Science.gov

Sample records for particle clinical radiotherapy

  1. Current status of clinical particle radiotherapy at Lawrence Berkeley Laboratory

    SciTech Connect

    Castro, J.R.; Quivey, J.M.; Lyman, J.T.; Chen, G.T.Y.; Phillips, T.L.; Tobias, C.A.; Alpen, E.L.

    1980-08-15

    Clinical experience with charged particle irradiation of human cancers has been underway at the University of California Lawrence Berkeley Laboratory. Over 150 patients have been irradiated with heavy charged particle beams including helium, carbon, neon, and argon ions. Pilot studies have included such tumor sites as glioma of the brain, carcinoma of the esophagus, carcinoma of the pancreas, carcinoma of the stomach, ocular melanoma, and carcinoma of the uterine cervix. Prospective studies are planned to investigate the improved dose localization potential (helium) and the enhanced biologic and physical dose potential (carbon, neon) in a controlled trial against the best available megavoltage irradiation techniques.

  2. Particle radiotherapy for prostate cancer.

    PubMed

    Shioyama, Yoshiyuki; Tsuji, Hiroshi; Suefuji, Hiroaki; Sinoto, Makoto; Matsunobu, Akira; Toyama, Shingo; Nakamura, Katsumasa; Kudo, Sho

    2015-01-01

    Recent advances in external beam radiotherapy have allowed us to deliver higher doses to the tumors while decreasing doses to the surrounding tissues. Dose escalation using high-precision radiotherapy has improved the treatment outcomes of prostate cancer. Intensity-modulated radiation therapy has been widely used throughout the world as the most advanced form of photon radiotherapy. In contrast, particle radiotherapy has also been under development, and has been used as an effective and non-invasive radiation modality for prostate and other cancers. Among the particles used in such treatments, protons and carbon ions have the physical advantage that the dose can be focused on the tumor with only minimal exposure of the surrounding normal tissues. Furthermore, carbon ions also have radiobiological advantages that include higher killing effects on intrinsic radio-resistant tumors, hypoxic tumor cells and tumor cells in the G0 or S phase. However, the degree of clinical benefit derived from these theoretical advantages in the treatment of prostate cancer has not been adequately determined. The present article reviews the available literature on the use of particle radiotherapy for prostate cancer as well as the literature on the physical and radiobiological properties of this treatment, and discusses the role and the relative merits of particle radiotherapy compared with current photon-based radiotherapy, with a focus on proton beam therapy and carbon ion radiotherapy.

  3. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  4. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. |

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  5. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  6. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  7. Particle radiotherapy with carbon ion beams

    PubMed Central

    2013-01-01

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties. PMID:23497542

  8. Present Status of Radiotherapy in Clinical Practice

    NASA Astrophysics Data System (ADS)

    Duehmke, Eckhart

    Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.

  9. Biomarkers for DNA DSB inhibitors and radiotherapy clinical trials.

    PubMed

    Liu, Stanley K; Olive, Peggy L; Bristow, Robert G

    2008-09-01

    Major technical advances in radiotherapy, including IMRT and image-guided radiotherapy, have allowed for improved physical precision and increased dose delivery to the tumor, with better sparing of surrounding normal tissue. The development of inhibitors of the sensing and repair of DNA double-strand breaks (DSBs) is exciting and could be combined with precise radiotherapy targeting to improve local control following radiotherapy. However, caution must be exercised in order that DSB inhibitors are combined with radiotherapy in such a manner as to preserve the therapeutic ratio by exploiting repair deficiencies in malignant cells over that of normal cells. In this review, we discuss the rationale and current approaches to targeting DSB sensing and repair pathways in combined modality with radiotherapy. We also describe potential biomarkers that could be useful in detecting functional inhibition of DSB repair in a patient's tissues during clinical radiotherapy trials. Finally, we examine a number of issues relating to the use of DSB-inhibiting molecular agents and radiotherapy in the context of the tumor microenvironment, effects on normal tissues and the optimal timing and duration of the agent in relation to fractionated radiotherapy.

  10. Particle Accelerators for Radiotherapy:. Present Status and Future

    NASA Astrophysics Data System (ADS)

    Maciszewski, Wieslaw; Scharf, Waldemar

    2004-07-01

    The paper describes the development of the application of particle accelerators in the treatment of cancer diseases over the past fifty years. Special emphasis is put on the routine application of conventional electron accelerators delivering electron and photon beams. This is the largest group of devices for radiotherapy (over 7500 machines operating worldwide). The number of patients reaches 5 million per year. The medical electron linacs have recently undergone considerable modifications of construction, in particular the systems of radiation field shaping. Contemporary accelerators for radiotherapy are equipped with multi-leaf collimators (MLC) which, in conjunction with IMRT (Intensity Modulation Radiation Therapy) technique and special system of therapy planning, assure considerably higher precision, effectiveness and quality of treatment.

  11. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  12. Updates on clinical studies of selenium supplementation in radiotherapy.

    PubMed

    Puspitasari, Irma M; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2014-05-29

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200-500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation.

  13. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  14. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.

  15. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy.

    PubMed

    Vaidyanathan, Ganesan; Zalutsky, Michael R

    2011-10-01

    Targeted radiotherapy using agents tagged with α-emitting radionuclides is gaining traction with several clinical trials already undertaken or ongoing, and others in the advanced planning stage. The most commonly used α-emitting radionuclides are 213Bi, 211At, 223Ra and 225Ac. While each one of these has pros and cons, it can be argued that 211At probably is the most versatile based on its half life, decay scheme and chemistry. On the other hand, for targeting bone metastases, 223Ra is the ideal radionuclide because simple cationic radium can be used for this purpose. In this review, we will discuss the recent developments taken place in the application of 211At-labeled radiopharmaceuticals and give an overview of the current status of 223Ra for targeted α-particle radiotherapy.

  16. Radiotherapy by particle beams (hadrontherapy) of intracranial tumours: a survey on pathology.

    PubMed

    Schiffer, D

    2005-04-01

    A review of the principal contributions of radio-therapy of brain tumours by beam particles is carried out. Neutrons, protons and light ions are considered along with their pros and cons in relation to types and locations of brain tumours. A particular emphasis is given to the pathologic studies of their effects directly o n tumours and on the normal nervous tissue, considering mainly the relevant action mechanisms of the radiation types and the requirements of the clinical therapeutic strategies. For comparison the main features of the pathologic effects of radiotherapy by photons are described. From the review it emerges that the new modality of radiation by protons and light ions, because of their peculiar physical characteristics, may represent a new way of destroying the tumour and sparing normal nervous tissue, especially when deeply located and irregularly shaped tumours are concerned. More neuropathological studies are needed in order to better understand the potentiality of the new treatment of modalities.

  17. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  18. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  19. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy.

    PubMed

    Zalutsky, M R; Vaidyanathan, G

    2000-09-01

    Targeted radiotherapy or endoradiotherapy is an appealing approach to cancer treatment because of the potential for delivering curative doses of radiation to tumor while sparing normal tissues. Radionuclides that decay by the emission of alpha-particles such as the heavy halogen astatine-211 (211At) offer the exciting prospect of combining cell-specific molecular targets with radiation having a range in tissue of only a few cell diameters. Herein, the radiobiological advantages of alpha-particle targeted radiotherapy will be reviewed, and the rationale for using 211At for this purpose will be described. The chemistry of astatine is similar to that of iodine; however, there are important differences which make the synthesis and evaluation of 211At-labeled compounds more challenging. Perhaps the most successful approach that has been developed involves the astatodemetallation of tin, silicon or mercury precursors. Astatine-211 labeled agents that have been investigated for targeted radiotherapy include [211At]astatide, 211At- labeled particulates, 211At-labeled naphthoquinone derivatives, 211At-labeled methylene blue, 211At-labeled DNA precursors, meta-[211At]astatobenzylguanidine, 211At-labeled biotin conjugates, 211At-labeled bisphosphonates, and 211At-labeled antibodies and antibody fragments. The status of these 211At-labeled compounds will be discussed in terms of their labeling chemistry, cytotoxicity in cell culture, as well as their tissue distribution and therapeutic efficacy in animal models of human cancers. Finally, an update on the status of the first clinical trial with an 211At-labeled targeted therapeutic, 211At-labeled chimeric anti-tenascin antibody 81C6, will be provided.

  20. Clinical analysis of cholangiocarcinoma patients receiving adjuvant radiotherapy

    PubMed Central

    Nantajit, Danupon; Trirussapanich, Pornwaree; Rojwatkarnjana, Sunanta; Soonklang, Kamonwan; Pattaranutraporn, Poompis; Laebua, Kanyanee; Chamchod, Sasikarn

    2016-01-01

    Cholangiocarcinoma (CCA) or bile duct cancer is a rare cancer type in developed countries, while its prevalence is increased in southeast Asia, affecting ~33.4 men and ~12.3 women per 100,000 individuals. CCA is one of the most lethal types of cancer. Neo-adjuvant and adjuvant therapies have been shown to have limited efficacy in improving the overall prognosis of patients. Radiotherapy has been reported to prolong the survival times of patients with certain characteristics. The present study retrospectively evaluated the medical records and follow-up data from 27 CCA patients who received radiotherapy at Chulabhorn Hospital (Bangkok, Thailand) between 2008 and 2014. A total of 14 patients underwent surgery followed by adjuvant chemoradiotherapy. Of the 27 CCA patients, 14 had intrahepatic CCA, 2 had extrahepatic CCA and 11 had hilar CCA. The 2-year survival rate was 40.7%. Tumor resectability, clinical symptoms and the Eastern Cooperative Oncology Group performance status score were found to be indicative of patient prognosis. In addition, the planning target volume and biologically effective radiotherapy dose were of prognostic value; however, initial treatment response was ambiguous in predicting survival time. The findings of the present study suggested that the currently used radiotherapy protocols for CCA may require modification to improve their efficacy. PMID:28105359

  1. Clinical exuberance of classic Kaposi's sarcoma and response to radiotherapy.

    PubMed

    Trujillo, Jeniffer Muñoz; Alves, Natália Ribeiro de Magalhães; Medeiros, Paula Mota; Azulay-Abulafia, Luna; Alves, Maria de Fátima Guimarães Scotelaro; Gripp, Alexandre Carlos

    2015-01-01

    Kaposi's sarcoma (KS) is a multicentric vascular neoplasm, with cutaneous and extracutaneous involvement. Different clinical and epidemiological variants have been identified. The classic form is manifested mainly in elderly men with indolent and long-term evolution, with lesions localized primarily in the lower extremities. We present two cases of classic Kaposi's sarcoma (CKS) in two female patients with extensive, exuberant skin involvement and rapid evolution, with good response to radiotherapy.

  2. Proton Radiotherapy for Parameningeal Rhabdomyosarcoma: Clinical Outcomes and Late Effects

    SciTech Connect

    Childs, Stephanie K.; Kozak, Kevin R.; Friedmann, Alison M.; Yeap, Beow Y.; Adams, Judith; MacDonald, Shannon M.; Liebsch, Norbert J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-02-01

    Purpose: To report the clinical outcome and late side effect profile of proton radiotherapy in the treatment of children with parameningeal rhabdomyosarcoma (PM-RMS). Methods and Materials: Seventeen consecutive children with PM-RMS were treated with proton radiotherapy at Massachusetts General Hospital between 1996 and 2005. We reviewed the medical records of all patients and asked referring physicians to report specific side effects of interest. Results: Median patient age at diagnosis was 3.4 years (range, 0.4-17.6). Embryonal (n = 11), alveolar (n = 4), and undifferentiated (n = 2) histologies were represented. Ten patients (59%) had intracranial extension. Median prescribed dose was 50.4 cobalt gray equivalents (GyRBE) (range, 50.4-56.0 GyRBE) delivered in 1.8-2.0-GyRBE daily fractions. Median follow-up was 5.0 years for survivors. The 5-year failure-free survival estimate was 59% (95% confidence interval, 33-79%), and overall survival estimate was 64% (95% confidence interval, 37-82%). Among the 7 patients who failed, sites of first recurrence were local only (n = 2), regional only (n = 2), distant only (n = 2), and local and distant (n = 1). Late effects related to proton radiotherapy in the 10 recurrence-free patients (median follow-up, 5 years) include failure to maintain height velocity (n = 3), endocrinopathies (n = 2), mild facial hypoplasia (n = 7), failure of permanent tooth eruption (n = 3), dental caries (n = 5), and chronic nasal/sinus congestion (n = 2). Conclusions: Proton radiotherapy for patients with PM-RMS yields tumor control and survival comparable to that in historical controls with similar poor prognostic factors. Furthermore, rates of late effects from proton radiotherapy compare favorably to published reports of photon-treated cohorts.

  3. Proton Radiotherapy for Pediatric Ewing's Sarcoma: Initial Clinical Outcomes

    SciTech Connect

    Rombi, Barbara; DeLaney, Thomas F.; MacDonald, Shannon M.; Huang, Mary S.; Ebb, David H.; Liebsch, Norbert J.; Raskin, Kevin A.; Yeap, Beow Y.; Marcus, Karen J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-03-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing's sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing's sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  4. [Radiotherapy for cervix carcinomas: clinical target volume delineation].

    PubMed

    Gnep, K; Mazeron, R

    2013-10-01

    Concurrent chemoradiation followed by brachytherapy is currently the standard treatment for locally advanced cervix carcinomas. Modern radiation techniques require planning based on 3D images, and therefore an accurate delineation of target volumes. The clinical target volume (CTV) used for the different phases of treatment are now well defined, but are not always easy to delineate on a CT scan which is currently the standard examination for simulation in radiotherapy. MRI and PET-CT are routinely performed at diagnosis, and can be used to improve the accuracy of the delineation. The objective of this review is to describe the definitions and recommendations of CTV in the treatment of cervical cancer.

  5. Combining radiotherapy and angiogenesis inhibitors: Clinical trial design

    SciTech Connect

    Citrin, Deborah . E-mail: citrind@mail.nih.gov; Menard, Cynthia; Camphausen, Kevin

    2006-01-01

    Radiotherapy (RT) plays a vital role in the multimodality treatment of cancer. Recent advances in RT have primarily involved improvements in dose delivery. Future improvements in tumor control and disease outcomes will likely involve the combination of RT with targeted therapies. Preclinical evaluations of angiogenesis inhibitors in combination with RT have yielded promising results with increased tumor 'cure.' It remains to be seen whether these improvements in tumor control in the laboratory will translate into improved outcomes in the clinic. Multiple differences between these agents and cytotoxic chemotherapy must be taken into account when designing clinical trials evaluating their effectiveness in combination with RT. We discuss important considerations for designing clinical trials of angiogenesis inhibitors with RT.

  6. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications

    PubMed Central

    Spiotto, Michael; Fu, Yang-Xin; Weichselbaum, Ralph R.

    2016-01-01

    By inducing DNA damage, radiotherapy both reduces tumor burden and enhances anti-tumor immunity. Here, we will review the mechanisms by which radiation induces anti-tumor immune responses that can be augmented using immunotherapies to facilitate tumor regression. Radiotherapy increases inflammation in tumors by activating the NF-κB and the Type I interferon response pathways to induce expression of pro-inflammatory cytokines. This inflammation coupled with antigen release from irradiated cells facilitates dendritic cell maturation and cross-presentation of tumor antigens to prime tumor-specific T cell responses. Radiation also sensitizes tumors to these T cell responses by enhancing T cell infiltration into tumors and the recognition of both malignant cancer cells and non-malignant stroma that present cognate antigen. Yet, these anti-tumor immune responses may be blunted by several mechanisms including regulatory T cells and checkpoint molecules that promote T cell tolerance and exhaustion. Consequently, the combination of immunotherapy using vaccines and/or checkpoint inhibitors with radiation is demonstrating early clinical potential. Overall, this review will provide a global view for how radiation and the immune system converge to target cancers and the early attempts to exploit this synergy in clinical practice. PMID:28018989

  7. Evaluation of novel radiotherapy technologies: what evidence is needed to assess their clinical and cost effectiveness, and how should we get it?

