kinetic energy and dissipation. In this paper, we first present a brief discussion of the PANS philosophy followed by a description of the implementation procedure and finally perform preliminary evaluation in benchmark problems.
Wu, Yuqian; Zhang, Yixin; Zhu, Yun
2016-08-01
We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment. PMID:27505642
Wu, Yuqian; Zhang, Yixin; Zhu, Yun
2016-08-01
We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian
2016-07-01
The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian
2016-07-01
The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.
NASA Astrophysics Data System (ADS)
Kuttieri, R. A.; Sinha, M.
2012-07-01
An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.
NASA Astrophysics Data System (ADS)
Pfadler, Sebastian; Löffler, Micha; Dinkelacker, Friedrich; Leipertz, Alfred
2005-08-01
The turbulence and temperature field of Bunsen-type turbulent lean methane/air flames has been investigated using planar laser Rayleigh scattering (PLRS) and stereo particle image velocimetry (stereo PIV). Temporally averaged reaction progress variable plots have been computed from PLRS measurements in order to provide a basis with regards to the verification of computational fluid dynamics (CFD) models. Turbulence was characterised by stereo PIV in one plane for all three velocity components. Averaged velocity fields have been calculated, as well as Reynolds-decomposed fluctuation vector fields. Conditioned root mean square (RMS) values of the turbulent fluctuations in terms of unburnt and burnt gas could be determined by making use of the information gained from a threshold setting procedure in the PIV raw images. Furthermore, several length scales were measured indirectly from PIV vector plots. In this context, all integral length scales being accessible with stereo PIV were computed separately for the burnt and unburnt regions and were compared to each other. It could be observed that all integral length scales increased in the burnt zone. Additionally, the conditioned Taylor and Kolmogorov lengths have been extracted from the PIV field data, derived either from the zero-radius curvature of the correlation function or from common turbulence theory relations.
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
The interaction between a quasi-laminar flame and a turbulent flowfield is investigated through direct numerical simulations (DNS) of reacting flow in two- and three-dimensional domains. Effects due to finite-rate chemistry are studied using a single step global reaction A (fuel) + B (oxidizer) yields P (product), and by varying a global Damkoehler number, as a result of which the turbulence-chemistry interaction in the flame is found to generate a wide variety of conditions, ranging from near-equilibrium to near-extinction. Differential diffusion effects are studied by changing the Schmidt number of one reactive species to one-half. It is observed that laminar flamelet response is followed within the turbulent flowfield, except in regions where transient effects seem to dominate.
NASA Astrophysics Data System (ADS)
Zhang, En-Tao; Ji, Xiao-Ling; Lü, Bai-Da
2009-02-01
The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB) are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity Imax and the PIB decrease and w(z) increases as the refraction index structure constant Cn2 increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.
Numerical simulation of pollutant emission and flame extinction in lean premixed systems
NASA Astrophysics Data System (ADS)
Eggenspieler, Gilles
Premixed and partially-premixed combustion and pollutant emissions in full-scale gas turbines has been numerically investigated using a massively-parallel Large-Eddy Simulation Combustion Dynamics Model. Through the use of a flamelet library approach, it was observed that CO (Carbon Oxide) and NO (Nitric Oxide) emission can be predicted and match experimental results. The prediction of the CO emission trend is shown to be possible if the influence of the formation of UHC (Unburnt HydroCarbons) via flame extinction is taken into account. Simulations were repeated with two different combustion approach: the G-equation model and the Linear-Eddy Mixing (LEM) Model. Results are similar for these two set of numerical simulations. The LEM model was used to simulate flame extinction and flame lift-off in a dump combustion chamber. The LEM model is compared to the G-equation model and it was found that the LEM model is more versatile than the G-equation model with regard to accurate simulation of flame propagation in all turbulent premixed combustion regimes. With the addition of heat losses, flame extinction was observed for low equivalence ratio. Numerical simulation of flame propagation with transient inflow conditions were also carried out and demonstrated the ability of the LEM model to accurately simulate flame propagation in the case of a partially-premixed system. In all simulations where flame extinction and flame lift-off was simulated, release of unburnt fuel in the post-flame region through flame extinction was not observed.
Cang, Ji; Liu, Xu
2011-09-01
The performance of partially coherent free-space optical links is investigated in the moderate to strong fluctuation regime of non-Kolmogorov turbulence. The expressions for large- and small-scale log-irradiance flux variance are obtained in non-Kolmogorov turbulence. By employing the gamma-gamma distribution of irradiance fluctuations, the effects of spatial coherence of the source, index of non-Kolmogorov spectrum, and size of the receiver on channel capacity for horizontal links are discussed. Results show that channel capacity presents fluctuating behaviors with the variation of alpha for longer links and increases for alpha values higher than 11/3.
Vorticity transformation in high Karlovitz number premixed flames
NASA Astrophysics Data System (ADS)
Bobbitt, Brock; Lapointe, Simon; Blanquart, Guillaume
2016-01-01
To better understand the two-way coupling between turbulence and chemistry, the changes in turbulence characteristics through a premixed flame are investigated. Specifically, this study focuses on vorticity, ω, which is characteristic of the smallest length and time scales of turbulence, analyzing its behavior within and across high Karlovitz number (Ka) premixed flames. This is accomplished through a series of direct numerical simulations (DNS) of premixed n-heptane/air flames, modeled with a 35-species finite-rate chemical mechanism, whose conditions span a wide range of unburnt Karlovitz numbers and flame density ratios. The behavior of the terms in the enstrophy, ω2 = ω ṡ ω, transport equation is analyzed, and a scaling is proposed for each term. The resulting normalized enstrophy transport equation involves only a small set of parameters. Specifically, the theoretical analysis and DNS results support that, at high Karlovitz number, enstrophy transport obtains a balance of the viscous dissipation and production/vortex stretching terms. It is shown that, as a result, vorticity scales in the same manner as in homogeneous, isotropic turbulence within and across the flame, namely, scaling with the inverse of the Kolmogorov time scale, τη. As τη is a function only of the viscosity and dissipation rate, this work supports the validity of Kolmogorov's first similarity hypothesis in premixed turbulent flames for sufficiently high Ka numbers. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and finally the physical configuration.
Bray, Ken; Champion, Michel; Libby, Paul A.
2009-02-15
A RANS analysis of a jet of premixed reactants impinging on a wall is presented. Unlike previous related studies by the same authors, in which the mean density distribution through the flame brush is specified from experiment in order to concentrate on the fluid mechanics of the problem, the mean density is computed in the present work. As a consequence, an appropriate description for the mean rate of heat release is required. The presumed PDF model selected for this purpose, with strong support from relevant DNS, is supplemented with a new model for the mean scalar dissipation rate. Illustrative numerical results are presented and it is shown that an approximately sixfold increase in a mean strain rate function is required to displace the flame from a location where flashback to the nozzle is about to occur to a position so close to the wall that extinction is imminent. Comparisons of predicted mean property distributions with published experimental data are found to be satisfactory and to lend support to the proposed model. (author)
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.
Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul
2013-12-31
Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.
A Length Scale Defining Partially-Resolved Boundary-Layer Turbulence Simulations
NASA Astrophysics Data System (ADS)
Beare, Robert J.
2014-04-01
Numerical weather prediction (NWP) model forecasts at horizontal grid lengths in the range of 100 m to 1 km are now possible. Within this range of grid lengths, the convective boundary layer (CBL) is partially resolved and thus in the so-called `grey zone'. For simulations in the grey zone, numerical dissipation sources from both the advection scheme and the subgrid model are likely to be significant. Until now, these effects have not been incorporated fully into our understanding of the grey zone. In order to quantify these effects, a dissipation length scale is defined based on the second moment of the turbulent kinetic energy (TKE) spectrum. An ensemble of simulations of a CBL are performed using a large-eddy model across the grey-zone resolutions and for a range of subgrid model, advection scheme and vertical grid configurations. The dissipation length scale distinguishes the effects of the different model configurations in the grey zone. In the middle of the boundary layer, the resolved TKE is strongly controlled by the numerical dissipation. This leads to a similarity law for the resolved TKE in the grey zone using the dissipation length scale. A new definition of the grey zone emerges where the inversion depth and dissipation length scale are the same size. This contrasts with the typical definition using the horizontal grid length. At the inversion, however, the variation of the dissipation length scale with grid length is less predictable, reflecting significant challenges for modelling entrainment in the grey zone. The dissipation length scale is thus a simple diagnostic to aid both NWP and large-eddy modellers in understanding the grey zone.
Impact of multi-component diffusion in turbulent combustion using direct numerical simulations
Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth; Chen, Jacqueline H.
2015-08-28
This study presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity.
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
Beam wander of partially coherent array beams through non-Kolmogorov turbulence.
Huang, Yongping; Zeng, Anping; Gao, Zenghui; Zhang, Bin
2015-04-15
Based on the theory of second moments and non-Kolmogorov spectrum, the beam wander theory is extend to non-Kolmogorov turbulence, the general analytical expression of beam wander in non-Kolmogorov turbulence is derived. Beam wander depends on the non-Kolmogorov turbulence parameters and the initial second moments of the laser beam at the input plane. Taking the Gaussian Schell model array beams as an example, the effects of the generalized exponent parameter, inner scale, and outer scale of non-Kolmogorov turbulence and the beam separation distance, beam number, and coherence degree on the beam wander are studied in detail. It has been shown that the beam wander varies non-monotonically with increasing generalized exponent parameter of the turbulence. Furthermore, it increases as the inner scale decreases or outer scale increases, and decreases as the beam separation distance and beam number increase and the coherence of the beam becomes weaker. Our results also indicate that the beam wander could be reduced by adjusting the beam parameters appropriately.
Lean premixed flames for low NO{sub x} combustors
Sojka, P.; Tseng, L.; Bryjak, J.
1995-10-01
Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.
Premixing quality and flame stability: A theoretical and experimental study
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.
1979-01-01
Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.
NASA Astrophysics Data System (ADS)
Golmohammady, Sh; Ghafary, B.
2016-06-01
In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2 × 2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.
NASA Astrophysics Data System (ADS)
Golmohammady, Sh; Ghafary, B.
2016-06-01
In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens–Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2 × 2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.
Experimental study on turbulent structure of humid air flame in a bluff-body burner
NASA Astrophysics Data System (ADS)
Ge, Bing; Zang, Shu-Sheng; Guo, Pei-Qing
2009-06-01
The main objective of the present experimental study is to analyze the turbulent structure in humid air non-premixed flame, and determine the effect of humidity on the flow field and the flame stability limit in turbulent non-premixed flame. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures and obtain the quantitative velocity field. The distributions of Reynolds shear stress, mean and root-mean squared fluctuating (rms) velocities are examined to get insight into the effect of fuel-to-air velocity ratio on velocity flow field. The results show that with steam addition, the air-driven vortex in the bluff-body wake is thinner; the biggest peaks of rms velocity and Reynolds shear stress are lower; the distance between the peaks of rms velocity on the sides of centerline reduces. Besides these, the flame stability is affected. Both central fuel penetration limit and partially quenching limit reduce with steam addition.
Vorticity isotropy in high Karlovitz number premixed flames
NASA Astrophysics Data System (ADS)
Bobbitt, Brock; Blanquart, Guillaume
2016-10-01
The isotropy of the smallest turbulent scales is investigated in premixed turbulent combustion by analyzing the vorticity vector in a series of high Karlovitz number premixed flame direct numerical simulations. It is found that increasing the Karlovitz number and the ratio of the integral length scale to the flame thickness both reduce the level of anisotropy. By analyzing the vorticity transport equation, it is determined that the vortex stretching term is primarily responsible for the development of any anisotropy. The local dynamics of the vortex stretching term and vorticity resemble that of homogeneous isotropic turbulence to a greater extent at higher Karlovitz numbers. This results in small scale isotropy at sufficiently high Karlovitz numbers and supports a fundamental similarity of the behavior of the smallest turbulent scales throughout the flame and in homogeneous isotropic turbulence. At lower Karlovitz numbers, the vortex stretching term and the vorticity alignment in the strain-rate tensor eigenframe are altered by the flame. The integral length scale has minimal impact on these local dynamics but promotes the effects of the flame to be equal in all directions. The resulting isotropy in vorticity does not reflect a fundamental similarity between the smallest turbulent scales in the flame and in homogeneous isotropic turbulence.
NASA Technical Reports Server (NTRS)
Mantel, Thierry
1994-01-01
The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.
Large eddy simulation of a lifted turbulent jet flame
Ferraris, S.A.; Wen, J.X.
2007-09-15
The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529-551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263-274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259-272]. (author)
Streamline segment statistics of premixed flames with nonunity Lewis numbers
NASA Astrophysics Data System (ADS)
Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus
2014-03-01
The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Lean premixed/prevaporized combustion
NASA Technical Reports Server (NTRS)
Lefebvre, A. H. (Editor)
1977-01-01
Recommendations were formulated on the status and application of lean premixed/prevaporized combustion to the aircraft gas turbine for the reduction of pollutant emissions. The approach taken by the NASA Stratospheric Cruise Emission Reduction Program (SCERP) in pursuing the lean premixed/prevaporized combustion technique was also discussed. The proceedings contains an overview of the SCERP program, the discussions and recommendations of the participants, and an overall summary.
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-01
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei
2016-01-01
Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.
Kashani, Fatemeh Dabbagh; Yousefi, Masoud
2016-08-10
In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.
Kashani, Fatemeh Dabbagh; Yousefi, Masoud
2016-08-10
In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs. PMID:27534473
Direct numerical simulation of non-premixed flame-wall interactions
NASA Astrophysics Data System (ADS)
Wang, Y.; Trouvé, A.
2005-01-01
The overall objective of this paper is to illustrate how detailed numerical modelling may be used to bring basic information on fundamental problems in combustion science. We consider in the following the interaction of non-premixed flames with cold solid wall surfaces. Flame-wall interactions are an important feature in many combustion systems, that result in significant changes in the flame and wall dynamics: the flame strength is reduced near cold wall surfaces, leading possibly to (partial or total) quenching, while the gassolid heat flux takes peak values at flame contact. The questions of turbulent fuel-air-temperature mixing, flame extinction and wall surface heat transfer are here studied using direct numerical simulation (DNS). The DNS configuration corresponds to an ethylene-air diffusion flame stabilized in the near-wall region of a chemically-inert solid surface. Simulations are performed with adiabatic or isothermal wall boundary conditions, and with different turbulence intensities. The simulations feature flame extinction events resulting from excessive wall cooling, and convective heat transfer up to 90 kW/m2. The structure of the simulated wall flames is studied in terms of a classical mass mixing variable, i.e. the fuel-airbased mixture fraction, and a less familiar heat loss variable, i.e. the excess enthalpy variable, introduced to provide a measure of non-adiabatic behavior due to wall cooling.
Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems
Coppola, Gianfilippo; Coriton, Bruno; Gomez, Alessandro
2009-09-15
We propose a highly turbulent counterflow flame as a very useful benchmark of complexity intermediate between laminar flames and practical systems. By operating in a turbulent Reynolds number regime of relevance to practical systems such as gas turbines and internal combustion engines, it retains the interaction of turbulence and chemistry of such environments, but offers several advantages including: (a) the achievement of high Reynolds numbers without pilot flames, which is particularly advantageous from a modeling standpoint; (b) control of the transition from stable flames to local extinction/reignition conditions; (c) compactness of the domain by comparison with jet flames, with obvious advantages from both a diagnostic and, especially, a computational viewpoint; and (d) the reduction or, altogether, elimination of soot formation, thanks to the high strain rates and low residence times of such a system, and the establishment of conditions of large stoichiometric mixture fraction, as required for robust flame stabilization. We demonstrate the phenomenology of such highly strained turbulent flames under conditions spanning unpremixed, partially premixed and premixed regimes. The system lends itself to the validation of DNS and other computational models. It is also well-suited for the examination of practical fuel blends - a need that is becoming more and more pressing in view of the anticipated diversification of the future fossil fuel supply. (author)
Dynamic adaptive chemistry for turbulent flame simulations
NASA Astrophysics Data System (ADS)
Yang, Hongtao; Ren, Zhuyin; Lu, Tianfeng; Goldin, Graham M.
2013-02-01
The use of large chemical mechanisms in flame simulations is computationally expensive due to the large number of chemical species and the wide range of chemical time scales involved. This study investigates the use of dynamic adaptive chemistry (DAC) for efficient chemistry calculations in turbulent flame simulations. DAC is achieved through the directed relation graph (DRG) method, which is invoked for each computational fluid dynamics cell/particle to obtain a small skeletal mechanism that is valid for the local thermochemical condition. Consequently, during reaction fractional steps, one needs to solve a smaller set of ordinary differential equations governing chemical kinetics. Test calculations are performed in a partially-stirred reactor (PaSR) involving both methane/air premixed and non-premixed combustion with chemistry described by the 53-species GRI-Mech 3.0 mechanism and the 129-species USC-Mech II mechanism augmented with recently updated NO x pathways, respectively. Results show that, in the DAC approach, the DRG reduction threshold effectively controls the incurred errors in the predicted temperature and species concentrations. The computational saving achieved by DAC increases with the size of chemical kinetic mechanisms. For the PaSR simulations, DAC achieves a speedup factor of up to three for GRI-Mech 3.0 and up to six for USC-Mech II in simulation time, while at the same time maintaining good accuracy in temperature and species concentration predictions.
Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames
Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo
2007-04-15
Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally
Some effects of heat release in premixed flames
Shepherd, I.G.
1994-03-01
Numerical and experimental results are presented to illustrate some hydrodynamic effects of heat release in premixed flames. The heat release is represented by a simple model which treats the flame front as a two dimensional line source of volume. The velocity and strain rate induced in the flow field are determined and the numerical solution for the case of a laminar double kernel ignition is obtained. Of primary interest is the strain induced in the reactants between the expanding flame kernels and, for heat release rates typical of hydrocarbon flames, the strain rate at the plane of symmetry midway between the kernels up to 150 s{sup {minus}1}. The effects of kernel size, density ratio across the flame front and laminar burning velocity are studied. For the case of turbulent combustion the velocity induced in the reactant stream is measured in a plane parallel to the flame holder of an open premixed turbulent V-shaped flame. A divergent flow field, with a strain rate of 50 s{sup {minus}1}, is induced by the heat release in the flame zone and the consequences of this for determining the turbulent burning velocity in this and similar systems is reviewed.
Statistics of premixed flame cells
NASA Technical Reports Server (NTRS)
Noever, David A.
1991-01-01
The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.
Premixed Prevaporized Combustor Technology Forum
NASA Technical Reports Server (NTRS)
1979-01-01
The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.
Statistics of premixed flame cells
Noever, D.A. )
1991-07-15
The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.
Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.
1994-01-01
Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2008-01-01
This paper describes an approach which aims at bridging the gap between the traditional Reynolds-averaged Navier-Stokes (RANS) approach and the traditional large eddy simulation (LES) approach. It has the characteristics of the very large eddy simulation (VLES) and we call this approach the partially-resolved numerical simulation (PRNS). Systematic simulations using the National Combustion Code (NCC) have been carried out for fully developed turbulent pipe flows at different Reynolds numbers to evaluate the PRNS approach. Also presented are the sample results of two demonstration cases: nonreacting flow in a single injector flame tube and reacting flow in a Lean Direct Injection (LDI) hydrogen combustor.
Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh
2015-11-01
In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.
Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh
2015-11-01
In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations. PMID:26560913
Premixed burner experiments: Geometry, mixing, and flame structure issues
Gupta, A.K.; Lewis, M.J.; Gupta, M.
1995-10-01
This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.
Premixed Gas Combustion: An Excitable System
NASA Technical Reports Server (NTRS)
Pearlman, Howard
1997-01-01
Rotating spiral and target patterns have been observed experimentally on freely-propagating premixed gas flames in large diameter tubes at normal gravity (1-g). These modes of propagation occur in near-limit mixtures which have a Lewis number (Le, defined as the ratio of the thermal diffusivity of the cold mixture to the mass diffusivity of the scarce component into the mixture) sufficiently greater than one. However, at 1-g, buoyant flows strongly distort the flame curvature, hydrodynamics (thus stretch) and convective transport of species and heat. In turn, these alter the critical Le required for onset of instability. To isolate and better understand the mechanisms which drive the observed patterns and their dynamics, 1-g and microgravity (micro-g) experiments are being conducted to determine: (1) the structure and dynamics of the patterns, (2) a map of the critical Le and heat loss for their occurrence, (3) the relative significance of the chemical kinetics, and (4) the effect of curvature (local wave and global flame front) on wave propagation. With this in hand, we will be better prepared to discuss an additional mode, a state of 'chemical turbulence,' which seems to be the ultimate fate of many of these near-limit flames prior to extinction.
Acoustic radiation from weakly wrinkled premixed flames
Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham,
2006-01-01
This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.
Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions
NASA Technical Reports Server (NTRS)
Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.
2001-01-01
Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).
Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications
NASA Technical Reports Server (NTRS)
Cheng, R. K.
1999-01-01
Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that
Premixed flame propagation in vertical tubes
NASA Astrophysics Data System (ADS)
Kazakov, Kirill A.
2016-04-01
Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.
Knudsen, E.; Pitsch, H.
2009-03-15
The flame index was originally proposed by Yamashita et al. as a method of locally distinguishing between premixed and non-premixed combustion. Although this index has been applied both passively in the analysis of direct numerical simulation data, and actively using single step combustion models, certain limitations restrict its use in more detailed combustion models. In this work a general flamelet transformation that holds in the limits of both premixed and non-premixed combustion is developed. This transformation makes use of two statistically independent variables: a mixture fraction and a reaction progress parameter. The transformation is used to produce a model for distinguishing between premixed and non-premixed combustion regimes. The new model locally examines the term budget of the general flamelet transformation. The magnitudes of each of the terms in the budget are calculated and compared to the chemical source term. Determining whether a flame burns in a premixed or a non-premixed regime then amounts to determining which sets of these terms most significantly contribute to balancing the source term. The model is tested in a numerical simulation of a laminar triple flame, and is compared to a recent manifestation of the flame index approach. Additionally, the model is applied in a presumed probability density function (PDF) large eddy simulation (LES) of a lean premixed swirl burner. The model is used to locally select whether tabulated premixed or tabulated non-premixed chemistry should be referenced in the LES. Results from the LES are compared to experiments. (author)
Gas turbine premixer with internal cooling
York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier
2012-12-18
A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.
Oscillating combustion from a premix fuel nozzle
Richards, G.A.; Yip, M.J.
1995-08-01
Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.
Flashback resistant pre-mixer assembly
Laster, Walter R.; Gambacorta, Domenico
2012-02-14
A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.
Fuel premixing module for gas turbine engine combustor
NASA Technical Reports Server (NTRS)
Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)
2005-01-01
A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.
Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors
NASA Technical Reports Server (NTRS)
VanOverbeke, Thomas J.
1998-01-01
The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except
Lewis, Elliot; McDonell, Vincent
2015-03-31
Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both
A premixed hydrogen/oxygen catalytic igniter
NASA Technical Reports Server (NTRS)
Green, James M.
1989-01-01
The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.
Stability Enhancement of Lean, Premixed Flames by Flameholder Heating
NASA Astrophysics Data System (ADS)
Hermanson, James C.; Demmons, Nathaniel
2001-11-01
The effects of flameholder heating on the stability and emissions of lean, premixed, turbulent flames were examined experimentally. The flames were stabilized by an axial, cylindrical bluff-body flameholder 6.4 mm in diameter made of copper or stainless steel. In some cases, the stainless flameholder was heated electrically. The flame was at atmospheric pressure. The premixed ethylene/air mixture upstream of the flameholder was unheated and had an equivalence ratio of 0.37 to 0.87. The cold gas flow velocities ranged from 5.0 to 10.5 m/s to give Reynolds numbers at the flameholder tip from 3,250 to 6,700. The impact of flameholder heating on the lean-blow off limit was determined visually. Heating the flameholder to yield a local mixture temperature of 190 C resulted in a decrease in the equivalence ratio at lean blow-off of approximately 20%. This decrease in equivalence ratio resulted in up to a 26% decrease in exhaust-plane NOx emissions and a 51 K reduction in the exhaust-plane gas temperature. These reductions were consistent with the lower equivalence ratios attainable by the localized mixture preheating. At the same time, the exhaust concentrations of CO and unburned hydrocarbons increased by a factor of approximately two. A smaller increase in lean flame stability was seen for the unheated stainless flameholder versus the copper flameholder.
A numerical investigation of premixed combustion in wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi; Paxson, Daniel E.
1996-01-01
Wave rotor cycles which utilize premixed combustion processes within the passages are examined numerically using a one-dimensional CFD-based simulation. Internal-combustion wave rotors are envisioned for use as pressure-gain combustors in gas turbine engines. The simulation methodology is described, including a presentation of the assumed governing equations for the flow and reaction in the channels, the numerical integration method used, and the modeling of external components such as recirculation ducts. A number of cycle simulations are then presented which illustrate both turbulent-deflagration and detonation modes of combustion. Estimates of performance and rotor wall temperatures for the various cycles are made, and the advantages and disadvantages of each are discussed.
Lean premixed flames for low NO{sub x} combustors
Sojka, P.; Tseng, L.; Bryyjak, J.
1995-12-31
The overall objectives of the research at Purdue are to: obtain a reduced mechanism description of high pressure NO formation chemistry using experiments and calculations for laminar lean premixed methane air flames, develop a statistical model of turbulence NO chemistry interactions using a Bunsen type jet flame, and utilize the high pressure chemistry and turbulence models in a commercial design code, then evaluate its predictions using data from an analog gas turbine combustor. Work to date has resulted in the following achievements: spatially resolved measurements of NO in high-pressure high-temperature flat flames, plus evaluation of the influence of flame radiation on the measured temperature profile; measurements of temperature and velocity PDFs for a turbulent methane/air flame were obtained for the first time, under operating conditions which allow their study in the distributed regimes, and the increase in EINO{sub x} with equivalence ratio predicted using a chemical kinetics model; and simulation of non-reacting combustor flow fields from ambient to elevated pressure and temperature conditions and comparison of those results with experimental velocity profiles.
2015-01-19
The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.
Coaxial fuel and air premixer for a gas turbine combustor
York, William D; Ziminsky, Willy S; Lacy, Benjamin P
2013-05-21
An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
Radiation extinction limit of counterflow premixed lean methane-air flames
Guo, H.; Ju, Y.; Maruta, Kaoru; Niioka, Takashi; Liu, F.
1997-06-01
The application of the laminar flamelet concept to turbulent flame modeling requires a detailed understanding of stretched laminar flames. In this study, the authors used numerical methods, including arc-length continuation, to simulate the extinction characteristics of counterflow premixed fuel-lean, methane-air flames. Attention was primarily paid to the effect of radiative heat loss on the extinction characteristics of these flames. The results show that at medium to low values of the stretch rate, the radiative heat loss has a particularly strong impact on the counterflow premixed fuel-lean, methane-air flames. It was also found that, in addition to the stretch extinction limit at a high stretch rate, there exists a radiation extinction limit at a low stretch rate. Furthermore, the relationship between these two extinction limits and the equivalence ratio is obtained.
The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance
Samuelsen, S.; LaRue, J.; Vilayanur, S.; Guillaume, D.
1995-12-31
Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the ``unmixedness.`` Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine System (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines. The contributions to the program which the University of California (Irvine) Combustion Lab (UCICL) will provide are: (1) establish the relationship of inlet unmixedness, length scales, and mean strain rate to performance, (2) determine the optimal levels of inlet unmixedness, length scales, and mean strain rates to maximize combustor performance, and (3) identify efficient premixing methods for achieving the necessary inlet conditions. The program during this reporting period is focused on developing a means to measure and qualify different degrees of temporal and spatial unmixedness. Laser diagnostic methods for planer unmixedness measurements are being developed and preliminary results are presented herein. These results will be used to (1), aid in the design of experimental premixers, and (2), determine the unmixedness which will be correlated with the emissions of the combustor. This measure of unmixedness coupled with length scale, strain rate and intensity information is required to attain the UCI goals.
Turbulent Methane-Air Combustion
NASA Technical Reports Server (NTRS)
Yaboah, Yaw D.; Njokwe, Anny; James, LaShanda
1996-01-01
This study is aimed at enhancing the understanding of turbulent premixed methane-air combustion. Such understanding is essential since: (1) many industries are now pursuing lighter hydrocarbon alternative fuels and the use of premixed flames to reduce pollutant emissions, and (2) the characteristic dimensions and flow rates of most industrial combustors are often large for flows to be turbulent. The specific objectives of the study are: (1) to establish the effects of process variables (e.g., flow rate, fuel/air ratio, chlorinated hydro-carbons, and pressure) on the emissions and flow structure (velocity distribution, streamlines, vorticity and flame shape), and (2) to develop a mechanistic model to explain the observed trends. This includes the acquisition of Dantec FlowMap Particle Image Velocimeter. The design and fabrication of the premixed burner has also been completed. The study is now at the stage of testing of equipment and analytical instruments. The presentation will give details on the tasks completed and on the current and future plans. The project is progressing well and all activities are on schedule. The outlook for the success of the project is bright.
Extended LES-PaSR model for simulation of turbulent combustion
NASA Astrophysics Data System (ADS)
Sabelnikov, V.; Fureby, C.
2013-03-01
In this work, a novel model for Large Eddy Simulations (LES) of high Reynolds moderate Damköhler number turbulent flames is proposed. The development is motivated by the need for more accurate and versatile LES combustion models for engineering applications such as jet engines. The model is based on the finite rate chemistry approach in which the filtered species equations of a reduced reaction mechanism are solved prior to closure modeling. The modeling of the filtered reaction rate provides the challenge: as most of the chemical activity, and thus also most of the exothermicity occurs on the subgrid scales, this model needs to be based on the properties of fine-scale turbulence and mixing and Arrhenius chemistry. The model developed here makes use of the similarities with the mathematical treatment of multiphase flows together with the knowledge of fine-scale turbulence and chemistry obtained by Direct Numerical Simulation (DNS) and experiments. In the model developed, equations are proposed for the fine-structure composition and volume fraction that are solved together with the LES equations for the resolved scales. If subgrid convection can be neglected, the proposed model simplifies to the Partially Stirred Reactor (PaSR) model. To validate the proposed LES model, comparisons with experimental data and other LES results are made, using other turbulence chemistry interaction models, for a lean premixed bluff-body stabilized flame.
Design factors for stable lean premix combustion
Richards, G.A.; Yip, M.J.; Gemmen, R.S.
1995-10-01
The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.
Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines
NASA Astrophysics Data System (ADS)
Huang, Ying
This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable
Simultaneous velocity and scalar measurements in premixed recirculating flames
NASA Astrophysics Data System (ADS)
Ferrão, P.; Heitor, M. V.
The use of a laser-Doppler velocimeter has been extended to the analysis of turbulent heat transfer in a strongly sheared disc-stabilised propane-air flame through its combination with either laser Rayleigh scattering or digitally-compensated fine-wire thermocouples. The laser velocimeter was based on a conventional forward scattering system from the green light of a 5W Argon-Ion laser, while the Rayleigh signals used the blue line of the same laser. The procedure for the numeric compensation of the thermocouple signals included analysis of the effect of velocity and temperature on the time constant of the thermocouple and was optimised to allow combined velocity-temperature samples acquired by a purpose-built digital interference with a frequency up to 2000 Hz, without deterioration of the thermocouple by particle accretion. The maximum effective data rate for the combined Rayleigh/LDV system is shown to be around 130 Hz, which corresponds to a data rate of valid Doppler signals around 400 Hz and statistics based on more than 15000 measurements is made possible. The results obtained with the two systems agree qualitatively, although the use of thermocouples attenuates the measured velocity-temperature correlations. The results are used to assess the extent to which turbulent mixing in flames is altered by the accompanying heat release and quantify the processes of non-gradient diffusion in a strongly recirculating premixed flame.
Soot Formation in Laminar Premixed Flames
NASA Technical Reports Server (NTRS)
Xu, F.; Krishnan, S. S.; Faeth, G. M.
1999-01-01
Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.
Colorimetric determination of selenium in mineral premixes .
Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G
1997-01-01
A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%. PMID:9241835
The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance
Samuelsen, S.; LaRue, J.; Vilayanur, S.
1995-10-01
Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.
Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames
Ribert, G.; Gicquel, O.; Darabiha, N.; Veynante, D.
2006-09-15
Detailed mechanisms describing complex phenomena of combustion chemistry, such as flame propagation or pollutant formation, involve hundreds of species and thousands of elementary reactions and cannot be handled in practical simulations of turbulent combustion. A widely used way to reduce chemistry is to build look-up tables where chemical parameters such as reaction rates and/or species mass fractions are determined from a reduced set of coordinates (ILDM, FPI, or FGM methods). Nevertheless, these tables may require large memory spaces and nonnegligible access times, especially when running on massively parallel computers. In this work, the self-similarity behavior of laminar premixed flames is first put into evidence and then theoretically sustained. This property provides a way to reduce the size of chemical databases, especially for computations on massively parallel machines, under the FPI (flame prolongation of ILDM) framework. The database is reduced to similarity profiles for the species reaction rates (or the species mass fractions), stored together with scaling rules. This new formulation is then implemented in the PREMIX code and numerical simulations of laminar premixed flames successfully compare with full chemistry computation, validating this promising approach. (author)
Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1979-01-01
An experimental and analytical study of the combustion of partially vaporized fuel/air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected showed near-linear increases in NOx emmissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on NOx emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.
Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES
Geyer, D.; Dreizler, A.; Janicka, J.; Kempf, A.
