Science.gov

Sample records for partially spent ammonia

  1. Efficient regeneration of partially spent ammonia borane fuel

    SciTech Connect

    Davis, Benjamin Lee; Gordon, John C; Stephens, Frances; Dixon, David A; Matus, Myrna H

    2008-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H{sub 3}B-NH{sub 3}, AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH{sub 4} as a H{sub 2} storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps.

  2. Regeneration of ammonia borane spent fuel

    SciTech Connect

    Sutton, Andrew David; Davis, Benjamin L; Gordon, John C

    2009-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one appealing material, ammonia borane (H{sub 3}N-BH{sub 3}, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H{sub 2} can be readily released in contrast to the loss of H{sub 2} from C{sub 2}H{sub 6} which is substantially endothermic. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H{sub 2} storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H{sub 2} released from AB and up to 2.5 equiv. of H{sub 2} can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene

  3. Regeneration of ammonia borane from spent fuel materials.

    PubMed

    Summerscales, Owen T; Gordon, John C

    2013-07-28

    A shift to the hydrogen economy requires the development of an effective hydrogen fuel carrier with high volumetric and gravimetric storage capacity. Ammonia borane (AB) has emerged as a leading candidate due to its light weight and multiple protic (N-H) and hydridic (B-H) hydrogens. As a consequence, much work has been directed towards fine tuning the release of H2 from AB, in addition to its regeneration from the dehydrogenated "spent fuel" materials. This review summarizes the development of these regeneration methodologies.

  4. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia.

    PubMed

    Sutton, Andrew D; Burrell, Anthony K; Dixon, David A; Garner, Edward B; Gordon, John C; Nakagawa, Tessui; Ott, Kevin C; Robinson, J Pierce; Vasiliu, Monica

    2011-03-18

    Ammonia borane (H(3)N-BH(3), AB) is a lightweight material containing a high density of hydrogen (H(2)) that can be readily liberated for use in fuel cell-powered applications. However, in the absence of a straightforward, efficient method for regenerating AB from dehydrogenated polymeric spent fuel, its full potential as a viable H(2) storage material will not be realized. We demonstrate that the spent fuel type derived from the removal of greater than two equivalents of H(2) per molecule of AB (i.e., polyborazylene, PB) can be converted back to AB nearly quantitatively by 24-hour treatment with hydrazine (N(2)H(4)) in liquid ammonia (NH(3)) at 40°C in a sealed pressure vessel.

  5. Degradation of spent craft brewer's yeast by caprine rumen hyper ammonia-producing bacteria.

    PubMed

    Harlow, B E; Bryant, R W; Cohen, S D; O'Connell, S P; Flythe, M D

    2016-10-01

    Spent yeast from craft beers often includes more hops (Humulus lupulus L.) secondary metabolites than traditional recipes. These compounds include α- and β- acids, which are antimicrobial to the rumen hyper ammonia-producing bacteria (HAB) that are major contributors to amino acid degradation. The objective was to determine if the hops acids in spent craft brewer's yeast (CY; ~ 3·5 mg g(-1) hops acids) would protect it from degradation by caprine rumen bacteria and HAB when compared to a baker's yeast (BY; no hops acids). Cell suspensions were prepared by harvesting rumen fluid from fistulated goats, straining and differential centrifugation. The cells were re-suspended in media with BY or CY. After 24 h (39°C), HAB were enumerated and ammonia was measured. Fewer HAB and less ammonia was produced from CY than from BY. Pure culture experiments were conducted with Peptostreptococcus anaerobiusBG1 (caprine HAB). Ammonia production by BG1 from BY was greater than from CY. Ammonia production was greater when exogenous amino acids were included, but similar inhibition was observed in CY treatments. These results indicate that rumen micro-organisms deaminated the amino acids in CY to a lesser degree than BY. Spent brewer's yeast has long been included in ruminant diets as a protein supplement. However, modern craft beers often include more hops (Humulus lupulus L.) than traditional recipes. These compounds include α- and β- acids, which are antimicrobial to the rumen hyper ammonia-producing bacteria (HAB) that are major contributors to amino acid degradation. This study demonstrated that hops acids in spent craft brewer's yeast protected protein from destruction by HABin vitro. These results suggest that the spent yeast from craft breweries, a source of beneficial hops secondary metabolites, could have value as rumen-protected protein. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Degradation of spent craft brewer’s yeast by caprine rumen hyper ammonia-producing bacteria

    USDA-ARS?s Scientific Manuscript database

    Spent brewer’s yeast has long been included in ruminant diets as a protein supplement. However, modern craft beers often include more hops (Humulus lupulus L.) compounds than traditional recipes. These compounds include alpha and beta-acids, which are antimicrobial to the rumen hyper ammonia-produci...

  7. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method.

    PubMed

    Zhao, Zhipeng; Guo, Min; Zhang, Mei

    2015-04-09

    Molybdenum (Mo) and vanadium (V) were effectively extracted from the spent diesel exhaust catalyst (V2O5-MoO3/TiO2) by using an ammonia leaching method. Meanwhile, the structure of the spent catalyst carrier (TiO2) was not destroyed and might be reused. The effects of ammonia (NH3 · H2O) concentration, leaching temperature and time, concentration of hydrogen peroxide (H2O2) and liquid to solid ratio on the extraction of Mo and V were systematically investigated. It is shown that the extraction efficiency of Mo increased from 68.68% to 96.45% while the extraction efficiency of V remained stable at 27% with increasing ammonia concentration from 2.95 to 7.38 mol/L, leaching temperature from 298.15 to 473.15K, and reaction time from 1 to 8h. With the concentration of H2O2 solution increasing from 1.0 to 2.5 mol/L, the extraction efficiency of V increased from 26.87% to 39.73%. Under the optimum conditions (the ammonia concentration of 4.5 mol/L, leaching temperature of 413.15K, reaction time of 2h, the H2O2 solution concentration of 1.0 mol/L and the liquid to solid ratio of 20/1 mL/g), the extraction efficiencies of Mo and V reached 95.13% and 46.25%. Moreover, the catalyst carrier TiO2 with anatase crystal phase was also obtained.

  8. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    SciTech Connect

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R.; Rossa, R.; Liljenfeldt, H.

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  9. [Partial nitrification of digested sludge liquor with low C/N and high-concentration ammonia].

    PubMed

    Zhang, Shu-Jun; Ma, Fu-Guo; Cao, Xiang-Sheng; Gan, Yi-Ping; Meng, Xue-Zheng; Zhou, Jun; Wang, Hong-Chen; Peng, Yong-Zhen

    2009-06-15

    The experimental system consisted of anoxic filter and aerobic suspended carrier biofilm reactor. The partial nitrification was achieved and maintained stably in the aerobic reactor under normal temperature (15-29 degrees C) and high DO (6-9 mg/L). The nitritation with 70%-80% nitrite accumulation efficiency was obtained when FA concentration was in the range of 1.0-10.3 mg/L by controlling influent ammonia loading rate (ALR), ratio of alkalinity and ammonia and HRT in the aerobic reactor. The effluent nitrite/ammonia ratio was about 1.25 when the average influent ammonia, influent ALR and influent ratio of alkalinity and ammonia were 315.80 mg/L, 0.43 kg/(m3 x d) and 5.25, respectively. So the effluent of partial nitrification process provided the influent substrate demand for the following ANAMMOX process. The integrative analysis indicated that the proper FA concentration was the main factor achieving the partial nitrification. The study developed a novel partial nitrification technology adapt to water characteristics of digested sludge liquor.

  10. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    PubMed

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn(4+) into Mn(2+) into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor.

  12. Ammonia loading rate: an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent.

    PubMed

    Daalkhaijav, Uranbileg; Nemati, Mehdi

    2014-01-01

    Anaerobic ammonium oxidation (ANAMMOX) is an innovative process for the treatment of ammonia-contaminated waters. ANNAMOX is usually preceded by a nitrifying step in which ammonia is partially oxidized to nitrite. The effectiveness of the overall process depends on control of the nitrification and creation of a suitable influent for ANAMMOX. In this work, impacts of ammonia concentration and loading rate on partial nitrification and composition of the resulting effluent were investigated in continuous stirred tank (CSTR) and biofilm reactors fed with various ammonia concentrations (17.6-61.5 mM; 299-1045 ppm). Regardless of ammonia concentration, loading rates from 3.1 to 5.4mM/h in the CSTR and 6.4-12.1 mM/h in the biofilm reactor generated effluents with nitrite to ammonia ratios of 1.2 +/- 0.3 (suitable ANAMMOX influent). Under these conditions, the highest ammonia loading and nitrite production rates in the CSTR and biofilm reactors were 5.4 and 2.5 mM/h (HRT: 3.7 h) and 12.1 and 6.5 mM/h (HRT: 1.6 h), respectively. Results reveal that ammonia loading rate can be used effectively to achieve suitable ANAMMOX influent without the need for precise control of dissolved oxygen (DO). Considering the difficulty in regulating DO in large-scale systems and the need for the nitrifying process to be flexible with respect to various ammonia concentrations, the loading rate appears to be a practical option to control partial nitrification. Verifying the range of ammonia loading rates that generate ANAMMOX influent allows operation of the nitrifying step with any level of ammonia in the feed, with the proper loading rate achieved through adjustment of hydraulic residence time.

  13. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  14. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor.

    PubMed

    Ahn, Joon Ho; Yu, Ran; Chandran, Kartik

    2008-08-15

    Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities. 2008 Wiley Periodicals, Inc.

  15. Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization.

    PubMed

    Kim, Sung-Kwan; Hong, Sung-Ahn; Son, Ho-Jin; Han, Won-Sik; Michalak, Artur; Hwang, Son-Jong; Kang, Sang Ook

    2015-04-28

    A highly electrophilic cationic Pd(II) complex, [Pd(MeCN)4][BF4]2 (1), brings about the preferential activation of the B-H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH3NO2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNHxBOy as reaction byproducts, while 2 equiv. of H2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra ((2)H, (13)C, (15)N, and (11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)3 and N-methylhydroxylamine ([Me(OH)N]2CH2), which are formed by the methanolysis of the AB spent fuel (MeNHxBOy), were identified by means of (11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)6][BF4]2 (2).

  16. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation.

    PubMed

    Durán, U; del Val Río, A; Campos, J L; Mosquera-Corral, A; Méndez, R

    2014-01-01

    The Anammox-based processes are suitable for the treatment of wastewaters characterized by a low carbon to nitrogen (C/N) ratio. The application of the Anammox process requires the availability of an effluent with a NO2- -N/NH4+ -N ratio composition around 1 g g-1, which involves the necessity of a previous step where the partial nitrification is performed. In this step, the inhibition of the nitrite-oxidizing bacteria (NOB) is crucial. In the present work, a combined partial nitrification-ANaerobic AMmonia OXidation (Anammox) two-units system operated at room temperature (20 degreeC) has been tested for the nitrogen removal of pre-treated pig slurry. To achieve the successful partial nitrification and inhibit the NOB activity, different ammonium/inorganic carbon (NH4+/IC) ratios were assayed from 1.19 to 0.82g NH4+-Ng-1 HCO3-C. This procedure provoked a decrease of the pH value to 6.0 to regulate the inhibitory effect over ammonia-oxidizing bacteria caused by free ammonia. Simultaneously, the NOB experienced the inhibitory effect of free nitrous acid which avoided the presence of nitrate in the effluent. The NH4+/IC ratio which allowed the obtaining of the desired effluent composition (50% of both ammonium and nitrite) was 0.82 +/- 0.02 g NH4+-N g-1 HCO3- -C. The Anammox reactor was fed with the effluent of the partial nitrification unit containing a NO2 -N/NH4+ -N ratio of 1 g g-1' where a nitrogen loading rate of 0.1 g N L-1 d-1 was efficiently removed.

  17. Composition of extracellular polymeric substances in a partial nitrification reactor treating high ammonia wastewater and nitrous oxide emission.

    PubMed

    Wei, Dong; Du, Bin; Zhang, Jian; Hu, Zhen; Liang, Shuang; Li, Yiran

    2015-08-01

    The objective of this study was to characterize the composition of extracellular polymeric substances (EPS) during the achievement of partial nitrification and subsequent nitrous oxide (N2O) emission treating high ammonia wastewater. After operation of 120days, the reactor achieved high ammonia removal efficiency and stable nitrite accumulation. The average size of sludge flocs in the reactor increased from 102.6 to 258.5μm. The main compositions of EPS, including protein (PN) and polysaccharide (PS), increased to 65.46±3.27 and 21.63±1.08mg/g VSS, respectively. Results of three-dimensional excitation-emission matrix spectroscopy implied that EPS transferred to tryptophan PN-like and humic acid-like substrates. N2O emission accounts for 11.67% of removed nitrogen during the steady state of partial nitrification reactor. The obtained results could contribute a better understanding the achievement of partial nitrification through the composition changes of EPS, and provide more information to determine nitrogen removal by considering N2O emission.

  18. [Comparing microbial community of high ammonia wastewater and municipal sewage in a partial nitrification system].

    PubMed

    Zhao, Zhi-Rui; Ma, Bin; Zhang, Shu-Jun; Li, Bin; Bai, Zhi-Hui; Wang, Xiao-Hui; Zhuang, Guo-Qiang; Zhang, Hong-Xun

    2013-04-01

    Nitritation is an important part of the biological nitrogen removal process, and the performance of the process was determined by the microbial community structure. To explore the microbial adaptability to different sewage, the microbial diversity and the amount of bacteria were investigated in a high ammonia wastewater treatment process and a sewage treatment process using the clone library of bacterial 16S rDNA, the phospholipid fatty acid method (PLFA) and the quantitative PCR. The clone library results showed that there was a significantly difference in bacterial community structure of these two processes, although the dominant bacteria belong to the Proteobacteria and Bacteroidete, there were more clusters in the sewage treatment process. The PLFAs results showed that the microbial diversity index and the evenness index of the high ammonium wastewater treatment process were significantly low. The quantitative PCR results showed that amounts of ammonia oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the high ammonium wastewater treatment process were higher than these in sewage treatment process. The copy number of AOB was higher than the copy number of NOB in the high ammonia wastewater treatment process by three orders magnitude. The copy number of AOB was higher than the copy number of NOB in sewage treatment process by two orders of magnitude.

  19. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    NASA Astrophysics Data System (ADS)

    Nirmala, D. B.; Raviraj, S.

    2016-06-01

    This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  20. Alkalinity and dissolved oxygen as controlling parameters for ammonia removal through partial nitritation and ANAMMOX in a single-stage bioreactor.

    PubMed

    Bagchi, Samik; Biswas, Rima; Nandy, Tapas

    2010-08-01

    The oxidation of ammonia to dinitrogen through partial nitritation and anaerobic ammonium oxidation (ANAMMOX) in a single-stage bioreactor is based on suppressing the nitratation process. The single-stage process operated on a laboratory-scale fixed film bioreactor achieved ammonia removal of 0.7 kg NH4-N/(m(3) day) at 4 h hydraulic retention time (HRT) by controlling the nitratation process through a 'three-way control mechanism' comprising control of electron donor (nitrite), electron acceptor (oxygen) and carbon source (bicarbonate). The control of alkalinity and dissolved oxygen (DO) concentrations in feed to maintain an alkalinity to ammonia ratio of less than 8 and DO loading of less than 0.06 mg O/(mg N day), respectively, was necessary for inhibiting nitratation and enhancing partial nitritation and ANAMMOX. Therefore, feed alkalinity along with DO concentrations are critical controlling parameters in a single-stage biological process for nitrogen removal.

  1. The partial reduction of electron-deficient pyrroles: procedures describing both Birch (Li/NH3) and ammonia-free (Li/DBB) conditions.

    PubMed

    Donohoe, Timothy J; Thomas, Rhian E

    2007-01-01

    The partial reduction of electron-deficient pyrroles using either Birch (Li/NH(3)) or ammonia-free (Li/di-tert-butyl biphenyl) conditions allows formation of pyrroline compounds in good yield and, when combined with a reductive alkylation or similar approach, leads to highly functionalized, synthetically useful compounds. This methodology has been proven in the syntheses of several complex natural products, all of which show interesting biological activity. This protocol describes in detail the following stages of the partial reduction procedure: formation of the reducing solution, partial reduction of the pyrrole compound and finally quench of the resulting anion/dianion using either protonating agents or an aldehyde. The ammonia-free conditions described herein are particularly useful for reactions requiring the use of reactive electrophiles, such as acid chlorides or enolizable aldehydes, which are incompatible with the standard Birch reduction conditions. The reaction procedure for the ammonia Birch reduction (procedure A) takes about 9.5 h to complete. Those described for the ammonia-free reductions, procedure B and procedure C, can be expected to take approximately 33 and 8 h, respectively.

  2. Using multiple calibration sets to improve the quantitative accuracy of partial least squares (PLS) regression on open-path fourier transform infrared (OP/FT-IR) spectra of ammonia over wide concentration ranges

    USDA-ARS?s Scientific Manuscript database

    A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...

  3. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor.

    PubMed

    Kinh, Co Thi; Ahn, Johwan; Suenaga, Toshikazu; Sittivorakulpong, Nakanya; Noophan, Pongsak; Hori, Tomoyuki; Riya, Shohei; Hosomi, Masaaki; Terada, Akihiko

    2017-02-01

    We investigated the effects of free ammonia (FA) and free nitrous acid (FNA) concentrations on the predominant ammonia-oxidizing bacteria (AOB) and the emission of nitrous oxide (N2O) in a lab-scale sequencing batch reactor for partial nitrification. The reactor was operated with stepwise increases in the NH4(+) loading rate, which resulted in a maximum FA concentration of 29.3 mg-N/L at pH 8.3. Afterwards, FNA was increased by a gradual decrease of pH, reaching its maximum concentration of 4.1 mg-N/L at pH 6.3. Fluorescence in situ hybridization indicated that AOB remained predominant during the operation, achieving specific nitrification rates of 1.04 and 0.99 g-N/g-VSS/day at the highest accumulations of FA and FNA, respectively. These rates were in conjunction with partial nitrification efficiencies of >84%. The N2O emission factor of oxidized NH4(+) was 0.90% at pH 7.0, which was higher than those at pH 8.3 (0.11%) and 6.3 (0.12%), the pHs with the maximum FA and FNA concentrations, respectively. High-throughput sequencing of 16S ribosomal RNA genes showed that increases in FNA drastically changed the predominant AOB species, although increased FA produced no significant changes. This study demonstrates that the FNA concentration and pH are the main drivers that determine the predominant AOB species and N2O-emission in a partial nitrifying bioreactor.

  4. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area

    PubMed Central

    Rawluk, Ashley A.; Crow, Gary; Legesse, Getahun; Veira, Douglas M.; Bullock, Paul R.; González, Luciano A.; Dubois, Melanie; Ominski, Kim H.

    2014-01-01

    Simple Summary The implementation of off-stream waterers (OSW) may reduce the amount of time cattle spend in riparian areas, thus minimizing impacts such as removal of vegetation, soil compaction, and deterioration in water quality. Furthermore, when used with natural barriers as a partial exclusion method, these management strategies may offer a cost-effective alternative to completely excluding cattle via streambank fencing. This study was conducted to determine the impact of OSW and barriers on animal performance and watering behavior. The presence of OSW had no significant effect on cow and calf weights averaged over the grazing season. Although the results were not consistent over the periods and locations, the data provided some indication of the efficacy of the natural barriers on deterring cattle from the riparian area. Cattle watered at the OSW when available, but they did not use the OSW exclusively. The observed inconsistency may, in part, be attributed to the environmental conditions present during this field trial. Abstract A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture—which ranged from 21.0 ha to 39.2 ha in size—was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p < 0.0001) at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the

  5. Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor.

    PubMed

    Claros, J; Jiménez, E; Aguado, D; Ferrer, J; Seco, A; Serralta, J

    2013-01-01

    Ammonia-oxidizing bacteria (AOB) are very sensitive to environmental conditions and wastewater treatment plant operational parameters. One of the most important factors affecting their activity is pH. Its effect is associated with: NH3/NH4(+) and HNO2/NO2(-) chemical equilibriums and biological reaction rates. The aim of this study was to quantify and model the effect of pH and free nitrous acid (FNA) concentration on the activity of AOB present in a lab-scale partial nitritation reactor. For this purpose, two sets of batch experiments were carried out using biomass from this reactor. Fluorescent in situ hybridization analysis showed that Nitrosomona eutropha and Nitrosomona europaea species were dominant in the partial nitritation reactor (>94%). The experimental results showed that FNA inhibits the AOB activity. This inhibition was properly modelled by the non-competitive inhibition function and the half inhibition constant value was determined as 1.32 mg HNO2-N L(-1). The optimal pH for these AOB was found to be in the range 7.4-7.8. The pH inhibitory effect was stronger at high pH values than at low pH values. Therefore, an asymmetric inhibition function was proposed to represent the pH effect on these bacteria. A combination of two sigmoidal functions was able to reproduce the experimental results obtained.

  6. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission.

    PubMed

    Wei, Dong; Zhang, Keyi; Ngo, Huu Hao; Guo, Wenshan; Wang, Siyu; Li, Jibin; Han, Fei; Du, Bin; Wei, Qin

    2017-04-01

    In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH4(+)-N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO2 had a much higher value than that of N2O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater.

    PubMed

    Zhang, Jianbing; Zhou, Jian; Han, Yi; Zhang, Xiaoguang

    2014-10-01

    In this study, a lab-scale sequencing batch biofilm reactor (SBBR) was used to start up the single-stage nitrogen removal system using anammox and partial nitritation (SNAP) process seeding from surplus activated sludge. The volumetric nitrogen loading rate (vNLR) was firstly 0.075 kg N m(-3) d(-1) and then gradually increased to 0.60 kg N m(-3) d(-1). A maximal total nitrogen (TN) removal rate of 0.54 kg N m(-3) d(-1) was achieved by the SNAP process after 132 days operation with NH4(+)-N and TN removal efficiency of 99.4% and 90.5%, respectively. This reactor may have applications for the SNAP process treating high strength ammonia wastewater. And dewatered surplus activated sludge was recommended as the seed sludge for engineering applications. The dominant bacterial strains were Xanthomonas campestris, Nitrosomonas europaea and Ignavibacterium album, corresponding to the percentage of 24%, 22% and 20%, respectively, based on the 16S rDNA amplicon pyrosequencing of the SNAP sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of vortex flows on ammonia oxidation

    SciTech Connect

    Beskov, V.S.; Shpinel', E.E.

    1988-09-01

    The oxidation of ammonia over platinum sieve catalysts was investigated given the vortex flows found in industrial contact units. Mathematical and physical models were used to assess the influence of vortices on ammonia oxidation. The flow pattern of the ammonia-air mixture in the reactor was modeled as a stream with a partial recycle. It is shown that vortex flows reduce the conversion of ammonia to nitrogen monoxide and increase the passage of unconverted ammonia through the catalyst sieve. Over long contact periods, the main effect of vortices is to increase the passage of unconverted ammonia, which may lead to the formation of explosive compounds.

  9. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area.

    PubMed

    Rawluk, Ashley A; Crow, Gary; Legesse, Getahun; Veira, Douglas M; Bullock, Paul R; González, Luciano A; Dubois, Melanie; Ominski, Kim H

    2014-10-29

    A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture-which ranged from 21.0 ha to 39.2 ha in size-was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p < 0.0001) at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the Souris site spent more time in the RP in Period 1 (p < 0.0001) and less time in Period 2 (p = 0.0002) compared to cattle in 3NOBARR. Cattle did use the OSW, but not exclusively, as watering at the stream was still observed. The observed inconsistency in the effectiveness of the natural barriers on deterring cattle from the riparian area between periods and locations may be partly attributable to the environmental conditions present during this field trial as well as difference in pasture size and the ability of the established barriers to deter cattle from using the stream as a water source. Treatment had no significant effect (p > 0.05) on cow and calf weights averaged over the summer period. These results indicate that the presence of an OSW does not create significant differences in animal performance when used in extensive pasture scenarios such as those studied within the present study. Whereas the barriers did not consistently discourage watering at the stream, the results provide some indication of the efficacy of the OSW as well as the

  10. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  11. Stable isotope probing of acetate fed anaerobic batch incubations shows a partial resistance of acetoclastic methanogenesis catalyzed by Methanosarcina to sudden increase of ammonia level.

    PubMed

    Hao, Liping; Lü, Fan; Mazéas, Laurent; Desmond-Le Quéméner, Elie; Madigou, Céline; Guenne, Angéline; Shao, Liming; Bouchez, Théodore; He, Pinjing

    2015-02-01

    Ammonia inhibition represents a major operational issue for anaerobic digestion. In order to refine our understanding of the terminal catabolic steps in thermophilic anaerobic digestion under ammonia stress, we studied batch thermophilic acetate fed experiments at low (0.26 g L(-1)) and high (7.00 g L(-1)) Total Ammonia Nitrogen concentrations (TAN). Although methane production started immediately for all incubations and resulted in methane yields close to stoichiometric expectations, a 62-72% decrease of methanogenic rate was observed throughout the incubation at 7.00 g L(-1) of TAN compared to 0.26 g L(-1). Stable Isotope Probing analysis of active microbial communities in (13)C-acetate fed experiments coupled to automated ribosomal intergenic spacer analysis and 16S rDNA pyrotag sequencing confirmed that microbial communities were similar for both TAN conditions. At both TAN levels, the (13)C-labeled bacterial community was mainly affiliated to Clostridia-relatives, with OPB54 bacteria being the most abundant sequence in the heavy DNA 16S rDNA pyrotag library. Sequences closely related to Methanosarcina thermophila were also abundantly retrieved in the heavy DNA fractions, showing that this methanogen was still actively assimilating labeled carbon from acetate at free ammonia nitrogen concentrations up to 916 mg L(-1). Stable isotopic signature analysis of biogas, measured in unlabeled acetate fed experiments that were conducted in parallel, confirmed that acetoclastic methanogenic pathway was dominant at both ammonia concentrations. Our work demonstrates that, besides the syntrophic acetate oxidation pathway, acetoclastic methanogenesis catalyzed by Methanosarcina can also play a major role in methane production at high ammonia levels.

  12. Association of running manner with bacterial community dynamics in a partial short-term nitrifying bioreactor for treatment of piggery wastewater with high ammonia content.

    PubMed

    Du, Wei-Li; Huang, Qiang; Miao, Li-Li; Liu, Ying; Liu, Zhi-Pei

    2016-12-01

    Optimization of running parameters in a bioreactor requires detailed understanding of microbial community dynamics during the startup and running periods. Using a novel piggery wastewater treatment system termed "UASB + SHARON + ANAMMOX" constructed in our laboratory, we investigated microbial community dynamics using the Illumina MiSeq method, taking activated sludge samples at ~2-week intervals during a ~300-day period. Ammonia-oxidizing bacteria (AOB) were further investigated by quantification of AOB amoA genes and construction of gene clone libraries. Major changes in bacterial community composition and dynamics occurred when running manner was changed from continuous flow manner (CFM) to sequencing batch manner (SBM), and when effluent from an upflow anaerobic sludge blanket (UASB) reactor for practical treatment of real piggery wastewater was used as influent; differences among these three experimental groups were significant (R (2)  = 0.94, p < 0.01). When running manner was changed from CFM to SBM, relative abundance of the genus Nitrospira decreased sharply from 18.1 % on day 116 to 1.5 % on day 130, and to undetectable level thereafter. Relative abundance of the genus Nitrosomonas increased from ~0.67 % during the CFM period to 8.0 % by day 220, and thereafter decreased to a near-constant ~1.6 %. Environmental factors such as load ammonia, effluent ammonia, effluent nitrite, UASB effluent, pH, and DO levels collectively drove bacterial community dynamics and contributed to maintenance of effluent NH4 (+)-N/NO2 (-)-N ratio ~1. Theses results might provide useful clues for the control of the startup processes and maintaining high efficiency of such bioreactors.

  13. Ammonia synthesis

    SciTech Connect

    Mandelik, B.G.; Cassata, J.R.; Katy, P.J.S.; Van Dijk, C.P.

    1986-02-04

    In a process for producing ammonia in a synthesis loop in which fresh synthesis gas containing hydrogen, nitrogen and, lesser amounts of argon and methane is combined with a hydrogen enriched recycle gas to provide combined synthesis gas, the combined synthesis is introduced to and reacted over ammonia synthesis catalyst under synthesis conditions to provide converted gas containing ammonia, hydrogen, and nitrogen. The ammonia is recovered from the converted gas to provide recycle gas, and a purge stream is removed from the synthesis loop. A hydrogen-rich gas is recovered from the purge stream, and the hydrogen-rich gas is combined with the recycle gas to provide the hydrogen enriched gas. The improvement described in this patent consists of (a) providing the fresh synthesis gas at a hydrogen to nitrogen molar ratio between 1.7 and 2.5 and providing the hydrogen enriched recycle gas at a hydrogen to nitrogen molar ratio between 0.5 and 1.7 to provide the combined synthesis gas at a hydrogen to nitrogen molar ratio between 0.8 and 1.8. The volumetric flow rate ratio of the hydrogen enriched recycle gas to the fresh synthesis gas is between 2.2 and 3.7; and (b) introducing the combined synthesis gas from step (a) to an ammonia synthesis catalyst at a temperature between 315/sup 0/C. and 400/sup 0/C. and a pressure between 50 kg/cm/sup 2/ and 150 kg/cm/sup 2/.

  14. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  15. Ammonia toxicity in fish.