    PubMed

    van Loon, Judith; Grutters, Janneke; Macbeth, Fergus

    2012-04-01

    Technical innovations in radiation oncology--eg, intensity-modulated radiotherapy, stereotactic radiotherapy, and particle therapy--can be developed rapidly and introduced into the clinic even when costs associated with their use are much higher than those for conventional radiotherapy. Although clinical benefit is expected on the basis of superior biological and physical characteristics, data for clinical effectiveness of new radiotherapy techniques are scarce. Evidence from randomised clinical trials would be ideal but such studies focus mostly on new drugs. High investment costs and modifications over time make evaluation of novel radiotherapy technologies in clinical trials more complex. Here, we propose an algorithm for evaluation of the clinical and cost effectiveness of novel radiotherapy technologies. We suggest situations when randomised trials might be feasible and the type of trial that should be undertaken when they are not. Furthermore, we discuss the usefulness of dose-distribution models for estimation of expected clinical benefit and for selection of the patients' population with the highest expected benefit. Economic modelling, including the approach of real options analysis, can inform whether implementation of a technology should begin (based on available evidence) or be delayed (until further data are available), and it can indicate the best trial design and required sample size.

  8. Clinical application of multimodality imaging in radiotherapy treatment planning for rectal cancer.

    PubMed

    Wang, Yan Yang; Zhe, Hong

    2013-12-11

    Radiotherapy plays an important role in the treatment of rectal cancer. Three-dimensional conformal radiotherapy and intensity-modulated radiotherapy are mainstay techniques of radiotherapy for rectal cancer. However, the success of these techniques is heavily reliant on accurate target delineation and treatment planning. Computed tomography simulation is a cornerstone of rectal cancer radiotherapy, but there are limitations, such as poor soft-tissue contrast between pelvic structures and partial volume effects. Magnetic resonance imaging and positron emission tomography (PET) can overcome these limitations and provide additional information for rectal cancer treatment planning. PET can also reduce the interobserver variation in the definition of rectal tumor volume. However, there is a long way to go before these image modalities are routinely used in the clinical setting. This review summarizes the most promising studies on clinical applications of multimodality imaging in target delineation and treatment planning for rectal cancer radiotherapy.

  9. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.

  10. Introduction to the EC's Marie Curie Initial Training Network (MC-ITN) project: Particle Training Network for European Radiotherapy (PARTNER).

    PubMed

    Dosanjh, Manjit; Magrin, Giulio

    2013-07-01

    PARTNER (Particle Training Network for European Radiotherapy) is a project funded by the European Commission's Marie Curie-ITN funding scheme through the ENLIGHT Platform for 5.6 million Euro. PARTNER has brought together academic institutes, research centres and leading European companies, focusing in particular on a specialized radiotherapy (RT) called hadron therapy (HT), interchangeably referred to as particle therapy (PT). The ultimate goal of HT is to deliver more effective treatment to cancer patients leading to major improvement in the health of citizens. In Europe, several hundred million Euro have been invested, since the beginning of this century, in PT. In this decade, the use of HT is rapidly growing across Europe, and there is an urgent need for qualified researchers from a range of disciplines to work on its translational research. In response to this need, the European community of HT, and in particular 10 leading academic institutes, research centres, companies and small and medium-sized enterprises, joined together to form the PARTNER consortium. All partners have international reputations in the diverse but complementary fields associated with PT: clinical, radiobiological and technological. Thus the network incorporates a unique set of competencies, expertise, infrastructures and training possibilities. This paper describes the status and needs of PT research in Europe, the importance of and challenges associated with the creation of a training network, the objectives, the initial results, and the expected long-term benefits of the PARTNER initiative.

  11. Clinical outcomes and toxicities of proton radiotherapy for gastrointestinal neoplasms: a systematic review

    PubMed Central

    Verma, Vivek; Lin, Steven H.; Simone, Charles B.

    2016-01-01

    Background Proton beam radiotherapy (PBT) is frequently shown to be dosimetrically superior to photon radiotherapy (RT), though supporting data for clinical benefit are severely limited. Because of the potential for toxicity reduction in gastrointestinal (GI) malignancies, we systematically reviewed the literature on clinical outcomes (survival/toxicity) of PBT. Methods A systematic search of PubMed, EMBASE, abstracts from meetings of the American Society for Radiation Oncology, Particle Therapy Co-Operative Group, and American Society of Clinical Oncology was conducted for publications from 2000–2015. Thirty-eight original investigations were analyzed. Results Although results of PBT are not directly comparable to historical data, outcomes roughly mirror previous data, generally with reduced toxicities for PBT in some neoplasms. For esophageal cancer, PBT is associated with reduced toxicities, postoperative complications, and hospital stay as compared to photon radiation, while achieving comparable local control (LC) and overall survival (OS). In pancreatic cancer, numerical survival for resected/unresected cases is also similar to existing photon data, whereas grade ≥3 nausea/emesis and post-operative complications are numerically lower than those reported with photon RT. The strongest data in support of PBT for HCC comes from phase II trials demonstrating very low toxicities, and a phase III trial of PBT versus transarterial chemoembolization demonstrating trends towards improved LC and progression-free survival (PFS) with PBT, along with fewer post-treatment hospitalizations. Survival and toxicity data for cholangiocarcinoma, liver metastases, and retroperitoneal sarcoma are also roughly equivalent to historical photon controls. There are two small reports for gastric cancer and three for anorectal cancer; these are not addressed further. Conclusions Limited quality (and quantity) of data hamper direct comparisons and conclusions. However, the available

  12. Perspectives in Medical Applications of Monte Carlo Simulation Software for Clinical Practice in Radiotherapy Treatments

    NASA Astrophysics Data System (ADS)

    Boschini, Matteo; Giani, Simone; Ivanchenko, Vladimir; Rancoita, Pier-Giorgio

    2006-04-01

    We discuss the physics requirements to accurately model radiation dosimetry in the human body as performed for oncological radiotherapy treatment. Recent advancements in computing hardware and software simulation technology allow precise dose calculation in real-life imaging output, with speed suitable for clinical needs. An experimental programme, based on physics published literature, is proposed to demonstrate the actual possibility to improve the precision of radiotherapy treatment planning.

  13. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias

    SciTech Connect

    Philip, P.; Pedersen-Bjergaard, J.

    1988-04-01

    From 1978 to 1985, we observed eight cases of acute nonlymphocytic leukemia or preleukemia, three cases of acute lymphoblastic leukemia, and three cases of chronic myeloid leukemia in patients previously treated exclusively with radiotherapy for other tumor types. The latent period from administration of radiotherapy to development of leukemia varied between 12 and 243 months. Clonal chromosome aberrations reported previously as characteristic of acute nonlymphocytic leukemia following therapy with alkylating agents were observed in three of the eight patients with acute nonlymphocytic leukemia (5q- and -7) and in two of the three patients with acute lymphoblastic leukemia (-7 and 12p-). All three patients with radiotherapy-related chronic myeloid leukemia presented a t(9;22)(q34;q11). The results suggest that cytogenetic characteristics may reflect the etiology in radiation-induced acute leukemias, whereas radiation-related chronic myeloid leukemia does not seem to differ chromosomally from de novo cases of the disease.

  14. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance.

    PubMed

    Choi, Won Hoon; Cho, Jaeho

    2016-02-01

    Radiotherapy, which is one of three major cancer treatment methods in modern medicine, has continued to develop for a long period, more than a century. The development of radiotherapy means allowing the administration of higher doses to tumors to improve tumor control rates while minimizing the radiation doses absorbed by surrounding normal tissues through which radiation passes for administration to tumors, thereby reducing or removing the incidence of side effects. Such development of radiotherapy was accomplished by the development of clinical radiation oncology, the development of computers and machine engineering, the introduction of cutting-edge imaging technology, a deepened understanding of biological studies on the effects of radiation on human bodies, and the development of quality assurance (QA) programs in medical physics. The development of radiotherapy over the last two decades has been quite dazzling. Due to continuous improvements in cancer treatment, the average five-year survival rate of cancer patients has been close to 70%. The increases in cancer patients' complete cure rates and survival periods are making patients' quality of life during or after treatment a vitally important issue. Radiotherapy is implemented in approximately 1/3 to 2/3s of all cancer patients; and has improved the quality of life of cancer patients in the present age. Over the last century, as a noninvasive treatment, radiotherapy has unceasingly enhanced complete tumor cure rates and the side effects of radiotherapy have been gradually decreasing, resulting in a tremendous improvement in the quality of life of cancer patients.

  15. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance

    PubMed Central

    Choi, Won Hoon

    2016-01-01

    Radiotherapy, which is one of three major cancer treatment methods in modern medicine, has continued to develop for a long period, more than a century. The development of radiotherapy means allowing the administration of higher doses to tumors to improve tumor control rates while minimizing the radiation doses absorbed by surrounding normal tissues through which radiation passes for administration to tumors, thereby reducing or removing the incidence of side effects. Such development of radiotherapy was accomplished by the development of clinical radiation oncology, the development of computers and machine engineering, the introduction of cutting-edge imaging technology, a deepened understanding of biological studies on the effects of radiation on human bodies, and the development of quality assurance (QA) programs in medical physics. The development of radiotherapy over the last two decades has been quite dazzling. Due to continuous improvements in cancer treatment, the average five-year survival rate of cancer patients has been close to 70%. The increases in cancer patients’ complete cure rates and survival periods are making patients’ quality of life during or after treatment a vitally important issue. Radiotherapy is implemented in approximately 1/3 to 2/3s of all cancer patients; and has improved the quality of life of cancer patients in the present age. Over the last century, as a noninvasive treatment, radiotherapy has unceasingly enhanced complete tumor cure rates and the side effects of radiotherapy have been gradually decreasing, resulting in a tremendous improvement in the quality of life of cancer patients. PMID:26908993

  16. Clinical trial of thalidomide combined with radiotherapy in patients with esophageal cancer

    PubMed Central

    Yu, Jing-Ping; Sun, Su-Ping; Sun, Zhi-Qiang; Ni, Xin-Chu; Wang, Jian; Li, Yi; Hu, Li-Jun; Li, Dong-Qing

    2014-01-01

    AIM: To investigate the short-term efficacy and tolerability of radiotherapy plus thalidomide in patients with esophageal cancer (EC). METHODS: Serum samples from 86 EC patients were collected before, during, and after radiotherapy, and the vascular endothelial growth factor (VEGF) level was examined by ELISA. According to the change in serum VEGF level during radiotherapy, the patients were divided into two groups: in the drug group, VEGF level was increased or remained unchanged, and thalidomide was administered up to the end of radiotherapy; in the non-drug group, VEGF level was decreased and radiotherapy was given alone. Thirty healthy volunteers served as controls. The efficacy and safety of radiotherapy plus thalidomide therapy were investigated. RESULTS: The 86 EC patients had a significantly higher level of VEGF compared with the 30 healthy controls before radiotherapy (P < 0.01), and the VEGF level was significantly correlated with primary tumor size, lymph node metastasis, histopathologic type, and clinical stage (P < 0.01). Of 83 evaluable cases, VEGF level was significantly decreased after radiotherapy in 32 patients in the drug group (P < 0.05), with an effective rate of 71.88%. The incidence of dizziness and/or burnout in the drug group and non-drug group was 62.50% and 15.69%, respectively (P = 0.000), and the incidence of somnolence was 12.50% and 0%, respectively (P = 0.019). No significant differences were observed. CONCLUSION: Thalidomide can down-regulate serum VEGF level in EC patients, and combined with radiotherapy may improve treatment outcome. Thalidomide was well tolerated by EC patients. PMID:24803825

  17. Development of online quality assurance automation tool "SmartQC" for radiotherapy clinics

    NASA Astrophysics Data System (ADS)

    Zaks, Daniel

    Radiotherapy has existed as a clinical medical procedure since as early as 1900, and has become an essential component of modern hospitals. It is predicted that, sometime between the years 2010 and 2020, the number of patients receiving radiation therapy during their initial treatment is expected to rise by 22% from 470,000 per year to 575,000 per year Due to the potential for harm in radiotherapy, quality assurance is an essential element at every stage of modern clinical workflow. The quality and use of time in QA procedures and checks is an important issue that has significant impact on both practice and research in the field of radiotherapy. This thesis documents the results of development and results of tools addressing that question. While the motivation for radiotherapy QA is principally about improving quality of patient care, and developing radiotherapy research tools, we also discuss the relevance of QA to radiotherapy malpractice lawsuits and related financial costs. We show that in the treatment plan check performed by the medical physicist---also known as the second check or physics check---a substantial fraction (~33%) of the average time is spent on non-physics related analysis. We also demonstrate the development and implementation of a web-based system, referred to as PlanTracker within this thesis, to track the status of the plan. This thesis concludes with further developments being considered as an outgrowth of this system.

  18. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  19. Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Fukumura, Akifumi; Komori, Masataka; Kanai, Tatsuaki; Kohno, Toshiyuki

    2003-06-01

    The production of projectile fragments is one of the most important, but not yet perfectly understood, problems to be considered when planning for the utilization of high-energy heavy charged particles for radiotherapy. This paper reports our investigation of the fragments' fluence and linear energy transfer (LET) spectra produced from various incident ions using an experimental approach to reveal these physical qualities of the beams. Polymethyl methacrylate, as a substitute for the human body, was used as a target. A ΔE-E counter telescope with a plastic scintillator and a BGO scintillator made it possible to identify the species of fragments based on differences of various elements. By combining a gas-flow proportional counter with a counter telescope system, LET spectra as well as fluence spectra of the fragments were derived for each element down from the primary particles to hydrogen. Among them, the information on hydrogen and helium fragments was derived for the first time. The result revealed that the number of light fragments, such as hydrogen and helium, became larger than the number of primaries in the vicinity of the range end. However, the greater part of the dose delivered to a cell was still governed by the primaries. The calculated result of a simulation used for heavy-ion radiotherapy indicated room for improving the reaction model.

  20. Pre-clinical research in small animals using radiotherapy technology--a bidirectional translational approach.

    PubMed

    Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang

    2014-12-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained.

  1. Phase I/II Clinical Trial of Carbon Ion Radiotherapy for Malignant Gliomas: Combined X-Ray Radiotherapy, Chemotherapy, and Carbon Ion Radiotherapy

    SciTech Connect

    Mizoe, Jun-Etsu Tsujii, Hirohiko; Hasegawa, Azusa D.D.S.; Yanagi, Tsuyoshi; Takagi, Ryo D.D.S.; Kamada, Tadashi; Tsuji, Hiroshi; Takakura, Kintomo

    2007-10-01

    Purpose: To report the results of a Phase I/II clinical trial for patients with malignant gliomas, treated with combined X-ray radiotherapy (XRT), chemotherapy, and carbon ion radiotherapy (CRT). Methods and Materials: Between October 1994 and February 2002, 48 patients with histologically confirmed malignant gliomas (16 anaplastic astrocytoma (AA) and 32 glioblastoma multiforme (GBM) were enrolled in a Phase I/II clinical study. The treatment involved the application of 50 Gy/25 fractions/5 weeks of XRT, followed by CRT at 8 fractions/2 weeks. Nimustine hydrochloride (ACNU) were administered at a dose of 100 mg/m{sup 2} concurrently in weeks 1, 4, or 5 of XRT. The carbon ion dose was increased from 16.8 to 24.8 Gray equivalent (GyE) in 10% incremental steps (16.8, 18.4, 20.0, 22.4, and 24.8 GyE, respectively). Results: There was no Grade 3 or higher acute reaction in the brain. The late reactions included four cases of Grade 2 brain morbidity and four cases of Grade 2 brain reaction among 48 cases. The median survival time (MST) of AA patients was 35 months and that of GBM patients 17 months (p = 0.0035). The median progression-free survival and MST of GBM showed 4 and 7 months for the low-dose group, 7 and 19 months for the middle-dose group, and 14 and 26 months for the high-dose group. Conclusion: The results of combined therapy using XRT, ACNU chemotherapy, and CRT showed the potential efficacy of CRT for malignant gliomas in terms of the improved survival rate in those patients who received higher carbon doses.