2005-12-01
Turbulent opposed-jet configurations have gained attention as a challenging test case to validate the mixing and combustion models used in the simulation of turbulent combustion. In general, validation requires comprehensive experimental information on flow and scalar fields, and the emergence of combustion large-eddy simulation (CLES) necessitated more advanced diagnostics. These laser-optical techniques allow measurements not only of single-point statistics but of structural information of the flame, such as correlations, gradients, and structure functions. This paper presents thorough experimental and numerical investigations of one isothermal and two reacting turbulent opposed jets with fuel jets consisting of partially premixed methane. Its focus is on one configuration at and one configuration close to the highest possible Reynolds numbers where flames could be stabilized. The experimental data presented comprise information on axial velocity, main species concentrations, temperature, mixture fraction, scalar dissipation rate, joint probability density functions, and structure functions. These quantities are compared to results of highly resolved CLES to show the configuration's suitability as a critical benchmark for state-of-the art combustion LES.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
van de Water, Willem; Ergun Cekli, Hakki; Joosten, Rene
2011-11-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the large eddies in the wind-tunnel turbulence. A large mismatch of these times creates a flow with interesting statistics, but it is not turbulence.
Premixed-Gas Flame Propagation in Hele-Shaw Cells
NASA Technical Reports Server (NTRS)
Sharif, J.; Abid, M.; Ronney, P. D.
1999-01-01
It is well known that buoyancy and thermal expansion affect the propagation ra and shapes of premixed gas flames. The understanding of such effects is complicated by the large density ratio between the reactants and products, which induces a baroclinic production of vorticity due to misalignment of density and pressure gradients at the front, which in turn leads to a complicated multi-dimensional flame/flow interaction. The Hele-Shaw cell, i.e., the region between closely-spaced flat parallel plates, is probably the simplest system in which multi-dimensional convection is presents consequently, the behavior of fluids in this system has been studied extensively (Homsy, 1987). Probably the most important characteristic of Hele-Shaw flows is that when the Reynolds number based on gap width is sufficiently small, the Navier-Stokes equations averaged over the gap reduce to a linear relation, namely a Laplace equation for pressure (Darcy's law). In this work, flame propagation in Hele-Shaw cells is studied to obtain a better understanding of buoyancy and thermal expansion effects on premixed flames. This work is also relevant to the study of unburned hydrocarbon emissions produced by internal combustion engines since these emissions are largely a result of the partial burning or complete flame quenching in the narrow, annular gap called the "crevice volume" between the piston and cylinder walls (Heywood, 1988). A better understanding of how flames propagate in these volumes through experiments using Hele-Shaw cells could lead to identification of means to reduce these emissions.
OH-Planar Fluorescence Measurements of Pressurized, Hydrogen Premixed Flames in the SimVal Combustor
Strakey, P.A.; Woodruff, S.D.; Williams, T.C.; Schefer, R.W.
2008-07-01
Planar laser-induced fluorescence measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the Simulation Validation combustor at the National Energy Technology Laboratory at operating pressures from 1 to 8 atmospheres. The data, which were collected in a combustor with well-controlled boundary conditions, are intended to be used for validating computational fluid dynamics models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching, are discussed in terms of a turbulent premixed combustion regime and nondimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared with the effects of hydrogen addition, which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed, and results are presented. Finally, the results of several large eddy simulations are presented and compared with the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.
Effects of buoyancy on the flowfields of lean premixed turbulentv-flames
Cheng, R.K.; Bedat, B.; Yegian, D.T.; Greenberg, P.
2001-03-01
Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.
Scalar fluctuations in turbulent combustion - An experimental study
NASA Astrophysics Data System (ADS)
Ballal, D. R.; Chen, T. H.; Yaney, P. P.
1986-01-01
Temperature and velocity fluctuations data were gathered for turbulent premixed combustion to evaluate a model for scalar transport and scalar dissipation. The data were collected using laser Raman spectroscopy and laser Doppler anemometry with a premixed CH4-air flame from a Bunsen burner. Mean temperature profiles were generated and the pdf's temperature fluctuations were calculated. A wrinkled laminar flame structure was noted in the reaction zone, where the scalar field was anisotropic and where the temperature fluctuations exhibited peak values. The Bray, Moss and Libby model (1985) was successful in predicting the temperature fluctuation intensity and the dissipation ratios, the latter reaching peak values in the flame tip region.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
The effect of background turbulence on the propagation of large-scale flames
NASA Astrophysics Data System (ADS)
Matalon, Moshe
2008-12-01
This paper is based on an invited presentation at the Conference on Turbulent Mixing and Beyond held in the Abdus Salam International Center for Theoretical Physics, Trieste, Italy (August 2007). It consists of a summary of recent investigations aimed at understanding the nature and consequences of the Darrieus-Landau instability that is prominent in premixed combustion. It describes rigorous asymptotic methodologies used to simplify the propagation problem of multi-dimensional and time-dependent premixed flames in order to understand the nonlinear evolution of hydrodynamically unstable flames. In particular, it addresses the effect of background turbulent noise on the structure and propagation of large-scale flames.
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Tabulated Combustion Model Development For Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Kundu, Prithwish
Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1
A numerical investigation of the effects of imperfect premixing on flame propagation
NASA Astrophysics Data System (ADS)
Garrido-Lopez, David
2005-07-01
Gasoline direct-injection engines and lean-premixed prevaporized combustors have recently emerged as promising technologies for improving combustion efficiency and pollutant emission. In both applications, the time available for the mixing of fuel and oxidizer prior to combustion may be insufficient for the mixture to acquire a homogeneous composition, and this thesis addresses the propagation of premixed flames under such conditions. Previous numerical studies, owing to severe spatio-temporal limitations, have been unable to provide a clear picture of what to expect from the effects of imperfect premixing on turbulent flames, and have not found agreement with existing experimental data. In this study, direct numerical simulations (DNS) of flame propagation in inhomogeneous mixtures with imposed velocity fluctuations are carried out. To avoid aforementioned limitations and to account for important flame dynamics such as the hydrodynamic instability, a configuration that permits larger domains and longer times than previously accessed by DNS is employed. The simulated flows are unavoidably restricted to two dimensions. One-step chemistry and Fick's diffusion law are considered, along with unity Lewis number assumption. It is observed that relatively weak fluctuations in composition alone may lead to a large increase in flame wrinkling and propagation speed, consistent with experimental findings. The hydrodynamic instability caused by gas expansion is found to be responsible for such strong flame response. However, the impact of composition fluctuations diminishes as velocity fluctuations present become more intense, and eventually imperfect premixing ceases to affect the flame brush speed. This effect is explained based on the numerical results, and a criterion for the transition from one regime to the other is provided. It is also found that imperfect premixing always affects the structure of the flame brush. A gradual change in the composition of the unburnt
The effects of pre-mix on burn in ICF capsules
NASA Astrophysics Data System (ADS)
Wilson, D. C.; Kyrala, G. A.; Benage, J. F., Jr.; Wysocki, F. J.; Gunderson, M. A.; Garbett, W. J.; Glebov, V. Y.; Frenje, J.; Yaakobi, B.; Herrman, H. W.; Cooley, J. H.; Welser-Sherrill, L.; Horsfield, C. J.; Roberts, S. A.
2008-05-01
Directly driven implosions at the Omega laser have tested the effects of pre-mix of Ar, Kr, and Xe in D2 + 3He filled glass micro-balloons. Diagnostics included: D+D and D+T neutron yields, D+3He proton yields and spectra, Doppler broadened ion temperatures, time dependent neutron and proton burn rates, and time gated, high energy filtered, X-ray images. Yields are better calculated by XSN LTE than by non-LTE. Yields with a small amount of pre-mix, atom fractions of ~5e-3 for Ar, 2e-3 Kr, and Xe for 5e-4, are more degraded than calculated, while the measured ion temperatures are the same as without pre-mix. There is also a decrease in fuel ρr. The neutron burn histories suggest that the early yield coming before the reflected shock strikes the incoming shell is un-degraded, with yield degradation occurring afterwards. Adding 20 atm % 3He to pure D fuel seems to produce a similar degradation. Calculated gated X-ray images agree with observed when the reflected shock strikes the incoming shell, but are smaller than observed afterward. This partially explains yield degradation and both the low fuel and whole capsule ρr's observed in secondary T+D neutrons and slowing of the D+3He protons. Neither LTE on non-LTE captures the degradation by 3He or at low pre-mix levels, nor matches the large shell radii after impact of the reflected shock.
Premixed rapid-setting calcium phosphate composites for bone repair.
Carey, Lisa E; Xu, Hockin H K; Simon, Carl G; Takagi, Shozo; Chow, Laurence C
2005-08-01
Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder-liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder + nonaqueous liquid + gelling agent + hardening accelerator. Three premixed CPCs were developed: CPC-monocalcium phosphate monohydrate (MCPM), CPC-chitosan, and CPC-tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p < 0.05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC-MCPM and CPC-chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder-liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC.
Premixed rapid-setting calcium phosphate composites for bone repair✩
Carey, Lisa E.; Xu, Hockin H.K.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.
2009-01-01
Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder–liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder+nonaqueous liquid+gelling agent+hardening accelerator. Three premixed CPCs were developed: CPC–monocalcium phosphate monohydrate (MCPM), CPC–chitosan, and CPC–tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p<05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC–MCPM and CPC–chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder–liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC. PMID:15769536
Premixed Combustion Model for Boron Clouds
NASA Astrophysics Data System (ADS)
Wang, Mengze; Han, Wang; Chen, Zheng
2015-11-01
Boron particle is an ideal additive in solid propellants and fuels due to its very high volumetric heat release. In this study, a premixed combustion model for boron clouds is developed based on a previous combustion model for single boron particle. The flame structure is assumed to be composed of three zones: the preheat zone, the ignition zone, and the reaction zone, and analytical solutions are derived from the governing equations. Consequently the influence of the boron clouds' physical properties on the flame propagation process is investigated.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Cinema particle image velocimetry investigation of turbulent jet flame stabilization
NASA Astrophysics Data System (ADS)
Upatnieks, Ansis
A new cinema PIV system was developed and used to study the physical phenomena of non-premixed turbulent jet flame stabilization. The system offers an unprecedented combination of image acquisition rate (8000/s), sequence length (4000) and resolution (equivalent to 1K x 1.5K pixels) that provides finely resolved yet extraordinarily lengthy time histories of the evolution of velocity fields in laboratory-scale gas-phase turbulent flows. These measurements provide quantitative information concerning the dynamics of turbulence and combustion that is not available from conventional experimental techniques or computational simulations. For example, time histories of the interaction between turbulent vortex structures and the flame thermal boundary are observed. Gas and flame velocities are obtained simultaneously, yielding direct measurements of flame propagation velocities. The gas and flame velocities are highly correlated, suggesting strong interaction between the velocity field and the flame. The gas and propagation velocities at the flame base remain close to premixed laminar burning velocities (SL), which are three to four times smaller than the velocities in corresponding non-reacting cases. Strong reverse flow is observed upstream of the flame base, suggesting that the velocity reduction is caused by heat release-induced dilatation. These observations suggest that the dilatation velocity field plays a dominant role in stabilization by reducing incident gas velocities to levels at which laminar premixed, triple, or edge flames can be sustained.
A model for premixed combustion oscillations
Janus, M.C.; Richards, G.A.
1996-03-01
Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.
Direct spectral/hp element simulation of piloted jet non-premixed flames
NASA Astrophysics Data System (ADS)
Nastase, Cristian R.
2004-11-01
The spectral/hp element method is used for direct numerical simulation (DNS) of piloted non premixed methane jet flames. This method combines the accuracy of spectral methods with versatility of finite element methods, and allows accurate simulations of complex flows on structured and unstructured grids. Here, the methodology is extended for simulation of multi-species, reactive flows using the discontinuous Galerkin formulation. Parallel computation is performed via MPI standards coupled with a domain decomposition methodology. The overall computational scheme allows for an efficient partitioning of the flow configuration. Tests performed with up to 64 processors show quasi-linear parallel performance and scalability. The flame configurations are similar to the piloted jet non-premixed flame considered at the Combustion Research Facility at the Sandia National Laboratories. For a momentum dominated flame, the simulated results portray many of the features observed experimentally. This pertains to both the spatial and the compositional structures of the flow. For a buoyancy controlled flame (at elevated gravity levels), the results indicate an increase in both the turbulence levels and flow acceleration. Departure from equilibrium, including localized extinction is observed on a significant portion of this flame.
Premixed flames in closed cylindrical tubes
NASA Astrophysics Data System (ADS)
Metzener, Philippe; Matalon, Moshe
2001-09-01
We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.
Troiani, G.; Marrocco, M.; Giammartini, S.; Casciola, C.M.
2009-03-15
A combination of PIV/OH laser induced fluorescence technique is used to measure the conditional - burned and unburned - gas velocity in a turbulent premixed CH{sub 4}/air annular bluff-body stabilized burner. By changing the equivalence ratio from lean to almost stoichiometric, the energy budget of the recirculating region anchoring the flame is altered in such a way to increasingly lift the flame away from the jet exit. The overall turbulence intensity interacting with each flame is thus systematically varied in a significant range, allowing for a parametric study of its effect on turbulent scalar transport under well controlled conditions, always well within the flamelet regime. The component of the flux normal to the average front is found to reverse its direction, confirming the Bray number as a good indicator of gradient/counter-gradient behavior, once the actual incoming turbulence level felt locally by the flame is assumed as the proper control parameter. (author)
Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV
NASA Astrophysics Data System (ADS)
Eichler, Christian; Sattelmayer, Thomas
2012-02-01
Premixed flame propagation against the main flow direction in wall boundary layers, a situation known as wall flashback, has been studied by long-distance particle image velocimetry with spatial micron resolution (μ-PIV) and simultaneous flame luminescence recordings. Numerical simulations of laminar wall flashback assist the interpretation of the experimental results. Inside a turbulent boundary layer, the flame propagates in discrete flame cusps pointing in upstream direction and showing a well-defined pattern of formation and break-up. In a laminar boundary layer, the leading flame region is smooth and exhibits low curvature. The instantaneous velocity fields reveal a backflow region upstream of the flame during flashback, which is constrained to the leading flame zone. The backflow is caused by an interaction between the pressure increase upstream of the flame and the boundary layer. The flashback limit is controlled by thermal quenching of the flame tip in the backflow region.
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, Mike E.; Liu, Yen; Vinokur, M.; Olsen, Tom
2004-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Mechanisms of combustion limits in premixed gas flames at microgravity
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1991-01-01
A three-year experimental and theoretical research program on the mechanisms of combustion limits of premixed gasflames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, M. E.; Liu, Y.; Vinokur, M.; Olsen, T.
2003-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
Littlejohn, David; Littlejohn, David; Cheng, R.K.
2007-12-03
Laboratory experiments have been conducted to investigate the fuel effects on the turbulent premixed flames produced by a gas turbine low-swirl injector (LSI). The lean-blow off limits and flame emissions for seven diluted and undiluted hydrocarbon and hydrogen fuels show that the LSI is capable of supporting stable flames that emit < 5 ppm NO{sub x} ({at} 15% O{sub 2}). Analysis of the velocity statistics shows that the non-reacting and reacting flowfields of the LSI exhibit similarity features. The turbulent flame speeds, S{sub T}, for the hydrocarbon fuels are consistent with those of methane/air flames and correlate linearly with turbulence intensity. The similarity feature and linear S{sub T} correlation provide further support of an analytical model that explains why the LSI flame position does not change with flow velocity. The results also show that the LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn diluted H{sub 2} fuels.
Pre-mixed flame simulations for non-unity Lewis numbers
NASA Technical Reports Server (NTRS)
Rutland, C. J.; Trouve, A.
1990-01-01
A principal effect of turbulence on premixed flames in the flamelet region is to wrinkle the flame fronts. For non-unity Lewis numbers (Le), the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of the three dimensional, constant density, decaying isotropic turbulence with a single step, finite rate chemical reaction. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. The turbulent flame speed, S(sub T), increases as Le decreases. The correlation between S(sub T) and u prime found in previous Le = 1 simulations has a strong Lewis number dependency. The variance of the pdf of the flame curvature increases as Le decreases, indicating that the flames become more wrinkled. A strong correlation between local flame speed and curvature was found. For Le greater than 1, the flame speed increases in regions concave towards the products and decreases in convex regions. The opposite correlation was found for Le less than 1. The mean temperature of the products was also found to vary with Lewis number. For Le = 0.8, it is less than the adiabatic flame temperature and for Le = 1.2 it is greater.
Aerodynamic properties of turbulent combustion fields
NASA Technical Reports Server (NTRS)
Hsiao, C. C.; Oppenheim, A. K.
1985-01-01
Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.