    PubMed

    Randall, D J; Tsui, T K N

    2002-01-01

    Ammonia is present in the aquatic environment due to agricultural run-off and decomposition of biological waste. Ammonia is toxic to all vertebrates causing convulsions, coma and death, probably because elevated NH4+ displaces K+ and depolarizes neurons, causing activation of NMDA type glutamate receptor, which leads to an influx of excessive Ca2+ and subsequent cell death in the central nervous system. Present ammonia criteria for aquatic systems are based on toxicity tests carried out on, starved, resting, non-stressed fish. This is doubly inappropriate. During exhaustive exercise and stress, fish increase ammonia production and are more sensitive to external ammonia. Present criteria do not protect swimming fish. Fish have strategies to protect them from the ammonia pulse following feeding, and this also protects them from increases in external ammonia, as a result starved fish are more sensitive to external ammonia than fed fish. There are a number of fish species that can tolerate high environmental ammonia. Glutamine formation is an important ammonia detoxification strategy in the brain of fish, especially after feeding. Detoxification of ammonia to urea has also been observed in elasmobranches and some teleosts. Reduction in the rate of proteolysis and the rate of amino acid catabolism, which results in a decrease in ammonia production, may be another strategy to reduce ammonia toxicity. The weather loach volatilizes NH3, and the mudskipper, P. schlosseri, utilizes yet another unique strategy, it actively pumps NH4+ out of the body.

  16. Aquatic Life Criteria - Ammonia

    EPA Pesticide Factsheets

    Documents related to EPA's final 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia (Freshwater). These documents pertain to the safe levels of Ammonia in water that should protect to the majority of species.

  17. Recycle of tin thiolate compounds relevant to ammonia-borane regeneration.

    PubMed

    Sutton, Andrew D; Davis, Benjamin L; Bhattacharyya, Koyel X; Ellis, Bobby D; Gordon, John C; Power, Philip P

    2010-01-07

    The use of benzenedithiol as a digestant for ammonia-borane spent fuel has been shown to result in tin thiolate compounds which we demonstrate can be recycled, yielding Bu(3)SnH and ortho-benzenedithiol for reintroduction to the ammonia-borane regeneration scheme.

  18. Ammonia photolysis on Jupiter.

    NASA Technical Reports Server (NTRS)

    Nicodem, D. E.; Ferris, J. P.

    1973-01-01

    Ammonia photolysis under simulated Jovian conditions indicates that the photochemical reaction would rapidly convert all the ammonia of Jupiter to nitrogen even in a large excess of hydrogen. It is suggested that ammonia is observed because the planet's atmosphere is deep and hot and/or because electrical discharge phenomena are important.

  19. Spent fuel pyroprocessing demonstration

    SciTech Connect

    McFarlane, L.F.; Lineberry, M.J.

    1995-05-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

  20. Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification

    PubMed Central

    Amore, Antonella; Parameswaran, Binod; Kumar, Ramesh; Birolo, Leila; Vinciguerra, Roberto; Marcolongo, Loredana; Ionata, Elena; La Cara, Francesco; Pandey, Ashok; Faraco, Vincenza

    2015-01-01

    Background Cellulases and xylanases are the key enzymes involved in the conversion of lignocelluloses into fermentable sugars. Western Ghat region (India) has been recognized as an active hot spot for the isolation of new microorganisms. The aim of this work was to isolate new microorganisms producing cellulases and xylanases to be applied in brewer's spent grain saccharification. Results 93 microorganisms were isolated from Western Ghat and screened for the production of cellulase and xylanase activities. Fourteen cellulolytic and seven xylanolytic microorganisms were further screened in liquid culture. Particular attention was focused on the new isolate Bacillus amyloliquefaciens XR44A, producing xylanase activity up to 10.5 U mL−1. A novel endo-1,4-beta xylanase was identified combining zymography and proteomics and recognized as the main enzyme responsible for B. amyloliquefaciens XR44A xylanase activity. The new xylanase activity was partially characterized and its application in saccharification of brewer's spent grain, pretreated by aqueous ammonia soaking, was investigated. Conclusion The culture supernatant of B. amyloliquefaciens XR44A with xylanase activity allowed a recovery of around 43% xylose during brewer's spent grain saccharification, similar to the value obtained with a commercial xylanase from Trichoderma viride, and a maximum arabinose yield of 92%, around 2-fold higher than that achieved with the commercial xylanase. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25866429

  1. Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study

    USDA-ARS?s Scientific Manuscript database

    Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect environmental quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and ionization of ammonium into ammonia fol...

  2. Spent fuel storage. Facts booklet

    SciTech Connect

    1980-04-01

    In October 1977, the Department of Energy (DOE) announced a spent nuclear fuel policy where the Government would, under certain conditions, take title to and store spent nuclear fuel from commercial power reactors. The policy is intended to provide spent fuel storage until final disposition is available. DOE has programs for providing safe, long-term disposal of nuclear waste. The spent fuel storage program is one element of waste management and compliments the disposal program. The costs for spent fuel services are to be fully recovered by the Government from the utilities. This will allow the utilities to confidently consider the costs for disposition of spent fuel in their rate structure. The United States would also store limited amounts of foreign spent fuel to meet nonproliferation objectives. This booklet summarizes information on many aspects of spent fuel storage.

  3. Sources of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Michaels, J. T.

    1982-01-01

    The information available on factors that influence emissions from the principal societal sources of ammonia to the atmosphere, namely combustion processes, volatilization of farm animal wastes, and volatilization of fertilizers, is reviewed. Emission factors are established for each major source of atmospheric ammonia. The factors are then multiplied by appropriate source characterization descriptors to obtain calculated fluxes of ammonia to the atmosphere on a state-by-state basis for the United States.

  4. Sources of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Michaels, J. T.

    1982-01-01

    The information available on factors that influence emissions from the principal societal sources of ammonia to the atmosphere, namely combustion processes, volatilization of farm animal wastes, and volatilization of fertilizers, is reviewed. Emission factors are established for each major source of atmospheric ammonia. The factors are then multiplied by appropriate source characterization descriptors to obtain calculated fluxes of ammonia to the atmosphere on a state-by-state basis for the United States.

  5. Reuse of spent natural gas liquid sweetening solutions

    SciTech Connect

    Hahn, W.J.; McKim, M.N.; Smith, L.S.

    1995-12-01

    Partially spent caustic solutions from natural gas liquids (NGL) sweetening processes can be used as reagent for sulfur dioxide (SO{sub 2}) scrubbing facilities, reducing the costs for purchasing scrubber reagent and eliminating the costs and liabilities associated with waste disposal. This paper discusses: (1) the characteristics of typical spent NGL sweetening solutions, (2) State and Federal regulations governing the disposal of these solutions as wastes, (3) the operational variables affecting reuse of these solutions in SO{sub 2} scrubbers, (4) field and laboratory analytical data from a pilot project conducted to evaluate the reuse of a partially spent NGL sweetening solution as SO{sub 2} scrubber reagent, and (5) economic data from the pilot project. For the pilot project, a partially spent caustic NGL sweetening solution was used in place of soda ash solution as reagent in a SO{sub 2} scrubber serving two steam generators burning sour gas. Emissions testing of the scrubber demonstrated that the solution provided effective removal of oxides of sulfur (SO{sub x}) in both gaseous and particulate phases to meet permitted limits. Data from the pilot project is used in the paper to: (1) quantify SO{sub 2} scrubber performance with partially spent caustic solutions in terms of SO{sub x} removal efficiency, (2) identify the necessary modifications in scrubber operation (reagent feed rate, scrubber liquor pH and specific gravity, blowdown rate) to achieve acceptable performance using partially spent caustic solutions, and (3) describe the effect that the use of partially spent caustic solutions has on physical and chemical properties of scrubber liquor.

  6. Photosynthesis of ammonia

    SciTech Connect

    Mallow, W.A.

    1984-09-24

    This study has demonstrated the technical feasibility of producing ammonia using an innovative technique of combining air, water and sunlight. The technique involves passing moist air over a catalyst-doped, open-celled silica foam bed illuminated by concentrated sunlight. A catalytic reaction results in tounts of ammonia. The work summarized in this report included testing of a pilot (small scale) ammonia production system located on the roof of a Southwest Research Institute (SwRI) Laboratory located in San Antonio, Texas. The system consisted of a catalyst foam bed located in a glass tube about three meters long and 5 centimeters in diameter and mounted on the focal line of a parabolic trough solar collector focused at the sun. The primary active ingredient in the catalyst was titanium dioxide. Moist air was blown through the glass tube, over illuminated catalyst foam bed. A catalytic reaction took place in the foam bed resulting in the production of ammonia gas. The ammonia gas was bubbled through a water scrubber where the ammonia was dissolved. The ammonia concentration in the scrubber water was then measured using chemiluminescence and spectrophotometry techniques to determine the ammonia production rate. Thirty-one tests were conducted in the roof top facility. A number of important process parameters were evaluated. The ammonia production rate from these tests varied from several milligrams per hour to a few micrograms per hour. The tests showed that ammonia production was possible although the yields were relatively low. Several aspects of the process could be improved to increase the yield rates. Specifically, better techniques for illuminating the catalyst with concentrated sunlight and for providing moisture at the catalyst surface should enhance the ammonia production rate. 13 references, 7 figures, 1 table.

  7. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  8. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  9. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  10. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge may...

  11. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge may...

  12. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge may...

  13. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge may...

  14. Effect of gaseous ammonia on nicotine sorption

    SciTech Connect

    Webb, A.M.; Singer, B.C.; Nazaroff, W.W.

    2002-06-01

    Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experiments was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.

  15. Use and recovery of ammonia in power plant cycles

    SciTech Connect

    Pflug, H.D.; Bettenworth, H.J.; Syring, H.A.

    1995-01-01

    The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

  16. Removal of ammonia solutions used in catalytic wet oxidation processes.

    PubMed

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  17. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  18. Spent potlining utilisation possibilities.

    PubMed

    Miksa, Dragan; Homsak, Marko; Samec, Niko

    2003-10-01

    As the world's capacity for aluminium production increases, the amount of waste connected with this industry is also increasing. Spent potlining (SPL) from aluminium reduction cell cathodes presents a major environmental concern in the primary aluminium industry. It is concluded, after laboratory tests, that leachable cyanide and fluoride compounds present the major problem in SPL disposal. The behaviour of cyanide and fluoride under high temperature treatment has been investigated. On the basis of this laboratory investigation, the possibilities for SPL utilisation in red brick manufacturing, cement industry and thermal power stations were evaluated. SPL refractory material is already re-used in red brick manufacturing. In the cement industry, a pilot test on the utilisation of 25 t SPL carbon waste mixed with green petrol coke gave positive results. Additionally a fluoride emission forecast for a thermal power station utilising carbon waste SPL mixed with coal was elaborated.

  19. Reclaim spent catalysts properly

    SciTech Connect

    Lassner, J.A.; Lasher, L.B.; Koppel, R.L.; Hamilton, J.N.

    1994-08-01

    Treatment of spent catalysts and metallic by products has become increasingly more complex over the last couple of years, due to tightening environmental concerns. Three options are available: (1) Reclaiming the metals and either reusing them to make new catalyst or recycling them for other uses. This is now the preferred option. A reclaiming firm is generally employed to handle the task. (2) Regeneration and reuse. While this generally is the preferred option, few commercial catalysts can be regenerated effectively and economically. (3) Landfilling. This has been the traditional route. However, stricter environmental regulations have made landfilling unattractive. To maximize the reclamation both economically and environmentally, five factors should be addressed: (1) proper planning and physical handling; (2) transportation of materials; (3) environmental concerns; (4) end uses of the catalyst; and (5) choosing the proper reclamation partner. These factors are discussed.

  20. Ammonia blood test

    MedlinePlus

    ... any time the skin is broken) Alternative Names Serum ammonia Images Blood test References Nevah MI, Fallon MB. Hepatic encephalopathy, hepatorenal syndrome, hepatopulmonary syndrome, and other systemic complications of liver disease. In: Feldman M, Friedman LS, Brandt LJ, eds. ...

  1. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  2. Ammonia Clouds on Jupiter

    NASA Image and Video Library

    2007-10-09

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds appearing as bright blue areas as they form and disperse.

  3. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang [Livermore, CA; Stewart, Kenneth D [Valley Springs, CA

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  4. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  5. Ammonia and sediment toxicity

    SciTech Connect

    Ogle, R.S.; Hansen, S.R.

    1994-12-31

    Ammonia toxicity to aquatic organisms has received considerable study, with most of these studies focusing on water column organisms. However, with the development and implementation of sediment (and pore water) toxicity tests, the toxicity of ammonia to benthic infauna and other sediment toxicity test organisms has become important, especially since sediment/porewater ammonia occurs at higher concentrations than in the water column. Unfortunately, there has been very little of this type information, especially for marine/estuarine organisms. This laboratory determined the toxicity of ammonia to three key marine/estuarine test organisms: the amphipod Eohaustorius estuarius, the bivalve Mytilus edulis, and the echinoderm Strongylocentrotus purpuratus. Because sediment/porewater pH can differ substantially from typical seawater pH, the toxicity evaluations covered a range of pH levels (6, 7, 8, and 9). Eohaustorius results indicate that while Total Ammonia increased in toxicity (measured as EC50) as pH increased (from 460 mg/L at pH 6, to 13 mg/L at pH 9), unionized ammonia toxicity decreased from 0.13 mg/L at pH 6 to 2.8 mg/L at pH 9. The amphipod was much less sensitive to ammonia than were the bivalve and echinoderm, with an unionized ammonia EC50 at pH 8 of 2.14 mg/L relative to 0.43 mg/L for the mussel and 0.13 mg/L for the purple urchin. These results are discussed with respect to design and interpretation of sediment toxicity test results, including an interpretation approach based on partitioning of Toxic Units (TU).

  6. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  7. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  8. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  9. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  10. Inhibition of Water Uptake in Sugar Beet Roots by Ammonia 1

    PubMed Central

    Stuart, Darrel M.; Haddock, Jay L.

    1968-01-01

    Ammonium sulfate, ammonium carbonate or ammonia gas inhibited water uptake in sugar beet roots whenever the pH was sufficiently high to cause the production of ammonia. When ammonia was removed by aeration, inhibition of the water uptake by roots was rapidly reversed. ATP at 0.2 mm appeared to either wholly or partially prevent the ammonia-induced inhibition of water uptake by roots. ATP may be involved in maintaining the structure of water pathways through the root. In roots lacking epidermis, ammonia did not inhibit water uptake by the roots. This may indicate that the site of the inhibition lies within the root epidermis. PMID:16656769

  11. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  12. Ammonia diffusion through Nalophan™ bags.

    PubMed

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film.

  13. Storage assembly for spent nuclear fuel

    SciTech Connect

    Lapides, M.E.

    1982-04-27

    A technique for storing spent fuel rods from a nuclear reactor is disclosed herein. This technique utilizes a housing including a closed inner chamber for containing the fuel rods and a thermally conductive member located partially within the housing chamber and partially outside the housing for transferring heat generated by the fuel rods from the chamber to the ambient surroundings. Particulate material is located within the chamber and surrounds the fuel rods contained therein. This material is selected to serve as a heat transfer media between the contained cells and the heat transferring member and, at the same time, stand ready to fuse into a solid mass around the contained cells if the heat transferring member malfunctions or otherwise fails to transfer the generated heat out of the housing chamber in a predetermined way.

  14. Assessment of spent fuel cooling

    SciTech Connect

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-02-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD`s work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools.

  15. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

    PubMed

    Claros, J; Jiménez, E; Borrás, L; Aguado, D; Seco, A; Ferrer, J; Serralta, J

    2010-01-01

    A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH3-N l(-1). The half saturation constant for free ammonia was determined (K(NH3)=0.32 mg NH3-N l(-1)). Activity decreased at TAN (total ammonium-nitrogen) concentration over 2,000 mg NH4-N l(-1). No free ammonia inhibition was detected. The effect of salinity was studied by adding different concentrations of different salts to the biomass. No significant differences were observed between the experiments carried out with a salt containing or not containing NH4. These results support that AOB are inhibited by salinity, not by free ammonia. A mathematical expression to represent this inhibition is proposed. To compare substrate affinity and salinity inhibitory effect on different AOB populations, similar experiments were carried out with biomass from a biological nutrient removal pilot plant. The AOB activity reached its maximum value at 0.008 mg NH3-N l(-1) and decreased at TAN concentration over 400 mg NH4-N l(-1). These differences can be explained by the different AOB predominating species: Nitrosomonas europaea and N. eutropha in the SHARON biomass and Nitrosomonas oligotropha in the pilot plant.

  16. Intermodal transportation of spent fuel

    SciTech Connect

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate.

  17. Active Interrogation for Spent Fuel

    SciTech Connect

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  18. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  19. The Chemistry of Liquid Ammonia.

    ERIC Educational Resources Information Center

    Lagowski, J. J.

    1978-01-01

    The solvent and chemical properties of liquid ammonia are presented. In a certain sense, ammonia is a more versatile solvent than is water because of its ability to solubilize, without reaction, highly negative or reducing species. (Author/BB)

  20. Liberation of ammonia by cyanobacteria

    SciTech Connect

    Newton, J.W.

    1986-04-01

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog /sup 14/C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism.

  1. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  2. The Chemistry of Liquid Ammonia.

    ERIC Educational Resources Information Center

    Lagowski, J. J.

    1978-01-01

    The solvent and chemical properties of liquid ammonia are presented. In a certain sense, ammonia is a more versatile solvent than is water because of its ability to solubilize, without reaction, highly negative or reducing species. (Author/BB)

  3. Transportation of spent MTR fuels

    SciTech Connect

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  4. The spent fuel safety experiment

    SciTech Connect

    Harms, G.A.; Davis, F.J.; Ford, J.T.

    1995-08-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The SFSX provides a direct measurement of the reactivity effects of spent PWR fuel using a well-characterized, spent fuel sample. The SFSX also provides an experimental measurement of the end-effect, i.e., the reactivity effect of the variation of the burnup profile at the ends of PWR fuel rods. The design of the SFSX is optimized to yield accurate benchmark measurements of the effects of interest, well above experimental uncertainties.

  5. HFIR spent fuel management alternatives

    SciTech Connect

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  6. Ammonia tank failure

    SciTech Connect

    Sweat, M.E.

    1983-04-01

    An ammonia tank failure at Hawkeye Chemical of Clinton, Iowa is discussed. The tank was a double-wall, 27,000 metric-ton tank built in 1968 and commissioned in December 1969. The paper presented covers the cause of the failure, repair, and procedural changes made to prevent recurrence of the failure. (JMT)

  7. Ammonia Can Crush

    NASA Astrophysics Data System (ADS)

    Vitz, Ed

    1999-07-01

    When a 12-oz aluminum soft drink can filled with ammonia or hydrogen chloride gas is inverted and dipped into water, the rapidly dissolving gas evacuates the can and the can is crushed before water can be drawn into it. This demonstrates, among other things, the remarkable strength of hydrogen bonds.

  8. Planar amplitude ammonia sensor

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Rogozinski, Roman

    2004-09-01

    The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.

  9. Atmospheric ammonia - Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Levine, J. S.; Augustsson, T. R.; Harward, C. N.

    1981-01-01

    Ammonia possesses a unique position in the terrestrial atmosphere in that it is the only gaseous basic constituent. Ammonia readily forms aerosols, and by virtue of its high solubility controls the pH of cloud droplets and precipitation. Over the past year a ground-based solar viewing Infrared Heterodyne Radiometer has been used at Langley Research Center to infer the vertical distribution of ammonia. Ground level in situ measurements of ammonia have also been obtained to supplement the profile data. The ammonia profiles have been analyzed and interpreted with a one-dimensional photochemical model of the troposphere to assess the sources and sinks of NH3.

  10. Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study

    USDA-ARS?s Scientific Manuscript database

    Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect air, soil, and water quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and dissociation of ionic ammonium ...

  11. Spent Nuclear Fuel project, project management plan

    SciTech Connect

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  12. Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?

    PubMed

    De Boeck, Gudrun; Wood, Chris M

    2015-01-15

    We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dietary adipic acid reduces ammonia emission from swine excreta.

    PubMed

    van Kempen, T A

    2001-09-01

    Adipic acid is only partially catabolized when it is fed to animals, and a portion of it is excreted in urine. The excreted portion may lower urinary pH and, as a result, ammonia emission. The present study tested this hypothesis. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on urinary pH (collected on d 5 or 6) and in vitro ammonia emission from the collected urine samples that were mixed with control feces. In Exp. 2, grower pigs housed 10 each in one of two chambers were fed a control diet or the same diet supplemented with 1% adipic acid. Ventilated air was quantified and analyzed for ammonia using Fourier transform infrared spectroscopy to determine the effects of feeding 1% adipic acid on ammonia emission. The results from Exp. 1 showed that adipic acid strongly reduced urinary pH (from 7.7 to 5.5, P < 0.05). In vitro ammonia emission from these urine samples was significantly reduced at all the time points evaluated (1, 3, 18, and 46 h with reductions of 94, 93, 70, and 39%, respectively, P < 0.05). Experiment 2 showed that adipic acid supplementation reduced ammonia emission by 25% (P < 0.05), which corresponded to the predicted reduction in ammonia emission based on the reduction in manure pH observed. In conclusion, feeding adipic acid lowers urinary pH and reduces ammonia emission. The reduction in ammonia emission, though, does not correspond to the reduction in urinary pH but corresponds to the reduction in fecal pH as a result of mixing the urine and feces, in which feces act as a strong buffer.

  14. Spent Pot Lining Characterization Framework

    NASA Astrophysics Data System (ADS)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-06-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  15. Spent Pot Lining Characterization Framework

    NASA Astrophysics Data System (ADS)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-09-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  16. Pilot-scale biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Rajganesh, B.; Sublette, K.L.; Camp, C.

    1995-12-31

    Caustics are used in petroleum refining to remove hydrogen sulfide from various hydrocarbon streams. It was previously demonstrated that spent sulfidic caustics from two Conoco refineries could be successfully biotreated at the bench scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate to Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic. Biotreatment of a Conoco spent sulfidic caustic has now been demonstrated at pilot scale (1000 gal or 3875 L). Results were comparable to those obtained at the bench scale. The economics and design of a commercial system to treat 1 gpm (3.8 L/min) of spent caustic are resented.

  17. Ammonia abundances in comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  18. Oceanic emissions of ammonia

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Jacob, D. J.; Johnson, M.; Bell, T. G.; Stock, C. A.; Doney, S. C.

    2013-12-01

    Half of natural ammonia (NH3) emissions is thought to originate from the oceans. Such large emissions have implications for the global budget of N and the acidity of marine aerosols. We develop two new inventories of oceanic NH3 emissions based on simulated monthly NH3 seawater concentrations from the GFDL-COBALT and the CESM-BEC ocean models. These new inventories explicitly account for the effect of temperature on the water-atmosphere exchange of NH3. We evaluate these inventory using cruise observations of gas-phase ammonia (AMT cruises) and ammonium (NOAA cruises) as well as seawater measurement of NHx. Implications of atmospheric NHx observations for the exchange of N between ocean and land and ocean N/P limitations are discussed.

  19. Tritiated ammonia formation

    SciTech Connect

    Heung, L.K.

    1994-03-01

    A rate equation that closely simulates experimental data has been developed. this rate equation can be used to calculate the formation of tritiated ammonia from different concentrations of tritium and nitrogen. The reaction of T{sub 2} and N{sub 2} to form NT{sub 3} is a slow process, particularly when the tritium concentration is low. The reaction requires weeks or months to reach equilibrium dependent on the concentrations of the reactants.

  20. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  1. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  2. Industrial ammonia gassing

    PubMed Central

    Walton, M.

    1973-01-01

    Walton, M. (1972).British Journal of Industrial Medicine,30, 78-86. Industrial ammonia gassing. Seven cases of ammonia gassing are described with follow-up for five years of the six survivors and the post-mortem findings of the fatal case. All the survivors attributed continuing symptoms to the gassing. The study failed to demonstrate permanent ill effects in the one case of mild exposure. Of the more serious cases one has stopped smoking and taken up physical training teaching. He now has above average lung function. Two serious cases who continued to smoke have the lung function abnormalities expected from their smoking. In the other two seriously exposed cases, who also continued to smoke, there is a persistent reduction in ventilation and gas transfer which seems to be due to the ammonia gassing. The post-mortem findings in the fatal case showed acute congestion and oedema of the mucosa of the respiratory tract, the bronchial walls being stripped of their lining epithelium and the alveoli stuffed with red blood cells and oedema fluid. Images PMID:4685304

  3. Carbon footprint and ammonia emissions of California beef production systems

    USDA-ARS?s Scientific Manuscript database

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH3) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH3 ...

  4. Combustion driven ammonia generation strategies for passive ammonia SCR system

    SciTech Connect

    Toner, Joel G.; Narayanaswamy, Kushal; Szekely, Jr., Gerald A.; Najt, Paul M.

    2016-12-06

    A method for controlling ammonia generation in an exhaust gas feedstream output from an internal combustion engine equipped with an exhaust aftertreatment system including a first aftertreatment device includes executing an ammonia generation cycle to generate ammonia on the first aftertreatment device. A desired air-fuel ratio output from the engine and entering the exhaust aftertreatment system conducive for generating ammonia on the first aftertreatment device is determined. Operation of a selected combination of a plurality of cylinders of the engine is selectively altered to achieve the desired air-fuel ratio entering the exhaust aftertreatment system.

  5. Characteristics of spent nuclear fuel

    SciTech Connect

    Notz, K.J.

    1988-04-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will, or may, eventually be disposed of in a geological repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. This report deals with spent fuels, but for completeness, the other sources are described briefly. Detailed characterizations are required for all of these potential repository wastes. These characteristics include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. In addition, the present inventories and projected quantities of the various wastes are needed. This information has been assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. 5 refs., 3 figs., 4 tabs.

  6. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH4(+)-N L(-1)) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH4(+)-N L(-1)) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH4(+)-N L(-1)), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams.

  7. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.

    PubMed

    Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M

    2013-09-15

    In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Spent fuel characteristics & disposal considerations

    SciTech Connect

    Oversby, V.M.

    1996-06-01

    The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

  9. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    PubMed

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-02-14

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  10. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    NASA Astrophysics Data System (ADS)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  11. Cosmic-ray imaging of spent fuel casks

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher; Poulson, Daniel; Plaud-Ramos, Kenie; Fabritius, Joseph; Bacon, Jeffrey; Winston, Philip; Chichester, David

    2015-10-01

    Muon radiography was used to image the inside of a partially loaded Westinghouse MC-10 dry cask containing spent nuclear fuel at Idaho National Laboratory. We present here the results of a 100 hours long measurement taken in May 2015 with two muon trackers placed outside the cask. The data clearly show the location of the missing fuel bundles and demonstrate the feasibility of using cosmic rays to monitor fuel casks against illicit diversion of their content.

  12. The Discovery of New Ammonia Masers in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Teachey, Alex; Mills, Elisabeth A.; Meier, David S.; Ott, Juergen; Butterfield, Natalie; Lang, Cornelia C.; Morris, Mark

    2015-01-01

    The ammonia molecule has long been recognized as a reliable gauge of cloud temperatures. Certain ammonia transitions are known to have a potential for masing, but to date only a handful of these masers have been identified. In this work we have examined several Galactic Center clouds using K-band data from the Very Large Array in DnC configuration (resolution ~3" / 0.1 pc) to identify new ammonia masers in the (3,3) metastable line. At present we have found four compact (< 3'') regions -- two in G0.253+0.016 (The Brick) and two near Sagittarius A -- that we can report with high confidence as newly-discovered ammonia (3,3) masers. A total of 16 additional regions are identified as likely maser candidates requiring additional analysis. Our findings suggest that the maser mechanism will preferentially amplify the main ammonia emission line over its hyperfine satellite lines, resulting in artificially low opacities measured from the ratio of these lines. This property can have the effect of partially hiding the signature of the (3,3) maser in opacity-corrected Boltzmann plots. In the highest confidence regions we measure main-to-hyperfine ratios significantly in excess of the maximum theoretical ratio for an optically-thin line, yielding negative opacities, consistent with our hypothesis of main line maser amplification. These results will be of value not only in future ammonia maser searches but also for the reliability of the ammonia molecule as a temperature tracer, and for the determination of ammonia ortho-to-para ratios.

  13. Gold nanoparticles promote amorphous carbon to be ammonia gas sensor

    NASA Astrophysics Data System (ADS)

    Hsu, Hua-Shu; Ju, Shin-Pon; Sun, Shih-Jye; Chou, Hsiung; Chia, C. H.

    2016-05-01

    As gold-nanoparticles-embedded in amorphous carbon films the sp 3 carbon orbits near the interface will be partially transferred to sp 2. The Raman spectrum measurements as well as the molecular-dynamics simulations used the second reactive empirical bond order (REBO) potential simulating the interatomic force between carbon atoms both confirm the orbital transformations. The amorphous carbon films are initially inert to gases, while the films embedded with gold nanoparticles exhibit the increase of resistance in ammonia atmosphere. Namely, gold-nanoparticles-embedded amorphous carbon films become the candidate for ammonia gas sensor materials.

  14. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  15. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  16. Spent-fuel storage requirements

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as current licensed by the Nuclear Regulatory Commission. This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000.

  17. Spent fuel receipt scenarios study

    SciTech Connect

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  18. Spent catalyst processing with electrochemistry

    SciTech Connect

    Silva, L.J.; Bray, L.A.; Frye, J.G.; Buehler, M.F.