  2. Clinical tolerance in large field radiotherapy--the knowledge gained over the last ten years.

    PubMed

    Gocheva, Lilia B

    2010-01-01

    Malignant disorders are still far from being successfully managed in spite of the apparent progress achieved by surgical treatment, high energy radiotherapy (RT) and chemotherapy (CHT). They keep being the second most frequent cause of lethal outcomes both in Bulgaria and in most countries of the world. One of the promising approaches to increasing the efficaciousness of treatment is development and use of methods that are in full accord with the modern requirements of a complex therapy. Over the last fifty years, large field radiation techniques, applied as systemic therapy in oncology, have been investigated and established. These techniques show the transition in oncology to using actively various variants of large field radiotherapy (LFR), the "heavy artillery" of oncoradiologic practice, as an alternative or adjunct therapy to chemotherapy (CHT). In the present paper we review the current knowledge in the field and present the clinical experience accumulated over the last ten years with respect to clinical tolerance in the major large-field radiotherapy techniques--total body irradiation, half body irradiation, whole abdominal irradiation, total and partial lymphoid irradiation. Described in detail are the contemporary knowledge about clinical and hematologic tolerance in total body irradiation as part of the myelo- and nonmyeloablative conditioning regimens as well as in half body irradiation as a systemic therapy in oncology. We also present the amassed experience in clinical tolerance in partial body irradiation in the form of whole abdominal and total or partial lymphoid irradiation. Another point worth noting based again on the experience gained over the last ten years is that for LFR we need to develop a radiotherapy technique that is designed carefully to achieve an optimal therapeutic effect that should include the disease control, good clinical tolerance and reduction of post-radiotherapy sequelae.

  3. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy

    PubMed Central

    Watanabe, Mariko; Suzuki, Hiroyuki; Furusawa, Yoshiya; Arano, Yasushi

    2017-01-01

    L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects

  4. In Silico Simulation of a Clinical Trial Concerning Tumour Response to Radiotherapy

    SciTech Connect

    Dionysiou, Dimitra D.; Stamatakos, Georgios S.; Athanaileas, Theodoras E.; Merrychtas, Andreas; Kaklamani, Dimitra; Varvarigou, Theodora; Uzunoglu, Nikolaos

    2008-11-06

    The aim of this paper is to demonstrate how multilevel tumour growth and response to therapeutic treatment models can be used in order to simulate clinical trials, with the long-term intention of both better designing clinical studies and understanding their outcome based on basic biological science. For this purpose, an already developed computer simulation model of glioblastoma multiforme response to radiotherapy has been used and a clinical study concerning glioblastoma multiforme response to radiotherapy has been simulated. In order to facilitate the simulation of such virtual trials, a toolkit enabling the user-friendly execution of the simulations on grid infrastructures has been designed and developed. The results of the conducted virtual trial are in agreement with the outcome of the real clinical study.

  5. In Silico Simulation of a Clinical Trial Concerning Tumour Response to Radiotherapy

    NASA Astrophysics Data System (ADS)

    Dionysiou, Dimitra D.; Stamatakos, Georgios S.; Athanaileas, Theodoras E.; Merrychtas, Andreas; Kaklamani, Dimitra; Varvarigou, Theodora; Uzunoglu, Nikolaos

    2008-11-01

    The aim of this paper is to demonstrate how multilevel tumour growth and response to therapeutic treatment models can be used in order to simulate clinical trials, with the long-term intention of both better designing clinical studies and understanding their outcome based on basic biological science. For this purpose, an already developed computer simulation model of glioblastoma multiforme response to radiotherapy has been used and a clinical study concerning glioblastoma multiforme response to radiotherapy has been simulated. In order to facilitate the simulation of such virtual trials, a toolkit enabling the user-friendly execution of the simulations on grid infrastructures has been designed and developed. The results of the conducted virtual trial are in agreement with the outcome of the real clinical study.

  6. International data-sharing for radiotherapy research: An open-source based infrastructure for multicentric clinical data mining

    PubMed Central

    Meldolesi, Elisa; van Stiphout, Ruud G.P.M.

    2016-01-01

    Extensive, multifactorial data sharing is a crucial prerequisite for current and future (radiotherapy) research. However, the cost, time and effort to achieve this are often a roadblock. We present an open-source based data-sharing infrastructure between two radiotherapy departments, allowing seamless exchange of de-identified, automatically translated clinical and biomedical treatment data. PMID:24309199

  7. International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining.

    PubMed

    Roelofs, Erik; Dekker, André; Meldolesi, Elisa; van Stiphout, Ruud G P M; Valentini, Vincenzo; Lambin, Philippe

    2014-02-01

    Extensive, multifactorial data sharing is a crucial prerequisite for current and future (radiotherapy) research. However, the cost, time and effort to achieve this are often a roadblock. We present an open-source based data-sharing infrastructure between two radiotherapy departments, allowing seamless exchange of de-identified, automatically translated clinical and biomedical treatment data.

  8. Can Aidi injection alleviate the toxicity and improve the clinical efficacy of radiotherapy in lung cancer?

    PubMed Central

    Xiao, Zheng; Liang, Rui; Wang, Cheng-qiong; Xu, Shaofeng; Li, Nana; He, Yuejuan; Tang, Fushan; Chen, Ling; Ma, Hu

    2016-01-01

    Abstract Background/Introduction: Aidi injection plus radiotherapy is widely used for lung cancer in China. Can Aidi injection alleviate the toxicity and improve the clinical efficacy of radiotherapy in lung cancer? Has Aidi injection the attenuation and synergistic efficacy to radiotherapy? There is lack of strong evidence to prove it. Objectives: To reveal its real attenuation and synergistic efficacy to radiotherapy and provide sufficient evidence for adjuvant chemotherapy strategies to lung cancer, we systematically evaluated all related studies. Data Sources: We collected all studies about Aidi injection plus radiotherapy for lung cancer in Medline, Embase, Web of Science, China national knowledge infrastructure database (CNKI), Chinese scientific journals full-text database (VIP), Wanfang database, China biological medicine database (CBM) (established to June 2015), and Cochrane Central Register of Controlled Trials (June 2015), evaluated their quality according to the Cochrane evaluation handbook of randomized controlled trials (5.1.0), extracted data following the PICO principles and synthesized the data by Meta analysis. Results: Sixteen randomized controlled trials (RCTs) with 1192 lung cancer patients were included, with general methodological quality in most trials. The merged relative risk (RR) values and their 95% CI of meta-analysis for objective response rate (ORR), disease control rate (DCR), and quality of life (QOL) were as follows: 1.54, (1.39,1.70), 1.10 (1.02, 1.19), and 2.13 (1.68, 2.68). The merged RR values and their 95% CI of meta-analysis for myelosuppression and neutropenia, radiation pneumonitis, and radiation esophagitis were as follows: 0.51 (0.38, 0.69), 0.53 (0.42, 0.65), 0.52 (0.41, 0.67), and 0.52 (0.40, 0.68). All were statistically significant. The possibility of publication bias was small which objectively reported the results. Conclusions: The evidence available indicates that Aidi injection plus radiotherapy can significantly

  9. Estimating Cardiac Exposure From Breast Cancer Radiotherapy in Clinical Practice

    SciTech Connect

    Taylor, C.W. McGale, P.; Povall, J.M.; Thomas, E.; Kumar, S.; Dodwell, D.; Darby, S.C.

    2009-03-15

    Purpose: To assess the value of maximum heart distance (MHD) in predicting the dose and biologically effective dose (BED) to the heart and the left anterior descending (LAD) coronary artery for left-tangential breast or chest wall irradiation. Methods and Materials: A total of 50 consecutive breast cancer patients given adjuvant left-tangential irradiation at a large U.K. radiotherapy center during 2006 were selected. For each patient, the following were derived using three-dimensional computed tomography (CT) planning: (1) mean dose and BED to the heart, (2) mean dose and BED to the LAD coronary artery, (3) MHD, (4) position of the CT slice showing the maximum area of the irradiated heart relative to the mid-plane slice, and (5) sternal and contralateral breast thickness (measures of body fat). Results: A strong linear correlation was found between the MHD and the mean heart dose. For every 1-cm increase in MHD, the mean heart dose increased by 2.9% on average (95% confidence interval 2.5-3.3). A strong linear-quadratic relationship was seen between the MHD and the mean heart BED. The mean LAD coronary artery dose and BED were also correlated with the MHD but the associations were weaker. These relationships were not affected by body fat. The mid-plane CT slice did not give a reliable assessment of cardiac irradiation. Conclusion: The MHD is a reliable predictor of the mean heart dose and BED and gives an approximate estimate of the mean LAD coronary artery dose and BED. Doses predicted by the MHD could help assess the risk of radiation-induced cardiac toxicity where individual CT-based cardiac dosimetry is not possible.

  10. Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model

    SciTech Connect

    Johnstone, P.A.S.; DeLuca, A.M.; Terrill, R.E.

    1995-07-15

    The clinical late effects of intraoperative radiotherapy (IORT) on peripheral nerve were investigated in a foxhound model. Between 1982 and 1987, 40 animals underwent laparotomy with intraoperative radiotherapy of doses from 0-75 Gy administered to the right lumbosacral plexus. Subsequently, all animals were monitored closely and sacrificed to assess clinical effects to peripheral nerve. This analysis reports final clinical results of all animals, with follow-up to 5 years. All animals treated with {>=} 25 Gy developed ipsilateral neuropathy. An inverse relationship was noted between intraoperative radiotherapy dose and time to neuropathy, with an effective dose for 50% paralysis (ED{sub 50}) of 17.2 Gy. One of the animals treated with 15 Gy IORT developed paralysis, after a much longer latency than the other animals. Doses of 15 Gy delivered intraoperatively may be accompanied by peripheral neuropathy with long-term follow-up. This threshold is less than that reported with shorter follow-up. The value of ED{sub 50} determined here is in keeping with data from other animal trials, and from clinical trials in humans. 11 refs., 2 figs.

  11. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  12. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    PubMed

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  13. Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer

    NASA Astrophysics Data System (ADS)

    Winkel, D.; Bol, G. H.; van Asselen, B.; Hes, J.; Scholten, V.; Kerkmeijer, L. G. W.; Raaymakers, B. W.

    2016-12-01

    To develop an automated radiotherapy treatment planning and optimization workflow to efficiently create patient specifically optimized clinical grade treatment plans for prostate cancer and to implement it in clinical practice. A two-phased planning and optimization workflow was developed to automatically generate 77Gy 5-field simultaneously integrated boost intensity modulated radiation therapy (SIB-IMRT) plans for prostate cancer treatment. A retrospective planning study (n  =  100) was performed in which automatically and manually generated treatment plans were compared. A clinical pilot (n  =  21) was performed to investigate the usability of our method. Operator time for the planning process was reduced to  <5 min. The retrospective planning study showed that 98 plans met all clinical constraints. Significant improvements were made in the volume receiving 72Gy (V72Gy) for the bladder and rectum and the mean dose of the bladder and the body. A reduced plan variance was observed. During the clinical pilot 20 automatically generated plans met all constraints and 17 plans were selected for treatment. The automated radiotherapy treatment planning and optimization workflow is capable of efficiently generating patient specifically optimized and improved clinical grade plans. It has now been adopted as the current standard workflow in our clinic to generate treatment plans for prostate cancer.

  14. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    SciTech Connect

    Keall, Paul . E-mail: pjkeall@vcu.edu; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-07-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer.

  15. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future.

  16. Clinical problems in radiotherapy of carcinoma of the pancreas

    SciTech Connect

    Castro, J.R.; Saunders, W.M.; Quivey, J.M.; Chen, G.T.; Collier, J.M.; Woodruff, K.H.; Lyman, J.T.; Twomey, P.; Frey, C.; Phillips, T.L.

    1982-01-01

    Since 1975, 94 patients with localized unresectable carcinoma of the pancreas have been irradiated using helium and heavier particles at the University of California Lawrence Berkeley Laboratory. Despite surgical exploration and an extensive diagnostic workup including radiological, nuclear medicine, and computer-assisted tomographic studies, many patients proved to have occult liver metastases manifested within 9 months post treatment. In addition, local and regional control of the primary neoplasm (approx.20%) has been difficult to obtain even with doses of 6000 equivalent rad in 7 1/2 weeks. Gastric and biliary obstruction have required surgical bypass procedures since irradiation has not been successful in relieving obstructive symptoms. Evidence of gastrointestinal injury has been present in postradiation therapy in approximately 10% of patients, a figure which might be higher if more patients had a longer survival (average 10 months). Some patients require pancreatic enzyme supplementation because of pancreatic deficiency either secondary to tumor or treatment.

  17. External beam radiotherapy in thyroid carcinoma: clinical review and recommendations of the AIRO "Radioterapia Metabolica" Group.

    PubMed

    Mangoni, Monica; Gobitti, Carlo; Autorino, Rosa; Cerizza, Lorenzo; Furlan, Carlo; Mazzarotto, Renzo; Monari, Fabio; Simontacchi, Gabriele; Vianello, Federica; Basso, Michela; Zanirato Rambaldi, Giuseppe; Russi, Elvio; Tagliaferri, Luca

    2017-03-24

    The therapeutic approach to thyroid carcinoma usually involves surgery as initial treatment. The use of external beam radiotherapy (EBRT) is limited to high-risk patients and depends on clinical stage and histologic type. Different behavior patterns and degrees of aggressiveness of thyroid carcinomas require different management for differentiated, medullary, and anaplastic carcinoma. However, the role of EBRT is an issue of debate. Most clinical studies are retrospective and based on single-institution experiences. In this article, we review the main literature and give recommendations for the use of EBRT in thyroid carcinoma on behalf of the "Radioterapia Metabolica" Group of the Italian Radiation Oncology Association.

  18. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    SciTech Connect

    Wiegner, Ellen A.; King, Christopher R.

    2010-10-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged {>=}70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  19. Particle beam therapy (hadrontherapy): basis for interest and clinical experience.

    PubMed

    Orecchia, R; Zurlo, A; Loasses, A; Krengli, M; Tosi, G; Zurrida, S; Zucali, P; Veronesi, U

    1998-03-01

    The particle or hadron beams deployed in radiotherapy (protons, neutrons and helium, carbon, oxygen and neon ions) have physical and radiobiological characteristics which differ from those of conventional radiotherapy beams (photons) and which offer a number of theoretical advantages over conventional radiotherapy. After briefly describing the properties of hadron beams in comparison to photons, this review discusses the indications for hadrontherapy and analyses accumulated experience on the use of this modality to treat mainly neoplastic lesions, as published by the relatively few hadrontherapy centres operating around the world. The analysis indicates that for selected patients and tumours (particularly uveal melanomas and base of skull/spinal chordomas and chondrosarcomas), hadrontherapy produces greater disease-free survival. The advantages of hadrontherapy are most promisingly realised when used in conjunction with modern patient positioning, radiation delivery and focusing techniques (e.g. on-line imaging, three-dimensional conformal radiotherapy) developed to improve the efficacy of photon therapy. Although the construction and running costs of hadrontherapy units are considerably greater than those of conventional facilities, a comprehensive analysis that considers all the costs, particularly those resulting from the failure of less effective conventional radiotherapy, might indicate that hadrontherapy could be cost effective. In conclusion, the growing interest in this form of treatment seems to be fully justified by the results obtained to date, although more efficacy and dosing studies are required.

  20. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars

    PubMed Central

    Fernandez-Gonzalo, Rodrigo; Baatout, Sarah; Moreels, Marjan

    2017-01-01

    Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed. PMID:28275377

  1. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars.

    PubMed

    Fernandez-Gonzalo, Rodrigo; Baatout, Sarah; Moreels, Marjan

    2017-01-01

    Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed.

  2. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    SciTech Connect

    Ward, Matthew Christopher Pham, Yvonne D.; Kotecha, Rupesh; Zakem, Sara J.; Murray, Eric; Greskovich, John F.

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literature are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.