Gopinath, Prarthana; Gore, Jay
2007-11-15
Multiwalled carbon nanotubes (MWCNTs) on a grid supported cobalt nanocatalyst were grown, by exposing it to combustion gases from ethylene/air rich premixed flames. Ten equivalence ratios ({phi}) were investigated, as follows: 1.37, 1.44, 1.47, 1.50, 1.55, 1.57, 1.62, 1.75, 1.82, and 1.91. MWCNT growth could be observed for the range of equivalence ratios between 1.45 and 1.75, with the best yield restricted to the range 1.5-1.6. A one-dimensional premixed flame code with a postflame heat loss model, including detailed chemistry, was used to estimate the gas phase chemical composition that favors MWCNT growth. The results of the calculations show that the mixture, including the water gas shift reaction, is not even in partial chemical equilibrium. Therefore, past discussions of compositional parameters that relate to optimum carbon nanotube (CNT) growth are revised to include chemical kinetic effects. Specifically, rapid departures of the water gas shift reaction from partial equilibrium and changes in mole fraction ratios of unburned C{sub 2} hydrocarbons to hydrogen correlate well with experimentally observed CNT yields. (author)
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1979-01-01
An experimental and analytical study of the combustion of partially vaporized fuelair mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected show near linear increases in nitrogen oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratio of 0.72, the degree of vaporization had very little impact on nitrogen oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.
Fully Premixed Low Emission, High Pressure Multi-Fuel Burner
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2012-01-01
A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.
Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames
Weiland, N.T.; Strakey, P.A.
2007-03-01
One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.
Premixer Design for High Hydrogen Fuels
Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome
2005-12-16
This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were
Flame Propagation in Low-Intensity Turbulence under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Aldredge, R. C.
2001-01-01
The goal of the research is to understand the influences of the hydrodynamic instability on premixed-flame propagation. It is known that coupling between flame and flow-field dynamics in association with the hydrodynamic instability may lead to flame-generated turbulence, flame acceleration and enhancement of burning rates. As a result of such hydrodynamic coupling the transition from initially planar or wrinkled laminar flames to fast turbulent flames or detonations is possible, even when diffusive-thermal effects associated with non-unity reactant Lewis numbers are not destabilizing. It is important to identify methods of suppressing the hydrodynamic instability so as to insure fire safety, particularly in space.
A transport equation for reaction rate in turbulent flows
NASA Astrophysics Data System (ADS)
Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.
2016-08-01
New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.
Soot Formation in Freely-Propagating Laminar Premixed Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Hassan, M. I.; Faeth, G. M.
1997-01-01
Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nitrites and/or nitrates in curing premixes. 170... nitrates in curing premixes. (a) Nitrites and/or nitrates are food additives when combined in curing... nitrates, when packaged separately from flavoring and seasoning in curing premixes, may continue to be...
PREFACE Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
NASA Technical Reports Server (NTRS)
Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)
2001-01-01
The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
Laminar Premixed and Diffusion Flames (Ground-Based Study)
NASA Technical Reports Server (NTRS)
Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Vaporization of droplets in premixing chambers
NASA Technical Reports Server (NTRS)
Yule, A. J.; Chigier, N. A.
1980-01-01
Detailed measurements were made of the structures of turbulent fuel sprays vaporizing in heated airstreams. The measurements show the size dependent vaporization and dispersion of the droplets and the important influence of the large eddies in the turbulence. The measurements form a data base for the development of models of fuel spray vaporization. Two laser techniques were specially developed for the investigation. A laser tomography technique converts line-of-sight light scattering measurements into time averaged 'point' measurements of droplet size distribution and volume concentration. A laser anemometer particle sizing technique was further developed to permit accurate measurements of individual particle sizes and velocities, with backscatter collection of light. The experiments are combined with heat transfer models to analyze the performance of miniature thermocouples in liquid sprays.
Combustion-acoustic stability analysis for premixed gas turbine combustors
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth
1995-01-01
Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.
An experimental and numerical study on the stability and propagation of laminar premixed flames
NASA Astrophysics Data System (ADS)
Vagelopoulos, Christina Maria
The laminar flame speed is a very important property of laminar premixed flames, especially for the validation of chemical kinetics and modeling of turbulent combustion. The counterflow technique is one of the best approaches for the experimental determination of this property because it allows for the establishment of planar, nearly adiabatic, steady, quasi-one dimensional flames that are subjected to well-defined aerodynamic strain rate. However non-linear effects as the strain rate goes to zero lead to overprediction of the laminar flame speed. In the present study these non-linear effects were investigated experimentally and numerically and significant overprediction was verified, particularly for weakly-burning hydrogen/air flames. Subsequently effort was made to establish and study flame properties at a very-low strain rate regime and qualitative and quantitative conclusions were drawn for the stability of the flame surface subjected to very low aerodynamic strain rate, coupled with the effect of gravity and preferential diffusion. A new experimental technique was developed, based on the observation that if a laminar premixed flame undergoes a transition from planar to Bunsen the strain rate changes from positive to negative values and a near-zero strain-rate regime is established. Flame speed measurements were conducted by using LDV for this regime; the flame speed measured is the true laminar flame speed and this is the first time that this property is directly and experimentally measured. Particle Streak velocimetry was developed to evaluate the strain-rates for near-zero strain-rate regime. The laminar flame speed was measured for atmospheric methane/air, ethane/air and propane/air mixtures for the whole range of equivalence ratios; the new data are lower when compared to previous ones and the overprediction is at the order of 15%.
NASA Astrophysics Data System (ADS)
Umeh, Chukwueloka O. U.
Increasingly stringent emissions regulations on fossil fuel-burning combustors in land-based and aviation gas turbine engines has led engine manufacturers to turn to lean burning premixed combustors. In modern lean premixed gas turbine combustors, flame stabilization is achieved by the use of a high level of inlet swirl and an expansion into a larger chamber. This predisposes the inlet vortex flow to transition to a vortex breakdown state, which is characterized by a stagnation and recirculation zone near the exit plane of the inlet region. A compact, turbulent and highly mixed flame results. Although this breakdown phenomenon helps reduce emissions drastically compared to rich-burn engines, it also contributes to the formation of thermo-acoustic instabilities (or combustion dynamics), flashback and lean blow out, which hinder performance and in extreme cases, causes very expensive damage to the combustion system. Theoretical, computational and experimental studies of vortex breakdown in a finite length, axisymmetric chamber with a swirling inlet flow demonstrate that critical conditions for the first appearance of breakdown in the combustion chamber as well as in the combustor's inlet region govern the flow's behavior. These critical conditions are satisfied for both the average and the instantaneous behavior of the flow for ambient temperature, preheated and lean premixed reacting flows. Good agreement is found between the theoretical and numerical simulations, as well as the experimental results. Results show that these critical conditions, as well as the appearance, location, size and stability of the breakdown are affected by inlet airflow rate, inlet air temperature, flame temperature (in reacting flow), inlet tube length, dump plane configuration and chamber air leakage. In the presence of combustion, experimental results show that the existence of a breakdown zone, its shape, location and stability influence flame stabilization, combustion dynamics
The multispecies modeling of the premixed, laminar steady-state ozone flame
NASA Technical Reports Server (NTRS)
Heimerl, J. M.; Coffee, T. P.
1980-01-01
Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.
Gupta, Kamlesh G.; Echekki, Tarek
2011-02-15
The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)
NO{sub x}-abatement potential of lean-premixed GT combustors
Sattelmayer, T.; Polifke, W.; Winkler, D.; Doebbeling, K.
1998-01-01
The influence of the structure of perfectly premixed flames on NO{sub x} formation is investigated theoretically. Since a network of reaction kinetics modules and model flames is used for this purpose, the results obtained are independent of specific burner geometries. Calculations are presented for a mixture temperature of 630 K, an adiabatic flame temperature of 1840 K, and 1 and 15 bars combustor pressure. In particular, the following effects are studied separately from each other: molecular diffusion of temperature and species, flame strain, local quench in highly strained flames and subsequent reignition, turbulent diffusion (no preferential diffusion), and small scale mixing (stirring) in the flame front. Either no relevant influence or an increase in NO{sub x} burners is to avoid excessive turbulent stirring in the flame front. Turbulent flames that exhibit locally and instantaneously near laminar structures (flamelets) appear to be optimal. Using the same methodology, the scope of the investigation is extended to lean-lean staging, since a higher NO{sub x}-abatement potential can be expected in principle. As long as the chemical reactions of the second stage take place in the boundary between the fresh mixture of the second stage and the combustion products from upstream, no advantage can be expected from lean-lean staging. Only if the preliminary burner exhibits much poorer mixing than the second stage can lean-lean staging be beneficial. In contrast, if full mixing between the two stages prior to afterburning can be achieved (lean-mix-lean technique), the combustor outlet temperature can in principle be increased somewhat without NO penalty.
Turbulent transport measurements in a model of GT-combustor
NASA Astrophysics Data System (ADS)
Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.
2016-10-01
To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.
Dynamics of the flame surface area in turbulent nonpremixed combustion
Kollmann, W.; Chen, J.H.
1994-01-01
The dynamic equation for the total surface area of level surfaces is developed based on a theorem of geometric measure theory and its relation to other versions of the equation is established. The mixture fraction, a quantity which is relevant to non-premixed combustion, is used to define the level surfaces. The level surface corresponding to its stoichiometric value is defined as the flame surface. It is shown that the evolution of the surface properties is determined by the rate-of-strain generated by the motion of the fluid, coupled with molecular diffusion and source terms of the scalar variable defining the level surface. DNS results obtained for a low-Reynolds number turbulent non-premixed flame are used to evaluate the effects of strain rate and scalar dynamics on the surface area of level surfaces.
Experimental analysis of an oblique turbulent flame front propagating in a stratified flow
Galizzi, C.; Escudie, D.
2010-12-15
This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)
ERIC Educational Resources Information Center
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Workshop on Engineering Turbulence Modeling
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)
1992-01-01
Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.
Unsteady turbulent boundary layer analysis
NASA Technical Reports Server (NTRS)
Singleton, R. E.; Nash, J. F.; Carl, L. W.; Patel, V. C.
1973-01-01
The governing equations for an unsteady turbulent boundary layer on a swept infinite cylinder, composed of a continuity equation, a pair of momentum equations and a pair of turbulent energy equations which include upstream history efforts, are solved numerically. An explicit finite difference analog to the partial differential equations is formulated and developed into a computer program. Calculations were made for a variety of unsteady flows in both two and three dimensions but primarily for two dimensional flow fields in order to first understand some of the fundamental physical aspects of unsteady turbulent boundary layers. Oscillating free stream flows without pressure gradient, oscillating retarded free stream flows and monotonically time-varying flows have all been studied for a wide frequency range. It was found that to the lowest frequency considered, the lower frequency bound being determined by economic considerations (machine time), there were significant unsteady effects on the turbulent boundary layer.
Spontaneous transition of turbulent flames to detonations in unconfined media.
Poludnenko, Alexei Y; Gardiner, Thomas A; Oran, Elaine S
2011-07-29
A deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or preexisting shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction-wave model. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results. PMID:21867073
Spontaneous transition of turbulent flames to detonations in unconfined media.
Poludnenko, Alexei Y; Gardiner, Thomas A; Oran, Elaine S
2011-07-29
A deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or preexisting shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction-wave model. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results.
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
Incomplete combustion in nonadiabatic premixed gas flames
NASA Astrophysics Data System (ADS)
Kagan, L.; Sivashinsky, G.
1996-06-01
The inward propagating spherical flame and burner stabilized Bunsen-type flame of low-Lewis-number premixtures are studied numerically. It is shown that reduction of the reaction rate induced by the flame stretch makes the flame vulnerable to the radiative heat losses which may well result in a partial or complete extinction of the flame.
Modeling complex chemical effects in turbulent nonpremixed combustion
NASA Technical Reports Server (NTRS)
Smith, Nigel S. A.
1995-01-01
Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species
Numerical simulation of a laboratory-scale turbulent V-flame
Bell, J.B.; Day, M.S.; Shepherd, I.G.; Johnson, M.; Cheng, R.K.; Grcar,J.F.; Beckner, V.E.; Lijewski, M.J.
2005-02-07
We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The simulations are performed using an adaptive time-dependent low Mach number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit subgrid model for turbulence or turbulence chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.
Staged multi-tube premixing injector
Zuo, Baifang; Khan, Abdul Rafey; York, William David; Ziminsky, Willy Steve
2012-10-02
A fuel injection nozzle includes a body member having an upstream wall opposing a downstream wall, and an internal wall disposed between the upstream wall and the downstream wall, a first chamber partially defined by the an inner surface of the upstream wall and a surface of the internal wall, a second chamber partially defined by an inner surface of the downstream wall and a surface of the internal wall a first gas inlet communicative with the first chamber operative to emit a first gas into the first chamber, a second gas inlet communicative with the second chamber operative to emit a second gas into the second chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a third gas.
NASA Astrophysics Data System (ADS)
Undapalli, Satish
A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need
Saturated laser fluorescence in turbulent sooting flames at high pressure
NASA Technical Reports Server (NTRS)
King, G. B.; Carter, C. D.; Laurendeau, N. M.
1984-01-01
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.
Adams, Allan; Chesler, Paul M; Liu, Hong
2014-04-18
We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein's equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension D=d+4/3.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.
2011-09-07
Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.
Thermoacoustic limit cycles in a premixed laboratory combustor with open and choked exits
Hield, Peter A.; Brear, Michael J.; Jin, Seong Ho
2009-09-15
This paper presents an experimental and theoretical investigation of the response of a turbulent premixed flame during thermoacoustic limit cycle in a simple, laboratory combustor. The flame dynamics are examined using high-speed pressure transducers and CH* chemiluminescence. The so-called 'interaction index' and time delay between the acoustic velocity fluctuations at the flame holder and the flame's overall heat release fluctuations are then determined. A wide range of operating conditions, traversing the combustor's flammability limits in Mach number and equivalence ratio, are studied for four different combustor exits, including one where the exit is choked. In all cases the time delay correlates very well with the amplitude of the velocity fluctuations. There is also some correlation between the interaction index and these velocity fluctuations, but this is less clear. These results suggest a novel, nonlinear flame model, derived entirely empirically. An existing low-order thermoacoustic model is then extended to include convection and dispersion of entropy fluctuations downstream of the flame, enabling the effect of the choked nozzle to be examined. The novel nonlinear flame model is integrated into the low-order thermoacoustic model, and used to investigate the experimentally observed thermoacoustic limit cycles. The model correctly simulates the observed switch to a low-frequency, entropically driven instability observed when the combustor exit is choked. (author)
NASA Technical Reports Server (NTRS)
Reisel, John R.; Laurendeau, Normand M.
1994-01-01
Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.
NASA Astrophysics Data System (ADS)
Matalon, M.; Cui, C.; Bechtold, J. K.
2003-07-01
Based on a hydrodynamic length, which is typically larger than the nominal flame thickness, a premixed flame can be viewed as a surface of density discontinuity, advected and distorted by the flow. The velocities and the pressure suffer abrupt changes across the flame front that consist of Rankine Hugoniot jump conditions, to leading order, with corrections of the order of the flame thickness that account for transverse fluxes and accumulation. To complete the formulation, expressions for the flame temperature and propagation speed, which vary along the flame as a result of local non-uniformities in the flow field and of flame front curvature, are derived. Unlike previous studies that assumed a mixture consisting of a single deficient reactant, the present study uses a two-reactant scheme and thus considers mixtures whose compositions vary from lean to rich conditions. Furthermore, non-unity and general reaction orders are considered in an attempt to mimic a wider range of reaction mechanisms and, to better represent actual experimental conditions, all transport coefficients are allowed to depend arbitrarily on temperature. The present model, expressed in a coordinate-free form, is valid for flames of arbitrary shape propagating in general fluid flows, either laminar or turbulent.
Pulsed jet combustion generator for non-premixed charge engines
Oppenheim, A. K.; Stewart, H. E.
1990-01-01
A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.
Lean, Premixed-Prevaporized (LPP) combustor conceptual design study
NASA Technical Reports Server (NTRS)
Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.
1979-01-01
Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.
NASA Astrophysics Data System (ADS)
Dai, Jian; Yu, NanJia; Cai, GuoBiao
2015-12-01
Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.
Characterization of oscillations during premix gas turbine combustion
Richards, G.A.; Janus, M.C.
1998-04-01
The use of premix combustion in stationary gas turbines can produce very low levels of NO{sub x} emissions. This benefit is widely recognized, but turbine developers routinely encounter problems with combustion oscillations during the testing of new premix combustors. Because of the associated pressure fluctuations, combustion oscillations must be eliminated in a final combustor design. Eliminating these oscillations is often time-consuming and costly because there is no single approach to solve an oscillation problem. Previous investigations of combustion stability have focused on rocket applications, industrial furnaces, and some aeroengine gas turbines. Comparatively little published data is available for premixed combustion at conditions typical of an industrial gas turbine. In this paper, the authors report experimental observations of oscillations produced by a fuel nozzle typical of industrial gas turbines. Tests are conducted in a specially designed combustor capable of providing the acoustic feedback needed to study oscillations. Tests results are presented for pressures up to 10 atmospheres, theoretical considerations, it is expected that oscillations can be characterized by a nozzle reference velocity, with operating pressure playing a smaller role. This expectation is compared to observed data that shows both the benefits and limitations of characterizing the combustor oscillating behavior in terms of a reference velocity rather than other engine operating parameters. This approach to characterizing oscillations is then used to evaluate how geometric changes to the fuel nozzle will affect the boundary between stable and oscillating combustion.