    1994-11-01

    Increasing concern for pollution prevention and waste disposal has created a need for clean alternatives for spent catalyst processing. In addition, expanded use of catalysts for the production of fuels and chemical feedstocks will continue in response to (1) economic pressure to upgrade heavier crudes and other feeds having high levels of impurities; (2) competitive pressure to achieve higher conversions using less energy; and (3) pressure to increase reaction selectivities to minimize waste production. While the incentives for using catalysts are great, all catalysts gradually lose activity through coking; poisoning by metals, sulfur, or halides; or loss of surface area from sintering at high process temperatures. Regeneration is possible where the catalyst deactivation can easily be reversed. Electrochemical dissolution is a new technique to oxidize catalyst contaminants and dissolve catalyst metals in an aqueous solution for further recovery of the raw materials. The key to this process is adding spent catalyst to a solution containing small amounts of species that form kinetically active, strongly oxidizing ions such as cerium(IV) or silver(II). The oxidizing ions are regenerated at the anode; they act in a catalytic manner carrying electrons from the solid surface to the anode of the electrochemical cell. A cerium oxidizer was used for the experiments described in this paper. For this procedure, solution is added to the anode side of an electrochemical cell. At the anode, aqueous cerium(III) is oxidized to cerium(IV). The cerium(IV), in turn, oxidizes organic material adhered to the catalyst to carbon dioxide and water. Many spent catalysts used in hydrogenations contain metal sulfides that have contaminated the catalyst surface during processing. Metal sulfides are oxidized to dissolved metal ions and sulfur species. Because cerium is continuously reoxidized to cerium(IV) at the anode, a small amount of cerium is needed to oxidize the spent catalyst.

  19. Criticality of spent reactor fuel

    SciTech Connect

    Harris, D.R.

    1987-01-01

    The storage capacity of spent reactor fuel pools can be greatly increased by consolidation. In this process, the fuel rods are removed from reactor fuel assemblies and are stored in close-packed arrays in a canister or skeleton. An earlier study examined criticality consideration for consolidation of Westinghouse fuel, assumed to be fresh, in canisters at the Millstone-2 spent-fuel pool and in the General Electric IF-300 shipping cask. The conclusions were that the fuel rods in the canister are so deficient in water that they are adequately subcritical, both in normal and in off-normal conditions. One potential accident, the water spill event, remained unresolved in the earlier study. A methodology is developed here for spent-fuel criticality and is applied to the water spill event. The methodology utilizes LEOPARD to compute few-group cross sections for the diffusion code PDQ7, which then is used to compute reactivity. These codes give results for fresh fuel that are in good agreement with KENO IV-NITAWL Monte Carlo results, which themselves are in good agreement with continuous energy Monte Carlo calculations. These methodologies are in reasonable agreement with critical measurements for undepleted fuel.

  20. Ammonia caramels: specifications and analysis.

    PubMed

    Patey, A L; Shearer, G; Knowles, M E; Denner, W H

    1985-01-01

    Twenty three UK commercially produced ammonia caramels and eight experimentally produced ammonia caramels have been analysed by a range of physical and chemical tests, which include solids content, nitrogen levels, colour intensity and pH. A statistical treatment of the results is reported.

  1. Micelle Formation in Liquid Ammonia.

    PubMed

    Griffin, Joseph M; Atherton, John H; Page, Michael I

    2015-07-17

    Perfluorinated long chain alkyl amides aggregate in liquid ammonia with increasing concentration which reflects micelle-type formation based on changes in (19)F NMR chemical shifts. The critical micelle concentrations (cmc) decrease with increasing chain length and give Kleven parameters A = 0.18 and B = 0.19. The micelles catalyze the ammonolysis of esters in liquid ammonia. The corresponding perfluorinated long chain alkyl carboxylates form ion pairs in liquid ammonia, but the equilibrium dissociation constants indicate favorable interactions between the chains in addition to the electrostatic forces. These perfluorinated carboxylates form micelles in aqueous solution, and their cmc's generate a Kleven B-value = 0.52 compared with 0.30 for the analogous alkyl carboxylates. The differences in hydrophobicity of CH2 and CF2 units in water and liquid ammonia are discussed, as is the possible relevance to life forms in liquid ammonia.

  2. Spent fuel data for waste storage programs

    SciTech Connect

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  3. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1

    PubMed Central

    Adlimoghaddam, Aida; Boeckstaens, Mélanie; Marini, Anna-Maria; Treberg, Jason R.; Brassinga, Ann-Karen C.; Weihrauch, Dirk

    2015-01-01

    ABSTRACT The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21±0.004 µmol gFW−1 day−1). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) and Na+/K+-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H+-ATPase, carbonic anhydrase, Na+/K+-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l−1 NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na+/K+-ATPase also increased significantly in response to 1 mmol l−1 NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins. PMID:25740900

  4. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1.

    PubMed

    Adlimoghaddam, Aida; Boeckstaens, Mélanie; Marini, Anna-Maria; Treberg, Jason R; Brassinga, Ann-Karen C; Weihrauch, Dirk

    2015-03-01

    The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.

  5. Renal ammonia metabolism and transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2013-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.

  6. Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  7. CADDIS Volume 2. Sources, Stressors and Responses: Ammonia

    EPA Pesticide Factsheets

    Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.

  8. Distillery spent wash: treatment technologies and potential applications.

    PubMed

    Mohana, Sarayu; Acharya, Bhavik K; Madamwar, Datta

    2009-04-15

    Distillery spent wash is the unwanted residual liquid waste generated during alcohol production and pollution caused by it is one of the most critical environmental issue. Despite standards imposed on effluent quality, untreated or partially treated effluent very often finds access to watercourses. The distillery wastewater with its characteristic unpleasant odor poses a serious threat to the water quality in several regions around the globe. The ever-increasing generation of distillery spent wash on the one hand and stringent legislative regulations of its disposal on the other has stimulated the need for developing new technologies to process this effluent efficiently and economically. A number of clean up technologies have been put into practice and novel bioremediation approaches for treatment of distillery spent wash are being worked out. Potential microbial (anaerobic and aerobic) as well as physicochemical processes as feasible remediation technologies to combat environmental pollution are being explored. An emerging field in distillery waste management is exploiting its nutritive potential for production of various high value compounds. This review presents an overview of the pollution problems caused by distillery spent wash, the technologies employed globally for its treatment and its alternative use in various biotechnological sectors.

  9. Ammonia metabolism and hyperammonemic disorders.

    PubMed

    Walker, Valerie

    2014-01-01

    Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation.

  10. Factors influencing breath ammonia determination.

    PubMed

    Solga, Steven F; Mudalel, Matthew; Spacek, Lisa A; Lewicki, Rafal; Tittel, Frank; Loccioni, Claudio; Russo, Adolfo; Risby, Terence H

    2013-09-01

    Amongst volatile compounds (VCs) present in exhaled breath, ammonia has held great promise and yet it has confounded researchers due to its inherent reactivity. Herein we have evaluated various factors in both breath instrumentation and the breath collection process in an effort to reduce variability. We found that the temperature of breath sampler and breath sensor, mouth rinse pH, and mode of breathing to be important factors. The influence of the rinses is heavily dependent upon the pH of the rinse. The basic rinse (pH 8.0) caused a mean increase of the ammonia concentration by 410 ± 221 ppb. The neutral rinse (pH 7.0), slightly acidic rinse (pH 5.8), and acidic rinse (pH 2.5) caused a mean decrease of the ammonia concentration by 498 ± 355 ppb, 527 ± 198 ppb, and 596 ± 385 ppb, respectively. Mode of breathing (mouth-open versus mouth-closed) demonstrated itself to have a large impact on the rate of recovery of breath ammonia after a water rinse. Within 30 min, breath ammonia returned to 98 ± 16% that of the baseline with mouth open breathing, while mouth closed breathing allowed breath ammonia to return to 53 ± 14% of baseline. These results contribute to a growing body of literature that will improve reproducibly in ammonia and other VCs.

  11. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  12. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  13. Anhydrous Ammonia Frost on Titan

    NASA Astrophysics Data System (ADS)

    Smythe, W. D.; Nelson, R.; Boryta, M. D.

    2009-12-01

    Ammonia has been suggested as a probable source for sustaining Titan's thick nitrogen-dominated atmosphere. Ammonia is believed to be important to maintaining nitrogen in Titan's atmosphere. Ammonia is seen in clouds in the atmospheres of Jupiter and Saturn, but has yet to be detected on any of the satellites. This may be because all forms of NH3 are unstable in the ambient conditions of the satellites surfaces or that its spectral features are altered by other components of the surface, and have not been identified. It has recently been demonstrated[1] that brightening occurs in Titan’s atmosphere that is transient on the time-scale of months. The spectral shape of the brightening is more consistent with that of the transient apparition of a pure ammonia frost than of an ammonia monohydrate or ammonia dihydrate frost. However, the phase behavior of the ammonia water system has peritectics at compositions of 1:1 and 1:2. These hydrate forms would be expected to dominate if the frost, or the reservoir from which the frost was derived had any water present. Physical mechanisms for producing measurable quanitities of anhydrous ammonia can include chemical dehydration or dehydration of the vapor phase - but it is challenging to store significant quantities of the anhydrous material because of the phase behavior in the solid state. [1] Nelson, R.M., et al. Saturn’s Titan: Surface Change, Ammonia, and Implications for Atmospheric and Tectonic Activity., Icarus, 199, pp. 429-441, 2009 This work was performed at JPL under contract to NASA

  14. Water and ammonia on Cu{110}: comparative structure and bonding.

    PubMed

    Jones, Glenn; Jenkins, Stephen J

    2013-04-07

    Water and ammonia are arguably the two most important inorganic molecular species in the modern world, and their interaction with metal surfaces is key to unlocking their further potential in a number of spheres. In this comparative study, conducted on the Cu{110} substrate, we present results from first-principles density functional theory that highlight the similarities and differences between these chemical cousins. We find that ammonia is less likely than water to undergo thermally induced partial dissociation, although we nevertheless identify the most likely product of electron-stimulated or defect-induced dissociation to be a surface amino species. We predict that ammonia, like water, will adopt a bilayer structure at high coverage, but that unlike water the net intermolecular interaction will be repulsive, despite the formation of a weak hydrogen-bonded network. Furthermore, we suggest that coadsorption of water and ammonia can give rise to an intimately mixed overlayer in which ammonia molecules are bound directly to the surface whilst water molecules are attached only via hydrogen bonds from below.

  15. ENGINEERING DESIGN CONFIGURATIONS FOR BIOLOGICAL AMMONIA REMOVAL

    EPA Science Inventory

    Many regions in the United States have excessive levels of nutrients including ammonia in their source waters. For example, farming and agricultural sources of ammonia in the Midwest contribute to relatively high levels of ammonia in many ground waters. Although ammonia in water ...

  16. ENGINEERING DESIGN CONFIGURATIONS FOR BIOLOGICAL AMMONIA REMOVAL

    EPA Science Inventory

    Many regions in the United States have excessive levels of nutrients including ammonia in their source waters. For example, farming and agricultural sources of ammonia in the Midwest contribute to relatively high levels of ammonia in many ground waters. Although ammonia in water ...

  17. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    PubMed

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  18. A courier service for ammonia

    PubMed Central

    Knepper, Mark A.

    2008-01-01

    Physiological studies in knockout mice demonstrate a surprising role for a kidney protein related to the Rh-factor protein of red blood cells – an ammonia channel critical to maintainence of body fluid pH. PMID:19020610

  19. Compatibility testing with anhydrous ammonia

    NASA Technical Reports Server (NTRS)

    Benner, Steve M.; Schweickart, Russell B.

    1992-01-01

    Anhydrous ammonia has been proposed as the working fluid for a number of two-phase thermal control systems to be used in future space applications, including the Space Station Freedom and the Earth Observing Station (EOS). The compatibility of ammonia with the components in these systems is a major concern due to the corrosive nature of the fluid. Compatibility of ammonia with stainless steel and some aluminum alloys is well documented; however, data on other materials potentially suitable for aerospace use is less common. This paper documents the compatibility testing of nine materials with both gaseous and liquid ammonia. The test procedures are presented along with the resulting measurement data. Tensile strength was the only mechanical property tested that indicated a significant material incompatibility.

  20. Observation of interstellar ammonia ice

    NASA Technical Reports Server (NTRS)

    Knacke, R. F.; Mccorkle, S.; Puetter, R. C.; Erickson, E. F.; Kraetschmer, W.

    1982-01-01

    An absorption band probably due to solid ammonia on interstellar grains has been detected in the infrared spectrum at 2.97 microns of the Becklin-Neugebauer object and probably in NGC 2264-IR. An ammonia-water amorphous ice mixture can explain the structure of the new band and of the 3.07 microns interstellar absorption. Laboratory data suggest that a long wavelength wind extending to 3.5 microns in interstellar dust spectra may be absorption by NH3-H2O complexes in the ices. In the molecular cloud obscuring the BN object, about 20 times as much NH3 is frozen in grains as exists in the gas phase, suggesting the gas-grain interactions may be important in the ammonia chemistry of molecular clouds. Arguments are given that interstellar features at 6.0 and 6.8 microns are also ammonia-related absorptions.

  1. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  2. Satellite Observations of Tropospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Shephard, M. W.; Luo, M.; Rinsland, C. P.; Cady-Pereira, K. E.; Beer, R.; Pinder, R. W.; Henze, D.; Payne, V. H.; Clough, S.; Rodgers, C. D.; Osterman, G. B.; Bowman, K. W.; Worden, H. M.

    2008-12-01

    Global high-spectral resolution (0.06 cm-1) nadir measurements from TES-Aura enable the simultaneous retrieval of a number of tropospheric pollutants and trace gases in addition to the TES standard operationally retrieved products (e.g. carbon monoxide, ozone). Ammonia (NH3) is one of the additional species that can be retrieved in conjunction with the TES standard products, and is important for local, regional, and global tropospheric chemistry studies. Ammonia emissions contribute significantly to several well-known environmental problems, yet the magnitude and seasonal/spatial variability of the emissions are poorly constrained. In the atmosphere, an important fraction of fine particulate matter is composed of ammonium nitrate and ammonium sulfate. These particles are statistically associated with health impacts. When deposited to ecosystems in excess, nitrogen, including ammonia can cause nutrient imbalances, change in ecosystem species composition, eutrophication, algal blooms and hypoxia. Ammonia is also challenging to measure in-situ. Observations of surface concentrations are rare and are particularly sparse in North America. Satellite observations of ammonia are therefore highly desirable. We recently demonstrated that tropospheric ammonia is detectable in the TES spectra and presented some corresponding preliminary retrievals over a very limited range of conditions (Beer et al., 2008). Presented here are results that expand upon these initial TES ammonia retrievals in order to evaluate/validate the retrieval results utilizing in-situ surface observations (e.g. LADCO, CASTNet, EPA /NC State) and chemical models (e.g. GEOS-Chem and CMAQ). We also present retrievals over regions of interest that have the potential to help further understand air quality and the active nitrogen cycle. Beer, R., M. W. Shephard, S. S. Kulawik, S. A. Clough, A. Eldering, K. W. Bowman, S. P. Sander, B. M. Fisher, V. H. Payne, M. Luo, G. B. Osterman, and J. R. Worden, First

  3. Cloud temperatures from ammonia observations

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1987-01-01

    In association with an ammonia survey of the southern Galaxy (Peters et al., 1986), a search was made for improved analytical formulas to expedite the data analysis. Semi-empirical formulas are presented which relate the kinetic temperature of a molecular cloud to the kinetic temperature used in full statistical equilibrium calculations. The formulas can be used in a simple way to improve the estimate of the kinetic temperature obtained from ammonia observations.

  4. Ammonia Synthesis at Low Pressure.

    PubMed

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  5. Transportation accident scenarios for commercial spent fuel

    SciTech Connect

    Wilmot, E L

    1981-02-01

    A spectrum of high severity, low probability, transportation accident scenarios involving commercial spent fuel is presented together with mechanisms, pathways and quantities of material that might be released from spent fuel to the environment. These scenarios are based on conclusions from a workshop, conducted in May 1980 to discuss transportation accident scenarios, in which a group of experts reviewed and critiqued available literature relating to spent fuel behavior and cask response in accidents.

  6. Structural studies of ammonia and metallic lithium-ammonia solutions.

    PubMed

    Thompson, Helen; Wasse, Jonathan C; Skipper, Neal T; Hayama, Shusaku; Bowron, Daniel T; Soper, Alan K

    2003-03-05

    The technique of hydrogen/deuterium isotopic substitution has been used to extract detailed information concerning the solvent structure in pure ammonia and metallic lithium-ammonia solutions. In pure ammonia we find evidence for approximately 2.0 hydrogen bonds around each central nitrogen atom, with an average N-H distance of 2.4 A. On addition of alkali metal, we observe directly significant disruption of this hydrogen bonding. At 8 mol % metal there remains only around 0.7 hydrogen bond per nitrogen atom. This value decreases to 0.0 for the saturated solution of 21 mol % metal, as all ammonia molecules have then become incorporated into the tetrahedral first solvation spheres of the lithium cations. In conjunction with a classical three-dimensional computer modeling technique, we are now able to identify a well-defined second cationic solvation shell. In this secondary shell the nitrogen atoms tend to reside above the faces and edges of the primary tetrahedral shell. Furthermore, the computer-generated models reveal that on addition of alkali metal the solvent molecules form voids of approximate radius 2.5-3.0 A. Our data therefore provide new insight into the structure of the polaronic cavities and tunnels, which have been theoretically predicted for lithium-ammonia solutions.

  7. Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress.

    PubMed

    Dou, Yanyan; Wang, Baozhong; Chen, Liangyan; Yin, Daqiang

    2013-08-01

    Bicarbonate plays a crucial role in limiting the growth of submersed aquatic macrophytes in eutrophic lakes, and high ammonia is often toxic to macrophytes. In order to evaluate the combined effect of HCO3 (-) and total ammonia (i.e., the total of NH3 and NH4 (+)) on submersed macrophytes Vallisneria natans, the growth and physiological response of V. natans in the presence of HCO3 (-) and ammonia were studied. The results showed that with the increase of ammonia, morphological parameters of V. natans declined. In contrast, increased HCO3 (-) concentration stimulated the growth of V. natans, especially when the NH4 (+)-N/NO3 (-)-N ratio was 1:7. High ammonia concentration induced excess free amino acids (FAA) accumulation and soluble carbohydrates (SC) depletion in plant tissues. However, the elevated HCO3 (-) promoted the synthesis of SC and rendered the decrease of FAA/SC ratio. The results also suggested that HCO3 (-) could partially alleviate the stress of ammonia, as evidenced by the decrease of FAA/SC ratio and the growth enhancement of V. natans when the ammonia concentration was 0.58 mg L(-1). Given the fact that HCO3 (-) is probably the dominant available carbon source in most eutrophic lakes, the ability of V. natans to use HCO3 (-) for SC synthesis may explain the alleviating effect of HCO3 (-) on V. natans under ammonia stress.

  8. Nitridation of chromium powder in ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhen, Qiang; Li, Rong

    2015-03-01

    CrN powder was synthesized by nitriding Cr metal in ammonia gas flow, and its chemical reaction mechanism and nitridation process were studied. Through thermodynamic calculations, the Cr-N-O predominance diagrams were constructed for different temperatures. Chromium nitride formed at 7002-1200°C under relatively higher nitrogen and lower oxygen partial pressures. Phases in the products were then investigated using X-ray diffraction (XRD), and the Cr2N content varied with reaction temperature and holding time. The results indicate that the Cr metal powder nitridation process can be explained by a diffusion model. Further, Cr2N formed as an intermediate product because of an incomplete reaction, which was observed by high-resolution transmission electron microscopy (HRTEM). After nitriding at 1000°C for 20 h, CrN powder with an average grain size of 63 nm was obtained, and the obtained sample was analyzed by using a scanning electron microscope (SEM).

  9. Global Seabird Ammonia Emissions

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  10. MEASUREMENT OF AMMONIA RELEASE FROM SALTSTONE

    SciTech Connect

    Zamecnik, J; Alex Cozzi, A

    2009-01-15

    SRNL was requested by WSRC Waste Solidification Engineering to characterize the release of ammonia from saltstone curing at 95 C by performing experimental testing. These tests were performed with an MCU-type Tank 50H salt simulant containing 0, 50, and 200 mg/L ammonia. The testing program showed that above saltstone made from the 200 mg/L ammonia simulant, the vapor space ammonia concentration was about 2.7 mg/L vapor at 95 C. An upper 95% confidence value for this concentration was found to be 3.9 mg/L. Testing also showed that ammonia was chemically generated from curing saltstone at 95 C; the amount of ammonia generated was estimated to be equivalent to 121 mg/L additional ammonia in the salt solution feed. Even with chemical generation, the ammonia release from saltstone was found to be lower than its release from salt solution only with 200 mg/L ammonia.

  11. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  12. Ru nucleation and thin film smoothness improvement with ammonia during chemical vapor deposition

    SciTech Connect

    Liao, Wen; Ekerdt, John G.

    2016-05-15

    This study reports the use of ammonia to inhibit the growth of previously nucleated ruthenium islands and force the nucleation of additional islands such that thinner films form as the islands coalesce with continued growth. Ruthenium films are grown at 448 K in a chemical vapor deposition process on SiO{sub 2}/Si(001) using triruthenium dodecacarbonyl, Ru{sub 3}(CO){sub 12}, with and without a constant partial pressure of ammonia. Film growth was performed at a Ru{sub 3}(CO){sub 12}/Ar pressure of 47.2 mTorr. The ammonia partial pressure varied from 0 to 27.8 mTorr. X-ray photoelectron spectroscopy was used to analyze the samples in situ. Ex situ characterization included scanning electron microscopy, atomic force microscopy, and x-ray diffraction and x-ray reflectivity. Nucleation studies limited to the first 10 min of growth revealed the maximum nanoparticle (island) density of 8.1 × 10{sup 11 }cm{sup −2} occurred at an intermediate ammonia pressure (5.25 mTorr) compared to a density of 3.1 × 10{sup 11 }cm{sup −2} for no ammonia addition. Extending film growth to 120 min and varying the ammonia partial pressure during the first 10 min followed by 5.25 mTorr ammonia pressure for the final 110 min reveals the importance of nucleation on film smoothness. A model describing the inhibition effects of ammonia during nucleation and growth is presented.

  13. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  14. Porous silicon ammonia gas sensor

    NASA Astrophysics Data System (ADS)

    Chaillou, A.; Charrier, J.; Lorrain, N.; Sarret, M.; Haji, L.

    2006-04-01

    A planar optical waveguide is manufactured by the functionnalisation of oxidised mesoporous silicon with Bromothymol Blue to achieve a sensitive ammonia sensor suitable for low gas concentrations. The propagated light intensity is measured at the output of the waveguide. The sensitivity at low concentrations and the short time of reaction of the sensor are enhanced by a confinement effect of the gas molecules inside the pores. The dependence of the output signal with gas concentration is demonstrated. When the ammonia flow is stopped, the reversibility of the initial characteristics of the propagated light is naturally obtained with the disappearance of the gas molecules.

  15. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    SciTech Connect

    Nash, C.; Fowley, M.

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  16. Molecular Mechanisms of Renal Ammonia Transport

    PubMed Central

    Weiner, I. David; Hamm, L. Lee

    2015-01-01

    Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH3 diffusion and NH4+ trapping has given way to a model postulating that a variety of proteins specifically transport NH3 and NH4+ and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H+ or K+ but also transport NH4+. Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport. PMID:17002591

  17. Spent nuclear fuel reprocessing modeling

    SciTech Connect

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V.; Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I.

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  18. Use of spent osmotic solutions for the production of fructooligosaccharides by Aspergillus oryzae N74.

    PubMed

    Ruiz, Yolanda; Klotz, Bernadette; Serrato, Juan; Guio, Felipe; Bohórquez, Jorge; Sánchez, Oscar F

    2014-07-01

    In the food industry, osmotic dehydration can be an important stage to obtain partially dry foodstuffs. However, the remaining spent osmotic solution at the end of the process could become a waste with an important environmental impact due to the large amount of organic compounds that it might contain. Since one of the most important osmotic agents used in osmotic dehydration is sucrose, this spent osmotic solution could be used to be biotransformed to produce fructooligosaccharides by a fructosyltransferase. This study evaluated the production of fructooligosaccharides using the fructosyltransferase produced by Aspergillus oryzae N74, and the spent osmotic solution that resulted in the osmotic dehydration of Andes berry (Rubus glaucus) and tamarillo (Cyphomandra betacea). Assays were conducted at small and bioreactor scales, using spent osmotic solution with or without re-concentration. At small scale no significant difference (p > 0.05) was observed in the fructooligosaccharides production yield, ranging from 31.18% to 34.98% for spent osmotic solution from tamarillo osmotic dehydration, and from 33.16% to 37.52% for spent osmotic solution from Andes berry osmotic dehydration, using either the SOS with or without re-concentration. At bioreactor scale the highest fructooligosaccharides yield of 58.51 ± 1.73% was obtained with spent osmotic solution that resulted from tamarillo osmotic dehydration. With the spent osmotic solution from Andes berry osmotic dehydration the yield was 49.17 ± 2.82%. These results showed the feasibility of producing fructooligosaccharides from spent osmotic solution that is considered a waste in food industry.

  19. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types.

    PubMed

    Morimoto, Sho; Hayatsu, Masahito; Takada Hoshino, Yuko; Nagaoka, Kazunari; Yamazaki, Masatsugu; Karasawa, Toshihiko; Takenaka, Makoto; Akiyama, Hiroko

    2011-01-01

    Soil type is one of the key factors affecting soil microbial communities. With regard to ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), however, it has not been determined how soil type affects their community size and soil nitrification activity. Here we quantitatively analyzed the ammonia monooxygenase genes (amoA) of these ammonia oxidizers in fields with three different soil types (Low-humic Andosol [LHA], Gray Lowland Soil [GLS], and Yellow Soil [YS]) under common cropping conditions, and assessed the relationships between soil nitrification activity and the abundance of each amoA. Nitrification activity of LHA was highest, followed by that of GLS and YS; this order was consistent with that for the abundance of AOB amoA. Abundance of AOB amoA showed temporal variation, which was similar to that observed in nitrification activity, and a strong relationship (adjusted R(2)=0.742) was observed between the abundance of AOB amoA and nitrification activity. Abundance of AOA amoA also exhibited a significant relationship (adjusted R(2)=0.228) with nitrification activity, although this relationship was much weaker. Our results indicate that soil type affects the community size of AOA and AOB and the resulting nitrification activity, and that AOB are major contributors to nitrification in soils, while AOA are partially responsible.

  20. Safeguards for spent fuels: Verification problems

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1991-01-01

    The accumulation of large quantities of spent nuclear fuels world-wide is a serious problem for international safeguards. A number of International Atomic Energy Agency (IAEA) member states, including the US, consider spent fuel to be a material form for which safeguards cannot be terminated, even after permanent disposal in a geologic repository. Because safeguards requirements for spent fuels are different from those of conventional bulk-handling and item-accounting facilities, there is room for innovation to design a unique safeguards regime for spent fuels that satisfies the goals of the nuclear nonproliferation treaty at a reasonable cost to both the facility and the IAEA. Various strategies being pursued for long-term management of spent fuels are examined with a realistic example to illustrate the problems of verifying safeguards under the present regime. Verification of a safeguards regime for spent fuels requires a mix of standard safeguards approaches, such as quantitative verification and use of seals, with other measures that are unique to spent fuels. 17 refs.

  1. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly...: (1)(i) The food additive anhydrous ammonia is applied as a component of an aqueous premix containing...

  2. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly...: (1)(i) The food additive anhydrous ammonia is applied as a component of an aqueous premix containing...

  3. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly...: (1)(i) The food additive anhydrous ammonia is applied as a component of an aqueous premix containing...

  4. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  5. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  6. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  7. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  8. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  9. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  10. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  11. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  12. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  13. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  14. Ammonia emissions from cattle feeding operations.

    USDA-ARS?s Scientific Manuscript database

    Ammonia is a colorless gas with an pungent odor that occurs naturally in trace amounts in the atmosphere, where it is the dominant base. Ammonia is produced during the decomposition of livestock manure. There is concern about atmospheric ammonia because of its potential effects on air quality, wat...

  15. Glycopyrrolate in toxic exposure to ammonia gas

    PubMed Central

    Bhalla, A; Mahi, S; Sharma, N; Singh, S

    2011-01-01

    Ammonia (NH3) is a highly water-soluble, colorless, irritant gas with a unique pungent odor. Liquid ammonia stored under high pressure is still widely used for refrigeration in cold stores used for storing grains. Severe toxicity may occur following accidental exposure. We report an interesting case of accidental exposure to ammonia treated with glycopyrrolate along with other supportive measures. PMID:21633586

  16. Purification and partial kinetic and physical characterization of two NADP-specific glutamate dehydrogenase isoenzymes and their protein precursors, and measurement of the patterns of accumulation and rates of degradation of their nonidentical subunits in synchronized cells of Chlorella cultured in different concentrations of ammonia

    SciTech Connect

    Bascomb, N.F.

    1986-01-01

    Two ammonium-inducible, chloroplast-localized, NADP-specific glutamate dehydrogenases were purified from Chlorella sorokiniana. They were homopolymers of either alpha or beta subunits with molecular weights of 55,500 and 53,000, respectively. These isoenzymes were separated by their differential binding to the substrate affinity column. Peptide mapping of purified alpha and beta subunits showed them to have a high degree of sequence homology. By use of SDS slab-gel electrophoresis and a Western blot/immunodetection procedure, patterns of accumulation of alpha and beta subunits (in their holoenzyme) were measured in cells cultured in media, containing different concentrations of ammonia. Pulse-chase experiments with (/sup 35/S)sulfate were performed to measured the rates of degradation of the two isoenzymes. When the culture medium contained 2 mM ammonia or lower, cells accumulated only the alpha holoenzyme. Above 2 mM ammonia, cells contained both enzymes; however, their patterns of accumulation and rates of degradation were very different. The physiological role of alpha and beta holoenzymes appears to be ammonia assimilation at low and high external ammonia concentrations, respectively. From in vitro-translation studies with total cellular poly(A)/sup +/RNA, isolated from cells engaged in synthesis of alpha or beta holoenzymes or both, it was concluded that alpha and beta subunits have protein precursor(s) or identical molecular weight (M/sub r/ = 58,500). When the putative protein-precursor(s) were incubated in vitro, with cell-free extracts from Chlorella cells, they were processed to proteins the size of alpha and beta subunits.

  17. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp., to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  18. Advances in HTGR spent fuel treatment technology

    SciTech Connect

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners.