  3. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials-Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    SciTech Connect

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T.J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Thomas E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; and others

    2012-07-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  4. External Beam Radiotherapy for Clinically Localized Hormone-Refractory Prostate Cancer: Clinical Significance of Nadir Prostate-Specific Antigen Value Within 12 Months

    SciTech Connect

    Ogawa, Kazuhiko Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Shioyama, Yoshiyuki; Araya, Masayuki; Mukumoto, Nobutaka M.S.; Mitsumori, Michihide; Teshima, Teruki

    2009-07-01

    Purpose: To analyze retrospectively the results of external beam radiotherapy for clinically localized hormone-refractory prostate cancer and investigate the clinical significance of nadir prostate-specific antigen (PSA) value within 12 months (nPSA12) as an early estimate of clinical outcomes after radiotherapy. Methods and Materials: Eighty-four patients with localized hormone-refractory prostate cancer treated with external beam radiotherapy were retrospectively reviewed. The total radiation doses ranged from 30 to 76 Gy (median, 66 Gy), and the median follow-up period for all 84 patients was 26.9 months (range, 2.7-77.3 months). Results: The 3-year actuarial overall survival, progression-free survival (PFS), and local control rates in all 84 patients after radiotherapy were 67%, 61%, and 93%, respectively. Although distant metastases and/or regional lymph node metastases developed in 34 patients (40%) after radiotherapy, local progression was observed in only 5 patients (6%). Of all 84 patients, the median nPSA12 in patients with clinical failure and in patients without clinical failure was 3.1 ng/mL and 0.5 ng/mL, respectively. When dividing patients according to low (<0.5 ng/mL) and high ({>=}0.5 ng/mL) nPSA12 levels, the 3-year PFS rate in patients with low nPSA12 and in those with high nPSA12 was 96% and 44%, respectively (p < 0.0001). In univariate analysis, nPSA12 and pretreatment PSA value had a significant impact on PFS, and in multivariate analysis nPSA12 alone was an independent prognostic factor for PFS after radiotherapy. Conclusions: External beam radiotherapy had an excellent local control rate for clinically localized hormone-refractory prostate cancer, and nPSA12 was predictive of clinical outcomes after radiotherapy.

  5. Predictors for Clinical Outcomes After Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Reeder, Reed; Carter, Dennis L. Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Johnson, Tim; Kercher, Jane; Widner, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Leonard, Charles E.

    2009-05-01

    Purpose: To correlate the treatment planning parameters with the clinical outcomes in patients treated with accelerated partial breast intensity-modulated radiotherapy. Methods and Materials: A total of 105 patients with Stage I breast cancer were treated between February 2004 and March 2007 in a Phase II prospective trial and had detailed information available on the planning target volume (PTV), ipsilateral breast volume (IBV), PTV/IBV ratio, lung volume, chest wall volume, surgery to radiotherapy interval, follow-up interval, breast pain, and cosmesis. The first 7 of these patients were treated to 34 Gy, and the remaining 98 were treated to 38.5 Gy. All patients were treated twice daily for 5 consecutive days. Univariate and multivariate analyses were performed. Results: The median follow-up was 13 months. No recurrences or deaths were observed. Of the 105 patients, 30 reported mild or moderate breast pain in their most recently recorded follow-up visit. The irradiated lung volume (p < 0.05) and chest wall volume receiving >35 Gy (p < 0.01) were associated with pain. The PTV, but not the PTV/IBV ratio, also correlated with pain (p < 0.01 and p = 0.42, respectively). A total of 72 patients reported excellent, 32 reported good, and 1 reported poor cosmesis. Physician-rated cosmesis reported 90 excellent and 15 good. None of the tested variables correlated with the cosmetic outcomes. Conclusion: Radiotherapy to the chest wall (chest wall volume receiving >35 Gy) and to lung correlated with reports of mild pain after accelerated partial breast intensity-modulated radiotherapy. Also, the PTV, but not the PTV/IBV ratio, was predictive of post-treatment reports of pain.

  6. Intensity-modulated radiotherapy in high-grade gliomas: Clinical and dosimetric results

    SciTech Connect

    Narayana, Ashwatha . E-mail: narayana@mskcc.org; Yamada, Josh; Berry, Sean; Shah, Priti B.S.; Hunt, Margie; Gutin, Philip H.; Leibel, Steven A.

    2006-03-01

    Purpose: To report preliminary clinical and dosimetric data from intensity-modulated radiotherapy (IMRT) for malignant gliomas. Methods and Materials: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach. A dose of 59.4-60 Gy at 1.8-2.0 Gy per fraction was delivered. A total of three to five noncoplanar beams were used to cover at least 95% of the target volume with the prescription isodose line. Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases. Surgery consisted of biopsy only in 26% of the patients, and 80% received adjuvant chemotherapy. Results: With a median follow-up of 24 months, 85% of the patients have relapsed. The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively. The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively. Ninety-six percent of the recurrences were local. No Grade IV/V late neurologic toxicities were noted. A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning. However, IMRT resulted in a decreased maximum dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively, owing to its improved dose conformality. The mean brainstem dose also decreased by 7%. Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain. Conclusions: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy. However, it might result in decreased late toxicities associated with radiotherapy.

  7. Effective particle energies for stopping power calculation in radiotherapy treatment planning with protons and helium, carbon, and oxygen ions

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2016-10-01

    The stopping power ratio (SPR) of body tissues relative to water depends on the particle energy. For simplicity, however, most analytical dose planning systems do not account for SPR variation with particle energy along the beam’s path, but rather assume a constant energy for SPR estimation. The range error due to this simplification could be indispensable depending on the particle species and the assumed energy. This error can be minimized by assuming a suitable energy referred to as an ‘effective energy’ in SPR estimation. To date, however, the effective energy has never been investigated for realistic patient geometries. We investigated the effective energies for proton, helium-, carbon-, and oxygen-ion radiotherapy using volumetric models of the reference male and female phantoms provided by the International Commission on Radiological Protection (ICRP). The range errors were estimated by comparing the particle ranges calculated when particle energy variations were and were not considered. The effective energies per nucleon for protons and helium, carbon, and oxygen ions were 70 MeV, 70 MeV, 131 MeV, and 156 MeV, respectively. Using the determined effective energies, the range errors were reduced to  ⩽0.3 mm for respective particle species. For SPR estimation of multiple particle species, an effective energy of 100 MeV is recommended, with which the range error is  ⩽0.5 mm for all particle species.

  8. Does a too risk-averse approach to the implementation of new radiotherapy technologies delay their clinical use?

    PubMed Central

    Nyström, H; Fiorino, C; Thwaites, D

    2015-01-01

    Radiotherapy is a generally safe treatment modality in practice; nevertheless, recent well-reported accidents also confirm its potential risks. However, this may obstruct or delay the introduction of new technologies and treatment strategies/techniques into clinical practice. Risks must be addressed and judged in a realistic context: risks must be assessed realistically. Introducing new technology may introduce new possibilities of errors. However, delaying the introduction of such new technology therefore means that patients are denied the potentially better treatment opportunities. Despite the difficulty in quantitatively assessing the risks on both sides of the possible choice of actions, including the “lost opportunity”, the best estimates should be included in the overall risk–benefit and cost–benefit analysis. Radiotherapy requires a sufficiently high level of support for the safety, precision and accuracy required: radiotherapy development and implementation is exciting. However, it has been anxious with a constant awareness of the consequences of mistakes or misunderstandings. Recent history can be used to show that for introduction of advanced radiotherapy, the risk-averse medical physicist can act as an electrical fuse in a complex circuit. The lack of sufficient medical physics resource or expertise can short out this fuse and leave systems unsafe. Future technological developments will continue to present further safety and risk challenges. The important evolution of radiotherapy brings different management opinions and strategies. Advanced radiotherapy technologies can and should be safely implemented in as timely a manner as possible for the patient groups where clinical benefit is indicated. PMID:25993488

  9. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    PubMed

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  10. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays

    PubMed Central

    Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics. PMID:26642305

  11. Clinical and biochemical evaluation of the saliva of patients with xerostomia induced by radiotherapy.

    PubMed

    de Barros Pontes, Cássio; Polizello, Ana Cristina Morseli; Spadaro, Augusto César Cropanese

    2004-01-01

    Clinical aspects and biochemical properties in the saliva of 21 patients prior to and following radiotherapy for head and neck cancer were evaluated (experimental group) and compared with the same properties in a control group of 21 subjects free of cancer. Salivary flow was evaluated by measuring the time necessary, in seconds, for the output of 2 ml of stimulated saliva; and the buffering capacity changes were determined using a simple colorimetric method. Total salivary protein concentration was determined by the Bradford 4 method. Amylase activity was measured by reducing sugars released from a soluble starch substrate, quantified by the dinitrosalicylic method. The electrophoretic profile was evaluated in polyacrylamide gel (12% SDS-PAGE) using samples of 5 mg of salivary protein. A statistically significant reduction (p < 0.01) of the salivary flow was observed, (162.47 s +/- 28.30 before and 568.71 s +/- 79.75 after irradiation), as well as a reduction in the salivary buffering capacity (pH 5.45 +/- 0.14 before and pH 4.40 +/- 0.15 after irradiation). No statistically significant alteration was observed in total salivary protein concentration. A statistically significant reduction (p < 0.01) of salivary alpha-amylase activity (856.6 ng/mg +/- 88.0 before and 567.0 ng/mg +/- 120.6 after irradiation) was observed. Electrophoretic profile differences in salivary protein bands were also observed after radiotherapy, mainly in the range of molecular weight of 72000 to 55000 Daltons. Clinically, patients presenting xerostomia induced by radiotherapy presented an increase in oral tissue injury.

  12. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning.

    PubMed

    Li, Yongjie; Yao, Dezhong; Yao, Jonathan; Chen, Wufan

    2005-08-07

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated.

  13. The Clinical Outcome of Hypofractionated Stereotactic Radiotherapy With CyberKnife Robotic Radiosurgery for Perioptic Pituitary Adenoma.

    PubMed

    Puataweepong, Putipun; Dhanachai, Mantana; Hansasuta, Ake; Dangprasert, Somjai; Swangsilpa, Thiti; Sitathanee, Chomporn; Jiarpinitnun, Chuleeporn; Vitoonpanich, Patamintita; Yongvithisatid, Pornpan

    2016-12-01

    Stereotactic radiation technique including single fraction radiosurgery and conventional fractionated stereotactic radiotherapy is widely reported as an effective treatment of pituitary adenomas. Because of the restricted radiation tolerance dose of the optic pathway, single fraction radiosurgery has been accepted for small tumor located far away from the optic apparatus, while fractionated stereotactic radiotherapy may be suitable for larger tumor located close to the optic pathway. More recently, hypofractionated stereotactic radiotherapy has become an alternative treatment option that provides high rate of tumor control and visual preservation for the perioptic lesions within 2 to 3 mm of the optic pathway. The objective of the study was to analyze the clinical outcomes of perioptic pituitary adenomas treated with hypofractionated stereotactic radiotherapy. From 2009 to 2012, 40 patients with perioptic pituitary adenoma were treated with CyberKnife robotic radiosurgery. The median tumor volume was 3.35 cm(3) (range, 0.82-25.86 cm(3)). The median prescribed dose was 25 Gy (range, 20-28 Gy) in 5 fractions (range, 3-5). After the median follow-up time of 38.5 months (range, 14-71 months), 1 (2.5%) patient with prolactinoma had tumor enlargement, 31 (77.5%) were stable, and the remaining 8 (20%) tumors were smaller in size. No patient's vision deteriorated after hypofractionated stereotactic radiotherapy. Hormone normalization was observed in 7 (54%) of 13 patients. No newly developed hypopituitarism was detected in our study. These data confirmed that hypofractionated stereotactic radiotherapy achieved high rates of tumor control and visual preservation. Because of the shorter duration of treatment, it may be preferable to use hypofractionated stereotactic radiotherapy over fractionated stereotactic radiotherapy for selected pituitary adenomas immediately adjacent to the optic apparatus.

  14. A controlled clinical trial of misonidazole in the radiotherapy of patients with carcinoma of the bronchus

    SciTech Connect

    Saunders, M.I.; Anderson, P.; Dische, S.; Martin, W.M.C.

    1982-03-01

    In 1977, during the initial development period of misonidazole, it was decided to start a double-blind randomized controlled clinical trial in carcinoma of bronchus, using a 6 fraction technique of radiotherapy. The patients included in the study were patients with squamous and large-cell undifferentiated carcinoma of the bronchus who were unsuitable for surgical resection, but where there was no evidence for metastases beyond the thorax. A total of 62 patients were randomized between January 1977 and September 1980. Tomography was performed at 2 monthly intervals and a particular effort was made to obtain post-mortem examinations. Fifty-four of the patients included have now died and post-mortems were obtained in 67%. Assessments of immediate tumor regression, tumor clearance, tumor regrowth and the findings at death were made. Thirty-three of the 62 patients were randomized to receive misonidazole and of these 12 (36%) showed peripheral neuropathy. No significant benefit was obtained with the use of misonidazole, as assessed by the parameters listed above. The full observation of those patients now dead showed that using a 6 fraction technique of radiotherapy, a complete tumor control was obtained in only 2. It was further found that the primary tumor was an important factor causing death in 85% of these patients. No evidence for distance metastases could be obtained in a considerable number of post-mortems. Among the possible reasons for the lack of benefit was the relatively low concentrations of sensitizer in the tumor, the advanced stage of disease and the 6 fraction technique of radiotherapy. The trial did, however, show that in a carefully selected group of patients the control of the primary tumor was important and that further efforts should be made to eradicate tumor.

  15. Process-based quality management for clinical implementation of adaptive radiotherapy

    SciTech Connect

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-08-15

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  16. Process-based quality management for clinical implementation of adaptive radiotherapy

    PubMed Central

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-01-01

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  17. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    SciTech Connect

    Pow, Edmond; Kwong, Dora; McMillan, Anne S. . E-mail: annemcmillan@hku.hk; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-11-15

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.

  18. Is Radiotherapy an Option for Early Breast Cancers With Complete Clinical Response After Neoadjuvant Chemotherapy?

    SciTech Connect

    Daveau, Caroline; Savignoni, Alexia; Abrous-Anane, Soumya; Pierga, Jean-Yves; Reyal, Fabien; Gautier, Chantal; Kirova, Youlia M.; Dendale, Remi; Campana, Francois; Fourquet, Alain; Bollet, Marc A.

    2011-04-01

    Purpose: To determine whether the exclusive use of radiotherapy (ERT) could be a treatment option after complete clinical response (cCR) to neoadjuvant chemotherapy (NCT) for early breast cancer (EBC). Methods and Materials: Between 1985 and 1999, 1,477 patients received NCT for EBC considered too large for primary conservative surgery. Of 165 patients with cCR, 65 patients were treated with breast surgery (with radiotherapy) and 100 patients were treated with ERT. Results: The two groups were comparable in terms of baseline characteristics, except for larger initial tumor sizes in the ERT group. There were no significant differences in overall, disease-free and metastasis-free survival rates. Five-year and 10-year overall survival rates were 91% and 77% in the no-surgery group and 82% and 79% in the surgery group, respectively (p = 0.9). However, a nonsignificant trend toward higher locoregional recurrence rates (LRR) was observed in the no-surgery group (31% vs. 17% at 10 years; p = 0.06). In patients with complete responses on mammography and/or ultrasound, LRR were not significantly different (p = 0.45, 10-year LRR: 21% in surgery vs. 26% in ERT). No significant differences were observed in terms of the rate of cutaneous, cardiac, or pulmonary toxicities. Conclusions: Surgery is a key component of locoregional treatment for breast cancers that achieved cCR to NCT.

  19. [Clinical to target volume margins determination in radiotherapy for anal cancers].

    PubMed

    Libois, V; Mahé, M-A; Rio, E; Maingon, P

    2016-10-01

    There are very few data on the expansion from the clinical target volume (CTV) to the planning target volume (PTV) in the anal cancer treatment. This article aims to collect the different elements needed for the construction of a PTV from scientific data based on a literature analysis. We reviewed the articles published in the medical literature from the last 20years. They concerned setup errors and internal organ mobility of the different volumes of patients treated by conformational radiotherapy and intensity-modulated radiotherapy (anal canal, meso-rectum, common, intern and extern, inguinal and pre-sacral lymph nodes). CTV to PTV margins admitted in the guidelines and atlas of consensus groups (SFRO, RTOG, AGITG) are from 0.7 to 1cm in all directions, based on expert's opinions but not on scientific data. There are no specific studies on the canal anal mobility. Most of the data are from other pelvis cancers (gynecologic, rectum and prostate). Setup errors can be reduced by daily imaging. Patient repositioning and immobilization modalities are mostly local habits rather than scientific consensus. A three-dimensional 1cm margin is generally admitted. Margins reduction must be careful and has to be assessed.