Combustion Oscillation Analysis of Premixed Flames at Elevated Pressures
NASA Astrophysics Data System (ADS)
Ohtsuka, Masaya; Yoshida, Shohei; Inage, Shin'Ichi; Kobayashi, Nariyoshi
A new analytical time lag flame model based on Bloxidge’s flame model was introduced, which calculates the combustion oscillation of premixed flame to take into account the distribution of heat release rate and flame speed that was calculated by analytical formulas dependent on pressure, temperature, fuel-to-air ratio and velocity. The transfer matrix technique using the new flame model was applied to the calculation of acoustic resonance characteristics. To verify the model, combustion oscillation experiments were performed for methane-air premixed flames stabilized by a swirl burner at elevated pressures in a range of 0.6-0.9MPa. The fluctuating pressure had a maximum peak at a specific value of fτf, where f is the resonance frequency and τf is the passing time of premixed gas through the flame zone. The analytical model could simulate the dependency of the fluctuating pressure local peak on the fuel-to-air ratio and the static pressure.
Talbot, L.; Cheng, R.K.
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.
1995-01-01
The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames. PMID:24125342
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
NASA Astrophysics Data System (ADS)
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Effects of buoyancy on premixed flame stabilization
Bedat, B.; Cheng, R.K.
1995-10-01
The stabilization limits of v-flame and conical flames are investigated in normal gravity (+g) and reversed gravity (up-side-down burner, -g) to compare with observations of flame stabilization during microgravity experiments. The results show that buoyancy has most influence on the stabilization of laminar V-flames. Under turbulent conditions, the effects are less significant. For conical flames stabilized with a ring, the stabilization domain of the +g and -g cases are not significantly different. Under reversed gravity, both laminar v-flames and conical flames show flame behaviors that were also found in microgravity. The v-flames reattached to the rim and the conical flame assumed a top-hat shape. One of the special cases of -g conical flame is the buoyancy stabilized laminar flat flame that is detached from the burner. These flame implies a balance between the flow momentum and buoyant forces. The stretch rates of these flames are sufficiently low (< 20 s{sup -1}) such that the displacement speeds S{sub L} are almost equal to the laminar burning speed S{sub L}{sup 0}. An analysis based on evaluating the Richardson number is used to determine the relevant parameters that describe the buoyancy/momentum balance. A perfect balance i.e. Ri = l can be attained when the effect of heat loss from the flame zone is low. For the weaker lean cases, our assumption of adiabaticity tends to overestimate the real flame temperature. This interesting low stretch laminar flame configuration can be useful for fundamental studies of combustion chemistry.
Turbulence structure in a Taylor-Couette apparatus
Fehrenbacher, Noah; Aldredge, Ralph C.; Morgan, Joshua T.
2007-10-15
Turbulence measurements were made in a Taylor-Couette apparatus as a basis for future flame propagation studies. Results of the present study extend that of earlier work by more complete characterization of the featureless turbulence regime generated by the Taylor-Couette apparatus. Laser Doppler Velocimetry was used to measure Reynolds stresses, integral and micro time scales and power spectra over a wide range of turbulence intensities typically encountered by turbulent pre-mixed hydrocarbon-air flames. Measurements of radial velocity intensities are consistent with earlier axial and circumferential velocity measurements that indicated a linear relationship between turbulence intensity and the Reynolds number based on the average cylinder rotation speed and wall separation distance. Measured integral and micro time scales and approximated integral length scales were all found to decrease with the Reynolds number, possibly associated with a confinement of the largest scales (of the order of the cylinder wall separation distance). Regions of transverse isotropy were discovered in axial-radial cross correlations for average cylinder Reynolds numbers less than 6000 and are predicted to exist also for circumferential cross correlations at higher average Reynolds numbers, greater than 6000. Power spectra for the independent directions of velocity fluctuation exhibited -5/3 slopes, suggesting that the flow also has some additional isotropic characteristics and demonstrating the role of the Taylor-Couette apparatus as a novel means for generating turbulence for flame propagation studies. (author)
Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames
NASA Astrophysics Data System (ADS)
Mehta, Ranjan S.
Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure. Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with
Properties of Injectable Apatite-Forming Premixed Cements.
Shimada, Yashushi; Chow, Laurence C; Takagi, Shozo; Tagami, Junji
2010-07-01
Previous studies reported premixed calcium phosphate cements (CPCs) that were stable in the package and form hydroxyapatite (HA) as the product after exposure to an aqueous environment. These cements had setting times of greater than 60 min, which are too long to be useful for some clinical applications. The present study investigated properties of fast-setting HA-forming premixed CPCs that initially consisted of two separate premixed pastes: (1) finely ground (1.0 μm in median size) dicalcium phosphate anhydrous (DCPA) mixed with an aqueous NaH(2)PO(4) solution, 1.5 mol/L or 3.0 mol/L in concentration, and (2) tetracalcium phosphate consisting of combinations of particles of two different size distributions, 5 μm (TTCP5) and 17 μm (TTCP17) in median size, mixed with glycerin. Equal volume of Pastes 1 and 2 were injected with the use of atwo-barrel syringe fitted with a static mixer into sample molds. The molar Ca/P ratio of combined paste was approximately 1.5. Cements were characterized in terms of setting time (Gilmore needle), diametral tensile strength (DTS), and phase composition (powder x-ray diffraction, XRD). Setting times were found to range from (4.3 ± 0.6 to 68 ± 3) min (mean ± sd; n = 3), and 1-d and 7-d DTS values were from (0.89 ± 0.08 to 2.44 ± 0.16) MPa (mean ± sd; n = 5). Both the NaH(2)PO(4) concentration and TTCP particle size distribution had significant (p < 0.01) effects on setting time and DTS. Powder XRD analysis showed that low crystallinity HA and unreacted DCPA were present in the 1-day specimens, and the extent of HA formation increased with increasing amount of TTCP5 in the TTCP paste. CONCLUSION: Injectable HA-forming premixed CPCs with setting times from 4 to 70 min can be prepared by using DCPA and TTCP as the ingredients. Compared to the conventional powder liquid cements, these premixed CPCs have the advantages of being easy to use and having a range of hardening times. PMID:21479133
Premixed calcium phosphate cements: Synthesis, physical properties, and cell cytotoxicity
Xu, Hockin H.K.; Carey, Lisa E.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.
2009-01-01
Objectives Calcium phosphate cement (CPC) is a promising material for dental, periodontal, and craniofacial repairs. However, its use requires on-site powder–liquid mixing that increases the surgical placement time and raises concerns of insufficient and inhomogeneous mixing. The objective of this study was to determine a formulation of premixed CPC (PCPC) with rapid setting, high strength, and good in vitro cell viability. Methods PCPCs were formulated from CPC powder + non-aqueous liquid + gelling agent + hardening accelerator. Five PCPCs were thus developed: PCPC-Tartaric, PCPC-Malonic, PCPC-Citric, PCPC-Glycolic, and PCPC-Malic. Formulations and controls were compared for setting time, diametral tensile strength, and osteoblast cell compatibility. Results Setting time (mean ± S.D.; n = 4) for PCPC-Tartaric was 8.2 ± 0.8 min, significantly less than the 61.7 ± 1.5 min for the Premixed Control developed previously (p < 0.001). On 7th day immersion, the diametral tensile strength of PCPC-Tartaric reached 6.5 ± 0.8 MPa, higher than 4.5 ± 0.8 MPa of Premixed Control (p = 0.036). Osteoblast cells displayed a polygonal morphology and attached to the nano-hydroxyapatite crystals in the PCPCs. All cements had similar live cell density values (p = 0.126), indicating that the new PCPCs were as cell compatible as a non-premixed CPC control known to be biocompatible. Each of the new PCPCs had a cell viability that was not significantly different (p > 0.1) from that of the non-premixed CPC control. Significance PCPCs will eliminate the powder–liquid mixing during surgery and may also improve the cement performance. The new PCPCs supported cell attachment and yielded a high cell density and viability. Their mechanical strengths approached the reported strengths of sintered porous hydroxyapatite implants and cancellous bone. These nano-crystalline hydroxyapatite cements may be useful in dental, periodontal, and craniofacial repairs. PMID:16678895
Numerical simulation of turbulent coherent structures of flows past a bluff body
NASA Astrophysics Data System (ADS)
Yan, Chuanjun; Xu, Chenggang; Zhu, Huiling; Tan, Ming; Wang, Hongchi
The model used to arrive at the present numerical results of unsteady, two-dimensional turbulent reacting flow past a bluff body is based on Chorin's (1973) random vortex method and a simple line interface calculation for a flame propagation algorithm. A triangular prism is used as a flame holder, and solutions for both reacting and nonreacting flows are obtained. The numerical results encompass the vorticity field, the average velocity field, turbulence statistics, flame contours, and the concentration field, revealing a Karman vortex street coherent structure and illuminating the processes of ignition, stabilization, and propagation of the premixed flame.
NASA Astrophysics Data System (ADS)
Newell, Alan C.; Rumpf, Benno
2011-01-01
In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.
1987-01-01
Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.
Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle
Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul
2013-12-17
A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.
Stirring effects and bistability in the iodate-arsenous acid reaction: Premixed vs segregated flows
NASA Astrophysics Data System (ADS)
Hannon, L.; Horsthemke, W.
1987-01-01
Using a coalescence-dispersion model of the continuous flow-stirred tank reactor (CSTR), we study the effect of premixed vs nonpremixed reactant flows on chemical bistability. The region of bistability is smaller for segregated feed streams than for a fully premixed feed stream. The transition from flow branch to thermodynamic branch is particularly sensitive to the feed stream configuration.
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in...
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrites and/or nitrates in curing premixes. 170.60... Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are food.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in...
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in...
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in...
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics.
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics. PMID:27505641
Turbulence distance for laser beams propagating through non-Kolmogorov turbulence.
Huang, Yongping; Zhang, Bin
2013-11-01
Based on the second-order moments and the non-Kolmogorov turbulence spectrum, the general analytical expression for the turbulence distance of laser beams propagating through non-Kolmogorov turbulence is derived, which depends on the non-Kolmogorov turbulence parameters including the generalized exponent parameter α, inner scale l(0), and outer scale L(0) and the initial second-order moments of the beams at the plane of z=0. Taking the partially coherent Hermite-Gaussian linear array (PCHGLA) beam as an illustrative example, the effects of non-Kolmogorov turbulence and array parameters on the turbulence distance are discussed in detail. The results show that the turbulence distance z(Mx)(α) of PCHGLA beams through non-Kolmogorov turbulence first decreases to a dip and then increases with increasing α, and the value of z(Mx)(α) increases with increasing beam number and beam order and decreasing coherence parameter, meaning less influence of non-Kolmogorov turbulence on partially coherent array beams than that of fully coherent array beams and a single partially coherent beam. However, the value of z(Mx)(α) for PCHGLA beams first increases nonmonotonically with the increasing of the relative beam separation x0' for x0'≤1 and increases monotonically as x0' increases for x0'>1. Moreover, the variation behavior of the turbulence distance with the generalized exponent parameter, inner scale, and outer scale of the turbulence and the beam number is similar, but different with the relative beam separation for coherent and incoherent combination cases.
Sen, Baris Ali; Menon, Suresh
2010-01-15
A large eddy simulation (LES) sub-grid model is developed based on the artificial neural network (ANN) approach to calculate the species instantaneous reaction rates for multi-step, multi-species chemical kinetics mechanisms. The proposed methodology depends on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence (but not the actual geometrical problem) of interest, and later using them to replace the stiff ODE solver (direct integration (DI)) to calculate the reaction rates in the sub-grid. The thermo-chemical database is tabulated with respect to the thermodynamic state vector without any reduction in the number of state variables. The thermo-chemistry is evolved by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. The proposed methodology is tested in LES and in stand-alone LEM studies of three distinct test cases with different reduced mechanisms and conditions. LES of premixed flame-turbulence-vortex interaction provides direct comparison of the proposed ANN method against DI and ANNs trained on thermo-chemical database created using another type of tabulation method. It is shown that the ANN trained on the LEM database can capture the correct flame physics with accuracy comparable to DI, which cannot be achieved by ANN trained on a laminar premix flame database. A priori evaluation of the ANN generality within and outside its training domain is carried out using stand-alone LEM simulations as well. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless. (author)
Computational modeling of thermodynamic irreversibilities in turbulent non-premixed combustion
NASA Astrophysics Data System (ADS)
Bouras, Fethi; Khaldi, Fouad
2016-04-01
This work is focused on the analysis of various computed terms of entropy generation rate in the gaseous combustion processes at different inlet temperatures of air and CH4. Therefore, the expression of the entropy generation rate includes the effect of the viscosity friction, the thermal diffusion, the species diffusion and the chemical reaction. The expressions have been used for each term of entropy generation in order to examine the influence of each one in the overall system.
Catlin, C.A. ); Lindstedt, R.P. )
1991-06-01
This paper reports on the Eddy Breakup model investigated in two modified forms in which the reaction rate is quenched at the cold front of the flame. One quench criterion is based on the reaction progress variable (RPVQC) and the other on temperature (TQC). Burning velocities for the RPVQC have been calculated from the steady conservation equations by the use of apparently novel numerical and analytical eigenvalue techniques. Both RPVQC and TQC criteria were also studied in numerical simulations of transient one-dimensional flame propagation. The latter study also determined essential constraints on grid and time step size required to ensure accurate predictions. For the RPVQC the eigenvalue analysis and transient computations are in good agreement, provided the quench point is not close to the cold front.
Large-eddy simulation/PDF modeling of a non-premixed CO/H2 temporally evolving jet flame
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Haifeng; Pope, Stephen B.; Chen, Jacqueline H.
2011-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a non-premixed CO/H2 temporally evolving planar jet flame at Re = 9079 and Da = 0.011 with skeletal chemistry. The flame exhibits strong turbulence- chemistry interactions resulting in local extinction followed by re-ignition. In this study, the filtered velocity field in LES is computed using the NGA code (Desjardins et al., 2008) and the PDF transported equations with the modified Curl's mixing model are solved by the new highly-scalable HPDF code (Wang and Pope, 2011) with second order accuracy in space and time. The performance of the hybrid LES/PDF methodology is assessed through detailed a posteriori comparisons with DNS of the same flame (Hawkes et al., 2007). The comparison shows good agreement of the temporal evolution of the temperature and mass fractions of major chemical species, as well as the prediction of local extinction and re-ignition. In addition, the effects of the subgrid scale model, the mixing model, and grid resolution on turbulence-chemistry interactions are investigated to improve the capabilities of LES/PDF. Supported in part by the CEFRC funded by the DOE.
An explicit Runge-Kutta method for turbulent reacting flow calculations
NASA Technical Reports Server (NTRS)
Boretti, A. A.
1989-01-01
The paper presents a numerical method for the solution of the conservation equations governing steady, reacting, turbulent viscous flow in two-dimensional geometries, in both Cartesian and axisymmetric coordinates. These equations are written in Favre-averaged form and closed with a first order model. A two-equation K-epsilon model, where low Reynolds number and compressibility effects are included, and a modified eddy-break up model are used to simulate fluid mechanics turbulence, chemistry and turbulence-combustion interaction. The solution is obtained by using a pseudo-unsteady method with improved perturbation propagation properties. The equations are discretized in space by using a finite volume formulation. An explicit multi-stage dissipative Runge-Kutta algorithm is then used to advance the flow equations in the pseudo-time. The method is applied to the computation of both diffusion and premixed turbulent reacting flows. The computed temperature distributions compare favorably with experimental data.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Response mechanisms of attached premixed flames subjected to harmonic forcing
NASA Astrophysics Data System (ADS)
Shreekrishna
The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the
NASA Astrophysics Data System (ADS)
Wilde, B. H.; Rosen, P. A.; Foster, J. M.; Perry, T. S.; Steinkamp, M. J.; Robey, H. F.; Khokhlov, A. M.; Gittings, M. L.; Coker, R. F.; Keiter, P. A.; Knauer, J. P.; Drake, R. P.; Remington, B. A.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B.; Mehlhorn, T. A.