  19. Spent Nuclear Fuel Project dose management plan

    SciTech Connect

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  20. Shuttle ECLSS ammonia delivery capability

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The possible effects of excessive requirements on ammonia flow rates required for entry cooling, due to extreme temperatures, on mission plans for the space shuttles, were investigated. An analysis of worst case conditions was performed, and indicates that adequate flow rates are available. No mission impact is therefore anticipated.

  1. Preparation of ammonia synthesis gas

    SciTech Connect

    Shires, P.J.; van Dijk, C.P.; Cassata, J.R.; Mandelik, B.G.

    1984-10-30

    Ammonia synthesis gas having excess nitrogen is produced in a reactor-exchanger primary reformer followed by an autothermal secondary reformer wherein process air for the latter is preheated by heat exchange with gas turbine exhaust and the primary reformer is heated by synthesis gas from the secondary reformer.

  2. Ammonia excretion by Azobacter chroococcum

    SciTech Connect

    Narula, N.; Lakshminarayana, K.; Tauro, P.

    1981-02-01

    In recent years, research has focused attention on the development of biological systems for nitrogen fixation. In this report, two strains of Azotobacter chroococcum are identified which can excrete as much as 45 mg ammonia/ml of the culture broth in a sucrose supplemented synthetic medium.

  3. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  4. Hydrogen production using ammonia borane

    DOEpatents

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  5. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  6. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation

    PubMed Central

    Santoro, Alyson E; Casciotti, Karen L

    2011-01-01

    Archaeal genes for ammonia oxidation are widespread in the marine environment, but direct physiological evidence for ammonia oxidation by marine archaea is limited. We report the enrichment and characterization of three strains of pelagic ammonia-oxidizing archaea (AOA) from the North Pacific Ocean that have been maintained in laboratory culture for over 3 years. Phylogenetic analyses indicate the three strains belong to a previously identified clade of water column-associated AOA and possess 16S ribosomal RNA genes and ammonia monooxygenase subunit a (amoA) genes highly similar (98–99% identity) to those recovered in DNA and complementary DNA clone libraries from the open ocean. The strains grow in natural seawater-based liquid medium while stoichiometrically converting ammonia (NH3) to nitrite (NO2−). Ammonia oxidation by the enrichments is only partially inhibited by allylthiourea at concentrations known to completely inhibit cultivated ammonia-oxidizing bacteria. The three strains were used to determine the nitrogen stable isotope effect (15ɛNH3) during archaeal ammonia oxidation, an important parameter for interpreting stable isotope ratios in the environment. Archaeal 15ɛNH3 ranged from 13‰ to 41‰, within the range of that previously reported for ammonia-oxidizing bacteria. Despite low amino acid identity between the archaeal and bacterial Amo proteins, their functional diversity as captured by 15ɛNH3 is similar. PMID:21562601

  7. ATR Spent Fuel Options Study

    SciTech Connect

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  8. Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations.

    PubMed

    Nakagawa, Tatsunori; Stahl, David A

    2013-11-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.

  9. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    PubMed Central

    Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment. PMID:23995944

  10. Safeguards aspects of spent-fuel management

    SciTech Connect

    Richter, B.; Stein, G.; Remagen, H.H.; Weh, R.

    1989-11-01

    In the Federal Republic of Germany, the concept of spent-fuel management is based on a closed fuel cycle that has the following principal features: (1) intermediate dry storage of spent fuel; (2) reprocessing; (3) thermal recycling of unconsumed nuclear material; and (4) conditioning and final disposal of radioactive waste. Complementary to this concept, methods and techniques for the direct final disposal of spent fuel are under development, including investigations of licensing issues. Furthermore, a licensing procedure is under way for the construction of a pilot conditioning plant close to the Gorleben dry storage facility. Apart from operational safety and environmental protection, the issue of international safeguards is of paramount interest. This paper discusses safeguards aspects of spent-fuel management related to direct final disposal.

  11. Spent fuel storage requirements 1993--2040

    SciTech Connect

    Not Available

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  12. Cobalt-based Catalysts for Ammonia Decomposition

    PubMed Central

    Lendzion-Bielun, Zofia; Narkiewicz, Urszula; Arabczyk, Walerian

    2013-01-01

    An effect of promoters such as calcium, aluminium, and potassium oxides and also addition of chromium and manganese on the structure of cobalt catalysts was examined. Studies of the catalytic ammonia decomposition over the cobalt catalysts are presented. The studies of the ammonia decomposition were carried out for various ammonia-hydrogen mixtures in which ammonia concentration varied in the range from 10% to 100%. Co(0) catalyst, promoted by oxides of aluminium, calcium, and potassium, showed the highest activity in the ammonia decomposition reaction. Contrary to expectations, it was found that chromium and manganese addition into the catalysts decreased their activity. PMID:28809280

  13. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  14. Combustion of Australian spent shales compared

    SciTech Connect

    Not Available

    1986-12-01

    The combustion kinetics of spent oil shales from seven major Australian deposits have been examined using a fluidized bed batch technique. Chemical rate constants were shown to vary between the shales and to be less than extrapolations of data from American spent oil shales. The effective diffusivity also varies widely among the shales. The seven oil shales were from the Condor, Duaringa, Lowmead, Nagoorin, Nagoorin South, Rundle and Stuart deposits in Queensland. Results are briefly described. 1 figure, 1 table.

  15. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.; Fox, J.P.

    1980-06-01

    Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

  16. Partial Tonsillectomy.

    PubMed

    Wong, Kevin; Levi, Jessica R

    2017-03-01

    Evaluate the content and readability of health information regarding partial tonsillectomy. A web search was performed using the term partial tonsillectomy in Google, Yahoo!, and Bing. The first 50 websites from each search were evaluated using HONcode standards for quality and content. Readability was assessed using the Flesch-Kincaid Grade Level (FKGL), Flesch Reading Ease, Gunning-Fog Index, Coleman-Liau Index, Automated Readability Index, and SMOG score. The Freeman-Halton extension of Fisher's exact test was used to compare categorical differences between engines. Less than half of the websites mentioned patient eligibility criteria (43.3%), referenced peer-reviewed literature (43.3%), or provided a procedure description (46.7%). Twenty-two websites (14.7%) were unrelated to partial tonsillectomy, and over half contained advertisements (52%). These finding were consistent across search engines and search terms. The mean FKGL was 11.6 ± 0.11, Gunning-Fog Index was 15.1 ± 0.13, Coleman-Liau Index was 14.6 ± 0.11, ARI was 12.9 ± 0.13, and SMOG grade was 14.0 ± 0.1. All readability levels exceeded the abilities of the average American adult. Current online information regarding partial tonsillectomy may not provide adequate information and may be written at a level too difficult for the average adult reader.

  17. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect

    Laidler, J.J.

    1995-02-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  18. Recycling of waste spent catalyst in road construction and masonry blocks.

    PubMed

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts.

  19. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  20. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  1. Ammonia abundances in four comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S. C.; Engel, L.

    1991-02-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses.

  2. Ammonia abundances in four comets

    NASA Technical Reports Server (NTRS)

    Wickoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses.

  3. Saturn - Tropospheric ammonia and nitrogen

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Kuhn, W. R.; Donahue, T. M.

    1980-01-01

    Photochemical calculations based on recent data on the Saturn temperature structure and Lyman-alpha albedo indicate that detectable amounts of gaseous ammonia may exist between 20 and 35 km above the cloud tops. An instrument that might be able to observe this gas is the spectrometer on board the International Ultraviolet Explorer satellite. The calculations also yield a maximum nitrogen mixing ratio at the cloud tops between 1.8 x 10 to the -10th to 6 x 10 to the -8th by volume, depending upon the degree of supersaturation of ammonia and hydrazine. Even the lower limit could produce intense emissions if electrical discharges such as those observed on Jupiter by Voyager are also present on Saturn, or if high energy particles penetrate to the Saturnian troposphere.

  4. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    The second quarter of 1990 was one of peripheral progress on the project of reclaiming molybdenum and nickel from spent coal liquefaction catalysts. We defined some important parameters for future research and we were able to clear up ambiguities in some of the past approaches and the problems uniquely associated with the ability of T. ferrooxidans to leach both Ni{sup ++} and molybdate from spent, alumina supported catalyst from the Wilsonville pilot project. We were also able to show the T. ferrooxidans was very sensitive to molybdate and extremely sensitive to tungstate, but showed relatively little sensitivity for the related elements chromate, vanadate and for the catalyst associated metal, Ni{sup ++}. There appears to be no negative synergistic effects between Ni{sup ++} and molybdate for growth, which bodies well for processes to reclaim both these metals from spent coal liquefaction catalysts. We have shown that T. ferrooxidans is indeed capable of leaching molybdate and Ni{sup ++} from spent catalysts if the catalyst is washed extensively with both an organic solvent such as tetrahydrofuran to remove the oily contaminants and an aqueous acidic medium to remove readily solubilized N{sup ++} and molybdate. It is possible to extract into an acidic medium enough molybdate from THF washed spent catalyst within 24 hr to completely inhibit the growth of all tested T. ferrooxidans strains. The stage is now set for the development of a molybdate tolerant strain to be used for actual leaching of the spent catalyst. We are currently seeking simpler ways of pretreating the raw spent catalyst in order to make it more amenable to microbial leaching and possibly produce an economic and feasible technology.

  5. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  6. Fluorographene based Ultrasensitive Ammonia Sensor.

    PubMed

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N

    2016-05-04

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM-0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4(+) are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents -~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors.

  7. Fluorographene based Ultrasensitive Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-05-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents ‑~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors.

  8. Fluorographene based Ultrasensitive Ammonia Sensor

    PubMed Central

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-01-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents −~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522

  9. Fiber-Optic Ammonia Sensors

    NASA Technical Reports Server (NTRS)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  10. Physiological and molecular responses of the spiny dogfish shark (Squalus acanthias) to high environmental ammonia: scavenging for nitrogen.

    PubMed

    Nawata, C Michele; Walsh, Patrick J; Wood, Chris M

    2015-01-15

    In teleosts, a branchial metabolon links ammonia excretion to Na(+) uptake via Rh glycoproteins and other transporters. Ureotelic elasmobranchs are thought to have low branchial ammonia permeability, and little is known about Rh function in this ancient group. We cloned Rh cDNAs (Rhag, Rhbg and Rhp2) and evaluated gill ammonia handling in Squalus acanthias. Control ammonia excretion was <5% of urea-N excretion. Sharks exposed to high environmental ammonia (HEA; 1 mmol(-1) NH4HCO3) for 48 h exhibited active ammonia uptake against partial pressure and electrochemical gradients for 36 h before net excretion was re-established. Plasma total ammonia rose to seawater levels by 2 h, but dropped significantly below them by 24-48 h. Control ΔP(NH3) (the partial pressure gradient of NH3) across the gills became even more negative (outwardly directed) during HEA. Transepithelial potential increased by 30 mV, negating a parallel rise in the Nernst potential, such that the outwardly directed NH4(+) electrochemical gradient remained unchanged. Urea-N excretion was enhanced by 90% from 12 to 48 h, more than compensating for ammonia-N uptake. Expression of Rhp2 (gills, kidney) and Rhbg (kidney) did not change, but branchial Rhbg and erythrocytic Rhag declined during HEA. mRNA expression of branchial Na(+)/K(+)-ATPase (NKA) increased at 24 h and that of H(+)-ATPase decreased at 48 h, while expression of the potential metabolon components Na(+)/H(+) exchanger2 (NHE2) and carbonic anhydrase IV (CA-IV) remained unchanged. We propose that the gill of this nitrogen-limited predator is poised not only to minimize nitrogen loss by low efflux permeability to urea and ammonia but also to scavenge ammonia-N from the environment during HEA to enhance urea-N synthesis.

  11. Ammonia Emissions from Agriculture in China

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, L.; Zhao, Y.; Huang, B.

    2016-12-01

    Ammonia (NH3) is an important alkaline pollutant in the atmosphere and it has various environmental and climatic effects. We will present an improved bottom-up estimate of ammonia emissions from agriculture in China at 0.5°×0.5° horizontal resolution and monthly variability. Ammonia emissions from fertilizer use are derived using data of crop planting area, fertilizer application time and rate for 18 main crops. Ammonia emission factors from fertilizer use are estimated as a function of soil properties such as soil pH, cation exchange capacity (CEC), and agricultural activity information such as crop type, fertilizer type, and application mode. We further consider ambient temperature and wind speed to account for the meteorological influences on ammonia emission factors of fertilizer use. We also estimate the ammonia emission from livestock over China using the mass-flow methodology. The derived ammonia emissions in China for the year 2005 are 4.55 Tg NH3 from fertilizer use and 6.96 Tg from livestock. Henan and Jiangsu provinces are the two largest emitting areas for ammonia from fertilizer use (470 Gg NH3 and 365 Gg NH3). Henan (621 Gg NH3) and Shandong (533 Gg NH3) have the largest ammonia emissions from livestock. Both ammonia emissions from fertilizer use and livestock have distinct seasonal variations; peaking in June for fertilizer use (822 Gg NH3) and in July for livestock (1244 Gg NH3), and are both lowest in January (80 Gg and 241 Gg, respectively). Combining with other ammonia source (eg. human waste and transport) estimates from the REAS v2.1 emission inventory, we show that total ammonia emissions in China for the year 2005 are 14.0 Tg NH3 a-1. Comparisons with satellite measurements of ammonia columns will also be presented.

  12. Safeguards issues in spent fuel consolidation facilities

    SciTech Connect

    Belew, W.L.; Moran, B.W.

    1991-01-01

    In the nuclear power industry, the fuel assembly is the basic unit for nuclear material accountancy. The safeguards procedures for the spent fuel assemblies, therefore, are based on an item accountancy approach. When fuel consolidation occurs in at-reactor'' or away-from-reactor'' facilities, the fuel assemblies are disassembled and cease to be the basic unit containing nuclear material. Safeguards can no longer be based on item accountancy of fuel assemblies. The spent fuel pins containing plutonium are accessible, and the possibilities for diversion of spent fuel for clandestine reprocessing to recover the plutonium are increased. Thus, identifying the potential safeguards concerns created by operation of these facilities is necessary. Potential safeguards techniques to address these concerns also must be identified so facility designs may include the equipment and systems required to provide an acceptable level of assurance that the international safeguards objectives can be met when these facilities come on-line. The objectives of this report are (1) to identify the safeguards issues associated with operation of spent fuel consolidation facilities, (2) to provide a preliminary assessment of the assessment of the safeguards vulnerabilities introduced, and (3) to identify potential safeguards approaches that could meet international safeguards requirements. The safeguards aspects of spent fuel consolidation are addressed in several recent reports and papers. 11 refs., 3 figs., 3 tabs.

  13. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery.

    PubMed

    Balan, Venkatesh; da Costa Sousa, Leonardo; Chundawat, Shishir P S; Vismeh, Ramin; Jones, A Daniel; Dale, Bruce E

    2008-05-01

    Rice straw (RS) is an important lignocellulosic biomass with nearly 800 million dry tons produced annually worldwide. RS has immense potential as a lignocellulosic feedstock for making renewable fuels and chemicals in a biorefinery. However, because of its natural recalcitrance, RS needs thermochemical treatment prior to further biological processing. Ammonia fiber expansion (AFEX) is a leading biomass pretreatment process utilizing concentrated/liquefied ammonia to pretreat lignocellulosic biomass at moderate temperatures (70-140 degrees C). Previous research has shown improved cellulose and hemicellulose conversions upon AFEX treatment of RS at 2:1 ammonia to biomass (w/w) loading, 40% moisture (dwb) and 90 degrees C. However, there is still scope for further improvement. Fungal pretreatment of lignocellulosics is an important biological pretreatment method that has not received much attention in the past. A few reasons for ignoring fungal-based pretreatments are substantial loss in cellulose and hemicellulose content and longer pretreatment times that reduce overall productivity. However, the sugar loss can be minimized through use of white-rot fungi (e.g. Pleutorus ostreatus) over a much shorter duration of pretreatment time. It was found that mushroom spent RS prior to AFEX allowed reduction in thermochemical treatment severity, while resulting in 15% higher glucan conversions than RS pretreated with AFEX alone. In this work, we report the effect of fungal conditioning of RS followed by AFEX pretreatment and enzymatic hydrolysis. The recovery of other byproducts from the fungal conditioning process such as fungal enzymes and mushrooms are also discussed.

  14. Ammonia gas concentrations over the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ayers, G. P.; Gras, J. L.

    1980-04-01

    Measurements of the concentration of ammonia in the atmosphere over the Southern Ocean in the vicinity of Tasmania are reported. Air samples were collected over a period of three or more hours on oxalic acid-impregnated filters using a PTFE prefilter, and ammonia was determined colorimetrically. For air apparently free of influence by land areas for several thousand km, as indicated by low levels of Aitken nuclei and ammonia, a mean ammonia gas concentration of 0.06 microgram/cu m is obtained, which is significantly lower than those determined elsewhere. The value is used to estimate a dissolved ammonia concentration in the ocean of 0.3 micromole/l, assuming equilibrium between the surface water and the air, is in agreement with measurements by other investigators and direct ocean water ammonia determinations.

  15. Ammonia Process by Pressure Swing Adsorption

    SciTech Connect

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  16. Thermodynamic Properties of Aqueous Solution of Ammonia

    NASA Astrophysics Data System (ADS)

    Kitamura, Hiroshi; Oguchi, Kosei

    Present status on the thermodynamic properties of experimental data and their correlations of both ammonia and aqueous solution of ammonia was introduced in this paper. The aqueous solution of ammonia is used for not only a working fluid in absorption refrigerator cycles but also working fluids in bottoming cycles of steam power plants and other heat recovering systems. Therefore, the thermodynamic properties of this substance are required in a wide range of temperatures, pressures and compositions. The experimental results of pVTx properties for ammonia and aqueous solution of ammonia and their comparisons with a formulation by Tillner-Roth and Friend1) were critically surveyed. The “Guideline on the IAPWS Formulation 2000 for the Thermodynamic Properties of Ammonia-Water Mixtures”, correlated by Tillner-Roth and Friend1), was approved on September, 2001, by the International Association for the Properties of Water and Steam (IAPWS) 2).

  17. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  18. Geomechanics of the Spent Fuel Test: Climax

    SciTech Connect

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs.

  19. Laser surveillance system for spent fuel

    SciTech Connect

    Fiarman, S; Zucker, M S; Bieber, Jr, A M

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly.

  20. Laser Surveillance System for Spent Fuel

    SciTech Connect

    Fiarman, S.; Zucker, M. S.; Bieber, Jr., A. M.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures.

  1. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  2. Inhibitor performance in process water containing ammonia

    SciTech Connect

    Sherwood, N.S.

    1998-12-31

    Ammonia is a prevalent contaminant and issue in water reuse. Since ammonia exhibits decreasing dissociation with increasing pH, operation of cooling systems at high pH is effective in improving corrosion control, biocide demand and overall system performance. Polyamino polyether methylene phosphate based programs for high pH conditions provided scale and corrosion control at very high levels of ammonia contamination at a northern steel mill.

  3. Polyaniline-based optical ammonia detector

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  4. Atmospheric ammonia: absorption by plant leaves.

    PubMed

    Hutchinson, G L; Millington, R J; Peters, D B

    1972-02-18

    By monitoring the disappearance of ammonia from an airstream flowing through a small growth chamber containing a single plant seedling, it was discovered that plant leaves absorb significant quantities of ammonia from the air, even at naturally occurring low atmospheric concentrations. The measured absorption rates of ammonia showed large diurnal fluctuations and varied somewhat among species, but differed little with the nitrogen fertility level of plants within a species.

  5. Adsorption of ammonia on multilayer iron phthalocyanine

    SciTech Connect

    Isvoranu, Cristina; Knudsen, Jan; Ataman, Evren; Andersen, Jesper N.; Schnadt, Joachim; Schulte, Karina; Wang Bin; Bocquet, Marie-Laure

    2011-03-21

    The adsorption of ammonia on multilayers of well-ordered, flat-lying iron phthalocyanine (FePc) molecules on a Au(111) support was investigated by x-ray photoelectron spectroscopy. We find that the electron-donating ammonia molecules coordinate to the metal centers of iron phthlalocyanine. The coordination of ammonia induces changes of the electronic structure of the iron phthalocyanine layer, which, in particular, lead to a modification of the FePc valence electron spin.

  6. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and...

  7. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and...

  8. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and...

  9. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and...

  10. Calorimetric studies of the ammonia-water system with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Yarger, Jeffery; Lunine, Jonathan I.; Burke, Michael

    1993-01-01

    A series of heating experiments was performed on the condensed ammonia-water system using a differential scanning calorimeter (DSC). The water-rich samples were cooled quickly to below 130 K, then heated at a variety of rates. Rather than a single peritectic melt at 176 K, expected for the equilibrium system of water ice and ammonia dihydrate, four enthalpic transitions were repeatedly seen in the temperature range 150-176 K. These transitions are generally consistent with the earlier calorimetric results of Van Kasteren (1973), who interpreted the lowest temperature exotherm as crystallization of an amorphous ammonia-water compound formed during cooling. We propose that both sets of experiments are seeing the crystallization of ammonia monohydrate, which is metastable relative to the dihydrate, followed by partial remelting and crystallization of dihydrate upon further heating. The apparent stability of the monohydrate in the dihydrate equilibrium field implies a potentially complex behavior of ammonia-water ices in satellites. Possible self-heating of the mixture by several tens of degrees up to the 170 K eutectic could make mobilization of ammonia-water liquids in icy satellite interiors energetically easier than previously thought.

  11. Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites.

    PubMed

    Petit, Camille; Huang, Liangliang; Jagiello, Jacek; Kenvin, Jeffrey; Gubbins, Keith E; Bandosz, Teresa J

    2011-11-01

    The adsorption of ammonia on HKUST-1 (a metal-organic framework, MOF) and HKUST-1/graphite oxide (GO) composites was investigated in two different experimental conditions. From the isotherms, the isosteric heats of adsorption were calculated from the Clausius-Clapeyron equation following the virial approach. The results on HKUST-1 were compared with those obtained using molecular simulation studies. All materials exhibit higher ammonia adsorption capacities than those reported in the literature. The ammonia adsorption on the composites is higher than that measured separately on the MOF component and on GO. The strong adsorption of ammonia caused by chemical interactions on different adsorption sites is evidenced by the trends in the isosteric heats of adsorption. The molecular simulations conducted on HKUST-1 support the trends observed experimentally. In particular, the strong chemisorption of ammonia on the metallic centers of HKUST-1 is confirmed. Nevertheless, higher adsorption capacities are predicted compared with the experimental results. This discrepancy is mainly assigned to the partial collapse of the MOF structure upon exposure to ammonia, which is not accounted for in the simulation study.

  12. Calorimetric studies of the ammonia-water system with application to the outer solar system

    NASA Astrophysics Data System (ADS)

    Yarger, J.; Lunine, J. I.; Burke, M.

    1993-07-01

    A series of heating experiments was performed on the condensed ammonia-water system using a differential scanning calorimeter (DSC). The water-rich samples were cooled quickly to below 130 K, then heated at a variety of rates. Rather than a single peritectic melt at 176 K, expected for the equilibrium system of water ice and ammonia dihydrate, four enthalpic transitions were repeatedly seen in the temperature range 150-176 K. These transitions are generally consistent with the earlier calorimetric results of Van Kasteren (1973), who interpreted the lowest temperature exotherm as crystallization of an amorphous ammonia-water compound formed during cooling. We propose that both sets of experiments are seeing the crystallization of ammonia monohydrate, which is metastable relative to the dihydrate, followed by partial remelting and crystallization of dihydrate upon further heating. The apparent stability of the monohydrate in the dihydrate equilibrium field implies a potentially complex behavior of ammonia-water ices in satellites. Possible self-heating of the mixture by several tens of degrees up to the 170 K eutectic could make mobilization of ammonia-water liquids in icy satellite interiors energetically easier than previously thought.

  13. Method for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Watson, Clyde D.

    1977-01-01

    A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

  14. Spent Nuclear Fuel Transport Reliability Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  15. Biodiesel Production from Spent Coffee Grounds

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  16. Apparatus for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  17. Spent Fuel Background Report Volume I

    SciTech Connect

    Abbott, D.

    1994-03-01

    This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic

  18. The taste response to ammonia in Drosophila

    PubMed Central

    Delventhal, R.; Menuz, K.; Joseph, R.; Park, J.; Sun, J. S.; Carlson, J. R.

    2017-01-01

    Ammonia is both a building block and a breakdown product of amino acids and is found widely in the environment. The odor of ammonia is attractive to many insects, including insect vectors of disease. The olfactory response of Drosophila to ammonia has been studied in some detail, but the taste response has received remarkably little attention. Here, we show that ammonia is a taste cue for Drosophila. Nearly all sensilla of the major taste organ of the Drosophila head house a neuron that responds to neutral solutions of ammonia. Ammonia is toxic at high levels to many organisms, and we find that it has a negative valence in two paradigms of taste behavior, one operating over hours and the other over seconds. Physiological and behavioral responses to ammonia depend at least in part on Gr66a+ bitter-sensing taste neurons, which activate a circuit that deters feeding. The Amt transporter, a critical component of olfactory responses to ammonia, is widely expressed in taste neurons but is not required for taste responses. This work establishes ammonia as an ecologically important taste cue in Drosophila, and shows that it can activate circuits that promote opposite behavioral outcomes via different sensory systems. PMID:28262698

  19. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix.

    PubMed

    Sun, D D; Tay, J H; Cheong, H K; Leung, D L; Qian, G

    2001-10-12

    Chemical analysis of spent Co/Mo/gamma Al(2)O(3) catalyst revealed the presence of carbon, molybdenum, sulfur, vanadium and cobalt at levels of 16.0, 10.9, 7.3, 4.6 and 4.0 wt.%, respectively. It was found that calcination at 500 degrees C provides an effective solution for the removal of carbon and sulfur and this generates the oxide form of the heavy metals. The removal of these heavy metals can be achieved through a two-stage leaching process. During the first stage, in which concentrated ammonia is used and it has been found that this process can be successful in removing as much as 83% (w/v) Mo. In a second stage, it was found that using 10% (v/v) of sulfuric acid, it was possible to account for up to 77% (w/v) Co and 4% (w/v) Mo removal. Leaching test results indicated that the vanadium present in the heated spent catalyst was almost stabilized but the molybdenum and cobalt were not. The combination of two solid wastes, ladle furnace slag (LFS) and treated residue of spent catalyst, could be used for making a high value-added anorthite glass-ceramic materials. Further leaching tests showed that ceramic glass materials provided a very effective method of Co, Mo and V heavy metals stabilization resulting in a product with a possible commercial value.

  20. Behavior of iodine in the dissolution of spent nuclear fuels

    SciTech Connect

    Sakurai, Tsutomu; Komatsu, Kazunori; Takahashi, A.

    1997-08-01

    The results of laboratory-scale experiments concerning the behavior of iodine in the dissolution of spent nuclear fuels, which were carried out at the Japan Atomic Energy Research Institute, are summarized. Based on previous and new experimental results, the difference in quantity of residual iodine in the fuel solution between laboratory-scale experiments and reprocessing plants is discussed, Iodine in spent fuels is converted to the following four states: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid generated in the dissolution, (3) formation of a colloid of insoluble iodides such as AgI and PdI{sub 2}, and (4) deposition on insoluble residue. Nitrous acid controls the amount of colloid formed. As a result, up to 10% of iodine in spent fuels is retained in the fuel solution, up to 3% is deposited on insoluble residue, and the balance volatilizes to the off-gas, Contrary to earlier belief, when the dissolution is carried out in 3 to 4 M HNO{sub 3} at 100{degrees}C, the main iodine species in a fuel solution is a colloid, not iodate, Immediately after its formation, the colloid is unstable and decomposes partially in the hot nitric acid solution through the following reaction: AgI(s) + 2HNO{sub 3}(aq) = {1/2}I{sub 2}(aq) + AgNO{sub 3}(aq) + NO{sub 2}(g) + H{sub 2}O(1). For high concentrations of gaseous iodine, I{sub 2}(g), and NO{sub 2}, this reaction is reversed towards formation of the colloid (AgI). Since these concentrations are high near the liquid surface of a plant-scale dissolver, there is a possibility that the colloid is formed there through this reversal, Simulations performed in laboratory-scale experiments demonstrated this reversal, This phenomenon can be one reason the quantity of residual iodine in spent fuels is higher in reprocessing plants than in laboratory-scale experiments. 17 refs., 5 figs., 3 tabs.

  1. Older peoples' perspectives on time spent alone.

    PubMed

    Stanley, Mandy; Richard, Ashley; Williams, Shoshannah

    2017-06-01

    Large amounts of time spent alone by older people have been associated with loneliness and poor mental and physical health. There is a paucity of research, however, that examines time alone from an occupational perspective. In this exploratory study we explored the perspectives of older people on their time spent alone. A qualitative descriptive study design was selected. With the aim of maximising variation, five participants were recruited from retirement villages and seven participants who lived independently in the community. Participants recorded time spent alone in a time diary for three days as priming for a semi-structured in-depth interview. Transcripts were analysed thematically. Three key themes were identified: 'it is a matter of getting some balance'; 'keeping busy'; and 'the nights are the worst'. The study highlights the importance older people place on the need to manage time alone so that it is a positive and nourishing experience and to avoid experiencing extended periods of boredom potentially leading to loneliness. Older people utilise occupations to keep busy and achieve an individually acceptable level of time alone. Enabling older people to balance time spent alone by addressing barriers to participation in the community in addition to finding engaging occupations to occupy time has the potential to prevent boredom, loneliness and improve wellbeing. © 2016 Occupational Therapy Australia.

  2. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  3. Total quality in spent fuel pool reracking

    SciTech Connect

    Cranston, J.S.; Taglianetti, J.N.; Schaeffer, D.G.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-12-31

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities` specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost.