  20. Adaptive Radiotherapy for Head-and-Neck Cancer: Initial Clinical Outcomes From a Prospective Trial

    SciTech Connect

    Schwartz, David L.; Garden, Adam S.; Thomas, Jimmy; Chen Yipei; Zhang Yongbin; Lewin, Jan; Chambers, Mark S.; Dong, Lei

    2012-07-01

    Purpose: To present pilot toxicity and survival outcomes for a prospective trial investigating adaptive radiotherapy (ART) for oropharyngeal squamous cell carcinoma. Methods and Materials: A total of 24 patients were enrolled in an institutional review board-approved clinical trial; data for 22 of these patients were analyzed. Daily CT-guided setup and deformable image registration permitted serial mapping of clinical target volumes and avoidance structures for ART planning. Primary site was base of tongue in 15 patients, tonsil in 6 patient, and glossopharyngeal sulcus in 1 patient. Twenty patients (91%) had American Joint Committee on Cancer (AJCC) Stage IV disease. T stage distribution was 2 T1, 12 T2, 3 T3, 5 T4. N stage distribution was 1 N0, 2 N1, 5 N2a, 12 N2b, and 2 N2c. Of the patients, 21 (95%) received systemic therapy. Results: With a 31-month median follow-up (range, 13-45 months), there has been no primary site failure and 1 nodal relapse, yielding 100% local and 95% regional disease control at 2 years. Baseline tumor size correlated with absolute volumetric treatment response (p = 0.018). Parotid volumetric change correlated with duration of feeding tube placement (p = 0.025). Acute toxicity was comparable to that observed with conventional intensity-modulated radiotherapy (IMRT). Chronic toxicity and functional outcomes beyond 1 year were tabulated. Conclusion: This is the first prospective evaluation of morbidity and survival outcomes in patients with locally advanced head-and-neck cancer treated with automated adaptive replanning. ART can provide dosimetric benefit with only one or two mid-treatment replanning events. Our preliminary clinical outcomes document functional recovery and preservation of disease control at 1-year follow-up and beyond.

  1. Clinical Outcome of Hypofractionated Stereotactic Radiotherapy for Abdominal Lymph Node Metastases

    SciTech Connect

    Bignardi, Mario; Navarria, Piera; Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Tozzi, Angelo; Castiglioni, Simona; Carnaghi, Carlo; Tronconi, Maria Chiara; Santoro, Armando; Scorsetti, Marta

    2011-11-01

    Purpose: We report the medium-term clinical outcome of hypofractionated stereotactic body radiotherapy (SBRT) in a series of patients with either a solitary metastasis or oligometastases from different tumors to abdominal lymph nodes. Methods and Materials: Between January 2006 and June 2009, 19 patients with unresectable nodal metastases in the abdominal retroperitoneal region were treated with SBRT. Of the patients, 11 had a solitary nodal metastasis and 8 had a dominant nodal lesion as part of oligometastatic disease, defined as up to five metastases. The dose prescription was 45 Gy to the clinical target volume in six fractions. The prescription had to be downscaled by 10% to 20% in 6 of 19 cases to keep within dose/volume constraints. The first 11 patients were treated with three-dimensional conformal techniques and the last 8 by volumetric intensity-modulated arc therapy. Median follow-up was 1 year. Results: Of 19 patients, 2 had a local progression at the site of SBRT; both also showed concomitant tumor growth at distant sites. The actuarial rate of freedom from local progression was 77.8% {+-} 13.9% at both 12 and 24 months. Eleven patients showed progressive local and/or distant disease at follow-up. The 12- and 24-month progression-free survival rates were 29.5% {+-} 13.4% and 19.7% {+-} 12.0%, respectively. The number of metastases (solitary vs. nonsolitary oligometastases) emerged as the only significant variable affecting progression-free survival (p < 0.0004). Both acute and chronic toxicities were minimal. Conclusions: Stereotactic body radiotherapy for metastases to abdominal lymph nodes was shown to be feasible with good clinical results in terms of medium-term local control and toxicity rates. Even if most patients eventually show progressive disease at other sites, local control achieved by SBRT may be potentially significant for preserving quality of life and delaying further chemotherapy.

  2. Protracted Hypofractionated Radiotherapy for Graves' Ophthalmopathy: A Pilot Study of Clinical and Radiologic Response

    SciTech Connect

    Casimiro de Deus Cardoso, Cejana; Giordani, Adelmo Jose; Borri Wolosker, Angela Maria; Souhami, Luis; Gois Manso, Paulo; Souza Dias, Rodrigo; Comodo Segreto, Helena Regina; Araujo Segreto, Roberto

    2012-03-01

    Purpose: To evaluate the clinical and radiologic response of patients with Graves' ophthalmopathy given low-dose orbital radiotherapy (RT) with a protracted fractionation. Methods and Materials: Eighteen patients (36 orbits) received orbital RT with a total dose of 10 Gy, fractionated in 1 Gy once a week over 10 weeks. Of these, 9 patients received steroid therapy as well. Patients were evaluated clinically and radiologically at 6 months after treatment. Clinical response assessment was carried out using three criteria: by physical examination, by a modified clinical activity score, and by a verbal questionnaire considering the 10 most common signs and symptoms of the disease. Radiologic response was assessed by magnetic resonance imaging. Results: Improvement in ocular pain, palpebral edema, visual acuity, and ocular motility was observed in all patients. Significant decrease in symptoms such as tearing (p < 0.001) diplopia (p = 0.008), conjunctival hyperemia (p = 0.002), and ocular grittiness (p = 0.031) also occurred. Magnetic resonance imaging showed decrease in ocular muscle thickness and in the intensity of the T2 sequence signal in the majority of patients. Treatments were well tolerated, and to date no complications from treatment have been observed. There was no statistical difference in clinical and radiologic response between patients receiving RT alone and those receiving RT plus steroid therapy. Conclusion: RT delivered in at a low dose and in a protracted scheme should be considered as a useful therapeutic option for patients with Graves' ophthalmopathy.

  3. Postmastectomy Radiotherapy: An American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Focused Guideline Update.

    PubMed

    Recht, Abram; Comen, Elizabeth A; Fine, Richard E; Fleming, Gini F; Hardenbergh, Patricia H; Ho, Alice Y; Hudis, Clifford A; Hwang, E Shelley; Kirshner, Jeffrey J; Morrow, Monica; Salerno, Kilian E; Sledge, George W; Solin, Lawrence J; Spears, Patricia A; Whelan, Timothy J; Somerfield, Mark R; Edge, Stephen B

    A joint American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology panel convened to develop a focused update of the American Society of Clinical Oncology guideline concerning use of postmastectomy radiotherapy (PMRT).

  4. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  5. Heterotopic ossification: Pathophysiology, clinical features, and the role of radiotherapy for prophylaxis

    SciTech Connect

    Balboni, Tracy A.; Gobezie, Reuben; Mamon, Harvey J. . E-mail: hmamon@partners.org

    2006-08-01

    Heterotopic ossification (HO) is a benign condition of abnormal formation of bone in soft tissue. HO is frequently asymptomatic, though when it is more severe it typically manifests as decreased range of motion at a nearby joint. HO has been recognized to occur in three distinct contexts-trauma, neurologic injury, and genetic abnormalities. The etiology of HO is incompletely understood. A posited theory is that HO results from the presence of osteoprogenitor cells pathologically induced by an imbalance in local or systemic factors. Individuals at high risk for HO development frequently undergo prophylaxis to prevent HO formation. The two most commonly employed modalities for prophylaxis are nonsteroidal anti-inflammatory drugs and radiation therapy. This review discusses HO pathophysiology, clinical features, and the role of radiotherapy for prophylaxis.

  6. Randomized Clinical Trial to Assess the Efficacy of Radiotherapy in Primary Mediastinal Large B-Lymphoma

    SciTech Connect

    Aviles, Agustin; Neri, Natividad; Fernandez, Raul; Huerta-Guzman, Judith; Nambo, Maria J.

    2012-07-15

    Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.

  7. Relative clinical effectiveness of carbon ion radiotherapy: theoretical modelling for H&N tumours

    PubMed Central

    Antonovic, Laura; Dasu, Alexandru; Furusawa, Yoshiya; Toma-Dasu, Iuliana

    2015-01-01

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments. PMID:25858182

  8. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    PubMed Central

    de Moraes, Fabio Ynoe; Taunk, Neil Kanth; Laufer, Ilya; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; de Andrade Carvalho, Heloisa; Yamada, Yoshiya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and nonrandomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. PMID:26934240

  9. Charged-particle therapy in cancer: clinical uses and future perspectives.

    PubMed

    Durante, Marco; Orecchia, Roberto; Loeffler, Jay S

    2017-03-14

    Radiotherapy with high-energy charged particles has become an attractive therapeutic option for patients with several tumour types because this approach better spares healthy tissue from radiation than conventional photon therapy. The cost associated with the delivery of charged particles, however, is higher than that of even the most elaborate photon-delivery technologies. Reliable evidence of the relative cost-effectiveness of both modalities can only come from the results of randomized clinical trials. Thus, the hurdles that currently limit direct comparisons of these two approaches in clinical trials, especially those related to insurance coverage, should be removed. Herein, we review several randomized trials of charged-particle therapies that are ongoing, with results that will enable selective delivery to patients who are most likely to benefit from them. We also discuss aspects related to radiobiology, including the immune response and hypoxia, which will need to be taken into consideration in future randomized trials to fully exploit the potential of charged particles.

  10. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    SciTech Connect

    Mackley, Heath B. . E-mail: hmackley@alumni.upenn.edu; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities.

  11. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    PubMed Central

    2012-01-01

    Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275

  12. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    SciTech Connect

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A. . E-mail: fvicini@beaumont.edu

    2007-08-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts ({>=}1,600 cm{sup 3}, n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT.

  13. Multidisciplinary Team Contributions Within a Dedicated Outpatient Palliative Radiotherapy Clinic: A Prospective Descriptive Study

    SciTech Connect

    Pituskin, Edith; Fairchild, Alysa; Dutka, Jennifer; Gagnon, Lori; Driga, Amy; Tachynski, Patty; Borschneck, Jo-Ann; Ghosh, Sunita

    2010-10-01

    Purpose: Patients with bone metastases may experience pain, fatigue, and decreased mobility. Multiple medications for analgesia are often required, each with attendant side effects. Although palliative-intent radiotherapy (RT) is effective in decreasing pain, additional supportive care interventions may be overlooked. Our objective was to describe the feasibility of multidisciplinary assessment of patients with symptomatic bone metastases attending a dedicated outpatient palliative RT clinic. Methods and Materials: Consecutive patients referred for RT for painful bone metastases were screened for symptoms and needs relevant to their medications, nutritional intake, activities of daily living, and psychosocial and spiritual concerns from January 1 to December 31, 2007. Consultations by appropriate team members and resulting recommendations were collected prospectively. Patients who received RT were contacted by telephone 4 weeks later to assess symptom outcomes. Results: A total of 106 clinic visits by 82 individual patients occurred. As determined by screening form responses, the clinical Pharmacist, Occupational Therapist, Registered Dietician and Social Worker were consulted to provide assessments and recommendations within the time constraints presented by 1-day palliative RT delivery. In addition to pain relief, significant improvements in tiredness, depression, anxiety, drowsiness and overall well-being were reported at 4 weeks. Conclusions: Systematic screening of this population revealed previously unmet needs, addressed in the form of custom verbal and written recommendations. Multidisciplinary assessment is associated with a high number of recommendations and decreased symptom distress. Our findings lend strong support to the routine assessment by multiple supportive care professionals for patients with advanced cancer being considered for palliative RT.

  14. Update of the International Consensus on Palliative Radiotherapy Endpoints for Future Clinical Trials in Bone Metastases

    SciTech Connect

    Chow, Edward; Hoskin, Peter; Mitera, Gunita; Zeng Liang; Lutz, Stephen; Roos, Daniel; Hahn, Carol; Linden, Yvette van der; Hartsell, William; Kumar, Eshwar

    2012-04-01

    Purpose: To update the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases by surveying international experts regarding previous uncertainties within the 2002 consensus, changes that may be necessary based on practice pattern changes and research findings since that time. Methods and Materials: A two-phase survey was used to determine revisions and new additions to the 2002 consensus. A total of 49 experts from the American Society for Radiation Oncology, the European Society for Therapeutic Radiology and Oncology, the Faculty of Radiation Oncology of the Royal Australian and New Zealand College of Radiologists, and the Canadian Association of Radiation Oncology who are directly involved in the care of patients with bone metastases participated in this survey. Results: Consensus was established in areas involving response definitions, eligibility criteria for future trials, reirradiation, changes in systemic therapy, radiation techniques, parameters at follow-up, and timing of assessments. Conclusion: An outline for trials in bone metastases was updated based on survey and consensus. Investigators leading trials in bone metastases are encouraged to adopt the revised guideline to promote consistent reporting. Areas for future research were identified. It is intended for the consensus to be re-examined in the future on a regular basis.

  15. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.

    PubMed

    Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2017-06-01

    Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ((225)Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing (225)Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting.

  16. Alpha particle radioimmunotherapy: Animal models and clinical prospects

    SciTech Connect

    Macklis, R.M.; Kaplan, W.D.; Ferrara, J.L.; Atcher, R.W.; Hines, J.J.; Burakoff, S.J.; Coleman, C.N. )

    1989-06-01

    Short-lived isotopes that emit alpha particles have a number of physical characteristics which make them attractive candidates for radioimmunotherapy. Among these characteristics are high linear energy transfer and correspondingly high cytotoxicity; particle range limited to several cell diameters from the parent atom; low potential for repair of alpha-induced DNA damage; and low dependence on dose rate and oxygen enhancement effects. This report reviews the synthesis, testing and use in animal models of an alpha particle emitting radioimmunoconjugate constructed via the noncovalent chelation of Bismuth-212 to a monoclonal IgM antibody specific for the murine T cells/neuroectodermal surface antigen, Thy 1.2. These {sup 212}Bi-anti-Thy 1.2 immunoconjugates are capable of extraordinary cytotoxicity in vitro, requiring approximately three {sup 212}Bi-labeled conjugates per target cell to suppress {sup 3}H-thymidine incorporation to background levels. The antigen specificity afforded by the monoclonal antibody contributes a factor of approximately 40 to the radiotoxicity of the immunoconjugate. Animals inoculated with a Thy 1.2+ malignant ascites were cured of their tumor in an antigen-specific fashion by intraperitoneal doses of approximately 200 microCi per mouse. Alpha particle emitting radioimmunoconjugates show great potential for regional and intracavitary molecular radiotherapy.

  17. Clinical outcome and prognosis of carbon ion radiotherapy on thoracic malignant tumors

    NASA Astrophysics Data System (ADS)

    Li, Sha

    Objective To evaluate the therapeutic efficacy and side-response of high-LET carbon ion radiotherapy on thoracic malignant tumors. Methods Ten patients with pathological confirmed thoracic malignant tumors received treatment using heavy ion accelerator, which included 6 cases with non-small lung cancer, one case with small lung cancer, 2 cases with metastatic sarcomas and one case with invasive thymoma. The applied regimen included fractioned dose (5.5-6.8GyE/Fraction), one faction/day, and 7 fractions/week. The total dose ranged from 55 to 70 GyE. Results The short-term results showed that the response rate (the complete response (CR) rate +the partial response (PR) rate) was 10% at the first month, 40% at the third month and 90% at the sixth month. The overall response rate was 90% and the rate of stable disease was 10%. There was no relation between the response rate and tumor pathology (P>0.05) while significance between the response rate and the tumor volume.At median follow-up of 27 months (range, 6 to 36 months), the local control rate and free-disease rate were respectively 100% an 90% at the first year, 90% and 80% at the secondary year, 80% and 70% at the third year. The death rate due to disease progression was 20% and the non-specific death rate was 10%. Side and toxicity effects: Grade I skin effect occurred in three cases and Grade I lung effect occurred in two cases. The blood counts didn’t reach significance among pre-radiation course, peri-radiation course and post-radiation course (P>0.05). The subgoups of T cells detected in humoral immunity and cytoimmunity didn’t change between pre-radiation and post radiation(P>0.05). Conclusions Carbon ion radiotherapy is effective and safe in the management of patients with thoracic malignant tumors. There were no obvious side effects. The long term of clinical outcome and the late effect need to be further observed.