2003-10-01
Over the last few years we have fielded numerous supersonic jet experiments on the NOVA and OMEGA lasers and Sandia's pulsed-power Z-machine in a collaboration between Los Alamos National Laboratory, the Atomic Weapons Establishment, Lawrence Livermore National Laboratory, and Sandia National Laboratory. These experiments are being conducted to help validate our radiation-hydrodynamic codes, especially the newly developing ASC codes. One of the outstanding questions is whether these types of jets should turn turbulent given their high Reynolds number. Recently we have modified our experiments to have more Kelvin-Helmholtz shear, run much later in time and therefore have a better chance of going turbulent. In order to diagnose these large (several mm) jets at very late times ( 1000 ns) we are developing point-projection imaging on both the OMEGA laser, the Sandia Z-Machine, and ultimately at NIF. Since these jets have similar Euler numbers to jets theorized to be produced in supernovae explosions, we are also collaborating with the astrophysics community to help in the validation of their new codes. This poster will present a review of the laser and pulsed-power experiments and a comparison of the data to simulations by the codes from the various laboratories. We will show results of simulations wherein these jets turn highly 3-dimensional and show characteristics of turbulence. With the new data, we hope to be able to validate the sub-grid-scale turbulent mix models (e. g. BHR) that are being incorporated into our codes.*This work is performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory Laboratory under Contract No. W-7405-ENG-36, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460, Sandia National Laboratories under Contract No. DE-AC04-94AL85000, the Office of Naval Research, and the NASA Astrophysical Theory Grant.
Turbulent flame-wall interaction: a DNS study
Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan; Gruber, Andrea
2010-01-01
A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This finding has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.
Galley, D.; Ducruix, S.; Lacas, F.; Veynante, D.
2011-01-15
A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future. (author)
Pulsating instability and self-acceleration of fast turbulent flames
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei Y.
2015-01-01
A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. The computational domain is unconfined to prevent the onset of thermoacoustic instabilities. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damköhler numbers Da = 0.1 - 6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. (1) Turbulent flame speed, ST, develops pulsations with the observed peak-to-peak amplitude ST max / ST min > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. (2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when ST approaches or exceeds the speed of a Chapman-Jouguet deflagration. (3) Coupling of pressure gradients formed during pulsations with density gradients across the flame leads to the anisotropic amplification of turbulence inside the flame volume and flame acceleration. Such process, which is driven by the baroclinic term in the vorticity transport equation, is a reacting-flow analog of the mechanism underlying the Richtmyer-Meshkov instability. With the increase in turbulent intensity, the limit-cycle instability discussed here transitions to the regime described in our previous work, in which the growth of ST becomes unbounded and produces a detonation.
Results of a model for premixed combustion oscillations
Janus, M.C.; Richards, G.A.
1996-09-01
Combustion oscillations are receiving renewed research interest due to increasing use of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described in this paper. The model was developed to help explain specific experimental observations and to provide guidance for development of active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor which are analogous to current LPM turbine combustors. Conservation equations for the fuel nozzle and combustor are developed from simple control volume analysis, providing a set of ordinary differential equations that can be solved on a personal computer. Combustion is modeled as a stirred reactor, with a bimolecular reaction rate between fuel and air. A variety of numerical results and comparisons to experimental data are presented to demonstrate the utility of the model. Model results are used to understand the fundamental mechanisms which drive combustion oscillations, effects of inlet air temperature and nozzle geometry on instability, and effectiveness of open loop control schemes.
Graded plasma spraying of premixed metalceramic powders on metallic substrates
NASA Astrophysics Data System (ADS)
Lima, C. R. C.; Trevisan, R.-E.
1997-06-01
The mismatch between the thermal expansion coefficients of ceramics and metals and the differential stresses it causes at the interface create problems in metal to ceramic joining. Research has been con-ducted to solve this problem in thermal barrier coating technology. Previous studies have considered met-al-ceramic multilayers or graded-coatings, which include a metallic bond coat. In this study, a graded plasma-sprayed metal-ceramic coating is developed using the deposition of premixed metal and ceramic powders without the conventional metallic bond coat. Influences of thickness variations, number, and composition of the layers are investigated. Coatings are prepared by atmospheric plasma-spraying on In-conel 718 superalloy substrates. Ni-Cr-Al and ZrO2 -8 % Y2O3 powders are used for plasma spraying. Ad-hesive and cohesive strength of the coatings are determined. The concentration profile of the elements is determined by x-ray energy-dispersive analysis. The microstructure and morphology of the coatings are investigated by optical and scanning electron microscopy (SEM). Results show that the mixed metal-ce-ramic coating obtained with the deposition of premixed powders is homogeneous. The morphology and microstructure of the coatings are considered satisfactory.
FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES
Don Ferguson; Geo. A. Richard; Doug Straub
2008-06-13
In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.
Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale.
Mitic, Sandra; van Nieuwkasteele, Jan W; van den Berg, Albert; de Vries, Simon
2015-01-15
Unravelling (bio)chemical reaction mechanisms and macromolecular folding pathways on the (sub)microsecond time scale is limited by the time resolution of kinetic instruments for mixing reactants and observation of the progress of the reaction. To improve the mixing time resolution, turbulent four- and two-jet tangential micro-mixers were designed and characterized for their mixing and (unwanted) premixing performances employing acid-base reactions monitored by a pH-sensitive fluorescent dye. The mixing performances of the micro-mixers were determined after the mixing chamber in a free-flowing jet. The premixing behavior in the vortex chamber was assessed in an optically transparent glass-silicon replica of a previously well-characterized stainless-steel four-jet tangential micro-mixer. At the highest flow rates, complete mixing was achieved in 160ns with only approximately 9% premixing of the reactants. The mixing time of 160ns is at least 50 times shorter than estimated for other fast mixing devices. Key aspects to the design of ultrafast turbulent micro-mixers are discussed. The integration of these micro-mixers with an optical flow cell would enable the study of the very onset of chemical reactions in general and of enzyme catalytic reactions in particular.
A two-step chemical scheme for kerosene-air premixed flames
Franzelli, B.; Riber, E.; Sanjose, M.; Poinsot, T.
2010-07-15
A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa
2011-09-01
The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).
The interaction of high-speed turbulence with flames: Turbulent flame speed
Poludnenko, A.Y.; Oran, E.S.
2011-02-15
Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps
Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames
Su, L.K.; Sun, O.S.; Mungal, M.G.
2006-02-01
Simultaneous planar-laser induced fluorescence (PLIF) and particle image velocimetry (PIV) provide a comprehensive view of the molecular mixing and velocity fields in the stabilization region of turbulent, lifted jet diffusion flames. The Mie scattering medium for PIV is a glycerol-water fog, which evaporates at elevated temperatures and allows inference of the location of the high-temperature interface at the flame base. The jet Reynolds numbers vary from 4400 to 10,700. The mixing and velocity fields upstream of the flame base evolve consistently with nonreacting jet scaling. Conditional statistics of the fuel mole fraction at the instantaneous high-temperature interface show that the flame stabilization point does not generally correspond to the most upstream point on the interface (called here the leading point), because the mixture there is typically too lean to support combustion. Instead, the flame stabilization point lies toward the jet centerline relative to the leading point. Conditional axial velocity statistics indicate that the mean axial velocity at the flame front is {approx}1.8S{sub L}, where S{sub L} is the stoichiometric laminar flame speed. The data also permit determination of the scalar dissipation rates, {chi}, with the results indicating that {chi} values near the high-temperature interfaces do not typically exceed the quenching value. Thus, the flame stabilization process is more consistent with theories based on partial fuel-air premixing than with those dependent on diffusion flame quenching. We propose a description of flame stabilization that depends on the large-scale organization of the mixing field. (author)
Krommes, J.A.
2000-01-18
Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified.
Premixed Edge-Flames in Spatially-Varying Straining Flows
NASA Technical Reports Server (NTRS)
Liu, Jian-Bang; Ronney, Paul D.
1999-01-01
Flames subject to temporally and spatially uniform hydrodynamic strain are frequently used to model the local interactions of flame fronts with turbulent flow fields (Williams, 1985; Peters, 1986; Bradley, 1992). The applicability of laminar flamelet models in strongly turbulent flows have been questioned recently (Shay and Ronney, 1998) because in turbulent flows the strain rate (sigma) changes at rates comparable to sigma itself and the scale over which the flame front curvature and sigma changes is comparable to the curvature scale itself. Therefore quasi-static, local models of turbulent strain and curvature effects on laminar flamelets may not be accurate under conditions where the strain and curvature effects are most significant. The purpose of this study is to examine flames in spatially-varying strain and compare their properties to those of uniformly strained flames.
Behaviour of a Premixed Flame Subjected to Acoustic Oscillations
Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert
2013-01-01
In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501
Pre-mixing apparatus for a turbine engine
Lacy, Benjamin Paul; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict; Zuo, Baifang; Stevenson, Christian Xavier; Felling, David Kenton; Uhm, Jong Ho
2012-04-03
A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.
Some effects of gravity on the behavior of premixed flames
Durvox, D.; Baillot, F.; Seouflaire, P.; Prudhomme, R. )
1990-10-01
This paper reports how, in ground-level tests on Bunsen-type premixed flames, a vertical fixed-frequency pumping effect can be observed at the tip of the flame, provided the latter is tall enough and the flow is laminar at the burner outlet. The effect vanishes completely under the microgravity conditions prevailing during parabolic flight tests, when natural convection no longer exists; in contrast, pumping frequency becomes higher as the acceleration of gravity increases. In a recent parabolic flight program, the frequency increase was measured while the aircraft was climbing at 1.8 g acceleration. Flight tests were supplemented by ground testing to derive the law of the frequency change as a function of pressure, equivalence ratio and flow velocity.
Liquid cement premix for improved abandonment and workover operations
Rae, P.; Johnston, N.
1996-12-31
Many cementing operations, such as well abandonment, work-over, etc., incur logistical, personnel and operational problems, and costs, disproportionate to the size of the cementing operation. A typical example being offshore well abandonment on a platform which has limited accommodation, no conventional cementing equipment, and where access, space or weight restrictions preclude its installation. This paper outlines the problems of abandonment and remote locations; it describes the concept, laboratory development, pilot testing, introduction and field use of a liquid cement premix. This novel approach helps reduce waste and minimize the environmental impact of the cementing operation and may be particularly suitable where small volumes of accurately mixed slurry are required, for example in coil tubing applications. It is, however, equally applicable for large volumes since the process lends itself to automation. The technique offers radical changes to cementing operations and equipment requirements, and direct savings to the operator through reduction in the costs of personnel, equipment mobilization, transport, installation, and material wastage.
Excitation of thermoacoustic oscillations by small premixed flames
Coats, C.M.; Chang, Z.; Williams, P.D.
2010-06-15
Experiments have been carried out in which very small lean premixed flames closely representative of those formed by modern multiport domestic gas burners have been subjected to controlled acoustic perturbation. PLIF from CH has been used to visualise the flame response and the heat-release-rate fluctuations have been evaluated directly from the flame images. It is shown that small laminar flames can amplify the effects of acoustic velocity fluctuations by mechanisms that do not involve resonant heat loss to the burner and that the fluctuations in flame-front area are not adequately characterised by a Strouhal number alone. The measured transfer function is compared with the predictions of various analytical formulations and a new model of the flame oscillation is proposed which applies specifically to situations in which the design of the burner renders the flame base immobile. (author)
Flashback detection sensor for lean premix fuel nozzles
Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward
2002-08-06
A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.
Study on the premixed laminar flames of iso-octane
NASA Astrophysics Data System (ADS)
Yang, Bo; Hong, Yan-ji; Xu, Qing-yao; Liu, Yi; Cheng, Qi-sheng; Ding, Xiao-yu
2015-04-01
Propagation characteristics of premixed laminar iso-octane flames at atmosphere and equivalence ratios from 0.8 to 1.4 are studied in a constant combustion bomb using a schlieren technique, the laminar burning velocity at different initial pressure, temperature, equivalence ratio are calculated through CHEMKIN program. The experimental and calculation results show that the laminar burning velocity of iso-octane rise with the decreasing of initial pressure and rise with the rising of initial temperature . Only changing the initial temperature or pressure ,the maximum laminar burning velocity of iso-octane were both obtained at equivalence ratio 1.1. Flame stability become weak ,when increased the equivalence ratio. The problem of the chemistry reaction mechanism to predict the laminar burning velocity were analysed.
Dynamics of premixed hydrogen/air flames in mesoscale channels
Pizza, Gianmarco; Frouzakis, Christos E.; Boulouchos, Konstantinos; Mantzaras, John; Tomboulides, Ananias G.
2008-10-15
Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)
Internal combustion engine using premixed combustion of stratified charges
Marriott, Craig D.; Reitz, Rolf D. (Madison, WI
2003-12-30
During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.
Prediction of free shear flows: A comparison of the performance of six turbulence models
NASA Technical Reports Server (NTRS)
Launder, B. E.; Morse, A.; Rodi, W.; Spalding, D. B.
1973-01-01
The performance is evaluated of three distinct classes of turbulence model. These classes are: (1) Turbulent-viscosity models in which the length scale of turbulence is found by way of algebraic formulas, (2) turbulent-viscosity models in which the length scale of turbulence is found from a partial differential equation of transport, and (3) models in which the shear stress itself is the dependent variable of a partial differential conservation equation. Two models were examined in each class; thus, six different models were tested. A complete mathematical statement of these models is provided and a brief commentary on the models is included.
Technology Transfer Automated Retrieval System (TEKTRAN)
Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...
Ksandopulo, G.I.
1995-08-25
This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.
Stabilization of premixed flames on rotating Bunsen burners
Cha, J.M.; Sohrab, S.H.
1996-09-01
The effect of rotation on stabilization of methane-air premixed Bunsen flame sis experimentally investigated. Both the flame blowoff and flashback contours are determined in the fuel mole fraction versus Reynolds number plane (X{sub F}-Re) with the rotational Reynolds number Re{sub 4} as a parameter. It is found that rotation of the gas increases the flame stabilization area A{sub s} = A{sub B} {minus} A{sub F} defined as the difference between the flame blowoff A{sub B} and flashback A{sub F} areas in the (X{sub F}-Re) plane. The flame stabilization efficiency is defined as {eta}{sub s} = 1 {minus} A{sub F}/A{sub B} that approaches unity in either A{sub B} {yields} {infinity} or A{sub F} {yields} 0 limit. The experimental results suggest that rotation decreases the flame stabilization efficiency. However, rotation is found to substantially increase the flame stabilization coefficient defined as {beta}{sub s} = A{sub s}/A{sub st}, where A{sub st} is the stabilization area of the standard nonrotating burner. The parameters {eta}{sub s} and {beta}{sub s} may be useful in combustion technology for quantitative evaluation of the stabilization performance of different types of flame holders. In addition, the local hydrodynamics near the center of rotating Bunsen burner is simulated by investigating stabilization of planar laminar premixed flames on rotating porous disks with uniform surface velocity. Physical concepts concerning mechanisms of flame stabilization are discussed in terms of three important parameters namely the translational Reynolds number Re, the rotation Reynolds number Re{sub r}, and the fuel mole fraction X{sub F}. The results of the experimental findings are shown to be in accordance with prior theoretical investigation.
Extinction conditions of a premixed flame in a channel
Alliche, Mounir; Haldenwang, Pierre; Chikh, Salah
2010-06-15
A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide
Chemical Kinetic Study of Toluene Oxidation Under Premixed and Nonpremixed Conditions
Costa, I D; Bozzelli, J W; Seiser, R; Pitz, W J; Westbrook, C K; Chen, C -; Fournet, R; Seshadri, K; Battin-Leclerc, F; Billaud, F
2003-12-10
A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. A detailed chemical-kinetic mechanism for toluene was improved by adding a more accurate description of the phenyl + O{sub 2} reaction channels, toluene decomposition reactions and the benzyl + O reaction. Results of the chemical kinetic mechanism are compared with experimental data obtained from premixed and non-premixed systems. Under premixed conditions, predicted ignition delay times are compared with new experimental data obtained in shock tube. Also, calculated species concentration histories are compared to experimental flow reactor data from the literature. Under non-premixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations are performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in non-premixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. For both premixed and non-premixed systems, sensitivity analysis was used to identify the reaction rate constants that control the overall rate of oxidation in each of the systems considered. Under shock tube conditions, the reactions that influence ignition delay time are H + O{sub 2} chain branching, the toluene decomposition reaction to give an H atom, and the toluene + H abstraction reaction. The reactions that influence autoignition in non-premixed systems involve the benzyl + HO{sub 2} reaction and the phenyl + O{sub 2} reaction.
Busch, Rebecca A.; Curtis, Caitlin S.; Leverson, Glen E.; Kudsk, Kenneth A.
2014-01-01
Background Parenteral nutrition (PN) is available as individualized prescriptions frequently prepared with an automated compounding device, or as commercially prepared premixed solutions. Our institution exclusively used individualized PN until an amino acid shortage forced a temporary switch to premixed solutions. In general, premixed solutions contain lower electrolyte levels than individualized formulations prescribed for patients with normal organ function. We aimed to quantify supplemental intravenous piggyback (IVPB) electrolyte use in adult patients receiving individualized and premixed PN, and to quantify any effect on difference in the cost of therapy. Methods We compared use of supplemental IVPB electrolytes administered to patients receiving PN during consecutive periods prior to and during the amino acid shortage. Electrolyte IVPBs tabulated were: potassium chloride 10 and 20 mEq, magnesium sulfate 2 g and 4 g, potassium phosphate 7.5 and 15 mmol, sodium phosphate 7.5 and 15 mmol IVPB. Results There was no statistical difference in the number of PN formulations administered per day during each period (14.7 + 3.9 vs. 14.0 + 2.6, individualized vs. premixed, respectively). Total IVPB electrolytes prescribed per day increased significantly from the individualized PN period to the premixed PN period (7.03 + 3.8 vs. 13.8 + 6.8, p<0.0001). The additional IVPB electrolyte supplementation required in patients receiving premixed PN was associated with an additional $11,855.74 cost per 30 days of therapy compared to those who received individualized PN. Conclusion Inpatient use of premixed PN results in a significant increase in IVPB electrolyte supplementation and cost when compared to individualized PN use. PMID:24390715
NASA Astrophysics Data System (ADS)
Yang, Yue
2016-06-01
The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.