  4. Microbial recovery of metals from spent catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1990-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. This plant is run and operated by Southern Clean Fuels. A large sample of spent catalyst from this facility has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the No content of this particular sample is too low for the current studies. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  5. Spent Nuclear Fuel Project Technical Databook

    SciTech Connect

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  6. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  7. Spent nuclear fuel project product specification

    SciTech Connect

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  8. Spent fuel pin temperature PC code

    SciTech Connect

    Fischer, L.E.

    1985-03-01

    During an annual outage, a Pressurized Water Reactor (PWR) may discharge 60 or more spent fuel bundles into its storage pool. Most early PWRs were built to store 3 to 5 years of spent fuel in their pools and are beginning to exceed their capacities. One method currently being developed and licensed for expanding spent fuel storage capabilities is the dry storage of spent fuel in large casks. To reduce the probability of gross failures of fuel cladding during dry storage in casks, the fuel pin temperatures must be shown to remain within acceptable limits. LLNL has developed, for the Nuclear Regulatory Commission, a personal computer (PC) code for calculating fuel pin temperatures on the IBM PC. The code uses the Wooton-Epstein Correlation to calculate the pin temperatures and has been benchmarked against test data. An iterative type of solution is used to calculate the fuel pin temperatures for specified heat fluxes and pin configurations. The PC code is useful in performing confirmatory analyses and comparing the results with those submitted by applicants applying for storage licenses. 5 references, 2 tables.

  9. Is Spent Fuel or Waste from Reprocessed Spent Fuel Simpler to Dispose of?

    DTIC Science & Technology

    1981-06-12

    the space in a repository for processed high-level waste has not included the disposal of transuranic waste from the co.mercial fuel cycle which will...AD-AI06 573 GENERAL ACCOUNTING OFFICE WASHINGTON OC ENERGY AND M-ETC F/G 18/7 i S PENT FUEL OR WASTE FROM REPROCESSED SPENT FUEL SIMPLER TO D--TC(U...the Congress entitled "Is Spent Fuel or Waste from Reprocessed Spent Fuel Simpler to Dispose of?" (EID-81-78, June 12, 1981)z Insert the following

  10. Numerical Estimation of the Spent Fuel Ratio

    SciTech Connect

    Lindgren, Eric R.; Durbin, Samuel; Wilke, Jason; Margraf, J.; Dunn, T. A.

    2016-01-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank

  11. Electrostatic trapping of ammonia molecules

    PubMed

    Bethlem; Berden; Crompvoets; Jongma; van Roij AJ; Meijer

    2000-08-03

    The ability to cool and slow atoms with light for subsequent trapping allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas and optical trapping of caesium dimers generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 10(6) cm(-3) in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems.

  12. Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides.

    PubMed

    Rossin, Andrea; Peruzzini, Maurizio

    2016-08-10

    This review is a comprehensive survey of the last 10 years of research on ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides (CMHs), within the broader context of chemical hydrogen storage. The review also collects those cases where CMHs are the catalyst spent form or its resting state. Highlights on the reaction mechanism (strictly dependent on the CMH of choice) and the catalysts efficiency (in terms of equivalents of H2 produced and relative reaction rates) are provided throughout the discussion.

  13. Temperature, diet control ammonia loss from feedyards

    USDA-ARS?s Scientific Manuscript database

    Ammonia that escapes as a gas from beef cattle feedyards can negatively impact sensitive ecosystems and degrade air quality when it reacts with other pollutants in the atmosphere. Ammonia emissions were measured at two cattle feedyards on the Southern High Plains continuously for two years. Annual p...

  14. Evaluation of ammonia emissions from broiler litter

    USDA-ARS?s Scientific Manuscript database

    Ammonia emissions from poultry litter results in air pollution and can cause high levels of ammonia in poultry houses, which negatively impacts bird performance. The objectives of this study were to: (1) conduct a nitrogen (N) mass balance in broiler houses by measuring the N inputs (bedding, chick...

  15. Oxidative and nitrosative stress in ammonia neurotoxicity.

    PubMed

    Skowrońska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.

  16. Method for releasing hydrogen from ammonia borane

    SciTech Connect

    Varma, Arvind; Diwan, Moiz; Shafirovich, Evgeny; Hwang, Hyun-Tae; Al-Kukhun, Ahmad

    2013-02-19

    A method of releasing hydrogen from ammonia borane is disclosed. The method comprises heating an aqueous ammonia borane solution to between about 80-135.degree. C. at between about 14.7 and 200 pounds per square inch absolute (psia) to release hydrogen by hydrothermolysis.

  17. Regeneration of ammonia borane from polyborazylene

    SciTech Connect

    Sutton, Andrew; Gordon, John C; Ott, Kevin C; Burrell, Anthony K

    2013-02-05

    Method of producing ammonia borane, comprising providing a reagent comprising a dehydrogenated material in a suitable solvent; and combining the reagent with a reducing agent comprising hydrazine, a hydrazine derivative, or combinations thereof, in a reaction which produces a mixture comprising ammonia borane.

  18. Plasma Ammonia Levels in Newborns with Asphyxia.

    PubMed

    Khalessi, Nasrin; Khosravi, Nastaran; Mirjafari, Maryam; Afsharkhas, Ladan

    2016-01-01

    Perinatal asphyxia may result in hypoxic damage in various body organs, especially in the central nervous system. It could induce cascade of biochemical events leading to the cell death and metabolic changes, eventually may increase plasma ammonia levels. The purpose of this study was to determine the prevalence of hyperammonemia in neonates with asphyxia and to find the relationship between ammonia levels and severity of asphyxia. In this cross-sectional study, we included 100 neonates with perinatal asphyxia in the Neonatal Intensive Care Unit of Ali-Asghar Hospital, Iran University of Medical Science, Tehran, Iran in 2010-2011. All full term patients diagnosed of asphyxia were enrolled. The relationship between plasma ammonia levels and sex, gestational age, birth weight and severity of asphyxia were determined. Data were analyzed using SPSS software. Fifty six percent of neonates were male. The mean gestational age was 38.0± 1.2 wk. Mean plasma ammonia level was 222 ± 100 μg/dl and 20% of the neonates had hyperammonemia. It was not associated with gender, gestational age, birth weight, and asphyxia severity. Six patients died and mean plasma ammonia levels was 206±122 μg/dl. In this group, there was no significant relation between plasma ammonia levels and severity of asphyxia. No significant different was seen between plasma ammonia in dead and lived neonates. According to high prevalence of hyperammonemia in neonatal asphyxia, measurement of plasma ammonia levels, is suggested to improve management of asphyxia.

  19. Ammonia and hydrogen sulfide removal using biochar

    USDA-ARS?s Scientific Manuscript database

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  20. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    Experimental runs were conducted on direct ammonia fuel cells . Effects of temperature, composition, as well as run effect and block effect were...cells and to electrode flooding are discussed. Data on performance of complete laboratory direct ammonia-oxygen fuel cells are presented and discussed. (Author)

  1. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  2. Ammonia Production Using Pressure Swing Adsorption

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose overall objective is to develop and demonstrate a technically feasible and commercially viable system that integrates reaction to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production.

  3. Ammonia emissions from land application of manures

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization can be a major nitrogen (N) loss process for surface-applied manures. There is concern that current manure management practices are contributing to ammonia losses in the Mid-Atlantic region with subsequent reductions in air quality and increases in N losses to streams and est...

  4. Critical litter moisture maximizes ammonia generation

    USDA-ARS?s Scientific Manuscript database

    The natural breakdown of litter (bedding material mixed with deposits of feces, feathers, spilled feed and water) generates ammonia in poultry houses. Good management practices can reduce ammonia concentrations in poultry houses. Findings from a recent publication indicate there is a critical litt...

  5. Poultry litter moisture management to reduce ammonia

    USDA-ARS?s Scientific Manuscript database

    Ammonia generation in poultry houses results from the natural breakdown of litter (bedding material mixed with deposits of feces, feathers, spilled feed and water). Good management practices can reduce ammonia concentrations in poultry houses. This factsheet relates findings from a recent publicat...

  6. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

    PubMed

    Lawrence, Michael J; Wright, Patricia A; Wood, Chris M

    2015-07-01

    Relative to the gills, the mechanisms by which the kidney contributes to ammonia and acid-base homeostasis in fish are poorly understood. Goldfish were exposed to a low pH environment (pH 4.0, 48 h), which induced a characteristic metabolic acidosis and an increase in total plasma [ammonia] but reduced plasma ammonia partial pressure (PNH3). In the kidney tissue, total ammonia, lactate and intracellular pH remained unchanged. The urinary excretion rate of net base under control conditions changed to net acid excretion under low pH, with contributions from both the NH4 (+) (∼30%) and titratable acidity minus bicarbonate (∼70%; TA-HCO3 (-)) components. Inorganic phosphate (Pi), urea and Na(+) excretion rates were also elevated while Cl(-) excretion rates were unchanged. Renal alanine aminotransferase activity increased under acidosis. The increase in renal ammonia excretion was due to significant increases in both the glomerular filtration and the tubular secretion rates of ammonia, with the latter accounting for ∼75% of the increase. There was also a 3.5-fold increase in the mRNA expression of renal Rhcg-b (Rhcg1) mRNA. There was no relationship between ammonia secretion and Na(+) reabsorption. These data indicate that increased renal ammonia secretion during acidosis is probably mediated through Rhesus (Rh) glycoproteins and occurs independently of Na(+) transport, in contrast to branchial and epidermal models of Na(+)-dependent ammonia transport in freshwater fish. Rather, we propose a model of parallel H(+)/NH3 transport as the primary mechanism of renal tubular ammonia secretion that is dependent on renal amino acid catabolism.

  7. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults.

    PubMed

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2015-12-14

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L(-1) (interquartile range (IQR), 3-18) versus 46 μmol L(-1) (IQR, 23-66) for cirrhotic participants. Median breath ammonia was 379 pmol mL(-1) CO2 (IQR, 265-765) for healthy versus 350 pmol mL(-1) CO2 (IQR, 180-1013) for cirrhotic participants. CV was 17  ±  6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia.

  8. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults

    PubMed Central

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2016-01-01

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L−1 (interquartile range (IQR), 3–18) versus 46 μmol L−1 (IQR, 23–66) for cirrhotic participants. Median breath ammonia was 379 pmol mL−1 CO2 (IQR, 265–765) for healthy versus 350 pmol mL−1 CO2 (IQR, 180–1013) for cirrhotic participants. CV was 17 ± 6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia. PMID:26658550

  9. Ammonia gas permeability of meat packaging materials.

    PubMed

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P < 0.05) with increasing exposure times and ammonia concentrations. Average ammonia levels in the water were 7.77 ppm for MLP, 5.94 ppm for LDPE, and 0.89 ppm for V-PA/PE at 500 ppm exposure for 48 h at 21 ± 3 °C. Average pH values were 8.64 for MLP, 8.38 for LDPE, and 7.23 for V-PA/PE (unexposed ranged from 5.49 to 6.44) at 500 ppm exposure for 48 h. The results showed that temperature influenced ammonia permeability. Meat packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  10. Autotrophic ammonia oxidation by soil thaumarchaea

    PubMed Central

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of 13C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in 13C-labeled DNA, demonstrating inorganic CO2 fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in 13C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil. PMID:20855593

  11. ENRICO FERMI FAST REACTOR SPENT NUCLEAR FUEL CRITICALLY CALCULATIONS: INTACT MODE

    SciTech Connect

    A.S. Mobasheran

    1999-04-12

    The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, k{sub eff}, a measure of nuclear criticality potential, for the 5-DHLW/DOE SNF WP with intact or partially degraded internal configurations. These evaluations contribute to the WP design.

  12. Simultaneous and multi-point measurement of ammonia emanating from human skin surface for the estimation of whole body dermal emission rate.

    PubMed

    Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato

    2017-05-15

    Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh(-1) with an average of 5.9±3.2mgh(-1) per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ammonia encephalopathy and awake craniotomy for brain language mapping: cause of failed awake craniotomy.

    PubMed

    Villalba Martínez, G; Fernández-Candil, J L; Vivanco-Hidalgo, R M; Pacreu Terradas, S; León Jorba, A; Arroyo Pérez, R

    2015-05-01

    We report the case of an aborted awake craniotomy for a left frontotemporoinsular glioma due to ammonia encephalopathy on a patient taking Levetiracetam, valproic acid and clobazam. This awake mapping surgery was scheduled as a second-stage procedure following partial resection eight days earlier under general anesthesia. We planned to perform the surgery with local anesthesia and sedation with remifentanil and propofol. After removal of the bone flap all sedation was stopped and we noticed slow mentation and excessive drowsiness prompting us to stop and control the airway and proceed with general anesthesia. There were no post-operative complications but the patient continued to exhibit bradypsychia and hand tremor. His ammonia level was found to be elevated and was treated with an infusion of l-carnitine after discontinuation of the valproic acid with vast improvement. Ammonia encephalopathy should be considered in patients treated with valproic acid and mental status changes who require an awake craniotomy with patient collaboration.

  14. CADDIS Volume 2. Sources, Stressors and Responses: Ammonia - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.

  15. CADDIS Volume 2. Sources, Stressors and Responses: Ammonia - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.

  16. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  17. Dakota Gasification Company - ammonia scrubber

    SciTech Connect

    Wallach, D.L.

    1995-12-31

    Amain stack BACT assessment for sulfur dioxide emissions conducted in 1990 for the Dakota Gasification Company`s (DGC) Great Plains Synfuels Plant identified wet limestone flue gas desulfurization system as BACT. During the development of the design specification for the wet limestone FGD, GE Environmental Systems Inc. and DGC jointly demonstrated a new ammonia-based process for flue gas desulfurization on a large pilot plant located at the Great Plains Synfuels Plant. The production of saleable ammonium sulfate, rather than a waste product, was of interest to DGC as it fit into the plant`s on-going by-product recovery efforts. With the success of the pilot plant, DGC and GEESI entered into an agreement to build the first commercial scale Ammonium Sulfate Forced Oxidation FGD system. Construction of this system is well in progress with an anticipated start-up date of August, 1996.

  18. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  19. Ammonia excretion in Caenorhabditis elegans: Physiological and molecular characterization of the rhr-2 knock-out mutant.

    PubMed

    Adlimoghaddam, Aida; O'Donnell, Michael J; Kormish, Jay; Banh, Sheena; Treberg, Jason R; Merz, David; Weihrauch, Dirk

    2016-05-01

    Previous studies have shown the free living soil nematode Caenorhabditis elegans (N2 strain) to be ammonotelic. Ammonia excretion was suggested to take place partially via the hypodermis, involving the Na(+)/K(+)-ATPase (NKA), V-ATPase (VAT), carbonic anhydrase, NHX-3 and a functional microtubule network and at least one Rh-like ammonia transporter RHR-1. In the current study, we show that a second Rh-protein, RHR-2, is highly expressed in the hypodermis, here also in the apical membrane of that tissue. To further characterize the role of RHR-2 in ammonia excretion, a knock-out mutant rhr-2 (ok403), further referred to as ∆rhr-2, was employed. Compared to wild-type worms (N2), this mutant showed a lower rate of ammonia excretion and a lower hypodermal H(+) excretion rate. At the same time rhr-1, nka, vat, and nhx-3 showed higher mRNA expression levels when compared to N2. Also, in contrast to N2 worms, ∆rhr-2 did not show enhanced ammonia excretion rates when exposed to a low pH environment, suggesting that RHR-2 represents the apical NH3 pathway that allows ammonia trapping via the hypodermis in N2 worms. A hypothetical model for the mechanism of hypodermal ammonia excretion is proposed on the basis of data in this and previous investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Management of spent sealed radiation sources.

    PubMed

    Vicente, Roberto; Sordi, Gian-Maria; Hiromoto, Goro

    2004-05-01

    Spent or disused sealed radiation sources--no longer needed sources--may represent a risk of radiological accident or may be a target for criminal acts in countries where final disposal options are unavailable and where an increasing number of sources are being kept in extended storage. In developing countries, thousands of radium needles, teletherapy sources, oil well logging neutron sources, and miscellaneous industrial radioactive gauges are annually collected as waste and stored in research institutes. The objectives of the study described in this paper are to inventory such sources in Brazil, including those presently in use and those already collected as waste, and to design a dedicated repository where spent sources could be disposed of properly. The inventory of sources in Brazil and the concept of the repository are presented and its feasibility is discussed.

  1. International safeguards for spent fuel storage

    NASA Astrophysics Data System (ADS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    The nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage were analyzed. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantiative nature, in verification-related data and information, and possess the major advantage of intruding very littel on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems.

  2. Historical overview of domestic spent fuel shipments

    SciTech Connect

    Pope, R.B.; Wankerl, M.W. ); Armstrong, S.; Hamberger, C., Schmid, S. )

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs.

  3. Spent fuel behavior in dry storage

    NASA Astrophysics Data System (ADS)

    Johnson, A. B., Jr.; Pankaskie, P. J.; Gilbert, E. R.

    1982-02-01

    Dry storage is emerging as an attractive and timely alternative to complement wet storage, and assist utilities to meet interim storage needs. Spent fuel is handled and stored under dry conditions. Dry storage of irradiated Zircaloy clad fuel in metal casks, drywells, silos and vaults is demonstrated. Hot cell and laboratory studies also are underway to investigate specific phenomena related to cladding behavior in dry storage. A substantial fraction of the LWR spent fuel inventory has aged for relatively long times and has relatively low decay heats. This suggests that much of the fuel inventory can be stored at relatively low temperatures. Alternatively, rod consolidation of the older can be considered without exceeding maximum cladding temperatures.

  4. Pyrolysis of Spent Ion Exchange Resins - 12210

    SciTech Connect

    Braehler, Georg; Slametschka, Rainer

    2012-07-01

    Organic ion exchangers (IEX) play a major and increasing role in the reactor coolant and other water purification processes. During their operation time they receive significant amounts of radioactivity, making their disposal, together with their organic nature, as medium active waste challenging. Processes applied so far do not eliminate the organic matter, which is unwanted in disposal facilities, or, if high temperatures are applied, raise problems with volatile radionuclides. NUKEM Technologies offers their well introduces process for the destruction of spent solvent (TBP), the pebble bed pyrolysis, now for the treatment of spent IEX (and other problematic waste), with the following benefits: the pyrolysis product is free of organic matter, and the operation temperature with approx. 500 deg. C keeps Cs radionuclides completely in the solid residue. (authors)

  5. Spent fuel container alignment device and method

    DOEpatents

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  6. BR-100 spent fuel shipping cask development

    SciTech Connect

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs.

  7. Spent nuclear fuel project product specification

    SciTech Connect

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  8. International safeguards for spent fuel storage

    SciTech Connect

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems.

  9. Spent Sealed Sources Management in Switzerland - 12011

    SciTech Connect

    Beer, H.F.

    2012-07-01

    Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation to the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)

  10. 5 CFR 551.426 - Time spent in charitable activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PAY ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Hours of Work Application of Principles in Relation to Other Activities § 551.426 Time spent in charitable activities. Time spent working for public...

  11. Integrated process for reprocessing spent nuclear fuel

    SciTech Connect

    Forsberg, C.W.

    1991-03-06

    This invention is comprised of a process for recovering nuclear fuel from spent fuel assemblies that employs a single canister process container. The cladding and fuel are oxidized in the container, the fuel is dissolved and removed from the container for separation from the aqueous phase, the aqueous phase containing radioactive waste is returned to the container. This container is also the disposal vessel. Add solidification agents and compress container for long term storage.

  12. Spent nuclear fuel project integrated schedule plan

    SciTech Connect

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  13. Spent Acid Recovery using Diffusion Dialysis

    DTIC Science & Technology

    1999-04-23

    five years, but there is little data to support such a claim. This claim is made based on the use of ion exchange membranes in electrodialysis ...E - Calculation Methods for Estimating the Spent Acid and Deionized Water Flow Rates to the Diffusion Dialysis Membrane Stacks, Specific Acid...4 Figure 2-2 Simplified Schematic of a Diffusion Dialysis Membrane Stack...…………. 5 Figure 2-3 Commercial Diffusion Dialysis System

  14. Molecular Dynamics Simulation of Argon and Ammonia Physisorbed on Graphite.

    NASA Astrophysics Data System (ADS)

    Cheng, Ailan

    Molecular dynamics simulations are reported for argon and ammonia adsorbed on graphite. Potential models for the Ar-Ar and Ar-graphite interactions are taken to be sums of site-site Lennard -Jones(12-6) energies. Ammonia-ammonia and ammonia-graphite interactions are modeled by site-site interaction, with discrete fractional charges used to describe the electrostatic interactions and the Lennard-Jones(12-6) model used for the non-electrostatic part. The simulations of tri-layer and monolayer film of Ar/Gr were performed for temperatures ranging from 50K to 120K. Layer energies, layer densities, pair distribution functions and orientational bond correlation functions are calculated to characterize the melting transitions and the structures. The results show that the tri-layer film melts layer by layer. The chemical potential of the tri-layer film of argon is calculated at T = 103K by using the test particle, the real particle and the ratio methods. Chemical potentials are calculated for small bins in z direction perpendicular to the surface. The variation of Boltzmann factor with z provides a criterion of the accuracy of the chemical potential obtained. The ratio method provides more precise values than the test particle and real particle methods. Simulations of the monolayer, partial bilayer and complete bilayers at T = 96K were carried out. The results show that the variation of the molecular orientations with coverage are dramatic. The centers of mass of ammonia form a triangular lattice with lattice spacing equal 3.55 A. The unit cell for a monolayer contains four molecules. Electrostatic interactions played an important part in determining the orientations of the molecules. These interactions include both dipole-dipole and dipole-quadrupole interactions, which were roughly equal in magnitude. Melting transition for the submonolayer and monolayer NH_3/Gr were studied also. The role of the orientational order in determining the melting behaviors is discussed

  15. Spent Fuel Working Group Report. Volume 1

    SciTech Connect

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  18. Breath ammonia measurement in Helicobacter pylori infection.

    PubMed

    Kearney, David J; Hubbard, Todd; Putnam, David

    2002-11-01

    Our aim was to define the utility of breath ammonia measurement in assessing Helicobacter pylori infection. Volunteers breathed into a device containing three fiberoptic NH3 sensors at baseline and after ingesting 300 mg of urea. Breath ammonia levels were compared to the [14C]urea breath test. Thirteen subjects were tested. Before urea ingestion, H. pylori-positive subjects had significantly lower breath ammonia levels than negative subjects (mean +/- SD, 0.04 ppm +/- 0.09 vs 0.49 ppm +/- 0.24, P = 0.002) and had a significantly greater increases in breath ammonia after urea ingestion (range 198-1,494% vs 6-98%). One H. pylori-positive subject underwent treatment and breath ammonia levels shifted from the pattern seen in positive subjects to that seen in negative subjects. In conclusion, breath ammonia measurement for H. Pylori-positive and negative subjects showed distinct patterns. Breath ammonia measurement may be feasible as a diagnostic test for H. pylori.

  19. INFRARED SPECTRA OF AMMONIA-WATER ICES

    SciTech Connect

    Zheng Weijun; Jewitt, David; Kaiser, Ralf I. E-mail: ralfk@hawaii.edu

    2009-03-15

    We conducted a systematic study of the near-IR and mid-IR spectra of ammonia-water ices at various NH{sub 3}/H{sub 2}O ratios. The differences between the spectra of amorphous and crystalline ammonia-water ices were also investigated. The 2.0 {mu}m ammonia band central wavelength is a function of the ammonia/water ratio. It shifts from 2.006 {+-} 0.003 {mu}m (4985 {+-} 5 cm{sup -1}) to 1.993 {+-} 0.003 {mu}m (5018 {+-} 5 cm{sup -1}) as the percentage of ammonia decreases from 100% to 1%. The 2.2 {mu}m ammonia band center shifts from 2.229 {+-} 0.003 {mu}m (4486 {+-} 5 cm{sup -1}) to 2.208 {+-} 0.003 {mu}m (4528 {+-} 5 cm{sup -1}) over the same range. Temperature-dependent shifts of those bands are below the uncertainty of the measurement, and therefore are not detectable. These results are important for comparison with astronomical observations as well as for estimating the concentration of ammonia in outer solar system ices.

  20. Ammonia synthesis using magnetic induction method (MIM)

    NASA Astrophysics Data System (ADS)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  1. IRIS Toxicological Review of Ammonia (Revised External ...

    EPA Pesticide Factsheets

    In August 2013, EPA submitted a revised draft IRIS assessment of ammonia to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the draft, and then revised it based on the comments received. The SAB CAAC-Ammonia panel will review this draft assessment. Details about the meeting dates, times, and location are available via the Federal Register Notice posted on March 25, 2014. The SAB provided information on how the public can participate in the external peer review meetings, as well as instructions about how to provide comments to the SAB in the notice. Additional information on the SAB review of ammonia is on the SAB website. Report Information: The Toxicological Review of Ammonia was originally released for a 60-day public comment period on June 8, 2012. [Federal Register Notice Jun 8, 2012] EPA revised the toxicological review in response to the public comments received. EPA has released the revised external review draft ammonia assessment and the SAB CAAC is conducting a peer review of the scientific basis supporting the assessment that will appear in the Integrated Risk Information System (IRIS) database. Information regarding the peer review can be found at the SAB review of ammonia website. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for ammonia. IRIS is an EPA database cont

  2. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    PubMed Central

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  3. Report on interim storage of spent nuclear fuel

    SciTech Connect

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  4. Selective reduction of nitrogen oxides with ammonia on V{sub 2}O{sub 5}/TiO{sub 2}

    SciTech Connect

    Orlik, S.N.; Ostapyuk, V.A.; Martsenyuk-Kukharuk, M.G.

    1995-03-01

    Monolithic and supported V-Ti catalysts for selective reduction of nitrogen oxides with ammonia are developed. The kinetics of the NO reduction with ammonia and the effect of sulfur dioxide are studied. The element composition and valence state of the initial and spent catalysts are investigated by XPS. A mathematical modeling of the processes studied is performed. The main design and technological characteristics of the pilot-plant reactor for purification of the natural gas combustion products from nitrogen oxides by selective catalytic reduction are obtained.

  5. Relationship between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high environmental ammonia.

    PubMed

    Lisser, David F J; Lister, Zachary M; Pham-Ho, Phillip Q H; Scott, Graham R; Wilkie, Michael P

    2017-01-01

    Buildups of ammonia can cause potentially fatal brain swelling in mammals, but such swelling is reversible in the anoxia- and ammonia-tolerant goldfish (Carassius auratus). We investigated brain swelling and its possible relationship to oxidative stress in the brain and liver of goldfish acutely exposed to high external ammonia (HEA; 5 mmol/l NH4Cl) at two different acclimation temperatures (14°C, 4°C). Exposure to HEA at 14°C for 72h resulted in increased internal ammonia and glutamine concentrations in the brain, and it caused cellular oxidative damage in the brain and liver. However, oxidative damage was most pronounced in brain, in which there was a twofold increase in thiobarbituric acid-reactive substances, a threefold increase in protein carbonylation, and a 20% increase in water volume (indicative of brain swelling). Increased activities of catalase, glutathione peroxidase, and glutathione reductase in the brain suggested that goldfish upregulate their antioxidant capacity to partially offset oxidative stress during hyperammonemia at 14°C. Notably, acclimation to colder (4°C) water completely attenuated the oxidative stress response to HEA in both tissues, and there was no change in brain water volume despite similar increases in internal ammonia. We suggest that ammonia-induced oxidative stress may be responsible for the swelling of goldfish brain during HEA, but further studies are needed to establish a mechanistic link between reactive oxygen species production and brain swelling. Nevertheless, a high capacity to withstand oxidative stress in response to variations in internal ammonia likely explains why goldfish are more resilient to this stressor than most other vertebrates. Copyright © 2017 the American Physiological Society.

  6. Phase behaviour and thermoelastic properties of ammonia hydrate and ice polymorphs from 0 - 2 GPa

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Wood, I. G.; Vocadlo, L.

    2008-12-01

    Ammonia remains amongst the most plausible planetary "antifreeze" agents, and its physical properties in hydrate compounds under the appropriate conditions (roughly 0 - 5 GPa, 100 - 300 K) must be known in order for it to be accommodated in planetary models. The pressure melting curve, and the expected polymorphism of the stoichiometric ammonia hydrates have implications for the internal structure of large icy moons like Titan, leading to phase layering and the possible persistence of deep subsurface oceans, the latter being sites of high astrobiological potential. Aqueous ammonia is also a candidate substance involved in cryomagmatism on Titan, and again the melting behaviour, and densities of liquids and solids, in the ammonia-water system must be known to model properly the partial melting and propagation of magma. We describe the results of a series of powder neutron diffraction experiments over the range 0 - 2.0 GPa, 150 - 280 K which were carried out with the objective of determining the phase behaviour and thermoelastic properties of ammonia dihydrate. In addition to the low-pressure cubic crystalline phase, ADH I, we have identified two closely related monoclinic polymorphs of ammonia dihydrate (ADH IIa and IIb) in the range 0.45 - 0.60 GPa (at 175 K), and have determined that this phase dissociates to a mixture of ammonia monohydrate phase II and ice II when warmed to ~190 K, which in turn melts at a binary eutectic at ~196 K; AMH II has a large (Z = 16) orthorhombic unit cell. Above 0.60 GPa, an orthorhombic polymorph of ammonia dihydrate, which we have referred to previously as ADH IV, persists to pressures > 3 GPa, and appears to be the liquidus phase over this whole pressure range. We have observed this phase co- existing with both ice II and ice VI. Here we describe the most plausible synthesis of the high-pressure phase diagram which explains our observations, and provide measurements of the densities, thermal expansion, bulk moduli, and crystal

  7. Evaluating spent CCA residential decks for second-life products

    Treesearch

    Robert Smith; David Bailey; Phil Araman

    2003-01-01

    The amount of CCA treated wood being removed from spent residential decks is increasing at a tremendous rate. While most spent CCA treated wood is being disposed in landfills, further useful and environmentally beneficial alternatives have to be met. This research estimated the percentage of recoverable lumber from spent CCA decks that can be recycled into other usable...