  18. Intermediate neoadjuvant radiotherapy for T3 low/middle rectal cancer: postoperative outcomes of a non-controlled clinical trial

    PubMed Central

    Bisceglia, Giovanni; Mastrodonato, Nicola; Tardio, Berardino; Mazzoccoli, Gianluigi; Corsa, Pietro; Troiano, Michele; Parisi, Salvatore

    2014-01-01

    Background The benefits of adjuvant radiotherapy in rectal carcinoma are well known. However, there is still considerable uncertainty about the optimal radiation treatment. There is an ongoing debate about the choice between very short treatments immediately followed by surgical resection and prolonged treatments with delayed surgery. In this paper, we describe an interim analysis of a non-controlled clinical trial in which radiotherapy delivered with intermediate dose/duration was followed by surgery after about 2 weeks to improve local control and survival after curative radiosurgery for cT3 low/middle rectal cancer. Methods Preoperative radiotherapy (36 Gy in 3 weeks) was delivered in 248 consecutive patients with cT3NxM0 rectal adenocarcinoma within 10 cm from the anal verge, followed by surgery within the third week after treatment completion. Results 166 patients (66.94%) underwent anterior resection, 80 patients (32.26%) the Miles' procedure and 2 patients (0.8%) the Hartmann's procedure. Local resectability rate was 99.6%, with 226 curative-intent resections. The overall rate of complications was 27.4%. 5-year oncologic outcomes were evaluated on 223 patients. The median follow-up time was 8.9 years (range 5-17.4 years); local recurrence (LR) rate and distal recurrence (DR) rate after 5 years were 6.28% and 21.97%, respectively. Overall survival was 74.2%; disease free survival was 73.5%; local control was 93.4 % and metastasis-free survival was 82.1%. Conclusions preoperative radiotherapy with intermediate dose/duration and interval between radiotherapy and surgery achieves high local control in patients with cT3NxM0 rectal cancer, and high DR rate seems to be the major limitation to improved survival. PMID:25373926

  19. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  20. Using Histopathology Breast Cancer Data to Reduce Clinical Target Volume Margins at Radiotherapy

    SciTech Connect

    Stroom, Joep Schlief, Angelique; Alderliesten, Tanja; Peterse, Hans; Bartelink, Harry; Gilhuijs, Kenneth

    2009-07-01

    Purpose: This study aimed to quantify the incidence and extension of microscopic disease around primary breast tumors in patients undergoing breast-conserving therapy (BCT), focusing on a potential application to reduce radiotherapy boost volumes. Methods and Materials: An extensive pathology tumor-distribution study was performed using 38 wide local excision specimens of BCT patients. Specimen orientation was recorded and microscopic findings reconstructed to assess the incidence of microscopic disease around the macroscopic tumor. A model of disease spread was built, showing probability of disease extension outside a treated volume (P{sub out,vol}). The model was applied in 10 new BCT patients. Taking asymmetry of tumor excision into account, new asymmetric margins for the clinical target volume of the boost (CTV{sub boost}) were evaluated that minimize the volume without increasing P{sub out,TTV} (TTV being total treated volume: V{sub surgery} + CTV{sub boost}). Potential reductions in CTV{sub boost} and TTV were evaluated. Results: Microscopic disease beyond the tumor boundary occurred isotropically at distances > 1 cm (intended surgical margin) and > 1.5 cm (intended TTV margin) in 53% and 36% of the excision specimens, respectively. In the 10 prospective patients, the average P{sub out,TTV} was, however, only 16% due to larger surgical margins than intended in some directions. Asymmetric CTV{sub boost} margins reduced the CTV{sub boost} and TTV by 27% (20 cc) and 12% (21 cc) on average, without compromising tumor coverage. Conclusions: Microscopic disease extension may occur beyond the current CTV{sub boost} in approximately one sixth of patients. An asymmetric CTV{sub boost} that corrects for asymmetry of the surgical excision has the potential to reduce boost volumes while maintaining tumor coverage.

  1. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  2. Proton Radiotherapy for Pediatric Central Nervous System Germ Cell Tumors: Early Clinical Outcomes

    SciTech Connect

    MacDonald, Shannon M.; Trofimov, Alexei; Safai, Sairos; Adams, Judith; Fullerton, Barbara; Ebb, David; Tarbell, Nancy J.; Yock, Torunn I.

    2011-01-01

    Purpose: To report early clinical outcomes for children with central nervous system (CNS) germ cell tumors treated with protons; to compare dose distributions for intensity-modulated photon radiotherapy (IMRT), three-dimensional conformal proton radiation (3D-CPT), and intensity-modulated proton therapy with pencil beam scanning (IMPT) for whole-ventricular irradiation with and without an involved-field boost. Methods and Materials: All children with CNS germinoma or nongerminomatous germ cell tumor who received treatment at the Massachusetts General Hospital between 1998 and 2007 were included in this study. The IMRT, 3D-CPT, and IMPT plans were generated and compared for a representative case. Results: Twenty-two patients were treated with 3D-CPT. At a median follow-up of 28 months, there were no CNS recurrences; 1 patient had a recurrence outside the CNS. Local control, progression-free survival, and overall survival rates were 100%, 95%, and 100%, respectively. Comparable tumor volume coverage was achieved with IMRT, 3D-CPT, and IMPT. Substantial normal tissue sparing was seen with any form of proton therapy as compared with IMRT. The use of IMPT may yield additional sparing of the brain and temporal lobes. Conclusions: Preliminary disease control with proton therapy compares favorably to the literature. Dosimetric comparisons demonstrate the advantage of proton radiation over IMRT for whole-ventricle radiation. Superior dose distributions were accomplished with fewer beam angles utilizing 3D-CPT and scanned protons. Intensity-modulated proton therapy with pencil beam scanning may improve dose distribution as compared with 3D-CPT for this treatment.

  3. Stereotactic Body Radiotherapy for Localized Prostate Cancer: Interim Results of a Prospective Phase II Clinical Trial

    SciTech Connect

    King, Christopher R. Brooks, James D.; Gill, Harcharan; Pawlicki, Todd; Cotrutz, Cristian; Presti, Joseph C.

    2009-03-15

    Purpose: The radiobiology of prostate cancer favors a hypofractionated dose regimen. We report results of a prospective Phase II clinical trial of stereotactic body radiotherapy (SBRT) for localized prostate cancer. Methods and Materials: Forty-one low-risk prostate cancer patients with 6 months' minimum follow-up received 36.25 Gy in five fractions of 7.25 Gy with image-guided SBRT alone using the CyberKnife. The early (<3 months) and late (>6 months) urinary and rectal toxicities were assessed using validated quality of life questionnaires (International Prostate Symptom Score, Expanded Prostate Cancer Index Composite) and the Radiation Therapy Oncology Group (RTOG) toxicity criteria. Patterns of prostate-specific antigen (PSA) response are analyzed. Results: The median follow-up was 33 months. There were no RTOG Grade 4 acute or late rectal/urinary complications. There were 2 patients with RTOG Grade 3 late urinary toxicity and none with RTOG Grade 3 rectal complications. A reduced rate of severe rectal toxicities was observed with every-other-day vs. 5 consecutive days treatment regimen (0% vs. 38%, p = 0.0035). A benign PSA bounce (median, 0.4 ng/mL) was observed in 12 patients (29%) occurring at 18 months (median) after treatment. At last follow-up, no patient has had a PSA failure regardless of biochemical failure definition. Of 32 patients with 12 months minimum follow-up, 25 patients (78%) achieved a PSA nadir {<=}0.4 ng/mL. A PSA decline to progressively lower nadirs up to 3 years after treatment was observed. Conclusions: The early and late toxicity profile and PSA response for prostate SBRT are highly encouraging. Continued accrual and follow-up will be necessary to confirm durable biochemical control rates and low toxicity profiles.

  4. Clinical Evaluation of an Immbolization System for Stereotactic Body Radiotherapy Using Helical Tomotherapy

    SciTech Connect

    Gutierrez, Alonso N.; Stathakis, Sotirios; Crownover, Richard; Esquivel, Carlos; Shi Chengyu; Papanikolaou, Niko

    2011-07-01

    In this study, a clinical evaluation of the Body Pro-Lok{sup TM} System combined with the TomoTherapy megavoltage computed tomography (MVCT) was performed for lung and liver stereotactic body radiotherapy (SBRT) to reduce interfractional setup uncertainty. Twenty patients treated with 3-5 fractions of SBRT were analyzed retrospectively. The Body Pro-Lok{sup TM} system was used in both CT simulation and during patient treatment setup. Patients were immobilized with a vacuum cushion placed posteriorly over the thoracic region, an abdominal compression plate, and a knee and foot sponge. Pretreatment MVCT scans of the TomoTherapy HI-ART II unit were fused with the planning kVCT before delivery of each fraction to determine the interfractional setup error. A total of 84 shifts were analyzed to assess the interfractional setup accuracy. Results showed that the mean interfractional setup errors and standard deviations were -0.9 {+-} 3.1 mm, 1.2 {+-} 5.5 mm, and 6.5 {+-} 2.6 mm for lateral (IEC-X), longitudinal (IEC-Y), and vertical (IEC-Z) variations, respectively. The maximum motion was 17.1 mm in the longitudinal direction. When all 3 translational coordinates were analyzed, a mean composite displacement vector of 8.2 {+-} 2.0 mm (range 4.1-11.7 mm) was obtained for all patients. Based on the findings, image-guided SBRT using the Body Pro-Lok{sup TM} system in conjunction with the MVCT of TomoTherapy is capable of minimizing interfractional setup error and improving treatment accuracy.

  5. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.

    PubMed

    Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.

  6. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    PubMed Central

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  7. Laser Doppler flowmetry: an early diagnosis instrument in detecting the soft tissue changes that occur during radiotherapy to the head and neck area, clinical case report

    NASA Astrophysics Data System (ADS)

    Petre, L. C.; Miron, M. I.; Ianes, E.

    2016-03-01

    Aim of the study: Our goal was to monitor soft tissue changes occurring during radiotherapy - both through clinical examination and using LDF - in order to establish Laser Doppler as an early diagnosis instrument in this situation, and also to assess what kind of dental procedures could be provided during radiotherapy, in order to increase patients' quality of life. Material and Method: Our study included two male patients, who received head and neck radiotherapy. Patient A, 68 years old, underwent 31 radiotherapy exposures. Patient B, 52 years old, underwent 24 exposures. They received a thorough clinical examination, and a LDF evaluation of gingival blood flow in areas close to the irradiated site, after the first, the 18th, and the last radiotherapy exposure. Results: Patient A presented radiotherapy induced mucositis, after the 18th radiotherapy exposure. After the last exposure the mucositis worsened, additionally, radiodermitis appeared on the neck. LDF showed an increase in blood flow of the irradiated area, even after the first exposure, and it persisted throughout treatment. Patient B showed no clinical changes, besides a hyperkeratinisation of the gingiva in the irradiated area, after the last exposure. LDF showed an overall increase in vascularity of the area throughout treatment. Discussion: Even after the first radiotherapy exposure, and also when clinical changes were not apparent, LDF measurements revealed an increase in blood flow in the gingiva of irradiated patients. LDF might allow us to establish the most appropriate moment in time for each dental treatment, in order to increase the quality of life.

  8. Radiotherapy-Induced Malignancies: Review of Clinical Features, Pathobiology, and Evolving Approaches for Mitigating Risk

    PubMed Central

    Braunstein, Steve; Nakamura, Jean L.

    2013-01-01

    One of the most significant effects of radiation therapy on normal tissues is mutagenesis, which is the basis for radiation-induced malignancies. Radiation-induced malignancies are late complications arising after radiotherapy, increasing in frequency among survivors of both pediatric and adult cancers. Genetic backgrounds harboring germline mutations in tumor suppressor genes are recognized risk factors. Some success has been found with using genome wide association studies to identify germline polymorphisms associated with susceptibility. The insights generated by genetics, epidemiology, and the development of experimental models are defining potential strategies to offer to individuals at risk for radiation-induced malignancies. Concurrent technological efforts are developing novel radiotherapy delivery to reduce irradiation of normal tissues, and thereby, to mitigate the risk of radiation-induced malignancies. The goal of this review is to discuss epidemiologic, modeling, and radiotherapy delivery data, where these lines of research intersect and their potential impact on patient care. PMID:23565507

  9. Optimizing LINAC-based stereotactic radiotherapy of uveal melanomas: 7 years' clinical experience

    SciTech Connect

    Dieckmann, Karin . E-mail: Karin.Dieckmann@akhwien.at; Georg, Dietmar; Bogner, Joachim; Zehetmayer, Martin; Petersch, Bernhard; Chorvat, Martin; Weitmann, Hajo; Poetter, Richard

    2006-11-15

    Purpose: To report on the clinical outcome of LINAC-based stereotactic radiotherapy (SRT) of uveal melanomas. Additionally, a new prototype (hardware and software) for automated eye monitoring and gated SRT using a noninvasive eye fixation technique is described. Patients and Methods: Between June 1997 and March 2004, 158 patients suffering from uveal melanoma were treated at a LINAC with 6 MV (5 x 14 Gy; 5 x 12 Gy prescribed to 80% isodose) photon beams. To guarantee identical patient setup during treatment planning (CT and MRI) and treatment delivery, patients were immobilized with a BrainLAB thermoplastic mask. Eye immobilization was achieved by instructing the patient to fixate on a light source integrated into the mask system. A mini-video camera was used to provide on-line information about the eye and pupil position, respectively. A new CT and magnetic resonance (MR) compatible prototype, based on head-and-neck fixation and the infrared tracking system ExacTrac, has been developed and evaluated since 2002. This system records maximum temporal and angular deviations during treatment and, based on tolerance limits, a feedback signal to the LINAC enables gated SRT. Results: After a median follow-up of 33.4 months (range, 3-85 months), local control was achieved in 98%. Fifteen patients (9.0%) developed metastases. Secondary enucleation was performed in 23 patients (13.8%). Long-term side effects were retinopathy (n = 70; 44%), cataract (n = 30; 23%), optic neuropathy (n = 65; 41%), and secondary neovascular glaucoma (n = 23; 13.8%). Typical situations when preset deviation criteria were exceeded were slow drifts (fatigue), large sudden eye movements (irritation), or eye closing (fatigue). In these cases, radiation was reliably interrupted by the gating system. In our clinical setup, the novel system for computer-controlled gated SRT of uveal melanoma was well tolerated by about 30 of the patients treated with this system so far. Conclusion: LINAC-based SRT of

  10. Multi-System Verification of Registrations for Image-Guided Radiotherapy in Clinical Trials

    SciTech Connect

    Cui Yunfeng; Galvin, James M.; Straube, William L.; Bosch, Walter R.; Purdy, James A.; Li, X. Allen; Xiao Ying

    2011-09-01

    Purpose: To provide quantitative information on the image registration differences from multiple systems for image-guided radiotherapy (IGRT) credentialing and margin reduction in clinical trials. Methods and Materials: Images and IGRT shift results from three different treatment systems (Tomotherapy Hi-Art, Elekta Synergy, Varian Trilogy) have been sent from various institutions to the Image-Guided Therapy QA Center (ITC) for evaluation for the Radiation Therapy Oncology Group (RTOG) trials. Nine patient datasets (five head-and-neck and four prostate) were included in the comparison, with each patient having 1-4 daily individual IGRT studies. In all cases, daily shifts were re-calculated by re-registration of the planning CT with the daily IGRT data using three independent software systems (MIMvista, FocalSim, VelocityAI). Automatic fusion was used in all calculations. The results were compared with those submitted from institutions. Similar regions of interest (ROIs) and same initial positions were used in registrations for inter-system comparison. Different slice spacings for CBCT sampling and different ROIs for registration were used in some cases to observe the variation of registration due to these factors. Results: For the 54 comparisons with head-and-neck datasets, the absolute values of differences of the registration results between different systems were 2.6 {+-} 2.1 mm (mean {+-} SD; range 0.1-8.6 mm, left-right [LR]), 1.7 {+-} 1.3 mm (0.0-4.9 mm, superior-inferior [SI]), and 1.8 {+-} 1.1 mm (0.1-4.0 mm, anterior-posterior [AP]). For the 66 comparisons in prostate cases, the differences were 1.1 {+-} 1.0 mm (0.0-4.6 mm, LR), 2.1 {+-} 1.7 mm (0.0-6.6 mm, SI), and 2.0 {+-} 1.8 mm (0.1-6.9 mm, AP). The differences caused by the slice spacing variation were relatively small, and the different ROI selections in FocalSim and MIMvista also had limited impact. Conclusion: The extent of differences was reported when different systems were used for image

  11. Effects of nutritional intervention in head and neck cancer patients undergoing radiotherapy: A prospective randomized clinical trial.