NASA Astrophysics Data System (ADS)
Aumeier, Thomas
2011-12-01
The modeling of combustion phenomena in turbulent flows is an important requirement to calculate the effects on the underlying flow field and thus to use the results for design studies and optimization processes in technical applications. Complex chemical systems arise due to the large amount of species participating in combustion reactions as well as multiple reaction paths which are represented by a set of reaction equations. These systems have to be solved with suitable numerical techniques and must consider the influence of turbulence in the mean transport equations, respectively. Compared to the time scales in the flow, chemical reactions occur on a more expanded range of time at a molecular level. This effect reflects in the formulation of the equations for the calculation of chemical reaction rates, which are given in a Lagrangian formulation and therefore only depends on time. In practical cases specific combustion models are used depending on the combustion regime which is associated within an application. In this thesis a combustion model for turbulence chemistry interactions is presented, which can be used, independently of the combustion regime, for both diffusion and premixed flames as well as for partially premixed flames in realistic combustors. With the aid of the model the mean chemical source terms can be coupled to the species transport equations and the energy equation of the commercial CFD - solver FLUENTÂ®. This is done within the solver by a user-friendly interface, the so-called User Defined Functions (UDF). Transport equations for each specie progressing in the chemical reactions are solved and its source terms are calculated with the aid of a detailed reaction mechanism. In the presented model the calculation of the mean values is performed by coupling a Lagrangian solution procedure with an Eulerian finite volume solver. A very large amount of individual particles are considered where for each particle additional Lagrangian equations
Coriton, Bruno; Smooke, Mitchell D.; Gomez, Alessandro
2010-11-15
The extinction of premixed CH{sub 4}/O{sub 2}/N{sub 2} flames counterflowing against a jet of combustion products in chemical equilibrium was investigated numerically using detailed chemistry and transport mechanisms. Such a problem is of relevance to combustion systems with non-homogeneous air/fuel mixtures or recirculation of the burnt gases. Contrary to similar studies that were focused on heat loss/gain, depending on the degree of non-adiabaticity of the system, the emphasis here was on the yet unexplored role of the composition of counterflowing burnt gases in the extinction of lean-to-stoichiometric premixed flames. For a given temperature of the counterflowing products of combustion, it was found that the decrease of heat release with increase in strain rate could be either monotonic or non-monotonic, depending on the equivalence ratio {phi}{sub b} of the flame feeding the hot combustion product stream. Two distinct extinction modes were observed: an abrupt one, when the hot counterflowing stream consists of either inert gas or equilibrium products of a stoichiometric premixed flame, and a smooth extinction, when there is an excess of oxidizing species in the combustion product stream. In the latter case four burning regimes can be distinguished as the strain rate is progressively increased while the heat release decreases smoothly: an adiabatic propagating flame regime, a non-adiabatic propagating flame regime, the so-called partially-extinguished flame regime, in which the location of the peak of heat release crosses the stagnation plane, and a frozen flow regime. The flame structure was analyzed in detail in the different burning regimes. Abrupt extinction was attributed to the quenching of the oxidation layer with the entire H-OH-O radical pool being comparably reduced. Under conditions of smooth extinction, the behavior is different and the concentration of the H radical decreases the most with increasing strain rate, whereas OH and O remain
Potential capabilities of Reynolds stress turbulence model in the COMMIX-RSM code
NASA Technical Reports Server (NTRS)
Chang, F. C.; Bottoni, M.
1994-01-01
A Reynolds stress turbulence model has been implemented in the COMMIX code, together with transport equations describing turbulent heat fluxes, variance of temperature fluctuations, and dissipation of turbulence kinetic energy. The model has been verified partially by simulating homogeneous turbulent shear flow, and stable and unstable stratified shear flows with strong buoyancy-suppressing or enhancing turbulence. This article outlines the model, explains the verifications performed thus far, and discusses potential applications of the COMMIX-RSM code in several domains, including, but not limited to, analysis of thermal striping in engineering systems, simulation of turbulence in combustors, and predictions of bubbly and particulate flows.
Ohira, Yutaka
2013-04-10
We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.
3rd International Conference on Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.
2013-07-01
non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples to list. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modelling of the multi-scale non-equilibrium dynamics in fluids and plasmas, for error estimates and uncertainty quantifications, as well as for novel data assimilation techniques. 3. International Conference 'Turbulent Mixing and Beyond' The First and Second International Conferences on Turbulent Mixing and Beyond found that: (i) TMB-related problems have in common a set of outstanding research issues; (ii) their solution has a potential to significantly advance a variety of disciplines in science
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.
1982-01-01
A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.
Triantafyllidis, A.; Mastorakos, E.; Eggels, R.L.G.M.
2009-12-15
Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms, and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonable accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation. (author)
NASA Astrophysics Data System (ADS)
Thomsen, Duane Douglas
1999-10-01
Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N 2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH 4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry
2011-01-01
Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or
Cheng, R.K.; Bedat, B.; Yegian, D.T.
1999-07-01
The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.
Effects of turbulence and carrier fluid on simple, turbulent spray jet flames
Staarner, Sten H.; Gounder, James; Masri, Assaad R.
2005-12-01
This paper presents simultaneous LIF images of OH and the two-phase acetone fuel concentration as well as detailed single-point phase-Doppler measurements of velocity and droplet flux in three turbulent spray flames of acetone. This work forms part of a larger program to study spray jets and flames in a simple, well-defined geometry, aimed at providing a platform for developing and validating predictive tools for such flows. Spray flames that use nitrogen or air as droplet carrier are investigated and issues of flow field, droplet dispersion, size distribution, and evaporation are addressed. The joint OH/acetone concentration images reveal a substantial similarity to premixed flame behavior when the carrier stream is air. When the carrier is nitrogen, the reaction zone has a diffusion flame structure. There is no indication of individual droplet burning. The results show that evaporation occurs close to the jet centerline rather than in the outer shear layer. Turbulence does not have a significant impact on the evaporation rates. A small fraction of the droplets escapes the reaction zone unburned along the centerline and persists far downstream of the flame tip. The proportion of this droplet residue increases with shorter residence times as observed for the higher velocity flame.
Identification of Coherent Structures in Premixed Reacting Flows
NASA Astrophysics Data System (ADS)
Haffner, Eileen; Green, Melissa; Oran, Elaine; Syracuse University Team; University of Maryland Team
2014-11-01
Many studies have been conducted on the best ways to quantitatively characterize the turbulence-flame interaction in reacting flows. It has been observed that increased turbulence intensity both wrinkles and broadens the flame front throughout the preheat zone and reaction zone. A Lagrangian coherent structures analysis is used to identify the individual coherent turbulent structures as the maximizing ridges of the Finite-Time Lyapunov exponent scalar field (FTLE). This method provides different information than Eulerian criteria which have predominantly been used in previous reacting flow studies. Preliminary results show that LCS ridges exhibit a clear qualitative correlation to the contour of the fuel mass-fraction of the flame. A quantitative characterization of how the LCS results correlate to observed flame geometries will allow for a better understanding of how these structures affect the flame brush, and could lead to improved efficiency in particular engines.
Distinguishing ichthyogenic turbulence from geophysical turbulence
NASA Astrophysics Data System (ADS)
Pujiana, Kandaga; Moum, James N.; Smyth, William D.; Warner, Sally J.
2015-05-01
Measurements of currents and turbulence beneath a geostationary ship in the equatorial Indian Ocean during a period of weak surface forcing revealed unexpectedly strong turbulence beneath the surface mixed layer. Coincident with the turbulence was a marked reduction of the current speeds registered by shipboard Doppler current profilers, and an increase in their variability. At a mooring 1 km away, measurements of turbulence and currents showed no such anomalies. Correlation with the shipboard echo sounder measurements indicate that these nighttime anomalies were associated with fish aggregations beneath the ship. The fish created turbulence by swimming against the strong zonal current in order to remain beneath the ship, and their presence affected the Doppler speed measurements. The principal characteristics of the resultant ichthyogenic turbulence are (i) low wave number roll-off of shear spectra in the inertial subrange relative to geophysical turbulence, (ii) Thorpe overturning scales that are small compared with the Ozmidov scale, and (iii) low mixing efficiency. These factors extend previous findings by Gregg and Horne (2009) to a very different biophysical regime and support the general conclusion that the biological contribution to mixing the ocean via turbulence is negligible.
Short communication: Preference for flavored concentrate premixes by dairy cows.
Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Weeks, H L; Faugeron, J; Hristov, A N
2016-08-01
Flavor preferences may be used to stimulate feed intake in dairy cows, which may improve use of robotic milking systems and increase feed intake of sick cows. A cafeteria-design experiment was used to determine if dairy cows have flavor preferences. Sixteen lactating Holstein cows averaging 197±32d in milk, 1.9±0.8 lactations, 27.8±4.2kg/d of dry matter intake, and 41.5±7.4kg/d of milk yield were involved in the experiment. Cows were offered 7 flavored concentrate premixes (FCP) and 1 control premix. The FCP flavors were anise, fenugreek, honey, orange, thyme, molasses, and vanilla; the absence of flavor, neutral, acted as a control. The inclusion rate of the flavors in FCP was 250 to 300g/t on an as-is basis. Cows were not adapted to the flavors before the experiment. Cows were housed in a tiestall barn and offered, on each day, 4 different FCP (1kg each) in plastic bins placed in front of each cow. The experiment lasted 6 consecutive days. Each FCP was presented to each cow once every 2d, 2h after the morning feeding. Flavors and position of the bins in front of the cows were randomized. As a result, each flavor was presented to each cow 3 times during the experiment, at 3 different bin locations. Each cow had access to the FCP for 5min from the time they started eating. Eating time and amount eaten were recorded. The vanilla and fenugreek FCP were consumed the most, at 408 and 371g/5-min offering, respectively, whereas the orange and anise FCP were consumed the least, at 264 and 239g/5-min offering, respectively. Similarly, cows spent the most time eating the vanilla and fenugreek FCP at 99 and 75 s/offering, respectively, and the least amount of time eating the orange and anise FCP at 49 and 50 s/offering, respectively. We detected an effect of bin position: the 2 center FCP were consumed more than the outer 2 FCP. Flavor had no effect on consumption rate. In conclusion, relative to the control, concentrate intake was not affected by flavor, but dairy cows
Catalysis of propane oxidation and premixed propane-air flames
NASA Astrophysics Data System (ADS)
Wiswall, James T.
Improvements in deriving energy from hydrocarbon fuels will have a large impact on our efforts to transition to sustainable and renewable energy resources. The hypothesis for this work is that catalysis can extend the useful operating conditions for hydrocarbon oxidation and combustion, improve device efficiencies, and reduce pollutants. Catalysis of propane oxidation and premixed propane-air flames are examined experimentally, using a stagnation-flow reactor to identify the important physical and chemical mechanisms over a range of flow catalyst, and temperature conditions. The propane oxidation studies consider five catalyst materials: platinum, palladium, SnO2, 90% SnO2 -- 10% Pt (by mass), and quartz. The volume fractions of CO2, O2, C 3H8, CO, NO and the electric power required to control the catalyst temperature quantify the activity of each catalyst for the equivalence ratios of φ = 0.67, 1.00, and 1.50, and over the catalyst temperature range 23-800°C. Quartz is used as a baseline and confirmed to be non-reactive at all conditions. 100% SnO2 has minimal reactivity. Platinum, palladium, and 90% SnO2 -- 10% Pt show similar trends and have the highest catalytic activity at φ = 1.50. Palladium and 90% SnO 2 -- 10% Pt show an increasing catalyst-activation temperature (Tsa) for decreasing φ, and platinum shows an approximately constant catalyst-activation temperature for decreasing φ (Tsa = 310°C). Of these the 90% SnO2 -- 10% Pt catalyst shows the lowest Tsa, occurring for the φ = 1.5 mixture (Tsa = 250°C). The studies of premixed propane-air flames consider platinum and quartz stagnation surfaces for fuel-mixture velocities from 0.6-1.6 m/s. Five flame structures are observed: cool core envelope, cone, envelope, disk and ring flames. The lean-extinction limit, disk-to-ring flame transition φ, and the disk-flame to stagnation-plane distance are reported. Platinum inhibits the ring flame structure. The lean-extinction limit and disk-flame to stagnation
Turbulent kinetic energy equation and free mixing
NASA Technical Reports Server (NTRS)
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
The Statistical Mechanics of Ideal Homogeneous Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2002-01-01
Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.
NASA Astrophysics Data System (ADS)
Sun, Z. W.; Alwahabi, Z. T.; Gu, D. H.; Mahmoud, S. M.; Nathan, G. J.; Dally, B. B.
2015-03-01
The influence of beam steering and signal trapping on the accuracy of soot volume fractions measured using planar laser-induced incandescence (LII) has been investigated in turbulent non-premixed sooting flames at atmospheric pressure. In turbulent non-premixed C2H4/air flames, the influence of local de-focusing/focusing of the laser sheet from beam steering can result in the underestimate of the averaged LII signal by 30 %, even when operating within the so-called plateau regime of laser fluence. Beam steering was also found to be significant in both the upstream region of C2H4/air flames and non-reacting C2H4 flows, because the fuel has a relatively high refractive index compared with ambient air. The extent of beam steering at different heights of reacting and isothermal flows as well as its dependence on exit Reynolds number (Re) has been measured. The measurements reveal that even at low turbulence levels (2000 < Re < 3000), beam steering effects can be significant. Also found is that the LII signal at a 450 nm wavelength can be attenuated by a few per cent at high soot loading regions in turbulent flames due to signal trapping. Finally, the feasibility of directly evaluating the signal attenuation via planar LII results was assessed by comparing the virtual soot attenuation calculated based on the planar LII result with that measured using light-of-sight extinction.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
Modeling Compressed Turbulence
Israel, Daniel M.
2012-07-13
From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.
A test device for premixed gas turbine combustion oscillations
Richards, G.A.; Gemmen, R.S.; Yip, M.J.
1996-03-01
This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.
Development of a lean premixed burner for hydrogen utilization
Keller, J.O.
1996-10-01
The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.
Successive laser ablation ignition of premixed methane/air mixtures.
Bak, Moon Soo; Cappelli, Mark A
2015-06-01
Laser ablation has been used to study successive ignition in premixed methane/air mixtures under conditions in which the flow speed leads to flame blow-out. A range of laser pulse frequencies is experimentally mimicked by varying the time interval between two closely spaced laser pulses. Emission intensities from the laser ablation kernels are measured to qualitatively estimate laser energy coupling, and flame CH* chemiluminescence is recorded in a time-resolved manner to capture the flame evolution and propagation. A comparison of the measurements is made between the two successive breakdown ignition events. It is found that the formation of the subsequent ablation kernel is almost independent of the previous one, however, for the successive breakdowns, the first breakdown and its ensuing combustion created temporal regions of no energy coupling as they heat the gas and lower the density. Flame imaging shows that the second ablation event successfully produces another flame kernel and is capable of holding the flame-base even at pulse intervals where the second laser pulse cannot form a breakdown. This study demonstrates that successive ablation ignition can allow for the use of higher laser frequencies and enhanced flame stabilization than successive breakdown ignition. PMID:26072866
Unstrained and strained flamelets for LES of premixed combustion
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian
2016-05-01
The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.
Rayleigh-Taylor Instability in non-premixed reacting flames.
NASA Astrophysics Data System (ADS)
Attal, Nitesh; Ramaprabhu, Praveen
2015-11-01
The Rayleigh-Taylor instability (RTI) occurs at a perturbed interface between fluids of different densities when a light fluid pushes a heavier fluid. The mixing driven by RTI affects several physical phenomena, such as Inertial Confinement Fusion, Supernovae detonation, centrifugal combustors and liquid rocket engines. The RTI in such flows is often coupled with chemical/nuclear reactions that may form complex density stratifications in the form of flames or ablative layers. We investigate such a non-premixed fuel-air interface subject to a constant acceleration and developing under the influence of chemical reactions using high-resolution, Navier-Stokes simulations. The H2 fuel is diluted with N2 to vary the density difference across the interface in thermal equilibrium (at 1000K). The intervening layer between fuel and air is subject to exothermic combustion reactions to form a flame. Following combustion, initially unstable fuel-air interfaces at an Atwood number (At) <0.5, transform into stable (fuel-flame) and unstable (flame-air) interfaces. We report on interfaces (At = 0.2 and 0.6) with single wavelength, sinusoidal perturbations and a broadband spectrum of multimode perturbations.