  8. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  9. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  10. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a...

  11. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a...

  12. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a...

  13. 5 CFR 551.425 - Time spent receiving medical attention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Time spent receiving medical attention... Relation to Other Activities § 551.425 Time spent receiving medical attention. (a) Time spent waiting for and receiving medical attention for illness or injury shall be considered hours of work if: (1)...

  14. Femtosecond multiphoton ionization of ammonia clusters

    SciTech Connect

    Wei, S.; Purnell, J.; Buzza, S.A.; Stanley, R.J.; Castleman, A.W. Jr. )

    1992-12-15

    Herein, we report on femtosecond time-resolved experiments in ammonia clusters. The mechanisms of their ionization and the subsequent formation of the protonated ammonia cluster ions are studied using a femtosecond pump-probe technique at 620 nm. It is found that an intermediate corresponding to [ital C][prime] states of the monomer is responsible for the ionization of ammonia clusters. Femtosecond pump--probe studies show that the lifetime of the intermediate to the formation of the protonated cluster ions (NH[sub 3])[sub [ital n

  15. Operational conditions for successful partial nitrification in a sequencing batch reactor (SBR) based on process kinetics.

    PubMed

    Liu, Xiaoguang; Kim, Mingu; Nakhla, George

    2017-03-01

    The objective of this study is to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor (SBR) using kinetic models. During the 4-month operation, dissolved oxygen (DO) and influent ammonia concentration were selected as operating variables to evaluate nitrite accumulation. Stable partial nitrification was observed with two conditions, influent ammonia concentration of 190 mg N/L and a DO of 0.6-3.0 mg/L as well as influent ammonia concentration of 100 mg N/L and a DO of 0.15-2.0 mg/L with intermittent aeration. At a DO of 0.6-3.0 mg O2/L and influent ammonia concentration of 90 mg N/L, nitrite-oxidizing bacteria growth was not suppressed. Kinetic parameters were determined or estimated with batch tests and model simulation. The kinetic model predicted the SBR performance well.

  16. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    PubMed

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones.

  17. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen.

    PubMed

    Levičnik-Höfferle, Spela; Nicol, Graeme W; Ausec, Luka; Mandić-Mulec, Ines; Prosser, James I

    2012-04-01

    Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. IRIS Toxicological Review of Ammonia Noncancer Inhalation ...

    EPA Pesticide Factsheets

    EPA has finalized the Integrated Risk Information System (IRIS) Assessment of Ammonia (Noncancer Inhalation). This assessment addresses the potential noncancer human health effects from long-term inhalation exposure to ammonia. Now final, this assessment will update the current toxicological information on ammonia posted in 1991. EPA’s program and regional offices may use this assessment to inform decisions to protect human health. EPA completed the Integrated Risk Information System (IRIS) health assessment for ammonia. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.

  19. Ammonia emissions during vermicomposting of sheep manure.

    PubMed

    Velasco-Velasco, Joel; Parkinson, Robert; Kuri, Victor

    2011-12-01

    The effect of C:N ratio, temperature and water content on ammonia volatilization during two-phase composting of sheep manure was evaluated. The aerobic phase was conducted under field conditions. This was followed by Phase II, vermicomposting, conducted in the laboratory under controlled conditions of water content (70% and 80%) and temperature (15 and 22 °C). The addition of extra straw lead to a 10% reduction in NH3 volatilization compared to sheep manure composted without extra straw. Temperature and water content significantly effected ammonia volatilization at 0 day in Phase II, with a water content of 70% and temperature of 22 °C leading to greater losses of ammonia. Nitrogen loss by ammonia volatilization during vermicomposting ranged from 8% to 15% of the initial N content. The addition of extra straw did not result in significant differences in total carbon content following vermicomposting. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ammonia Affects Astroglial Proliferation in Culture

    PubMed Central

    Bodega, Guillermo; Segura, Berta; Ciordia, Sergio; Mena, María del Carmen; López-Fernández, Luis Andrés; García, María Isabel; Trabado, Isabel; Suárez, Isabel

    2015-01-01

    Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis. PMID:26421615

  1. Ultrafast Dynamics of Electrons in Ammonia

    NASA Astrophysics Data System (ADS)

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  2. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    SciTech Connect

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P.

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  3. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production.

    PubMed

    Zhu, Hong-Ji; Liu, Jia-Heng; Sun, Li-Fan; Hu, Zong-Fu; Qiao, Jian-Jun

    2013-05-01

    Spent mushroom substrate (SMS) was pretreated with alkaline reagents including potassium hydroxide, lime and ammonia to enhance enzymatic saccharification. Under the best pretreatment conditions (1M KOH, 80 °C, 90 min; 1M lime, 80 °C, 120 min; 10 M ammonia, 70 °C, 120 min), the total reducing sugar (TRS) yield reached 258.6, 204.2 and 251.2 mg/g raw SMS, which were respectively 6.15, 4.86, and 5.98 times of untreated SMS. The effects of pretreatment by above alkaline reagents and sulfuric acid on the composition and structure of SMS were evaluated to provide comparative performance data. A new process, combined alkali and acid (CAA) pretreatment followed by enzymatic hydrolysis, was innovatively proposed to improve the cost-effectiveness and avoid environmental problems. The SMS residue after CAA pretreatment-enzymatic hydrolysis process was converted to biofertilizer with Pichia farinose FL7 and a cell density of 3.0×10(8) cfu/g in biomass was attained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sensitive ammonia observations in the southern hemisphere

    NASA Technical Reports Server (NTRS)

    Dickinson, D. F.; Gulkis, S.; Klein, M. J.; Kuiper, T. B. H.; Batty, M.; Gardner, F. F.; Jauncey, D. L.; Whiteoak, J. B.

    1982-01-01

    The 64-m spacecraft communication antenna of the NASA-JPL Deep Space Network has been equipped for spectral line observations at K band (18-25 GHz). To demonstrate the potential of this system, preliminary observations of the (1, 1) transition of ammonia are reported for a selection of eight southern molecular clouds. Estimates of gas density and ammonia column density are reported for six sources.

  5. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  6. Spent fuel management status perspectives in Korea

    SciTech Connect

    Park, H.S.; Lee, J.S.; Kim, B.T. )

    1992-01-01

    Concomitant with steadily increasing nuclear power program in Korea, a national radioactive waste management program has been in initial implementation stage for several years. In late 1990, however, a serious confrontation was witnessed at Anmyon area where residents expressed strong opposition against any possibility to consider that site as a potential candidate for waste disposal by the Authority. As far as spent fuel management is concerned, an interim storage policy was adopted by Korean Atomic Energy Commission. A decision to build a centralized wet storage facility was made followed by a conceptual design. Due to the incident at Anmyon site, the public has became more concerned about radioactive wastes management. Parallel efforts are being made to ameliorate public acceptance in regard to radioactive waste management and in particular to spent fuel management. There are substantial uncertainties, however, whether any site could be found given that precarious mood has been prevailing against radioactive wastes throughout the world. In the meantime waiting for successful siting, various research and development for future perspectives are in order. Of particular importance in such endeavor is to provide technological impetus for future perspectives as well as public acceptance through safety demonstrations of certain viable technology alternatives. The dry storage option, for instance, is acclaimed for intrinsic safety and lower cost as prospective alternative. Combined with rod consolidation, dry storage technologies which have not extensively applied in the past, could be considered as a technological basis for longer term management of spent fuel. Conscious of such global trend, some appropriate programs in preparation for such perspectives have been launched by KAERI.

  7. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  8. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  9. Using ammonia as a sustainable fuel

    NASA Astrophysics Data System (ADS)

    Zamfirescu, C.; Dincer, I.

    In this study, ammonia is identified as a sustainable fuel for mobile and remote applications. Similar to hydrogen, ammonia is a synthetic product that can be obtained either from fossil fuels, biomass, or other renewable sources. Some advantages of ammonia with respect to hydrogen are less expensive cost per unit of stored energy, higher volumetric energy density that is comparable with that of gasoline, easier production, handling and distribution with the existent infrastructure, and better commercial viability. Here, the possible ways to use ammonia as a sustainable fuel in internal combustion engines and fuel-cells are discussed and analysed based on some thermodynamic performance models through efficiency and effectiveness parameters. The refrigeration effect of ammonia, which is another advantage, is also included in the efficiency calculations. The study suggests that the most efficient system is based on fuel-cells which provide simultaneously power, heating and cooling and its only exhaust consists of water and nitrogen. If the cooling effect is taken into consideration, the system's effectiveness reaches 46% implying that a medium size car ranges over 500 km with 50 l fuel at a cost below 2 per 100 km. The cooling power represents about 7.2% from the engine power, being thus a valuable side benefit of ammonia's presence on-board.

  10. Ammonia chemistry in a flameless jet

    SciTech Connect

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter; Brink, Anders; Hupa, Mikko

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  11. DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER

    SciTech Connect

    F. Habashi

    1998-06-26

    The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting

  12. Plasma method for processing spent nuclear fuel

    SciTech Connect

    Timofeev, A. V.

    2007-11-15

    Plasma methods for processing spent nuclear fuel are analyzed. It is shown that, by ICR heating in a nonuniform magnetic field, the energy of the heated ash ions can be increased substantially, while nuclear fuel ions can be kept cold. Two methods for extracting heated ash ions from a cold plasma flow are considered, specifically, that by increasing the ion gyroradius and that due to ion drift in a curved magnetic field. It is found that the required degree of separation of ash and fuel ions can be achieved in systems with quite moderate parameters.

  13. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  14. Surrogate Spent Nuclear Fuel Vibration Integrity Investigation

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle; Bjorkman, Gordon

    2014-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

  15. Spent fuel treatment at ANL-West

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-12-31

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994.

  16. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Jog, Rahul; Divecha, Jyoti; Madamwar, Datta

    2010-10-01

    Pollution caused by distillery spent wash on one hand has stimulated the need to develop new technologies to treat the waste and on the other, forced us to reevaluate the efficient utilization of its nutritive potential for production of various high value compounds. In this study, anaerobically treated distillery spent wash was used for the production of cellulases by Aspergillus ellipticus under solid-state fermentation using wheat straw as a substrate. The interactions between distillery effluent concentration, initial pH, moisture content and inoculum size were investigated and modeled using response surface methodology (RSM) involving Box-Behnken design (BBD). Under optimized conditions, filter paper activity, beta-glucosidase and endo-beta-1,4-glucanase activities were found to be 13.38, 26.68 and 130.92 U/g of substrate respectively. Characterization of endo-beta-1,4-glucanase and beta-glucosidase was done after partial purification by ammonium sulfate fractionation followed by desalting. The partially purified endo-beta-1,4-glucanase and beta-glucosidase showed maximum activity at 60 degrees C. Saccharification studies performed with different lignocellulosic substrates showed that wheat bran was most susceptible to enzymatic hydrolysis. The study suggests that anaerobically treated distillery spent wash can be used as a viable nutrient source for cellulase production under solid-state fermentation by A. ellipticus.

  17. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations.

    PubMed

    Burgess, R M; Perron, M M; Cantwell, M G; Ho, K T; Serbst, J R; Pelletier, M C

    2004-11-01

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifying aquatic toxicants. For identifying ammonia toxicity, there are several possible methods including pH alteration and volatilization, Ulva lactuca addition, microbial degradation, and zeolite addition. Zeolite addition has been used successfully in freshwater systems to decrease ammonia concentrations and toxicity for several decades. However, zeolite in marine systems has been used less because ions in the seawater interfere with zeolite's ability to adsorb ammonia. The objective of this study was to develop a zeolite method for removing ammonia from marine waters. To accomplish this objective, we performed a series of zeolite slurry and column chromatography studies to determine uptake rate and capacity and to evaluate the effects of salinity and pH on ammonia removal. We also assessed the interaction of zeolite with several toxic metals. Success of the methods was also evaluated by measuring toxicity to two marine species: the mysid Americamysis bahia and the amphipod Ampelisca abdita. Column chromatography proved to be effective at removing a wide range of ammonia concentrations under several experimental conditions. Conversely, the slurry method was inconsistent and variable in its overall performance in removing ammonia and cannot be recommended. The metals copper, lead, and zinc were removed by zeolite in both the slurry and column treatments. The zeolite column was successful in removing ammonia toxicity for both the mysid and the amphipod, whereas the slurry was less effective. This study demonstrated that zeolite column chromatography is a useful tool for conducting marine water TIEs to decrease ammonia concentrations and characterize toxicity.

  18. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy.

    PubMed

    Eng, Christina H; Yu, Ker; Lucas, Judy; White, Eileen; Abraham, Robert T

    2010-04-27

    Autophagy is a tightly regulated catabolic process that plays key roles in normal cellular homeostasis and survival during periods of extracellular nutrient limitation and stress. The environmental signals that regulate autophagic activity are only partially understood. Here, we report a direct link between glutamine (Gln) metabolism and autophagic activity in both transformed and nontransformed human cells. Cells cultured for more than 2 days in Gln-containing medium showed increases in autophagy that were not attributable to nutrient depletion or to inhibition of mammalian target of rapamycin. Conditioned medium from these cells contained a volatile factor that triggered autophagy in secondary cell cultures. We identified this factor as ammonia derived from the deamination of Gln by glutaminolysis. Gln-dependent ammonia production supported basal autophagy and protected cells from tumor necrosis factor-alpha (TNF-alpha)-induced cell death. Thus, Gln metabolism not only fuels cell growth but also generates an autocrine- and paracrine-acting regulator of autophagic flux in proliferating cells.

  19. 3D Modeling of interactions between Jupiter’s ammonia clouds and large anticyclones

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba; Dowling, Timothy E.; Fletcher, Leigh N.

    2014-04-01

    . A planetary-scale void of ammonia clouds persists in the model southward of -38° planetographic latitude, but may partially reflect the fact that we have not yet included a full complement of vortices, all condensable species or the underlying dry-convective forcing from Jupiter’s interior.

  20. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  1. Spent Nuclear Fuel Vibration Integrity Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Yan, Yong; Bevard, Bruce Balkcom

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  2. Buckling analysis of spent fuel basket

    SciTech Connect

    Lee, A.S.; Bumpas, S.E.

    1995-05-01

    The basket for a spent fuel shipping cask is subjected to compressive stresses that may cause global instability of the basket assemblies or local buckling of the individual members. Adopting the common buckling design practice in which the stability capacity of the entire structure is based on the performance of the individual members of the assemblies, the typical spent fuel basket, which is composed of plates and tubular structural members, can be idealized as an assemblage of columns, beam-columns and plates. This report presents the flexural buckling formulas for five load cases that are common in the basket buckling analysis: column under axial loads, column under axial and bending loads, plate under uniaxial loads, plate under biaxial loadings, and plate under biaxial loads and lateral pressure. The acceptance criteria from the ASME Boiler and Pressure Vessel Code are used to determine the adequacy of the basket components. Special acceptance criteria are proposed to address the unique material characteristics of austenitic stainless steel, a material which is frequently used in the basket assemblies.

  3. Pyroprocess for processing spent nuclear fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  4. Radiological characterization of spent control rod assemblies

    SciTech Connect

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L.

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

  5. Vitrification for reclaiming spent alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Chang, Juu-En; Jin, Cheng-Han; Lin, Jian-Yu; Chang-Chien, Guo-Ping

    2009-07-01

    The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 degrees C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.

  6. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity.

    PubMed

    Shnaiderman, Chen; Miyara, Itay; Kobiler, Ilana; Sherman, Amir; Prusky, Dov

    2013-03-01

    Ammonium secreted by the post-harvest pathogen Colletotrichum gloeosporioides during host colonization accumulates in the host environment due to enhanced fungal nitrogen metabolism. Two types of ammonium transporter-encoding genes, AMET and MEP, are expressed during pathogenicity. Gene disruption of AMET, a gene modulating ammonia secretion, showed twofold reduced ammonia secretion and 45% less colonization on avocado fruit, suggesting a contribution to pathogenicity. MEPB, a gene modulating ammonium transport, is expressed by C. gloeosporioides during pathogenicity and starvation conditions in culture. Gene disruption of MEPB, the most highly expressed gene of the MEP family, resulted in twofold overexpression of MEPA and MEPC but reduced colonization, suggesting MEPB expression's contribution to pathogenicity. Analysis of internal and external ammonia accumulation by ΔmepB strains in mycelia and germinated spores showed rapid uptake and accumulation, and reduced secretion of ammonia in the mutant versus wild-type (WT) strains. Ammonia uptake by the WT germinating spores but not by the ΔmepB strain with compromised ammonium transport activated cAMP and transcription of PKA subunits PKAR and PKA2. ΔmepB mutants showed 75% less appressorium formation and colonization than the WT, which was partially restored by 10 mM exogenous ammonia. Thus, whereas both AMET and MEPB genes modulate ammonia secretion, only MEPB contributes to ammonia accumulation by mycelia and germinating spores that activate the cAMP pathways, inducing the morphogenetic processes contributing to C. gloeosporioides pathogenicity.

  7. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    PubMed

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  8. A method for determining the spent-fuel contribution to transport cask containment requirements

    SciTech Connect

    Sanders, T.L.; Seager, K.D.; Rashid, Y.R.; Barrett, P.R.; Malinauskas, A.P.; Einziger, R.E.; Jordan, H.; Duffey, T.A.; Sutherland, S.H.; Reardon, P.C.

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

  9. Inhibition of biohydrogen production by ammonia.

    PubMed

    Salerno, Michael B; Park, Wooshin; Zuo, Yi; Logan, Bruce E

    2006-03-01

    Ammonia inhibition of biohydrogen production was investigated in batch and continuous flow reactors with glucose as a substrate. In batch tests, biohydrogen production rate was highly dependent on pH and ammonia (defined as the sum of NH3 of NH4+ species) concentrations above 2 g N/L. At pH = 6.2, the maximum production decreased from 56 mL/h at 2 g N/L to 16 mL/h at 10 g N/L. At pH = 5.2, production decreased from 49 mL/h (2g N/L) to 7 mL/h (16 g N/L). Hydrogen yield remained relatively constant in batch tests, varying from 0.96 to 1.17 mol-H2/mol-glucose. In continuous flow tests, both hydrogen production rates and yields were adversely affected by ammonia. When the reactor (2.0 L) was first acclimated under batch conditions to a low nitrogen concentration (<0.8 g N/L), H2 production and yields under continuous flow mode conditions were 170 mL/h and 1.9 mol-H2/mol-glucose, but decreased with increased ammonia concentrations up to 7.8 g N/L to 105 mL/h and 1.1 mol-H2/mol-glucose. There was no hydrogen production under continuous flow conditions if the reactor was initially operated under batch flow conditions at ammonia concentrations above 0.8 g N/L. It is concluded that the hydrogen production is possible at high concentrations (up to 7.8 g N/L) of ammonia in continuous flow systems as long as the reactor is initially acclimated to a lower ammonia concentration (<0.8 g N/L).

  10. Ammonia emissions from air cleaners at pig farms in Denmark using a Picarro cavity ring-down spectrometer

    NASA Astrophysics Data System (ADS)

    Winkler, Renato; Adamsen, Anders Peter S.

    2017-04-01

    Ammonia emissions from agricultural activities such as, cattle, pig and poultry farms have become an ever more important topic both for scientists as well as for regulatory bodies due to the severe impacts of ammonia on human health and the environment. In the European Union, the agricultural sector accounts for most of the ammonia emissions, and therefore the EU authorities have put in place reduction targets for the member states. In Denmark, most pig farmers have to deploy one or more ammonia abatement technologies in order to fulfill the national regulation when building new pig houses. A promising ammonia abatement technology is partial floor ventilation and subsequent cleaning using one or two step chemical air cleaners. The cleaned air will have ammonia concentration is the sub-ppm level and with high humidity. Here we present method of monitoring NH3 emissions from air cleaners deployed on pig farms using the G2103 Picarro laser spectrometer. The Picarro G2103 NH3 analyzer is a high precision cavity ring-down spectrometer using a high finesse optical cavity and a near infra-red light laser light source with a very narrow light band. The latter eliminates cross-interferences from other gases present in livestock air. Picarro instruments are built for field measurements and have been widely used for atmospheric monitoring of greenhouse gases and of air pollutants such as NH3.

  11. Phase behavior in the system tetrahydrofuran-water-ammonia from calorimetry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Munoz-Iglesias, Victoria; Vu, Tuan; Choukroun, Mathieu; Hodyss, Robert; Smythe, William; Sotin, Christophe

    2016-10-01

    From geochemical models and Cassini-Huygens mission data it can be postulated that the icy crust of Titan is composed by water ice, clathrate hydrates and ammonia hydrates. When the shell evolves thermically, the first minerals in dissociating are the ammonia hydrates. Ammonia is a powerful antifreeze, promoting the drop of the equilibrium curves of both water ice and clathrates to values as low as 170 K and 203 K respectively. Calorimetry, using a Setaram BT 2.15 Calvet calorimeter, has allowed to identify the different phases formed in the system THF-H2O-NH3 when the molar ratio H2O:THF is 1:X <, = or > 17, which corresponds with the THF-clathrate stoichiometric ratio, and at NH3 concentrations up to 30 wt%. When X < 17, THF is in excess; all the H2O forms clathrates, no ammonia hydrates are observed, and the excess THF interacts with NH3 to form a NH3-THF phase. When X > 17, the H2O is in excess; the formation of ammonia hydrates, water ice and THF-clathrate is observed. Since under this condition, all available THF is trapped in the clathrate, no THF-NH3 phase is observed. In all the scenarios, the release of NH3 (from the melting of THF-NH3 solid or ammonia hydrates) promotes partial dissociation of THF clathrates, which start at much lower temperature the equilibrium dissociation of the clathrates. This research is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association (USRA) through a contract with NASA. Support from the NASA Outer Planets Research program and government sponsorship acknowledged.

  12. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring.

    PubMed

    Hatzenpichler, Roland; Lebedeva, Elena V; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; Wagner, Michael

    2008-02-12

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46 degrees C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints for known ammonia-oxidizing bacteria were obtained. Comparative sequence analyses of these gene fragments demonstrated the presence of a single operational taxonomic unit and thus enabled the assignment of the amoA and amoB sequences to the respective 16S rRNA phylotype, which belongs to the widely distributed group I.1b (soil group) of the Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH combined with microautoradiography (MAR) demonstrated metabolic activity of this archaeon in the presence of ammonium. This finding was corroborated by the detection of amoA gene transcripts in the enrichment. CARD-FISH/MAR showed that the moderately thermophilic AOA is highly active at 0.14 and 0.79 mM ammonium and is partially inhibited by a concentration of 3.08 mM. The enriched AOA, which is provisionally classified as "Candidatus Nitrososphaera gargensis," is the first described thermophilic ammonia oxidizer and the first member of the crenarchaeotal group I.1b for which ammonium oxidation has been verified on a cellular level. Its preference for thermophilic conditions reinvigorates the debate on the thermophilic ancestry of AOA.

  13. Partial breast brachytherapy

    MedlinePlus

    ... brachytherapy; Accelerated partial breast irradiation - brachytherapy; Partial breast radiation therapy - brachytherapy; Permanent breast seed implant; PBSI; Low-dose radiotherapy - breast; High-dose radiotherapy - breast; Electronic balloon ...

  14. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  15. Nondestructive verification and assay systems for spent fuels

    SciTech Connect

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality.

  16. Investigation of the condition of spent-fuel pool components

    SciTech Connect

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

  17. The Ammonia-Hydrogen System under Pressure

    SciTech Connect

    Chidester, Bethany A; Strobel, Timothy A

    2012-01-20

    Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at ~3.8 GPa and hydrogen solidified at ~5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH3-H2 system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.

  18. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  19. Ammonia stripping of biologically treated liquid manure.

    PubMed

    Alitalo, Anni; Kyrö, Aleksis; Aura, Erkki

    2012-01-01

    A prerequisite for efficient ammonia removal in air stripping is that the pH of the liquid to be stripped is sufficiently high. Swine manure pH is usually around 7. At pH 7 (at 20°C), only 0.4% of ammonium is in ammonia form, and it is necessary to raise the pH of swine slurry to achieve efficient ammonia removal. Because manure has a very high buffering capacity, large amounts of chemicals are needed to change the slurry pH. The present study showed that efficient air stripping of manure can be achieved with a small amount of chemicals and without strong bases like NaOH. Slurry was subjected to aerobic biological treatment to raise pH before stripping. This facilitated 8 to 32% ammonia removal without chemical treatment. The slurry was further subjected to repeated cycles of stripping with MgO and Ca(OH)(2) additions after the first and second strippings, respectively, to raise slurry pH in between the stripping cycles. After three consecutive stripping cycles, 59 to 86% of the original ammonium had been removed. It was shown that the reduction in buffer capacity of the slurry was due to ammonia and carbonate removal during the stripping cycles. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    PubMed Central

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644

  1. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  2. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism.

    PubMed

    Rubino, Julian G; Zimmer, Alex M; Wood, Chris M

    2015-05-01

    In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport.

  3. Characterization plan for Hanford spent nuclear fuel

    SciTech Connect

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  4. Spent nuclear fuel project technical databook

    SciTech Connect

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  5. Nevada commercial spent nuclear fuel transportation experience

    SciTech Connect

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed.

  6. Advanced waste forms from spent nuclear fuel

    SciTech Connect

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  7. Uranium in selected endorheic basins as partial analogue for spent fuel behavior in salt

    SciTech Connect

    Van Luik, A.E.

    1987-01-01

    If uranium (U) behavior with respect to the components of certain endorheic (closed) basin subsurface, playa, or terminal lake brines were quantitatively understood, the ability to predict the long-term redistribution of emplaced U among analogous components of salt formations may be enhanced. Tests that determine the nature of U interactions with pure mineral and organic matter surfaces are important, but studying the natural systems available could give indications of long-term stabilities of processes, and of preferential processes. For example, some metals present in trace quantities, such as U, may be coprecipitated in the oxidized zone with an evaporite mineral that may afterward undergo diagenesis, especially if conditions become more reducing. During diagenesis, the trace metal may be remobilized, but scavenged by sulfides or organic particulates, leaving the evaporite mineral depleted of its trace metal content. A survey of the literature shows trace metal behavior in closed basins has been studied. However, information on U consists of only a few abundance determinations for some evaporite systems. Obtaining and interpreting natural analogue data for the U and Th decay series in selected endorheic basin environments is suggested. 44 refs., 3 figs.

  8. Durable titania films for solar treatment of biomethanated spent wash

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Rokhsareh; S. Ghole, Vikram; Javadpour, Sirus

    2016-10-01

    The use of TiO2 films for treatment of biomethanated spent wash is reported. The films of TiO2 were formed and photocatalytic performance of the prepared films in degradation of methylene blue and biomethanated spent wash were studied. Photocatalytic use of these films was found to be effective for degradation of biomethanated spent wash. The photocatalyst was used up for 20 cycles without significant reduction in activities showing long life of the catalyst.

  9. 77 FR 76952 - Rescinding Spent Fuel Pool Exclusion Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 Rescinding Spent Fuel Pool Exclusion Regulations AGENCY... fuel pool storage impacts from license renewal environmental reviews. This action is necessary...

  10. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect

    Clark, G.L.; Johnson, R.A.; Smith, R.W.; Abbott, D.G.; Tyacke, M.J.

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  11. US Spent (Used) Fuel Status, Management and Likely Directions- 12522

    SciTech Connect

    Jardine, Leslie J.

    2012-07-01

    As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of

  12. Vanadia/titania catalysts for selective catalytic reduction of nitric oxide by ammonia. II. Studies of active sites and formulation of catalytic cycles

    SciTech Connect

    Topsoe, N.-Y.; Dumesic, J.A.; Topsoe, H.

    1995-01-01

    The reaction mechanism and catalytic cycle for the selective catalytic reduction of nitric oxide by ammonia over vanadia/titania catalysts has been elucidated by in situ on-line FTIR studies under steady-state conditions. Under all reaction conditions, and large concentration of ammonia is absorbed on both Lewis and Bronsted acid sites, whereas no significant amounts of adsorbed NO are adsorbed. The catalytic activity is found to be related to the ammonia adsorbed on the Bronsted acid site associated with V{sup 5+}-OH. Surface V=O groups are involved in activation of the adsorbed ammonia and are also found to play an important role in the catalytic cycle. The activation involves a transfer or a partial transfer of a hydrogen and reduced V-OH groups are produced. The 5{sup +}=O surface species are regenerated by oxidation. The results, therefore, show that the catalytic cycle consists of both acid-base and redox reactions. The ammonia adsorption is observed to be a fast equilibrated step under all the conditions studied but the other catalytically significant steps may shift depending on the reaction conditions. At high O{sub 2} partial pressures, the rate is mainly determined by the concentration of Bronsted acid sites and the NO partial pressure, whereas at low O{sub 2} partial pressures, surface reoxidation is slow and the rate becomes dependent on the concentration of V{sup 5+}=O groups. 40 refs., 10 figs., 1 tab.

  13. Hydration of spent limestone and dolomite to enhance sulfation in fluidized-bed combustion

    SciTech Connect

    Shearer, J.A.; Smith, G.W.; Moulton, D.S.; Turner, C.B.; Myles, K.M.; Johnson, I.