    PubMed

    Kang, Wen-Xing; Li, Wentao; Huang, Shi-Gao; Dang, Yazhang; Gao, Hongxiang

    2016-09-01

    Head and neck malignant tumors have numerous locations of the disease. After patients receive radiotherapy, their nutritional status is very poor, thus the curative effect is unsatisfactory. The aims of the present study were to investigate and analyze the nutritional status of patients with head and neck cancer undergoing radiotherapy (RT) in order to provide positive nutrition intervention for assisting the radiotherapy effect. A total of 40 patients with head and neck cancer were selected using a method of subjective global assessment (SGA) to assess nutritional status, including calorie intake and energy expenditure. In a randomized, controlled study, 20 patients received intensive dietary counseling and nutritional therapy (G1) and 20 received regular dietary as controls (G0) preradiotherapy and postradiotherapy. The primary endpoint was calorie intake and energy expenditure. The secondary endpoint was SGA rating with nutritional therapy. At the end of RT, energy intake showed a net increase in G1 (1,691±301 kcal) compared with that in G0 (1,066±312 kcal) (P<0.05); energy expenditure increased in G1 (1,673±279 kcal) compared with G0 (1,490±298 kcal) (P<0.05). The prevalence of severe malnutrition following radiotherapy was significantly different between the two study groups (10 patients in G0 and 4 patients in G1; P<0.05). The number of the normal malnutrition patients postRT in G0 decreased from 4 to 2 and conversely, in G1 it increased from 3 to 6 (P<0.05). In conclusion, patients with head and neck cancer were most malnutritioned, which impacted on clinical outcome. Timely nutritional intervention can effectively prevent weight loss and muscle wasting. Additionally, it may improve quality of life by decreasing the frequency of severe malnutrition.

  12. Effects of nutritional intervention in head and neck cancer patients undergoing radiotherapy: A prospective randomized clinical trial

    PubMed Central

    Kang, Wen-Xing; Li, Wentao; Huang, Shi-Gao; Dang, Yazhang; Gao, Hongxiang

    2016-01-01

    Head and neck malignant tumors have numerous locations of the disease. After patients receive radiotherapy, their nutritional status is very poor, thus the curative effect is unsatisfactory. The aims of the present study were to investigate and analyze the nutritional status of patients with head and neck cancer undergoing radiotherapy (RT) in order to provide positive nutrition intervention for assisting the radiotherapy effect. A total of 40 patients with head and neck cancer were selected using a method of subjective global assessment (SGA) to assess nutritional status, including calorie intake and energy expenditure. In a randomized, controlled study, 20 patients received intensive dietary counseling and nutritional therapy (G1) and 20 received regular dietary as controls (G0) preradiotherapy and postradiotherapy. The primary endpoint was calorie intake and energy expenditure. The secondary endpoint was SGA rating with nutritional therapy. At the end of RT, energy intake showed a net increase in G1 (1,691±301 kcal) compared with that in G0 (1,066±312 kcal) (P<0.05); energy expenditure increased in G1 (1,673±279 kcal) compared with G0 (1,490±298 kcal) (P<0.05). The prevalence of severe malnutrition following radiotherapy was significantly different between the two study groups (10 patients in G0 and 4 patients in G1; P<0.05). The number of the normal malnutrition patients postRT in G0 decreased from 4 to 2 and conversely, in G1 it increased from 3 to 6 (P<0.05). In conclusion, patients with head and neck cancer were most malnutritioned, which impacted on clinical outcome. Timely nutritional intervention can effectively prevent weight loss and muscle wasting. Additionally, it may improve quality of life by decreasing the frequency of severe malnutrition. PMID:27588193

  13. Clinical evidence of particle beam therapy (proton).

    PubMed

    Ogino, Takashi

    2012-04-01

    Proton beam therapy (PBT) makes it possible to deliver a high concentration of radiation to a tumor using its Bragg peak, and it is simple to utilize as its radiobiological characteristics are identical to those of photon beams. PBT has now been used for half a century, and more than 60,000 patients worldwide are reported to have been treated with proton beams. The most significant change to PBT occurred in the 1990s, when the Loma Linda University Medical Center became the first hospital in the world to operate a medically dedicated proton therapy facility. Following its success, similar medically dedicated facilities have been constructed. Internationally, results have demonstrated the therapeutic superiority of PBT over alternative treatment options for several disease sites. Further advances in PBT are expected from both clinical and technological perspectives.

  14. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    PubMed

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-07

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  15. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy

    SciTech Connect

    Axente, Marian; Von Eyben, Rie; Hristov, Dimitre; Paidi, Ajay; Bani-Hashemi, Ali; Zeng, Chuan; Krauss, Andreas

    2015-03-15

    distributions in the regions affected by the metal artifacts was also observed in patient data. However, in absence of a reference ground truth (CT set without metal inserts), these differences should not be interpreted as improvement/deterioration of the accuracy of calculated dose. With limited data presented, it was observed that proton dosimetry was affected more than photons as expected. Physicians were significantly more confident contouring anatomy in the regions affected by artifacts. While site specific preferences were detected, all indicated that they would consistently use IMAR corrected images. Conclusions: IMAR correction algorithm could be readily implemented in an existing clinical workflow upon commercial release. While residual errors still exist in IMAR corrected images, these images present with better overall conspicuity of the patient/phantom geometry and offer more accurate CT numbers for improved local dosimetry. The variety of different scenarios included herein attest to the utility of the evaluated IMAR for a wide range of radiotherapy clinical scenarios.

  16. Systemic Lupus Erythematosus, Radiotherapy, and the Risk of Acute and Chronic Toxicity: The Mayo Clinic Experience

    SciTech Connect

    Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.; Osborn, Thomas G.; Brown, Paul D.; Miller, Robert C.

    2008-06-01

    Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence of chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity.

  17. Alternate calibration method of radiochromic EBT3 film for quality assurance verification of clinical radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Park, Soah; Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Yoon, Jai-Woong; Koo, Taeryool; Han, Tae Jin; Kim, Haeyoung; Lee, Me Yeon; Bae, Hoonsik; Kim, Kyoung Ju

    2016-07-01

    EBT3 film is utilized as a dosimetry quality assurance tool for the verification of clinical radiotherapy treatments. In this work, we suggest a percentage-depth-dose (PDD) calibration method that can calibrate several EBT3 film pieces together at different dose levels because photon beams provide different dose levels at different depths along the axis of the beam. We investigated the feasibility of the film PDD calibration method based on PDD data and compared the results those from the traditional film calibration method. Photon beams at 6 MV were delivered to EBT3 film pieces for both calibration methods. For the PDD-based calibration, the film pieces were placed on solid phantoms at the depth of maximum dose (dmax) and at depths of 3, 5, 8, 12, 17, and 22 cm, and a photon beam was delivered twice, at 100 cGy and 400 cGy, to extend the calibration dose range under the same conditions. Fourteen film pieces, to maintain their consistency, were irradiated at doses ranging from approximately 30 to 400 cGy for both film calibrations. The film pieces were located at the center position on the scan bed of an Epson 1680 flatbed scanner in the parallel direction. Intensity-modulated radiation therapy (IMRT) plans were created, and their dose distributions were delivered to the film. The dose distributions for the traditional method and those for the PDD-based calibration method were evaluated using a Gamma analysis. The PDD dose values using a CC13 ion chamber and those obtained by using a FC65-G Farmer chamber and measured at the depth of interest produced very similar results. With the objective test criterion of a 1% dosage agreement at 1 mm, the passing rates for the four cases of the three IMRT plans were essentially identical. The traditional and the PDD-based calibrations provided similar plan verification results. We also describe another alternative for calibrating EBT3 films, i.e., a PDD-based calibration method that provides an easy and time-saving approach

  18. Experience-Based Quality Control of Clinical Intensity-Modulated Radiotherapy Planning

    SciTech Connect

    Moore, Kevin L.; Brame, R. Scott; Low, Daniel A.; Mutic, Sasa

    2011-10-01

    Purpose: To incorporate a quality control tool, according to previous planning experience and patient-specific anatomic information, into the intensity-modulated radiotherapy (IMRT) plan generation process and to determine whether the tool improved treatment plan quality. Methods and Materials: A retrospective study of 42 IMRT plans demonstrated a correlation between the fraction of organs at risk (OARs) overlapping the planning target volume and the mean dose. This yielded a model, predicted dose = prescription dose (0.2 + 0.8 [1 - exp(-3 overlapping planning target volume/volume of OAR)]), that predicted the achievable mean doses according to the planning target volume overlap/volume of OAR and the prescription dose. The model was incorporated into the planning process by way of a user-executable script that reported the predicted dose for any OAR. The script was introduced to clinicians engaged in IMRT planning and deployed thereafter. The script's effect was evaluated by tracking {delta} = (mean dose-predicted dose)/predicted dose, the fraction by which the mean dose exceeded the model. Results: All OARs under investigation (rectum and bladder in prostate cancer; parotid glands, esophagus, and larynx in head-and-neck cancer) exhibited both smaller {delta} and reduced variability after script implementation. These effects were substantial for the parotid glands, for which the previous {delta} = 0.28 {+-} 0.24 was reduced to {delta} = 0.13 {+-} 0.10. The clinical relevance was most evident in the subset of cases in which the parotid glands were potentially salvageable (predicted dose <30 Gy). Before script implementation, an average of 30.1 Gy was delivered to the salvageable cases, with an average predicted dose of 20.3 Gy. After implementation, an average of 18.7 Gy was delivered to salvageable cases, with an average predicted dose of 17.2 Gy. In the prostate cases, the rectum model excess was reduced from {delta} = 0.28 {+-} 0.20 to {delta} = 0.07 {+-} 0

  19. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    SciTech Connect

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison; Macdonald, Shannon M.; Pieretti, Raphael V.; Robinson, Gregoire; Adams, Judith; Tarbell, Nancy J.; Yock, Torunn I.

    2011-12-01

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan was optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  20. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    PubMed Central

    Wang, Xiaoli; Luo, Yijun; Li, Minghuan; Yan, Hongjiang; Sun, Mingping; Fan, Tingyong

    2016-01-01

    Background Postoperative radiotherapy has shown positive efficacy in lowering the recurrence rate and improving the survival rate for patients with esophageal squamous cell carcinoma (ESCC). However, controversies still exist about the postoperative prophylactic radiation target volume. This study was designed to analyze the patterns of recurrence and to provide a reference for determination of the postoperative radiotherapy target volume for patients with midthoracic ESCC. Patients and methods A total of 338 patients with recurrent or metastatic midthoracic ESCC after radical surgery were retrospectively examined. The patterns of recurrence including locoregional and distant metastasis were analyzed for these patients. Results The rates of lymph node (LN) metastasis were 28.4% supraclavicular, 77.2% upper mediastinal, 32.0% middle mediastinal, 50.0% lower mediastinal, and 19.5% abdominal LNs. In subgroup analyses, the rate of abdominal LN metastasis was significantly higher in patients with histological node-positive than that in patients with histological node-negative (P=0.033). Further analysis in patients with histological node-positive demonstrated that patients with three or more positive nodes are more prone to abdominal LN metastasis, compared with patients with one or two positive nodes (χ2=4.367, P=0.037). The length of tumor and histological differentiation were also the high-risk factors for abdominal LN metastasis. Conclusion For midthoracic ESCC with histological node-negative, or one or two positive nodes, the supraclavicular and stations 2, 4, 5, and 7 LNs should be delineated as clinical target volume of postoperative prophylactic irradiation, and upper abdominal LNs should be excluded. While for midthoracic ESCC with three or more positive nodes, upper abdominal LNs should also be included. The length of tumor and histological differentiation should be considered comprehensively to design the clinical target volume for radiotherapy. PMID

  1. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  2. Clinical management of gastroesophageal junction tumors: past and recent evidences for the role of radiotherapy in the multidisciplinary approach.

    PubMed

    Cellini, Francesco; Morganti, Alessio G; Di Matteo, Francesco M; Mattiucci, Gian Carlo; Valentini, Vincenzo

    2014-02-05

    Gastroesophageal cancers (such as esophageal, gastric and gastroesophageal-junction -GEJ- lesions) are worldwide a leading cause of death being relatively rare but highly aggressive. In the past years, a clear shift in the location of upper gastrointestinal tract tumors has been recorded, both affecting the scientific research and the modern clinical practice. The integration of pre- or peri-operative multimodal approaches, as radiotherapy and chemotherapy (often combined), seems promising to further improve clinical outcome for such presentations. In the past, the definition of GEJ led to controversies and confusion: GEJ tumors have been managed either grouped to gastric or esophageal lesions, following slightly different surgical, radiotherapeutic and systemic approaches. Recently, the American Joint Committee on Cancer (AJCC) changed the staging and classification system of GEJ to harmonize some staging issues for esophageal and gastric cancer. This review discusses the most relevant historical and recent evidences of neoadjuvant treatment involving Radiotherapy for GEJ tumors, and describes the efficacy of such treatment in the frame of multimodal integrated therapies, from the new point of view of the recent classification of such tumors.

  3. State-of-the-art radiotherapy in the management of clinically localized prostate carcinoma.

    PubMed

    Bermudez, R Scott; Izaguirre, Alejandra; Roach, Mack

    2007-02-01

    Four Phase III trials demonstrating higher prostate-specific antigen control rates in prostate cancer patients treated with higher doses of radiation have changed the standard of care. Emerging on-line technologies, improved imaging and computer algorithms, combined with an improved understanding of how best to apply them, have allowed radiation oncologists to move ever closer to the optimal application of curative radiation. This technology allows a higher dose to be delivered to tumor-bearing areas while minimizing the dose delivered to surrounding normal tissues. Real-time adaptive techniques have made each step more accurate, and commercialization has increasingly moved these advances further into the community setting. Phase III trials have also helped to define the role of hormonal therapy in combination with radiation and the benefits of prophylactic pelvic nodal radiotherapy in subsets of patients. We have also learnt how to optimize the use of prostate-specific antigen to better determine success and failure following radiotherapy.

  4. [Clinical and paraclinical follow-up after radiotherapy for head and neck cancer].

    PubMed

    Clément-Colmou, K; Troussier, I; Bardet, É; Lapeyre, M

    2015-10-01

    Head and neck cancer management often involves heavy multimodal treatments including radiotherapy. Despite the improvement of intensity-modulated radiation therapy, acute and late toxicities remain important. After such treatment, patients have to face different potential problems, depending on the post-therapeutic delay. In this way, short-term follow-up permits to appreciate the healing of acute toxicities and response to treatment. Long-term follow-up aims to recognize second primitive tumours and distant failure, and to detect and manage late toxicities. Medical and psychosocial supportive cares are essential, even after several years of complete remission. The objective of this article is to review the modalities of short-term and long-term follow-up of patients who receive a radiotherapy for head and neck cancer.

  5. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  6. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  7. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy.

    PubMed

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-21

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  8. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy

    NASA Astrophysics Data System (ADS)

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-01

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  9. Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: The Mayo Clinic experience

    SciTech Connect

    Miller, Robert C. . E-mail: miller.robert@mayo.edu; Lachance, Daniel H.; Lucchinetti, Claudia F.; Keegan, B. Mark; Gavrilova, Ralitza H.; Brown, Paul D.; Weinshenker, Brian G.; Rodriguez, Moses

    2006-11-15

    Purpose: The aim of this study was a retrospective assessment of neurotoxicity in patients with multiple sclerosis (MS) receiving external beam radiotherapy (EBRT) to the brain. Methods and Materials: We studied 15 consecutively treated patients with MS who received brain EBRT. Neurologic toxicity was assessed with the Common Toxicity Criteria v.3.0. Results: Median follow-up for the 5 living patients was 6.0 years (range, 3.3-27.4 years). No exacerbation of MS occurred in any patient during EBRT. Five patients had Grade 4 neurologic toxicity and 1 had possible Grade 5 toxicity. Kaplan-Meier estimated risk of neurotoxicity greater than Grade 4 at 5 years was 57% (95% confidence interval, 27%-82%). Toxicity occurred at 37.5 to 54.0 Gy at a median of 1.0 year (range, 0.2-4.3 years) after EBRT. Univariate analysis showed an association between opposed-field irradiation of the temporal lobes, central white matter, and brainstem and increased risk of neurotoxicity (p < 0.04). Three of 6 cases of toxicity occurred in patients treated before 1986. Conclusions: External beam radiotherapy of the brain in patients with MS may be associated with an increased risk of neurotoxicity compared with patients without demyelinating illnesses. However, this risk is associated with treatment techniques that may not be comparable to modern, conformal radiotherapy.