Stationary premixed flames in spherical and cylindrical geometries
NASA Technical Reports Server (NTRS)
Ronney, P. D.; Whaling, K. N.; Abbud-Madrid, A.; Gatto, J. L.; Pisowiscz, V. L.
1994-01-01
Stationary source-free spherical flames ('flame balls') in premixed combustible gases were studied by employing low-gravity (micro-g) environments in a drop tower and an aircraft flying parabolic trajectories to diminish the impact of buoyancy-induced convective flow. Flame balls were found in all mixture families tested when: (1) the Lewis number Le of the deficient reactant was sufficiently low; and (2) the compositions were sufficiently close to the flammability limits. Probably as a consequence of the reduction in buoyant convection, the flammability limits at micro-g were significantly more dilute than those at Earth gravity; for example, 3.35% H2 vs 4.0% H2 in lean H2-air mixtures. By comparison with analytical and computational models, it is inferred that the phenomenon is probably related to diffusive-thermal effects in low-Le mixtures in conjunction with flame-front curvature and radiative heat losses from the combustion products. The chemical reaction mechanism appears to play no qualitative role. In the aircraft experiments, the gravity levels (approximately equal 10(exp -2)g(sub 0)) were found to cause noticeable motion of flame balls due to buoyancy, which in turn influenced the behavior of flame balls. At these g levels, a new type of transient, nearly cylindrical flame structure, termed 'flame strings,' was observed.
Torch ignition: Ideal for lean burn premixed-charge engines
Mavinahally, N.S. ); Assanis, D.N. ); Govinda Mallan, K.R.; Gopalakrishnan, K.V. )
1994-10-01
Sluggish flame initiation and propagation, and even potential misfiring, become major problems with lean-fueled, premixed-charge, spark-ignited engines. This work studies torch ignition as a means for improving combustion, fuel economy, and emissions of a retrofitted, large combustion chamber with nonideal spark plug location. A number of alternative configurations, employing different torch chamber designs, spark-plug locations, and materials, were tested under full-load and part-load conditions. Results indicate a considerable extension of the lean operating limit of the engine, especially under part-load conditions. In addition, torch ignition can lead to substantial thermal efficiency gains for either leaner or rich air-fuel ratios than the optimum for the conventional ignition system. On the richer side, in particular, the torch-ignited engine is capable of operating at maximum brake torque spark timings, rather than compromised, knock-limited spark timings used with conventional ignition. This translates into thermal efficiency improvements as high as 8% at an air-fuel ratio of 20:1 and full load.
Numerical simulation of premixed flame propagation in a closed tube
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio
1996-08-01
Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.
On the modelling of non-reactive and reactive turbulent combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, Mohammad; So, Ronald M. C.
1987-01-01
A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.
Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.
Gehrmann, Sandra; Bunjes, Heike
2016-09-25
The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). PMID:27477104
Rigo, Jacques; Senterre, Thibault
2013-12-01
Growth failure in neonatal intensive care units is a major challenge for pediatricians and neonatologists. The use of early "aggressive" parenteral nutrition (PN), with >2.5 g/(kg ·d) of amino acids and at least 40 kcal/(kg ·d) of energy from the first day of life, has been shown to provide nutritional intakes in the range recommended by international guidelines, reducing nutritional deficit and the incidence of postnatal growth restriction in preterm infants. However, nutritional practices and adherence to recommendations may vary in different hospitals. Two ready-to-use (RTU), premixed parenteral solutions (PSs) designed for preterm infants have been prospectively evaluated: a binary RTU premixed PS from our hospital pharmacy and a commercially premixed 3-chamber bag (Baxter Healthcare). These premixed PSs provide nitrogen and energy intakes in the range of the most recent recommendations, reducing or eliminating the early cumulative nutritional deficit in very-low-birth-weight infants, and avoiding the development of postnatal growth restriction. A further rationale for RTU premixed PSs is that preterm infants require balanced PN that contains not only amino acids and energy but also minerals and electrolytes from the first day of life in order to reduce the incidence of metabolic disorders frequently reported in extremely-low-birth-weight infants during the early weeks of life.
Retention of selenium (Se) from vitamin/mineral (V/M) premix and infant formulas
Mason, A.C.; Borschel, M.W. Ross Lab., Columbus, OH )
1991-03-11
Selenate (ATE) and selenite (ITE) represent possible sources of Se for fortification of formula. This study assessed the stability and retention of ATE and ITE from V/M premix and soy- and casein-based formulas after 3 mo of storage. Sodium {sup 75}ATE or {sup 75}ITE was incorporated into premix, added to a torula yeast protein-based diet (TYD), and fed to weanling, male, Sprague Dawley rats as a test meal at 3 time: 0 and after 1 and 3 mo storage at room temperature. A premix/{sup 75}Se solution was also added to formula mixes. Complete formulas were processed and gavage fed to rats at 3 times: 0 and after 1 and 3 mo. Control rats were fed test meals of sodium {sup 75}ATE or {sup 75}ITE TYD. Whole-body retention of {sup 75}Se was determined for 10 d post-dose. Retention of ATE and TIE from all diets significantly decreased after 3 mo of storage; however, all rats retained {ge}42% of {sup 75}Se at 10-d post-dose. ATE was equally stable in premix and formula, whereas ITE was more stable in premix than in formula over 3 mo. Independent of storage time, apparent absorption and retention of {sup 75}Se was significantly greater in rats fed ATE compared to ITE.
Photon-counting chirped amplitude modulation lidar using a smart premixing method.
Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong
2013-11-01
We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.
Rigo, Jacques; Senterre, Thibault
2013-12-01
Growth failure in neonatal intensive care units is a major challenge for pediatricians and neonatologists. The use of early "aggressive" parenteral nutrition (PN), with >2.5 g/(kg ·d) of amino acids and at least 40 kcal/(kg ·d) of energy from the first day of life, has been shown to provide nutritional intakes in the range recommended by international guidelines, reducing nutritional deficit and the incidence of postnatal growth restriction in preterm infants. However, nutritional practices and adherence to recommendations may vary in different hospitals. Two ready-to-use (RTU), premixed parenteral solutions (PSs) designed for preterm infants have been prospectively evaluated: a binary RTU premixed PS from our hospital pharmacy and a commercially premixed 3-chamber bag (Baxter Healthcare). These premixed PSs provide nitrogen and energy intakes in the range of the most recent recommendations, reducing or eliminating the early cumulative nutritional deficit in very-low-birth-weight infants, and avoiding the development of postnatal growth restriction. A further rationale for RTU premixed PSs is that preterm infants require balanced PN that contains not only amino acids and energy but also minerals and electrolytes from the first day of life in order to reduce the incidence of metabolic disorders frequently reported in extremely-low-birth-weight infants during the early weeks of life. PMID:24108133
Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion
Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi
2002-01-01
A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.
Influence of drop size distribution and fuel vapor fraction on premixed spray combustion
NASA Astrophysics Data System (ADS)
Machiroutu, Sridhar Venkatabojji
Premixed spray combustion is affected by fuel and oxidizer properties, mixture equivalence ratio and spray quality. The spray quality is characterized by a mean droplet diameter (SMD) and a droplet size distribution (DSD). Prior experimental studies have considered only the influence of SMD, in part due to the difficulty in controlling the DSD independently. The present work provides experimental evidence demonstrating the effect of the fuel droplet size distribution and fuel vapor fraction on premixed spray combustion. Combustion experiments were performed in a pilot-ignited, continuous flow, tubular, vertical test rig wherein fuel sprays were injected into an air stream. A novel twin-atomizer technique that allowed control over overall equivalence ratio, SMD, DSD, and fuel vapor fraction of the premixed spray was used to generate test sprays. A line-of-sight, infrared (IR) extinction technique was developed to quantify the fuel vapor fraction in premixed sprays. Radial distributions of fuel vapor were evaluated using an 'onion peeling' deconvolution technique. Combustion of test sprays indicated flame propagation among regions of high fuel vapor fraction to generate a high rate of combustion. In lean premixed sprays, the presence of a low fuel vapor concentration does not impact the combustion process. Experimental evidence demonstrating the enhancement of flame propagation velocity for optimal SMDs of ethanol sprays has been found. It was observed that test sprays with narrower DSDs have faster burning rates and more complete combustion. The DSD of the sprays were characterized with a droplet surface-area-based standard deviation of the DSD.
NASA Astrophysics Data System (ADS)
Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.
2013-07-01
Mixing and turbulent mixing are non-equilibrium processes that occur in a broad variety of processes in fluids, plasmas and materials. The processes can be natural or artificial, their characteristic scales can be astrophysical or atomistic, and energy densities can be low or high. Understanding the fundamental aspects of turbulent mixing is necessary to comprehend the dynamics of supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, mantle-lithosphere tectonics and volcanic eruptions, atmospheric and oceanographic flows in geophysics, and premixed and non-premixed combustion. It is crucial for the development of the methods of control in technological applications, including mixing mitigation in inertial confinement and magnetic fusion, and mixing enhancement in reactive flows, as well as material transformation under the action of high strain rates. It can improve our knowledge of realistic turbulent processes at low energy density involving walls, unsteady transport, interfaces and vortices, as well as high energy density hydrodynamics including strong shocks, explosions, blast waves and supersonic flows. A deep understanding of mixing and turbulent mixing requires one to go above and beyond canonical approaches and demands further enhancements in the quality and information capacity of experimental and numerical data sets, and in the methods of theoretical analysis of continuous dynamics and kinetics. This has the added potential then of bringing the experiment, numerical modelling, theoretical analysis and data processing to a new level of standards. At the same time, mixing and turbulent mixing being one of the most formidable and multi-faceted problems of modern physics and mathematics, is well open for a curious mind. In this article we briefly review various aspects of turbulent mixing, and present a summary of over 70 papers that were discussed at the third International Conference on 'Turbulent Mixing and Beyond', TMB-2011, that
Instantaneous temperature visualization of a turbulent flame using multidirectional interferometer
NASA Astrophysics Data System (ADS)
Doi, Junta; Sato, Seishiro
2005-03-01
We have reconstructed a three-dimensional instantaneous temperature distribution inside a turbulent flame of a propane-air premixed burner using multidirectional holographic interferograms and visualized by constructing a geometric model of the three-dimensional isothermal surfaces. To reconstruct a three-dimensional asymmetric temperature field, the interference fringe data were acquired using an eight-directional Twyman-Green interferometer, over a full range of viewing angles, around the object flame, and all data are simultaneously acquired. A ruby laser, having a beam with a 20-30 ns pulse width, was used to obtain clear fringe patterns for this type of turbulent phenomena. The temperature distribution was reconstructed from the refractive index distribution, obtained from the fringe patterns, based on a computed tomography technique of a convolution reconstruction algorithm. Isothermal profiles were calculated in horizontal cross sections from the temperature data. All of the multiple isothermal contour lines in each horizontal section were approximated with polygons and then stacked up vertically to form polyhedra of the solid model format, having side facets of corresponding isothermal values. Computer graphics of the solid models, not only of the initial isothermal solids, but also of the solids resulting from multiple Boolean operations on them, were used to show the distribution in detail. This development will be of help in studying the local structure of the instantaneous turbulent flame and in integrating the experimental modeling with the numerical simulation.
Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan
2011-04-01
This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. PMID:21292477
Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan
2011-04-01
This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings.
Experimental study of turbulent flame kernel propagation
Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve
2008-07-15
Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)
Exhaust emissions from a premixing, prevaporizing flame tube using liquid jet A fuel
NASA Technical Reports Server (NTRS)
Marek, C. J.; Papathakos, L. C.
1976-01-01
Emissions of nitrogen oxides, carbon monoxide, and unburned hydrocarbons were measured in a burner where liquid Jet A fuel was sprayed into the heated air stream and vaporized upstream of a perforated plate flameholder. The burner was tested at inlet air temperatures at 640, 800, and 833 K, an inlet pressure of 5.6 X 100,000 N/m squared, a reference velocity of 25 m/sec, and equivalence ratios from lean blowout to 0.7. Nitrogen oxide levels of below 1.0 g NO2/kg fuel were obtained at combustion efficiencies greater than 99 percent. The measured emission levels for the liquid fuel agreed well with previously reported premixed gaseous propane data and agreed with well stirred reactor predictions. Autoignition of the premixed fuel air mixture was a problem at inlet temperatures above 650 K with 104 msec premixing time.
Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel
Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P
2012-11-20
A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.
Effect of premixing quality on oxides of nitrogen in gas turbine combustors foi HC
NASA Technical Reports Server (NTRS)
Roffe, G.; Ferri, A.
1976-01-01
Experiments were conducted to determine the effectiveness of several premixing prevaporizing gas turbine combustor designs in reducing formation of oxides of nitrogen at the supersonic cruise condition. An atomized spray from a single injector mounted on the axis of the mixer tube produced a high initial concentration of fuel near the axis and only moderate premixed conditions entering the combustor. A fuel spray produced by 12 flush-mounted normal injection orifices in the mixer tube wall produced a good initial despersion of fuel and resulted in nearly complete premixing. Oxides of nitrogen emission levels of the order of 0.2 g NO2/kg fuel were obtained at 99 percent combustion efficiency at an equivalence ratio of 0.4. Overall total pressure drop was less than 3 percent through the 1-meter combustor module.
Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel
Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.
2009-10-20
A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.
Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames
Bremer, Peer-Timo; Weber, Gunther; Pascucci, Valerio; Day, Marc; Bell, John
2009-06-01
This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.
PREFACE Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
An experimental investigation of an acoustically excited laminar premixed flame
Kartheekeyan, S.; Chakravarthy, S.R.
2006-08-15
A two-dimensional laminar premixed flame is stabilized over a burner in a confined duct and is subjected to external acoustic forcing from the downstream end. The equivalence ratio of the flame is 0.7. The flame is stabilized in the central slot of a three-slotted burner. The strength of the shear layer of the cold reactive mixture through the central slot is controlled by the flow rate of cold nitrogen gas through the side slots. The frequency range of acoustic excitation is 400-1200 Hz, and the amplitude levels are such that the acoustic velocity is less than the mean flow velocity of the reactants. Time-averaged chemiluminescence images of the perturbed flame front display time-mean changes as compared to the unperturbed flame shape at certain excitation frequencies. Prominent changes to the flame front are in the form of stretching or shrinkage, asymmetric development of its shape, increased/preferential lift-off of one or both of the stabilization points of the flame, and nearly random three-dimensional fluctuations over large time scales under some conditions. The oscillations of the shear layer and the response of the confined jet of the hot products to the acoustic forcing, such as asymmetric flow development and jet spreading, are found to be responsible for the observed mean changes in the flame shape. A distinct low-frequency component ({approx}60-90 Hz) relative to the excitation frequency is observed in the fluctuations of the chemiluminescent intensity in the flame under most conditions. It is observed that fluctuations in the flame area predominantly contribute to the origin of the low-frequency component. This is primarily due to the rollup of vortices and the generation of enthalpy waves at the burner lip. Both of these processes are excited at the externally imposed acoustic time scale, but convect/propagate downstream at the flow time scale, which is much larger. (author)
The propagation of premixed flames in closed tubes
NASA Astrophysics Data System (ADS)
Matalon, Moshe; Metzener, Philippe
1997-04-01
A nonlinear evolution equation that describes the propagation of a premixed flame in a closed tube has been derived from the general conservation equations. What distinguishes it from other similar equations is a memory term whose origin is in the vorticity production at the flame front. The two important parameters in this equation are the tube's aspect ratio and the Markstein parameter. A linear stability analysis indicates that when the Markstein parameter [alpha] is above a critical value [alpha]c the planar flame is the stable equilibrium solution. For [alpha] below [alpha]c the planar flame is no longer stable and there is a band of growing modes. Numerical solutions of the full nonlinear equation confirm this conclusion. Starting with random initial conditions the results indicate that, after a short transient, a at flame develops when [alpha]>[alpha]c and it remains flat until it reaches the end of the tube. When [alpha]<[alpha]c, on the other hand, stable curved flames may develop down the tube. Depending on the initial conditions the flame assumes either a cellular structure, characterized by a finite number of cells convex towards the unburned gas, or a tulip shape characterized by a sharp indentation at the centre of the tube pointing toward the burned gases. In particular, if the initial conditions are chosen so as to simulate the elongated finger-like flame that evolves from an ignition source, a tulip flame evolves downstream. In accord with experimental observations the tulip shape forms only after the flame has travelled a certain distance down the tube, it does not form in short tubes and its formation depends on the mixture composition. While the initial deformation of the flame front is a direct result of the hydrodynamic instability, the actual formation of the tulip flame results from the vortical motion created in the burned gas which is a consequence of the vorticity produced at the flame front.
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru
2011-03-01
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.