    1980-01-01

    The utilization of CaO in fluidized bed combustion can be markedly increased to reduce the cost and environmental impact of quarrying and disposing of large quantities of solid waste. A new method of treatment of spent bed material to reactivate its SO/sub 2/ capturing ability has been found. Partially sulfated spent overflow material from a fluidized-bed combustor is treated with water and then reintroduced to the combustor as renewed feed that further reacts with SO/sub 2/. This material has sufficient physical integrity, due to the outer layer of CaSO/sub 4/, and high reactivity to make it suitable as a sorbent feedstock. The work reported here details observations on a number of limestones and dolomites reacted in laboratory furnaces under simulated combustion conditions as well as verification of the effectiveness of the method in a 15-cm-ID process development unit scale atmospheric fluidized-bed coal combustor. Initial kinetic studies have also been made on the hydration reaction of partially sulfated limestone. A proposed mechanism of interaction is discussed to explain the enhanced reactivity. Changes in total porosity and pore size distribution in the partially sulfated material due to Ca(OH)/sub 2/ formation and its dehydration serve to open up the particle interior and its residual CaO to further reaction with SO/sub 2/. Almost complete utilization of the available CaO can be achieved by successive applications of this promising new technique.

  14. Effect of dietary protein restriction on renal ammonia metabolism.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Guo, Hui; Verlander, Jill W; Weiner, I David

    2015-06-15

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction.

  15. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  16. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.

  17. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe

    NASA Astrophysics Data System (ADS)

    Hendriks, C.; Kranenburg, R.; Kuenen, J. J. P.; Van den Bril, B.; Verguts, V.; Schaap, M.

    2016-04-01

    Accurate modelling of mitigation measures for nitrogen deposition and secondary inorganic aerosol (SIA) episodes requires a detailed representation of emission patterns from agriculture. In this study the meteorological influence on the temporal variability of ammonia emissions from livestock housing and application of manure and fertilizer are included in the chemistry transport model LOTOS-EUROS. For manure application, manure transport data from Flanders (Belgium) were used as a proxy to derive the emission variability. Using improved ammonia emission variability strongly improves model performance for ammonia, mainly by a better representation of the spring maximum. The impact on model performance for SIA was negligible as explained by the limited, ammonia rich region in which the emission variability was updated. The contribution of Flemish agriculture to modelled annual mean ammonia and SIA concentrations in Flanders were quantified at respectively 7-8 and 1-2 μg/m3. A scenario study was performed to investigate the effects of reducing ammonia emissions from manure application during PM episodes by 75%, yielding a maximum reduction in modelled SIA levels of 1-3 μg/m3 during episodes. Year-to-year emission variability and a soil module to explicitly model the emission process from manure and fertilizer application are needed to further improve the modelling of the ammonia budget.

  18. Evaluation and improvement of ammonia emissions inventories

    NASA Astrophysics Data System (ADS)

    Battye, William; Aneja, Viney P.; Roelle, Paul A.

    Two case studies are performed to improve ammonia emissions inputs used to model fine particulate matter (PM 2.5 is the portion of particulate matter smaller than 2.5 μm aerodynamic diameter) formation of ammonium sulfate and ammonium nitrate. Ammonia emissions are analyzed in detail for North Carolina and the San Joaquin Valley (SJV) of California, with a focus on the Charlotte, NC, and Fresno, California metropolitan areas. A new gridded ammonia emissions inventories suitable for atmospheric modeling for the two case study cities was also developed. Agricultural sources accounted for the bulk of ammonia emissions in both case studies. Livestock waste contributed about 80% in North Carolina and 64% in the SJV, while fertilizer application contributed about 6-7% in both domains. Forests and non-agricultural vegetation contributed 5% in North Carolina and 12% in the SJV. Motor vehicles accounted for about 6% of ammonia emissions in North Carolina and 14% in the SJV. In the Charlotte and Fresno urban areas, the distribution of emissions is less heavily weighted toward agricultural sources and more heavily weighted toward highway vehicles (highway vehicles account for an estimated 64% of emissions in Charlotte and 51% of emissions in Fresno). The emissions estimates for agricultural sources (livestock and fertilizer application) decline to approximately 14% in the winter for both the Charlotte and Fresno urban areas. Emissions estimates for soils and vegetation also decline to approximately 0 during the winter for both the Fresno and Charlotte area. As a result, motor vehicles account for a larger fraction (approximately 73% and 70% for Charlotte and Fresno, respectively) of winter ammonia emissions, particularly in the Charlotte urban area.

  19. Experimental study on the effect of ammonia on the phase behavior of tetrahydrofuran clathrates.

    PubMed

    Vu, Tuan Hoang; Gloesener, Elodie; Choukroun, Mathieu; Ibourichene, Anaïs; Hodyss, Robert

    2014-11-26

    Clathrate hydrates, ice-like crystalline compounds in which small guest molecules are enclosed inside cages formed by tetrahedrally hydrogen-bonded water molecules, are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. A prototypical example is Saturn's moon Titan, where dissociation of methane clathrates, a major crustal component, could contribute significantly to the replenishment of atmospheric methane. Ammonia is an important clathrate inhibiting agent that may be present (potentially at high concentrations) in Titan's interior. In this study, low-temperature Raman experiments are conducted to examine the dissociation point of tetrahydrofuran clathrates, an ambient-pressure analogue of methane clathrates, over a wide range of ammonia concentrations from 0 to 25 wt %. A phase diagram for the H2O-THF-NH3 system is generated, showing two main results: (i) ammonia lowers the dissociation point of clathrate hydrates to a similar extent compared to the melting of water ice and (ii) THF clathrate exhibits a "liquidus-like" behavior in the presence of ammonia, with a eutectic temperature of about 203.6 K. As temperatures higher than this estimated eutectic are anticipated within Titan's icy crust, these results imply that partial dissociation of clathrates can occur readily and may contribute to outgassing from the interior.

  20. Enantioselective, iridium-catalyzed monoallylation of ammonia.

    PubMed

    Pouy, Mark J; Stanley, Levi M; Hartwig, John F

    2009-08-19

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations.

  1. Ammonia Results Review for Retained Gas Sampling

    SciTech Connect

    Mahoney, Lenna A.

    2000-09-20

    This report was prepared as part of a task supporting the deployment of the retained gas sampler (RGS) system in Flammable Gas Watch List Tanks. The emphasis of this report is on presenting supplemental information about the ammonia measurements resulting from retained gas sampling of Tanks 241-AW-101, A-101, AN-105, AN-104, AN-103, U-103, S-106, BY-101, BY-109, SX-106, AX-101, S-102, S-111, U-109, and SY-101. This information provides a better understanding of the accuracy of past RGS ammonia measurements, which will assist in determining flammable and toxicological hazards.

  2. Biochemistry of Ammonia Monoxygenase from Nitrosomonas

    SciTech Connect

    Alan Hooper

    2009-07-15

    Major results. 1. CytochromecM552, a protein in the electron transfer chain to ammonia monooxygenase. Purification, modeling of protein structure based on primary structure, characterization of 4 hemes by magnetic spectroscopy, potentiometry, ligand binding and turnover. Kim, H. J., ,Zatsman, et al. 2008). 2. Characterization of proteins which thought to be involved in the AMO reaction or to protect AMO from toxic nitrogenous intermediates such as NO. Nitrosocyanin is a protein present only in bacteria which catalyze the ammonia monoxygenase reaction (1). Cytochrome c P460 beta and cytochrome c’ beta.

  3. Enantioselective, Iridium-Catalyzed Monoallylation of Ammonia

    PubMed Central

    Pouy, Mark J.; Stanley, Levi M.; Hartwig, John F.

    2009-01-01

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations. PMID:19722644

  4. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  5. Urinary ammonia and ammonia-producing microorganisms in infants with and without diaper dermatitis.

    PubMed

    Leyden, J J; Katz, S; Stewart, R; Kligman, A M

    1977-12-01

    Free ammonia was determined in diaper squeezings from 26 infants with "ammoniacal dermatitis" and in 82 controls. No significant difference was found (402 ppm in diaper dermatitis compared to 465 in controls). The groups did not differ with regard to the incidence of organisms capable of splitting ammonia from urea. Experimental application of highly ammoniacal urine on intact infant and adult skin failed to provoke a dermatitis. Erythema could be induced only when ammoniacal urine was applied occlusively to scarified skin. These findings do not support the notion that ammonia is a primary factor in common diaper rash, but do not exclude a possible role for further irritation in an already existent condition.

  6. HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan

    SciTech Connect

    Not Available

    1984-12-01

    The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

  7. Ammonia as a Potential Neurotoxic Factor in Alzheimer's Disease

    PubMed Central

    Adlimoghaddam, Aida; Sabbir, Mohammad G.; Albensi, Benedict C.

    2016-01-01

    Ammonia is known to be a potent neurotoxin that causes severe negative effects on the central nervous system. Excessive ammonia levels have been detected in the brain of patients with neurological disorders such as Alzheimer disease (AD). Therefore, ammonia could be a factor contributing to the progression of AD. In this review, we provide an introduction to the toxicity of ammonia and putative ammonia transport proteins. We also hypothesize how ammonia may be linked to AD. Additionally, we discuss the evidence that support the hypothesis that ammonia is a key factor contributing to AD progression. Lastly, we summarize the old and new experimental evidence that focuses on energy metabolism, mitochondrial function, inflammatory responses, excitatory glutamatergic, and GABAergic neurotransmission, and memory in support of our ammonia-related hypotheses of AD. PMID:27551259

  8. Ammonia volatilisation in waste stabilisation ponds: a cascade of misinterpretations?

    PubMed

    Camargo Valero, M A; Mara, D D

    2010-01-01

    Ammonia volatilisation has generally been reported as, or assumed to be, the main nitrogen removal mechanism in waste stabilisation ponds (WSP). Nitrogen removal via ammonia volatilisation is based on two observations: (a) in-pond pH values can reach high values (>9, even >10), so increasing the proportion of the total ammonia present as the un-ionized form or free ammonia (NH(3)); and (b) in-pond temperatures can also be high, so improving the mass transfer rate of free ammonia to the atmosphere. Consequently, one of the most widely accepted models for ammonia removal in WSP is that reported by Pano & Middlebrooks in 1982, which was developed to reflect the occurrence of these two observations. This work reports how simple mathematical models for ammonia volatilisation in WSP, in spite of the possibility of their giving good predictions, may not accurately describe the main pathways and mechanisms involved in ammonia removal in WSP.

  9. Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review

    PubMed Central

    Ip, Yuen K.; Chew, Shit F.

    2010-01-01

    Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood–brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood–brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood–brain barrier of ammonotelic fishes and fishes with high brain ammonia tolerance, respectively. PMID:21423375

  10. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  11. An approach to meeting the spent fuel standard

    SciTech Connect

    Makhijani, A.

    1996-05-01

    The idea of the spent fuel standard is that there should be a high surface gamma radiation to prevent theft. For purposes of preventing theft, containers should be massive, and the plutonium should be difficult to extract. This report discusses issues associated with the spent fuel standard.

  12. Adolescent Depression and Time Spent with Parents and Siblings

    ERIC Educational Resources Information Center

    Desha, Laura N.; Nicholson, Jan M.; Ziviani, Jenny M.

    2011-01-01

    This study examines adolescent depressive symptoms and the quantity and quality of time spent by adolescents with their parents and siblings. We use measures of the quality of relationships with parents and siblings as proxy indicators for the quality of time spent with these social partners. The study emphasizes the salience of parent…

  13. Breeder Spent Fuel Handling Program multipurpose cask design basis document

    SciTech Connect

    Duckett, A.J.; Sorenson, K.B.

    1985-09-01

    The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

  14. Stability of urea and creatinine in spent hemodialysate.

    PubMed

    Cheng, Y L; Shek, C C; Tsang, D N; Li, C S; Lentino, J R; Daugirdas, J T; Kjellstrand, C M; Ing, T S

    2000-10-01

    Urea and creatinine levels in spent hemodialysates showed only small declines in spite of incubation at 37 degrees C for 36 hours. In the determination of dialysate-side solute removal, it would seem prudent to keep spent dialysate cold during collection to retard bacterial breakdown of these waste products.

  15. Inorganic carbon and emission of ammonia from manure

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture, and manure in particular, is a major source of ammonia emissions, and numerous models have been developed for predicting ammonia emission from manure. However, even the most comprehensive models are often inaccurate. Ammonia emission is complicated by volatilization of carbon dio...

  16. Comparison of ammonia emissions determined using different sampling methods

    USDA-ARS?s Scientific Manuscript database

    Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...

  17. Temperature dependence of feedyard ammonia emissions: The Arrhenius equation

    USDA-ARS?s Scientific Manuscript database

    Ammonia emissions from beef cattle feedyards exhibit an annual pattern-like temperature. This suggests that ammonia emissions may obey the Arrhenius temperature relationship. Our objective was to determine the Arrhenius relationship between mean monthly ammonia emissions from cattle feedyards and me...

  18. The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure.

    ERIC Educational Resources Information Center

    Alexander, M. Dale

    1999-01-01

    Describes a new demonstration that uses an apparatus like the ammonia-fountain apparatus but with modifications designed to produce ammonium-chloride smoke. This demonstration is easy to perform, interesting to observe, and allows demonstration of the solubility of ammonia in water, the basic nature of ammonia, the acidic nature of hydrogen…

  19. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonia, anhydrous. 151.50-32 Section 151.50-32 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...

  20. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonia, anhydrous. 151.50-32 Section 151.50-32 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...

  1. The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure.

    ERIC Educational Resources Information Center

    Alexander, M. Dale

    1999-01-01

    Describes a new demonstration that uses an apparatus like the ammonia-fountain apparatus but with modifications designed to produce ammonium-chloride smoke. This demonstration is easy to perform, interesting to observe, and allows demonstration of the solubility of ammonia in water, the basic nature of ammonia, the acidic nature of hydrogen…

  2. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonia, anhydrous. 151.50-32 Section 151.50-32 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...

  3. Management Options for Reducing Ammonia Emissions from Poultry Litter

    USDA-ARS?s Scientific Manuscript database

    Ammonia emissions from poultry litter not only result in air pollution; high levels of ammonia in poultry houses cause poor bird performance, increase the susceptibility of birds to viral diseases, and negatively impact human health. Although ammonia emissions are a concern, few cost-effective best ...

  4. Removal of ammonia from tarry water using a tubular furnace

    SciTech Connect

    V.V. Grabko; V.A. Kofanova; V.M. Li; M.A. Solov'ev

    2009-07-15

    An ammonia-processing system without the use of live steam from OAO Alchevskkoks plant's supply network is considered. Steam obtained from the wastewater that leaves the ammonia column is used to process the excess tarry water, with the release of volatile ammonia.

  5. Implications of natural occlusion of ventilated racks on ammonia and sanitation practices.

    PubMed

    Creamer, Michelle A; Petty, Joann; Martin, Tara; Bergdall, Valerie; Hickman-Davis, Judy M

    2014-03-01

    Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague-Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded.

  6. Chemical Safety Alert: Hazards of Ammonia Releases at Ammonia Refrigeration Facilities

    EPA Pesticide Factsheets

    Anhydrous ammonia is used as a refrigerant in mechanical compression systems, often liquefied under pressure which increases exposure risk due to potential for rapid release into the air as a toxic gas.

  7. Adsorption of Ammonia on Regenerable Carbon Sorbents

    NASA Technical Reports Server (NTRS)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  8. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  9. Effect of ammonia on Swiss albino mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.; Furst, A.

    1977-01-01

    Times to incapacitation and death and LC /50/ values were determined for Swiss albino male mice exposed to different concentrations of ammonia in a 4.2 liter hemispherical chamber. The LC/50/ for a 30 minute exposure was 21,430 ppm.

  10. Sensitivity of Mytilus galloprovincialis larvae to ammonia

    SciTech Connect

    Gardiner, W.W.; Antrim, L.D.; Word, J.Q.

    1994-12-31

    Free ammonia is a constituent of some marine effluents and sediments. The authors evaluated the sensitivity of the larval stage of the marine bivalve, Mytilus galloprovincialis, to concentrations of ammonium sulfate, as well as to suspended-particulate-phase (SPP) preparations of marine sediments and petroleum-based marine effluents. Mytilus larvae are commonly used test organisms because of their sensitivity to toxicants and their use in evaluation of water-column impacts of dredged material disposal. Ammonia-only EC{sub 50} values were between 3 mg/L NH{sub 3} and 8 mg/L NH{sub 3}; LC{sub 50} values ranged from 66 mg/L NH{sub 3} to 100 mg/L NH{sub 3}. Abnormalities included exogastrulation and arrested development at early gastrulation. The EC{sub 50} values for ammonia in SPP and effluents were within similar ranges, which indicates that ammonia may contribute significantly to toxicity of these materials. Exposure of larvae during different developmental stages and time periods will also be discussed.

  11. AMMONIA EMISSION FACTORS FROM SWINE FINISHING OPERATIONS

    EPA Science Inventory

    The paper presents results from two new studies at swine finishing facilities. (NOTE: Concentrated anaimal feeding operations (CAFOs) are being examined in several regions of the U.S. as major sources of ammonia and particulate matter precursors. EPA's National Risk Management Re...

  12. USDA-EPA Collaborative Ammonia Research

    EPA Science Inventory

    In 2014, a work group was formed between USDA and EPA to facilitate information exchange on ammonia emissions from agriculture, air quality impacts and emission mitigation options and to identify opportunities for collaboration. This document provides background on the work grou...

  13. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  14. Ammonia in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  15. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  16. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  17. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  18. Ammonia in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  19. AMMONIA EMISSION FACTORS FROM SWINE FINISHING OPERATIONS

    EPA Science Inventory

    The paper presents results from two new studies at swine finishing facilities. (NOTE: Concentrated animal feeding operations (CAFOs) are being examined in several regions of the U,.S. as major sources of ammonia and particulate matter precursors. EPA's National Risk Management Re...

  20. AMMONIA EMISSION FACTORS FROM SWINE FINISHING OPERATIONS

    EPA Science Inventory

    The paper presents results from two new studies at swine finishing facilities. (NOTE: Concentrated anaimal feeding operations (CAFOs) are being examined in several regions of the U.S. as major sources of ammonia and particulate matter precursors. EPA's National Risk Management Re...

  1. USDA-EPA Collaborative Ammonia Research

    EPA Science Inventory

    In 2014, a work group was formed between USDA and EPA to facilitate information exchange on ammonia emissions from agriculture, air quality impacts and emission mitigation options and to identify opportunities for collaboration. This document provides background on the work grou...

  2. Ammonia masers in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Schilke, P.

    Since 1986, 10 ammonia masers have been found. Most of these are found in the sources W51D, W51e1/e2, NGC7538, DR21, and W33. Among them are a few masers or maser candidates, arising from metastable inversion lines. There are many more masers arising from nonmetastable inversion lines. The most outstanding is intense maser emission from the (J,K) = (9,6) inversion line. Only in W51D are any masering nonmetastable transitions of para-NH3 to be found. Since the masering levels are more than 500 K above ground state, there are a large number of levels populated, and the excitation scheme must be complex. It is likely that there is no unique excitation scheme for all types of ammonia masers. Although there have been a few attempts to model the ammonia maser excitation, including excitation involving vibrationally excited levels, the quest for an all-encompassing ammonia maser excitation model is still going on.

  3. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to corn plant material and thoroughly blended prior to ensiling. It is used or intended for use as a... daily in shelled corn; and a warning not to use additional trace mineral supplementation with treated silage. (2)(i) The food additive anhydrous ammonia is applied directly to corn plant material for use in...

  4. Ironmaking with ammonia at low temperature.

    PubMed

    Hosokai, Sou; Kasiwaya, Yoshiaki; Matsui, Kosuke; Okinaka, Noriyuki; Akiyama, Tomohiro

    2011-01-15

    This paper describes the reduction of hematite with ammonia for ironmaking, in which the effect of temperature on the products was examined. The results showed that the reduction process began at 430 °C during heating, and with an increase in temperature, the reduction mechanism changed apparently from a direct reduction of ammonia (Fe(2)O(3) + 2NH(3) → 2Fe + N(2) + 3H(2)O) to an indirect reduction via the thermal decomposition of ammonia (2NH(3) → N(2) + 3H(2), Fe(2)O(3) + 3H(2) → 2Fe + 3H(2)O) at temperatures over 530 °C. The final product obtained at 600 and 700 °C was pure metallic iron, in contrast with that formed at 450 °C, that is, a mixture of metallic iron and iron nitride. The results suggest the possibility of using ammonia as a reducing agent for carbonless ironmaking, which is operated at a much lower temperature than 900 °C in conventional coal-based ironmaking.

  5. Ag(I) ion in liquid ammonia

    NASA Astrophysics Data System (ADS)

    Armunanto, Ria; Schwenk, Christian F.; Randolf, Bernhard R.; Rode, Bernd M.

    2004-04-01

    Structural and dynamical properties of Ag + in liquid ammonia have been evaluated on the basis of a molecular dynamics (MD) simulation by the ab initio quantum mechanical/molecular mechanical (QM/MM) method. The most important region, the first solvation shell, was treated by ab initio quantum mechanics at RHF (Restricted Hartree-Fock) level using double- ζ plus polarization basis sets for Ag + and ammonia, respectively. For the remaining region in the system newly constructed three-body corrected potential functions were used. The first solvation shell shows a tetrahedral structure with an Ag-N distance of 2.54 Å, with no ammonia exchange process observable within a simulation time of 16 ps. The mean residence time (MRT) of ammonia molecules in the second solvation shell was determined as 12.7 ps. A force constant of 26 N m -1 was observed for the ion-ligand stretching frequency, indicating a more the stable solvate complex than for Ag + in water.

  6. The origin of mouth-exhaled ammonia.

    PubMed

    Chen, W; Metsälä, M; Vaittinen, O; Halonen, L

    2014-09-01

    It is known that the oral cavity is a production site for mouth-exhaled NH3. However, the mechanism of NH3 production in the oral cavity has been unclear. Since bacterial urease in the oral cavity has been found to produce ammonia from oral fluid urea, we hypothesize that oral fluid urea is the origin of mouth-exhaled NH3. Our results show that under certain conditions a strong correlation exists between oral fluid urea and oral fluid ammonia (NH4(+)+NH3) (rs = 0.77, p < 0.001). We also observe a strong correlation between oral fluid NH3 and mouth-exhaled NH3 (rs = 0.81, p < 0.001). We conclude that three main factors affect the mouth-exhaled NH3 concentration: urea concentration, urease activity and oral fluid pH. Bacterial urease catalyses the hydrolysis of oral fluid urea to ammonia (NH4(+)+NH3). Oral fluid ammonia (NH4(+)+NH3) and pH determine the concentration of oral fluid NH3, which evaporates from oral fluid into gas phase and turns to mouth-exhaled NH3.

  7. Laser-Based Pulsed Photoacoustic Ammonia Detection

    NASA Astrophysics Data System (ADS)

    Vallespi, Arturo; Slezak, Verónica; Peuriot, Alejandro; Santiago, Guillermo

    2013-09-01

    Detecting ammonia traces is relevant in health, manufacturing, and security areas, among others. As ammonia presents a strong absorption band (the mode) around 10 m, some of the physical properties which may influence its detection by means of pulsed photoacoustic (PA) spectroscopy with a TEA laser have been studied. The characteristics of the ammonia molecule and the laser intensity may result in a nonlinear dependence of the PA signal amplitude on the laser fluence. Ammonia absorption can be described as a simple two-level system with power broadening. As is a polar molecule, it strongly undergoes adsorption phenomena in contact with different surfaces. Therefore, physical adsorption-desorption at the cell’s wall is studied. A theoretical model, based on Langmuir’s assumptions, fits well to the experimental results with stainless steel. Related to these studies, measurements led to the conclusion that, at the used fluenced values, dissociation by multiphotonic absorption at the 10P(32) laser line may be discarded. A calibration of the system was performed, and a detection limit around 190 ppb (at 224 ) was achieved.

  8. Case histories of West Valley spent fuel shipments: Final report

    SciTech Connect

    Not Available

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  9. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  10. Some factors to consider in handling and storing spent fuel

    SciTech Connect

    Bailey, W.J.

    1985-11-01

    This report includes information from various studies performed under the Wet Storage Task of the Behavior of Spent Fuel in Storage Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. Wet storage experience has been summarized earlier in several other reports. This report summarizes pertinent items noted during FY 1985 concerning recent developments in the handling and storage of spent fuel and associated considerations. The subjects discussed include recent publications, findings, and developments associated with: (1) storage of water reactor spent fuel in water pools, (2) extended-burnup fuel, (3) fuel assembly reconstitution and reinsertion, (4) rod consolidation, (5) variations in the US Nuclear Regulatory Commission's definition of failed fuel, (6) detection of failed fuel rods, and (7) extended integrity of spent fuel. A list of pertinent publications is included.

  11. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  12. Rotational dynamics in ammonia borane: Evidence of strong isotope effects

    SciTech Connect

    Cantelli, Rosario; Paolone, Annalisa; Palumbo, Oriele; Leardini, F.; Autrey, Thomas; Karkamkar, Abhijeet J.; Luedtke, Avery T.

    2013-12-15

    This work reports anelastic spectroscopy measurements on the partially deuterated (ND3BH3 and NH3BD3) and perdeuterated (ND3BD3) ammonia borane (NH3BH3) compounds. The relaxations previously reported in NH3BH3 are observed in all the samples, and are ascribed to the rotational and torsional dynamics of NH(D)3BH(D)3 complexes. A new thermally activated peak appears at 70 K (for a vibration frequency of 1 kHz) in the spectrum of NH3BD3 and ND3BD3. The peak is practically a single-time Debye process, indicating absence of interaction between the relaxing units, and has a strikingly high intensity. A secondary relaxation process is also detected around 55 K. The anelastic spectrum of the ND3BH3 only displays this less intense process at 55 K. The analysis of the peaks supplies information about the dynamics of the relaxing species, and the obtained results provide indications on the effect of partial and selective deuteration on the hydrogen (deuterium) dynamics.

  13. Enzymatic hydrolysis of spent coffee ground.

    PubMed

    Jooste, T; García-Aparicio, M P; Brienzo, M; van Zyl, W H; Görgens, J F

    2013-04-01

    Spent coffee ground (SCG) is the main residue generated during the production of instant coffee by thermal water extraction from roasted coffee beans. This waste is composed mainly of polysaccharides such as cellulose and galactomannans that are not solubilised during the extraction process, thus remaining as unextractable, insoluble solids. In this context, the application of an enzyme cocktail (mannanase, endoglucanase, exoglucanase, xylanase and pectinase) with more than one component that acts synergistically with each other is regarded as a promising strategy to solubilise/hydrolyse remaining solids, either to increase the soluble solids yield of instant coffee or for use as raw material in the production of bioethanol and food additives (mannitol). Wild fungi were isolated from both SCG and coffee beans and screened for enzyme production. The enzymes produced from the selected wild fungi and recombinant fungi were then evaluated for enzymatic hydrolysis of SCG, in comparison to commercial enzyme preparations. Out of the enzymes evaluated on SCG, the application of mannanase enzymes gave better yields than when only cellulase or xylanase was utilised for hydrolysis. The recombinant mannanase (Man1) provided the highest increments in soluble solids yield (17 %), even when compared with commercial preparations at the same protein concentration (0.5 mg/g SCG). The combination of Man1 with other enzyme activities revealed an additive effect on the hydrolysis yield, but not synergistic interaction, suggesting that the highest soluble solid yields was mainly due to the hydrolysis action of mannanase.

  14. Cell for a spent nuclear fuel rack

    SciTech Connect

    Flynn, W.M.

    1987-09-22

    This patent describes a cell for a spent fuel rack, comprising: a sheet metal element having an inside surface and an outside surface, and including a first flat wall portion, a second flat wall portion disposed perpendicularly to the first wall portion, a third flat wall portion disposed perpendicularly to the second wall portion and parallel to the first wall portion, a fourth flat wall portion disposed perpendicularly to the first and third wall portions and parallel to the second wall portion, an elongated bent region joining the first and second wall portions, an additional elongated bent region joining the second and third wall portions, a further elongated bent region joining the third and fourth wall portions, another elongated flat platform portion that is disposed parallel to the fourth wall portion but that is not coplanar with the fourth wall portion, and another elongated flat platform portion that is disposed parallel to the first wall portion but that is not coplanar with the first wall portion; means for joining the another platform portions; four sheets of neutron poison; and four sheet metal wrappers, each securing a respective neutron poison sheet to a respective wall portion.

  15. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  16. Radiation degradation of spent butyl rubbers

    NASA Astrophysics Data System (ADS)

    Telnov, A. V.; Zavyalov, N. V.; Khokhlov, Yu. A.; Sitnikov, N. P.; Smetanin, M. L.; Tarantasov, V. P.; Shadrin, D. N.; Shorikov, I. V.; Liakumovich, A. L.; Miryasova, F. K.

    2002-03-01

    Radiation methods of materials modification applied in technological chains can have significant economical and ecological advantages as compared to the established chemical, thermal and mechanical methods. Each year the problems of nature resources economy through the use of production and consumption wastes acquire a more significant value, as it allows to solve also ecological issues along with economical ones. This is mostly acute in relation to polymeric systems based on saturated rubbers, for example butyl rubber (BR) used in the tyre industry, as due to their high resistance to the action of oxygen, ozone, solar radiation and bacteria, they contaminate the environment for rather a long period. At VNIIEF and KSPU experiments were carried out on application of electron beams with energy from 6 to 10 MeV for radiation destruction of spent rubber based on BR. The radiation-degraded material was tested for re-use in the formulation of initial diaphragm mixture, rubber mixture for producing rubberized fabric and roofing.

  17. Hanford spent nuclear fuel project update

    SciTech Connect

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  18. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  19. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  20. Orion Ammonia Boiler System Preflight Test Preparations

    NASA Technical Reports Server (NTRS)

    Levitt, Julia L.

    2017-01-01

    The Environmental Controls and Life Support Systems (ECLSS) branch at Kennedy Space Center (KSC) is currently undergoing preparations for ground testing of the Orion Multi-Purpose Crew Vehicle (MPCV) to prepare its subsystems for EM-1 (Exploration Mission-1). EM-1, Orions second unmanned flight, is a three-week long lunar mission during which the vehicle will complete a 6-day retrograde lunar orbit before returning to Earth. This paper focuses on the work done during the authors 16-week internship with the Mechanical Engineering Branch of KSCs Engineering Directorate. The authors project involved assisting with the preparations for testing the Orion MPCVs ammonia boiler system. The purpose of the ammonia boiler system is to keep the spacecraft sufficiently cool during the reentry portion of its mission, from service module (SM) separation to post-landing. This system is critical for keeping both the spacecraft (avionics and electronics) and crew alive during reentry, thus a successful test of the system is essential to the success of EM-1. XXXX The author was able to draft a detailed outline of the procedure for the ammonia system functional test. More work will need to be done on the vehicle power-up and power-down portions of the procedure, but the ammonia system testing portion of the procedure is thorough and includes vehicle test configurations, vehicle commands, and GSE. The author was able to compile a substantial list of questions regarding the ammonia system functional test with the help of her mentors. A significant number of these questions were answered in the teleconferences with Lockheed Martin.

  1. AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT

    SciTech Connect

    Zamecnik, J; Alex Cozzi, A

    2008-09-26

    The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar{reg_sign} L into Tank 50. Waste Solidification-Engineering requested that the Savannah River National Laboratory (SRNL) perform testing to characterize the release of ammonia in curing saltstone at 95 C. The test temperature represents the maximum allowable temperature in the Saltstone Disposal Facility (SDF). Ammonia may be present in the salt solution and premix materials, or may be produced by chemical reactions when the premix and salt solution are combined. A final report (SRNS-STI-2008-00120, Rev. 0) will be issued that will cover in more depth the information presented in this report.

  2. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    NASA Astrophysics Data System (ADS)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  3. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    SciTech Connect

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  4. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms.

    PubMed

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-06-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH(4)(+)-N per gram of soil) and high (200 μg NH(4)(+)-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.

  5. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms

    PubMed Central

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-01-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil. PMID:21228892

  6. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  7. Treatment of spent electropolishing solution for removal of cobalt-60

    SciTech Connect

    Taylor, P.A.; Youngblood, E.L.; Macon, R.J.

    1996-02-01

    The Irradiated Materials Examination and Testing (IMET) Facility at Oak Ridge National Laboratory electropolishes various types of irradiated metal specimens prior to examination of metallurgical and mechanical properties. The standard electropolishing solution used at IMET for most specimens consists of a 7:1 methanol/sulfuric acid mixture, with smaller amounts of a 3:1 methanol/nitric acid solution and a 10:6:1 methanol/2-butoxyethanol/perchloric acid solution also being used. Cobalt-60 is the primary source of gamma radiation in the spent solutions, with lesser amounts from manganese-54 and iron-59. A treatment method is needed to remove most of the Co-60 from these solutions to allow the waste solutions to be contact-handled for disposal. A wide range of adsorbents was tested for removing cobalt from the electropolishing solutions. No adsorbent was found that would treat full strength solution, but a complexing ion exchange resin (Chelex 100, BioRad Labs, or Amberlite IRC-718, Rohm and Haas Co.) will remove cobalt and other heavy metals from partially neutralized (pH=3) solution. A 5 wt% sodium hydroxide solution is used for pH adjustment, since more concentrated caustic caused sodium sulfate precipitates to form. Lab-scale column tests have shown that about 10 bed volumes of methanol/sulfuric acid solution, 30 bed volumes of methanol/nitric acid solution or 15 bed volumes of methanol/2-butoxyethanol/perchloric acid solution can be treated prior to initial Co-60 breakthrough.

  8. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia.

    PubMed

    Shrivastava, Jyotsna; Sinha, Amit Kumar; Datta, Surjya Narayan; Blust, Ronny; De Boeck, Gudrun

    2016-11-01

    We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC50) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC50) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC50) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (Jamm) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained Jamm while after 7days these pre-acclimated fish were able to increase Jamm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na(+)/H(+) exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H(+)-ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up-regulation in Na

  9. Carbon footprint and ammonia emissions of California beef production systems.

    PubMed

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  10. Acute exposure to high environmental ammonia (HEA) triggers the emersion response in the green shore crab.

    PubMed

    Zimmer, Alex M; Wood, Chris M

    2017-02-01

    The physiological effects of high environmental ammonia (HEA) exposure have been well documented in many aquatic species. In particular, it has recently been demonstrated that exposure to ammonia in fish leads to a similar hyperventilatory response as observed during exposure to hypoxia. In littoral crabs, such as the green crab (Carcinus maenas), exposure to severe hypoxia triggers an emersion response whereby crabs escape hypoxia to breathe air. We hypothesized that exposure to HEA in green crabs would lead to a similar behavioural response which is specific to ammonia. Using an experimental arena containing a rock bed onto which crabs could emerse, we established that exposure to HEA (4mmol/l NH4HCO3) for 15min triggers emersion in crabs. In experiments utilizing NaHCO3 controls and NH4HCO3 injections, we further determined that emersion was triggered specifically by external ammonia and was independent of secondary acid-base or respiratory disturbances caused by HEA. We then hypothesized that emersion from HEA provides a physiological benefit, similar to emersion from hypoxia. Exposure to 15min of HEA without emersion (no rock bed present) caused significant increases in arterial haemolymph total ammonia (Tamm), pH, and [HCO3(-)]. When emersion was allowed, arterial haemolymph Tamm and [HCO3(-)] increased, but no alkalosis developed. Moreover, emersion decreased haemolymph partial pressure of NH3 relative to crabs which could not emerse. Overall, we demonstrate a novel behavioural response to HEA exposure in crabs which we propose may share similar mechanistic pathways with the emersion response triggered by hypoxia.

  11. Formation of hydroxylamine (NH2OH) in electron-irradiated ammonia-water ices.

    PubMed

    Zheng, Weijun; Kaiser, Ralf I

    2010-04-29

    We investigated chemical and physical processes in electron-irradiated ammonia-water ices at temperatures of 10 and 50 K. Chemically speaking, the formation of hydroxylamine (NH(2)OH) was observed in electron-irradiated ammonia-water ices. The synthesis of molecular hydrogen (H(2)), molecular nitrogen (N(2)), molecular oxygen (O(2)), hydrazine (N(2)H(4)), and hydrogen peroxide (H(2)O(2)), which was also monitored in previous irradiation of pure ammonia and water ices, was also evident. These newly formed species were trapped inside of the ices and were released into the gas phase during the warm-up phase of the sample after the irradiation. A quantitative analysis of the data showed that the production rates of the newly formed species at 10 K are higher compared to those at 50 K. Our studies also suggest that hydroxylamine is likely formed by the recombination of amino (NH(2)) with hydroxyl (OH) radicals inside of the ices. Considering the physical effects on the ice sampled during the irradiation, the experiments provided compelling evidence that the crystalline ammonia-water ice samples can be partially converted to amorphous ices during the electron irradiation; similar to the chemical processes, the irradiation-induced amorphization of the ices is faster at 10 K than that at 50 K--a finding which is similar to electron-irradiated crystalline water ices under identical conditions. However, the amorphization of water in water-ammonia ices was found to be faster than that in pure water ices at identical temperatures.

  12. Is blood ammonia influenced by kidney function? A prospective study.

    PubMed

    Imran, Muhammad; Shah, Yaser; Nundlall, Seema; Roberts, Norman B; Howse, Matthew

    2012-03-01

    We have investigated whether blood ammonia is increased with worsening CKD. Fifty eight subjects with a range of CKD were recruited for analysis of plasma ammonia and other electrolytes. The concentrations of plasma ammonia were all within the normal reference range and there was no correlation between ammonia and CKD without any effect of dialysis. Blood ammonia is not elevated in or related to the severity of chronic kidney disease. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  14. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system.

    PubMed

    Sauder, Laura A; Albertsen, Mads; Engel, Katja; Schwarz, Jasmin; Nielsen, Per H; Wagner, Michael; Neufeld, Josh D

    2017-05-01

    Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mm of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of ~1-2 μm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group I.1b Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA may contribute to nitrification in situ. However, CARD-FISH-MAR showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative and yet unknown

  15. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

    PubMed Central

    Sauder, Laura A; Albertsen, Mads; Engel, Katja; Schwarz, Jasmin; Nielsen, Per H; Wagner, Michael; Neufeld, Josh D

    2017-01-01

    Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mm of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of ~1–2 μm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group I.1b Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA may contribute to nitrification in situ. However, CARD-FISH-MAR showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative and yet unknown

  16. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  17. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  18. Adsorption of ammonia at GaN(0001) surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

    SciTech Connect

    Kempisty, Paweł

    2014-11-15

    Adsorption of ammonia at NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH{sub 2} and H-covered surface (region II), and at the conduction band minimum (CBM) for NH{sub 3}-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of the ECR in case of all mixed H-NH{sub 2}-NH{sub 3} coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN{sub 2} radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH{sub 2} radical at the surface and escape of H{sub 2} molecule. The process energy is close to 0.12 eV, thus not large, but the direct inverse

  19. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  20. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  1. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.

    PubMed

    Wang, Ping

    2012-04-21

    Ammonia borane (NH(3)BH(3), AB) is a unique molecular crystal containing an intriguingly high density of hydrogen. In the past several years, AB has received extensive attention as a promising hydrogen storage medium. Several strategies have been successfully developed for promoting H(2) release and for suppressing the evolution of volatile by-products from the solid-state thermolysis of AB. Several potentially cost-effective and energy-efficient routes for regenerating AB from the spent fuels have been experimentally demonstrated. These remarkable technological advances offer a promising prospect of using AB-based materials as viable H(2) carriers for on-board application. In this perspective, the recent progresses in promoting H(2) release from the solid-state thermolysis of AB and in developing regeneration technologies are briefly reviewed.

  2. Shippingport Spent Fuel Canister System Description

    SciTech Connect

    JOHNSON, D.M.

    2001-06-26

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSH will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available.

  3. Shippingport Spent Fuel Canister System Description

    SciTech Connect

    JOHNSON, D.M.

    2000-03-27

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available.

  4. Neutron Generators for Spent Fuel Assay

    SciTech Connect

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  5. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  6. Study of Hydrogen Supply System with Ammonia Fuel

    NASA Astrophysics Data System (ADS)

    Saika, Takashi; Nakamura, Mitsuhiro; Nohara, Tetsuo; Ishimatsu, Shinji

    Carbon-free fuel is effective in preventing global warming. Hydrogen has no carbon and can be made also from nuclear energy or reproducible energies other than fossil fuels. However, hydrogen lacks portability because of its difficulty in liquefying, but ammonia can easily be liquefied at a room temperature and dissociated into high-content hydrogen and nitrogen using a suitable catalyst. An ammonia dissociation system for fuel cells is proposed in this paper. The residual ammonia by 13ppm or more in the dissociated gas (H2+ N2) causes a decrease in the output of fuel cells. To separate residual ammonia, it should be sent to an ammonia separator and then to an ammonia distiller. In the experiment, the authors examine the concentrations of ammonia after dissociation at various temperatures, pressures and space velocities. The ammonia separator uses the fact that ammonia dissolves well in water. Then the ammonia water is distilled in the distiller. Thereby, the authors have proposed an ammonia circulation system that is a clean energy system.

  7. Observations of atmospheric ammonia from TANSO-FTS/GOSAT

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Shiomi, Kei

    2017-04-01

    Atmospheric ammonia has large impacts on the nitrogen cycles or atmospheric environment such as nucleation of PM2.5 particles. It is reported that ammonia in the atmosphere has been increasing rapidly with the growth of population globally and this trend must continue in the future. Satellite observation is an effective approach to get to know the global perspectives of the gas. Atmospheric ammonia is observable using the thermal infrared (TIR) spectra, and IASI, TES and CrIS had been revealed those distributions. GOSAT also has TIR band including the ammonia absorption bands. GOSAT has the shorter revisit cycle than that of the other hyper-spectral TIR sounders mentioned above, therefore, the shorter time-scale events can be represented. In addition to the importance of the impacts of ammonia itself, the concentration ratio between ammonia and the other trace gases such as CO which is one of the main targets of the GOSAT-2 project is useful as the indicator of their emission sources. In this study, we introduce an algorithm to retrieve the column amount of atmospheric ammonia based on non-linear optimal estimation (Rogers, 2000) from GOSAT spectra in the ammonia absorption band between 960 - 970 cm-1. Temperature and water vapor profiles are estimated in advance of the ammonia retrieval. The preliminary results showed significant high concentrations of ammonia in the Northern India and the Eastern China as pointed out in the previous researches. We will discuss the global distribution of ammonia in the presentation.

  8. Establishing relative sensitivities of various toxicity testing organisms to ammonia

    SciTech Connect

    Karle, L.M.; Mayhew, H.L.; Barrows, M.E.; Karls, R.K.

    1994-12-31

    The toxicity of ammonia to various organisms was examined to develop a baseline for mortality in several commonly used testing species. This baseline data will assist in choosing the proper test species and in interpreting results as they pertain to ammonia. Responses for two juvenile fish species, three marine amphipods, and two species of mysid shrimp were compared for their sensitivity to levels of ammonia. All mortality caused by ammonia in the bottom-dwelling Citharichthys stigmaeus occurred within 24 h of exposure, whereas mortality in the silverside, Menidia beryllina, occurred over the entire 96-h test duration. Responses to ammonia varied among the amphipods Rhepoxynius abronius, Ampelisca abdita, and Eohaustorius estuarius. R. abronius and A. abdita showed similar sensitivity to ammonia at lower concentrations; A. abdita appeared more sensitive than R. abronius at levels above 40 mg/L. Concentrations of ammonia required to produce significant mortality in the amphipod E. estuarius were far higher than the other species examined (> 100 mg/L NH{sub 3}). A comparison of ammonia toxicity with two commonly used invertebrates, Holmesimysis sculpts and Mysidopsis bahia, suggest that these two species of mysid have similar sensitivities to ammonia. Further studies with ammonia that examine sensitivity of different organisms should be conducted to assist regulatory and environmental agencies in determining appropriate test species and in interpreting toxicological results as they may be affected by levels of ammonia.

  9. Advanced water resource management in ammonia and fertilizer industries

    SciTech Connect

    Goodman, W.H.; Campmajo, C.

    1999-11-01

    Ammonia plants typically use high volumes of water, predominantly as make-up for process steam use and as cooling water. Water use minimization in the ammonia and fertilizer industries presents unique challenges related to the potential for ammonia contamination. This can lead to concerns with water or air discharge of ammonia, increased microbiological activity, and concern for ammonia-enhanced corrosion. Copper-based metallurgy is understandably rare in ammonia plants, consequently the last concern is of little practical importance. Developing an advanced water resource management strategy for the ammonia and fertilizer industries requires a plant audit with a complete water and contaminant mass balance. Analysis of this information allows development of potential conceptual design flowsheets, incorporating options for reduced water use. Attractive options for water use minimization in an ammonia plant often include the reuse of process condensates as make-up to the demineralization system or as make-up to the cooling water system. Modeling the water chemistry resulting from water reuse, as well as the effectiveness of any recommended treatment operations, allows for a technical and economic comparison of the options. Operations of particular interest to the ammonia industry include ammonia stripping across an open cooling tower and ammonia removal techniques such as air or steam stripping. This paper will outline the general approach to water resource management, and present case studies illustrating the effectiveness of this approach.

  10. Effect of volume expansion on renal citrate and ammonia metabolism in KCl-deficient rats.

    PubMed Central

    Adler, S; Zett, B; Anderson, B; Fraley, D S

    1975-01-01

    When rats with desoxycorticosterone acetate (DOCA)-induced potassium chloride deficiency are given sodium chloride there is simultaneously a partial correction of metabolic alkalosis and a marked reduction in urinary citrate excretion and renal citrate content. To examine DOCA's role in this phenomenon and to determine how sodium chloride alters renal metabolism, rats were made KC1 deficient using furosemide and a KC1-deficient diet. Renal citrate and ammonia metabolism were then studied after chronic oral sodium chloride administration or acute volume expansion with isotonic mannitol. Although both maneuvers partially corrected metabolic alkalosis, sodium chloride raised serum chloride concentration while mannitol significantly decreased it. Urinary citrate excretion decreased to 10% of control in rats given NaCl and to 50% of control in rats infused with mannitol. The filtered load of citrate was constant or increased indicating increased tubular citrate reabsorption. Renal cortical citrate content also decreased approximately 50%. Renal cortical slices from KCl-deficient rats incubated in low or normal chloride media produced equal amounts of 14CO2 from (1, 5-14C) citrate. In addition, urinary ammonia excretion increased by over 300% in both groups. This occurred in the mannitol group despite increased urinary pH and flow rate indicating a rise in renal ammonia production. It seems that neither DOCA nor an increase in serum chloride concentration explains the experimental results. Rather, it appears that volume expansion is responsible for increased renal tubular citrate reabsorption and renal ammonia production. As these renal metabolic responses ordinarily occur in response to acidosis, the data are consistent with the hypothesis that volume expansion reduces renal cell pH in 3KCl-deficient rats. PMID:239022

  11. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  12. Impact of Distillery Spent Wash Irrigation on Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Jadhav, Ramanand N.; Sarode, Dhananjay B.; Narkhede, Sachin D.; Khatik, Vasimshaikh A.; Attarde, Sanjay B.

    2011-07-01

    The disposal of wastes from industrial sources is becoming a serious problem throughout the world. In India, a total of approximately 40 million m3 of distillery spent wash is generated annually from 295 distilleries. The distillery spent wash is acidic and high levels of biological oxygen demand and chemical oxygen demand and contains nutrient elements such as potassium (K), nitrogen (N), and phosphorous (P). It is used as a source of plant nutrients and organic matter for various agricultural crops. It is usually applied to arable land near the distilleries as irrigation water or as a soil amendment. However, indiscriminate disposal of it has resulted in adverse impact on soil environments. This paper aims to identify the impact of distillery spent wash application for irrigation and on soil environment. The distillery spent wash can be a good source of nutrients necessary for plant growth. Application of various concentrations of spent wash on plant species was studied. A plot having 20-30% concentration of spent wash observed good growth. At higher doses, spent wash application is found harmful to crop growth and soil fertility and its use at lower doses remarkably improves germination and growth of crops.

  13. Safety assessment methodology in management of spent sealed sources.

    PubMed

    Mahmoud, Narmine Salah

    2005-02-14

    Environmental hazards can be caused from radioactive waste after their disposal. It was therefore important that safety assessment methodologies be developed and established to study and estimate the possible hazards, and institute certain safety methodologies that lead and prevent the evolution of these hazards. Spent sealed sources are specific type of radioactive waste. According to IAEA definition, spent sealed sources are unused sources because of activity decay, damage, misuse, loss, or theft. Accidental exposure of humans from spent sealed sources can occur at the moment they become spent and before their disposal. Because of that reason, safety assessment methodologies were tailored to suit the management of spent sealed sources. To provide understanding and confidence of this study, validation analysis was undertaken by considering the scenario of an accident that occurred in Egypt, June 2000 (the Meet-Halfa accident from an iridium-192 source). The text of this work includes consideration related to the safety assessment approaches of spent sealed sources which constitutes assessment context, processes leading an active source to be spent, accident scenarios, mathematical models for dose calculations, and radiological consequences and regulatory criteria. The text also includes a validation study, which was carried out by evaluating a theoretical scenario compared to the real scenario of Meet-Halfa accident depending on the clinical assessment of affected individuals.

  14. Loss of spent fuel pool cooling PRA: Model and results

    SciTech Connect

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

  15. Pretreatment of biomass by aqueous ammonia for bioethanol production.

    PubMed

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y Y

    2009-01-01

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  16. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  17. Exchange of Atmospheric Ammonia in a Mature Corn Canopy

    NASA Astrophysics Data System (ADS)

    Myles, L.; Heuer, M.

    2015-12-01

    Dry deposition of atmospheric ammonia increases nitrogen levels in terrestrial ecosystems, which contributes to nutrient imbalances and other environmental changes. The exchange of ammonia between the atmosphere and land is dynamic, and vegetative canopies can act as sources or sinks of ammonia under certain conditions. A field study was conducted during summer 2014 in a mature corn field at the University of Illinois using an automated exchange mechanism and a cavity ring-down spectrometer to sample atmospheric ammonia at eight levels between 0.2 m and 4.5 m above the surface. Ammonia concentrations, along with micrometeorological measurements, were evaluated to quantify and characterize ammonia flux profiles to improve understanding of the distribution of ammonia through vegetation.

  18. The EBR-II spent fuel treatment program

    SciTech Connect

    Lineberry, M.J.; McFarlane, H.F.

    1995-12-01

    Argonne National Laboratory has refurbished and equipped an existing hot cell facility for demonstrating a high-temperature electrometallurgical process for treating spent nuclear fuel from the Experimental Breeder Reactor-11. Two waste forms will be produced and qualified for geologic disposal of the fission and activation products. Relatively pure uranium will be separated for storage. Following additional development, transuranium elements will be blended into one of the high-level waste streams. The spent fuel treatment program will help assess the viability of electrometallurgical technology as a spent fuel management option.

  19. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar.

    PubMed

    Lou, Zimo; Sun, Yue; Bian, Shuping; Ali Baig, Shams; Hu, Baolan; Xu, Xinhua

    2017-02-01

    Spent mushroom compost (SMC), a spent mushroom substrate (SMS) derived compost, is always applied to agriculture land to enhance soil organic matter and nutrient contents. However, nitrogen, phosphate and organic matter contained in SMC can leach out and contaminate ground water during its application. In this study, biochars prepared under different pyrolytic temperatures (550 °C, 650 °C or 750 °C) from SMS were applied to soil as a nutrient conservation strategy. The resultant biochars were characterized for physical and mineralogical properties. Surface area and pore volume of biochars increased as temperature increased, while pore size decreased with increasing temperature. Calcite and quartz were evidenced by X-ray diffraction analysis in all biochars produced. Results of column leaching test suggested that mixed treatment of SMC and SMS-750-800 (prepared with the temperature for pyrolysis and activation was chosen as 750 °C and 800 °C, respectively) could reduce 43% of TN and 66% of CODCr in leachate as compared to chemical fertilizers and SMC, respectively. Furthermore, increasing dosage of SMS-750-800 from 1% to 5% would lead to 54% CODCr reduction in leachate, which confirmed its nutrient retention capability. Findings from this study suggested that combined application of SMC and SMS-based biochar was an applicable strategy for reducing TN and CODCr leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ammonia in London: is it increasing and what is the relevance of urban ammonia for air quality impacts?

    NASA Astrophysics Data System (ADS)

    Braban, Christine; Tang, Sim; Poskitt, Janet; Van Dijk, Netty; Leeson, Sarah; Dragosits, Ulli; Hutchings, Torben; Twigg, Marsailidh; Di Marco, Chiara; Langford, Ben; Tremper, Anja; Nemitz, Eiko; Sutton, Mark

    2017-04-01

    Emissions of ammonia affect both rural and urban air quality primarily via reaction of ammonia in the atmosphere forming secondary ammonium salts in particulate matter (PM). Urban ammonia emissions come from a variety of sources including biological decomposition, human waste, industrial processes and combustion engines. In the UK, the only long-term urban ammonia measurement is a UK National Ammonia Monitoring Network site at London Cromwell Road, recording monthly average concentrations. Short term measurements have also been made in the past decade at Marylebone Road, North Kensington and on the BT Tower. Cromwell Road is a kerbside site operational since 1999. The Cromwell Road data indicates that ammonia concentrations may be increasing since 2010-2012 after a long period of decreasing. Data from the National Atmospheric Emissions Inventory indicates ammonia emissions from diesel fleet exhausts increasing over this time period but an overall net decrease in ammonia emissions. With changes in engine and exhaust technology to minimise pollutant emissions and the importance of ammonia as a precursor gas for secondary PM, there is a challenge to understand urban ammonia concentrations and subsequent impacts on urban air quality. In this paper the long term measurements are assessed in conjunction with the short-term measurements.The challenges to assess the relative importance of local versus long range ammonia emission are discussed.

  1. Fabrication of interim acrylic resin removable partial dentures with clasps.

    PubMed

    Reitz, P V; Weiner, M G

    1978-12-01

    An orderly sequence of steps for construction of an interim acrylic resin partial denture has been presented. The technique allows the dentist to fabricate an effective restoration that has a definite path of insertion and removal that can be placed in the patient's mouth with little time spent on adjustment and correction. This technique may be used with heat- or cold-curing acrylic resin.

  2. Effective Hyperfine-structure Functions of Ammonia

    NASA Astrophysics Data System (ADS)

    Augustovičová, L.; Soldán, P.; Špirko, V.

    2016-06-01

    The hyperfine structure of the rotation-inversion (v 2 = 0+, 0-, 1+, 1-) states of the 14NH3 and 15NH3 ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  3. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  4. Tin oxide nanocluster hydrogen and ammonia sensors.

    PubMed

    Lassesson, A; Schulze, M; van Lith, J; Brown, S A

    2008-01-09

    We have prepared sensitive hydrogen and ammonia sensors from thin films of tin nanoclusters with diameters between 3 and 10 nm. By baking the samples at 200 °C in ambient air the clusters were oxidized, resulting in very stable films of tin oxide clusters with similar diameters to the original Sn clusters. By monitoring the electrical resistance, it is shown that the cluster films are highly responsive to hydrogen and ammonia at relatively low temperatures, thereby making them attractive for commercial applications in which low power consumption is required. Doping of the films by depositing Pd on top of the clusters resulted in much improved sensor response and response times. It is shown that optimal sensor properties are achieved for very thin cluster films (a few monolayers of clusters).

  5. Crystal structure of rubidium peroxide ammonia disolvate.

    PubMed

    Grassl, Tobias; Korber, Nikolaus

    2017-02-01

    The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038-1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64-66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

  6. Crystal structure of rubidium peroxide ammonia disolvate

    PubMed Central

    Grassl, Tobias; Korber, Nikolaus

    2017-01-01

    The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom. PMID:28217342

  7. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  8. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  9. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  10. Biochar characteristics produced from malt spent rootlets

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2013-04-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. Malt spent rootlets (MSR) is a by-product formed during beer production, is inexpensive and is produced in high quantities. The objective of the present study was to characterize the surface properties of biochar produced from MSR, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. Raw MSR demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-340 m2/g. For the same temperature range, a high percentage (46-73%) of the pore volume of the biochars is due to micropores. Similar results were observed for all the grain size fractions of the raw MSR. The up-scaling of the biochar production was easily performed by using increased biomass analogous to the bigger vessels used each time. Positive results were obtained

  11. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  12. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  13. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  14. Ammonia Optical Sensing by Microring Resonators.

    PubMed

    Passaro, Vittorio M N; Dell'Olio, Francesco; De Leonardis, Francesco

    2007-11-15

    A very compact (device area around 40 μm²) optical ammonia sensor based on amicroring resonator is presented in this work. Silicon-on-insulator technology is used insensor design and a dye doped polymer is adopted as sensing material. The sensor exhibitsa very good linearity and a minimum detectable refractive index shift of sensing materialas low as 8x10(-5), with a detection limit around 4 ‰.

  15. Ammonia Optical Sensing by Microring Resonators

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; De Leonardis, Francesco

    2007-01-01

    A very compact (device area around 40 μm2) optical ammonia sensor based on a microring resonator is presented in this work. Silicon-on-insulator technology is used in sensor design and a dye doped polymer is adopted as sensing material. The sensor exhibits a very good linearity and a minimum detectable refractive index shift of sensing material as low as 8×10-5, with a detection limit around 4 ‰. PMID:28903258

  16. Dynamics of dissociative electron attachment to ammonia

    SciTech Connect

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; Slaughter, D. S.; Adaniya, H.; Belkacem, A.; Weyland, Marvin; Dorn, Alexander; McCurdy, C. W.

    2016-05-12

    We present that ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  17. Niche specialization of terrestrial archaeal ammonia oxidizers.

    PubMed

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C; James, Phillip; Schloter, Michael; Griffiths, Robert I; Prosser, James I; Nicol, Graeme W

    2011-12-27

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5 ≤ pH <7), or alkalinophilic (pH ≥ 7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5-8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5-7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling.

  18. Ammonia in breath and emitted from skin.

    PubMed

    Schmidt, F M; Vaittinen, O; Metsälä, M; Lehto, M; Forsblom, C; Groop, P-H; Halonen, L

    2013-03-01

    Ammonia concentrations in exhaled breath (eNH3) and skin gas of 20 healthy subjects were measured on-line with a commercial cavity ring-down spectrometer and compared to saliva pH and plasma ammonium ion (NH(+)4), urea and creatinine concentrations. Special attention was given to mouth, nose and skin sampling procedures and the accurate quantification of ammonia in humid gas samples. The obtained median concentrations were 688 parts per billion by volume (ppbv) for mouth-eNH3, 34 ppbv for nose-eNH3, and 21 ppbv for both mouth- and nose-eNH3 after an acidic mouth wash (MW). The median ammonia emission rate from the lower forearm was 0.3 ng cm(-2) min(-1). Statistically significant (p < 0.05) correlations between the breath, skin and plasma ammonia/ammonium concentrations were not found. However, mouth-eNH3 strongly (p < 0.001) correlated with saliva pH. This dependence was also observed in detailed measurements of the diurnal variation and the response of eNH3 to the acidic MW. It is concluded that eNH3 as such does not reflect plasma but saliva and airway mucus NH(+)4 concentrations and is affected by saliva and airway mucus pH. After normalization with saliva pH using the Henderson-Hasselbalch equation, mouth-eNH3 correlated with plasma NH(+)4, which points to saliva and plasma NH(+)4 being linked via hydrolysis of salivary urea.

  19. Dynamics of dissociative electron attachment to ammonia

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; Slaughter, D. S.; Adaniya, H.; Belkacem, A.; Weyland, Marvin; Dorn, Alexander; McCurdy, C. W.

    2016-05-01

    Ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  20. Dynamics of dissociative electron attachment to ammonia

    DOE PAGES

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; ...

    2016-05-12

    We present that ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.