  10. Combination ibandronate and radiotherapy for the treatment of bone metastases: Clinical evaluation and radiologic assessment

    SciTech Connect

    Vassiliou, Vassilios; Kalogeropoulou, Christine; Christopoulos, Christos; Solomou, Ekaterini; Leotsinides, Michael; Kardamakis, Dimitrios . E-mail: kardim@med.upatras.gr

    2007-01-01

    Purpose: Ibandronate is a single-nitrogen, noncyclic bisphosphonate with proven efficacy for reducing metastatic bone pain. In this study, we assessed the palliative effects of combined ibandronate and radiotherapy. Methods and Materials: Forty-five patients with bone metastases from various solid tumors received external-beam radiotherapy, 30-40 Gy over 3-4.5, weeks combined with 10 cycles of monthly intravenous ibandronate, 6 mg. Results: After combined therapy, mean bone pain scores (graded from 0 to 10) were reduced from 6.3 at baseline to 0.8 after 3 months, with further reductions at later time points (all p < 0.001). Opioid use decreased from 84% of patients at baseline (38/45) to 24% (11/45) at 3 months, with further subsequent reductions (all p < 0.001). Mean performance status and functioning scores also significantly improved. Bone density (assessed by computed tomography scan) increased by 20% vs. baseline at 3 months, 46% at 6 months, and 73% at 10 months (all p < 0.001). Lesion improvement was also demonstrated by magnetic resonance imaging. Treatment was well tolerated with no renal toxicity. Conclusions: In this pilot study, combined radiotherapy and ibandronate provided substantial bone pain relief and increased bone density. Computed tomography-based or magnetic resonance imaging-based evaluations offer objective methods for assessing therapeutic outcomes.

  11. Radiotherapy for malignancy in patients with scleroderma: The Mayo Clinic experience

    SciTech Connect

    Gold, Douglas G.; Miller, Robert C.; Petersen, Ivy A.; Osborn, Thomas G.

    2007-02-01

    Purpose: To determine the frequency of acute and chronic adverse effects in patients with scleroderma who receive radiotherapy for treatment of cancer. Methods and Materials: Records were reviewed of 20 patients with scleroderma who received radiotherapy. Acute and chronic toxic effects attributable to radiotherapy were analyzed, and freedom from radiation-related toxicity was calculated. Results: Of the 20 patients, 15 had acute toxic effects, with Grade 3 or higher toxicity for 3 patients. Seven patients had self-limited Grade 1 or 2 radiation dermatitis, and no patient had Grade 3 or higher radiation dermatitis. Thirteen patients had chronic toxic effects, with Grade 3 or higher chronic toxicity for 3 patients. The median estimated time to any grade chronic toxicity was 0.4 years, and the median estimated time to Grade 3 or higher chronic toxicity has not been reached. Conclusions: The results suggest that although some patients with scleroderma treated with radiation experience considerable toxic effects, the occurrence of Grade 3 or higher toxicity may be less than previously anticipated.

  12. Radiotherapy and chemotherapy in locally advanced non-small cell lung cancer: preclinical and early clinical data.

    PubMed

    Reboul, François L

    2004-02-01

    Over the past 20 years, combined treatment with radiotherapy and second-generation chemotherapy drugs was extensively studied in patients with locally advanced NSCLC and became the standard over radiotherapy alone in patients with good performance status. Radiosensitizing properties of cisplatin have been identified in the laboratory. Close temporal administration of cisplatin and radiation is mandatory for enhanced antitumor efficacy, but results in significant toxicity to normal tissues. Early clinical studies demonstrated that the concurrent administration of cisplatin during STD-RT was feasible, with acceptable esophageal toxicity, and had the potential of significantly improving locoregional control. Carboplatin administered concurrently with accelerated HFX-RT was responsible for a higher rate of esophageal toxicity. Further improvement in survival also requires an effective treatment of micro-metastatic disease through full-dose delivery of cytotoxic drugs and the addition of at least one more active drug in conjunction with cisplatin and radiotherapy to further improve locoregional control of the disease. In most clinical studies, etoposide was the second drug of choice because of its own radiosensitizing properties and possible synergy with cisplatin. In numerous phase II studies, concurrent radiotherapy and PE resulted in reproducible results in terms of local control (30%-40%), median survival (15-18 months), survival at 2 years (35%-40%), and survival at 5 years (25%-30%). In phase III studies, these results were shown to be superior to radiotherapy alone and to induction chemotherapy followed by STD-RT. The question of the potential benefit of HFX-RT combined with PE has been addressed in phase II and III studies. At this time, there is no firm evidence that concurrent chemotherapy with HFX-RT is superior to concurrent chemotherapy with STD-RT in terms of local control and survival. Only a significant benefit in terms of local control or survival would

  13. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control.

    PubMed

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine.

  14. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control

    PubMed Central

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine. PMID:25949219

  15. Effect of Carbon Ion Radiotherapy for Sacral Chordoma: Results of Phase I-II and Phase II Clinical Trials

    SciTech Connect

    Imai, Reiko; Kamada, Tadashi; Tsuji, Hiroshi; Sugawara, Shinji; Serizawa, Itsuko; Tsujii, Hirohiko; Tatezaki, Shin-ichiro

    2010-08-01

    Purpose: To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas. Patients and Methods: We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks. Results: The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm{sup 3}. The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts. Conclusion: Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

  16. Localized Low-Dose Radiotherapy for Follicular Lymphoma: History, Clinical Results, Mechanisms of Action, and Future Outlooks

    SciTech Connect

    Ganem, Gerard; Cartron, Guillaume; Girinsky, Theodore; Haas, Rick L.M.; Cosset, Jean Marc; Solal-Celigny, Philippe

    2010-11-15

    The extreme radiosensitivity of indolent lymphomas was reported in the early years of radiotherapy (RT). The efficacy of low-dose total body irradiation (1.5-2 Gy) was particularly demonstrative. Higher doses were considered appropriate for localized disease. The optimal (or conventional) dose of curative RT derived from the early studies was determined to be 30-35 Gy. Nevertheless, in older series addressing the tumoricidal radiation dose in non-Hodgkin's lymphomas, investigators noted that a significant number of 'nodular' lymphomas were controlled with a dose of <22 Gy for >3 years. The idea of reintroducing localized low-dose radiotherapy (LDRT) for indolent non-Hodgkin's lymphomas came from a clinical observation. The first study showing the high efficacy of LDRT (4 Gy in two fractions of 2 Gy within 3 days) in selected patients with chemoresistant, indolent, non-Hodgkin's lymphomas was published in 1994. Since this first report, at least eight series of patients treated with localized LDRT have been published, showing a 55% complete response rate in irradiated sites, with a median duration of 15-42 months. How LDRT induces lymphoma cell death remains partly unknown. However, some important advances have recently been reported. Localized LDRT induces an apoptosis of follicular lymphoma cells. This apoptotic cell death elicits an immune response mediated by macrophages and dendritic cells. Follicular lymphoma is probably an ideal model to explore these mechanisms. This review also discusses the future of LDRT for follicular lymphoma.

  17. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  18. Distal intramural spread of rectal cancer after preoperative radiotherapy: The results of a multicenter randomized clinical study

    SciTech Connect

    Chmielik, Ewa; Bujko, Krzysztof . E-mail: bujko@coi.waw.pl; Nasierowska-Guttmejer, Anna; Nowacki, Marek P.; Kepka, Lucyna; Sopylo, Rafal; Wojnar, Andrzej; Majewski, Przemyslaw; Sygut, Jacek; Karmolinski, Andrzej; Huzarski, Tomasz; Wandzel, Piotr

    2006-05-01

    Purpose: To evaluate the extent of distal intramural spread (DIS) after preoperative radiotherapy for rectal cancer. Methods and Materials: A total of 316 patients with T{sub 3-4} primary resectable rectal cancer were randomized to receive either preoperative 5x5 Gy radiation with immediate surgery or chemoradiation (50.4 Gy, 1.8 Gy per fraction plus boluses of 5-fluorouracil and leucovorin) with delayed surgery. The slides of the 106 patients who received short-course radiation and of the 86 who received chemoradiation were available for central microscopic evaluation of DIS. Results: The length of DIS did not differ significantly (p = 0.64) between the short-course group and the chemoradiation group and was 0 in 47% vs. 49%; 1 to 5 mm in 41% vs. 42%; 6 to 10 mm in 8% vs. 9%, and greater than 10 mm in 4% vs. 0, respectively. Among the 11 clinically complete responders, DIS was found 1 to 5 mm from the microscopically detected ulceration of the mucosa in 5 patients. The discontinuous DIS was more frequent in the chemoradiation group as compared with the short-course group (i.e., 57% vs. 16% of cases, p < 0.001). Conclusions: Approximately 1 out of 10 advanced rectal cancers after preoperative radiotherapy or radiochemotherapy was characterized by DIS of over 5 mm. No significant difference was seen in the length of DIS between the 2 groups.

  19. Clinical Effect of Human Papillomavirus Genotypes in Patients With Cervical Cancer Undergoing Primary Radiotherapy

    SciTech Connect

    Wang, Chun-Chieh; Lai, Chyong-Huey; Huang, Huei-Jean; Chao, Angel; Chang, Chee-Jen; Chang, Ting-Chang; Chou, Hung-Hsueh; Hong, Ji-Hong

    2010-11-15

    Purpose: To study the prognostic value of the human papillomavirus (HPV) genotypes in cervical cancer patients undergoing radiotherapy. Patients and Methods: A total of 1,010 patients with cervical cancer after radiotherapy between 1993 and 2000 were eligible for this study. The HPV genotypes were determined by a genechip, which detects 38 types of HPV. The patient characteristics and treatment outcomes were analyzed using the Cox regression hazard model and classification and regression tree decision tree method. Results: A total of 25 genotypes of HPV were detected in 992 specimens (98.2%). The leading 8 types were HPV16, 58, 18, 33, 52, 39, 31, and 45. These types belong to two high-risk HPV species: alpha-7 (HPV18, 39, 45) and alpha-9 (HPV16, 31, 33, 52, 58). Three HPV-based risk groups, which were independent of established prognostic factors, such as International Federation of Gynecology and Obstetrics stage, age, pathologic features, squamous cell carcinoma antigen, and lymph node metastasis, were associated with the survival outcomes. The high-risk group consisted of the patients without HPV infection or the ones infected with the alpha-7 species only. Patients co-infected with the alpha-7 and alpha-9 species belonged to the medium-risk group, and the others were included in the low-risk group. Conclusion: The results of the present study have confirmed the prognostic value of HPV genotypes in cervical cancer treated with radiotherapy. The different effect of the alpha-7 and alpha-9 species on the radiation response deserves additional exploration.

  20. Atypical Clinical Behavior of p16-Confirmed HPV-Related Oropharyngeal Squamous Cell Carcinoma Treated With Radical Radiotherapy

    SciTech Connect

    Huang Shaohui; Liu Feifei; Waldron, John; Ringash, Jolie; Hope, Andrew; O'Sullivan, Brian

    2012-01-01

    Purpose: To report atypical clinical behavior observed in human papillomavirus (HPV)-related oropharyngeal carcinoma (OPC) treated with radiotherapy. Methods and Materials: A retrospective cohort study was conducted for all newly diagnosed OPC cases treated with radiotherapy on July 1, 2003 to April 30, 2009. HPV positivity was determined by p16 immunostaining in tumors. The incidence of additional malignancies and the pattern of distant metastases (DMs) were compared between the HPV-positive (HPV+) and HPV-negative (HPV-) cohorts. Results: HPV status was evaluated in 318 of 613 consecutive OPC cases (52%), showing 236 HPV+ and 82 HPV- patients. Compared with HPV-, HPV+ cases were less likely to have additional malignancies (prior: 11% vs. 20%, p = 0.038; synchronous: 1% vs. 9%, p = 0.001; metachronous: 6% vs. 16%, p = 0.003). Whereas the majority (10 of 12) of HPV- additional head-and-neck (HN) mucosal malignancies were in the oral cavity, there was none (0 of 7) in the HPV+ cohort (p < 0.001). HPV+ synchronous HN second primaries (SPs) were in the supraglottis, post-cricoid, and nasopharynx; metachronous HN SPs were in the glottis, supraglottis, and ethmoid plus glottis/post-cricoid region. All SPs that could be tested were HPV+. There was no difference in DM rate (10% vs. 15%, p = 0.272), but HPV+ DMs were more likely to involve multiple organs (46% vs. 0%, p = 0.005) and unusual sites. Conclusions: This study reports atypical clinical behavior seen in HPV+ OPC, including multicentric lesions in HN mucosa and DM to multiple organs and unusual sites. The frequency of these events is low, but they may have clinical implications. The routine assessment of HPV status for all OPC is warranted.

  1. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  2. Applications of synchrotron X-rays to radiotherapy

    NASA Astrophysics Data System (ADS)

    Blattmann, H.; Gebbers, J.-O.; Bräuer-Krisch, E.; Bravin, A.; Le Duc, G.; Burkard, W.; Di Michiel, M.; Djonov, V.; Slatkin, D. N.; Stepanek, J.; Laissue, J. A.

    2005-08-01

    Radiotherapy is among the most useful treatments of cancer. Penetrating radiation (ionizing particles or bremsstrahlung photons) is aimed toward the tumor-bearing target, gradually delivering as high radiation to it as is usefully suppressive of tumor growth, yet tolerated by normal vital tissues inevitably irradiated with the tumor. The high collimation and dose rate of synchrotron X-ray beams, even when monochromatized, favor radiotherapy. Photon activation therapy, tomotherapy, microbeam radiation therapy, and radiosurgery mediated by synchrotron wigglers are conceptually promising for difficult tumors. Radiotherapy of malignant brain tumors in rats has been encouraging, but suitable beam lines exist at only a few research facilities and much basic work must be done before the promise of synchrotron-based radiotherapy can be realized clinically.

  3. Proton radiotherapy for orbital rhabdomyosarcoma: Clinical outcome and a dosimetric comparison with photons

    SciTech Connect

    Yock, Torunn . E-mail: tyock@partners.org; Schneider, Robert C.; Friedmann, Alison; Adams, Judith C.; Fullerton, Barbara; Tarbell, Nancy

    2005-11-15

    Background: Over 85% of pediatric orbital rhabdomyosarcoma (RMS) are cured with combined chemotherapy and radiation. However, the late effects of photon radiation compromise function and cosmetic outcome. Proton radiation can provide excellent tumor dose distributions while sparing normal tissues better than photon irradiation. Methods and Materials: Conformal 3D photon and proton radiotherapy plans were generated for children treated with proton irradiation for orbital RMS at Massachusetts General Hospital. Dose-volume histograms (90%, 50%, 10%) were generated and compared for important orbital and central nervous system structures. Average percentages of total dose prescribed were calculated based on the 3 dose-volume histogram levels for normal orbital structures for both the proton and photon plans. The percent of normal tissue spared by using protons was calculated. Results: Seven children were treated for orbital rhabdomyosarcoma with proton irradiation and standard chemotherapy. The median follow-up is 6.3 years (range, 3.5-9.7 years). Local and distant controls compare favorably to those in other published accounts. There was an advantage in limiting the dose to the brain, pituitary, hypothalamus, temporal lobes, and ipsilateral and contralateral orbital structures. Tumor size and location affect the degree of sparing of normal structures. Conclusions: Fractionated proton radiotherapy is superior to 3D conformal photon radiation in the treatment of orbital RMS. Proton therapy maintains excellent tumor coverage while reducing the radiation dose to adjacent normal structures. Proton radiation therapy minimizes long-term side effects.

  4. Inhalation anesthesia in experimental radiotherapy: a reliable and time-saving system for multifractionation studies in a clinical department

    SciTech Connect

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1982-01-01

    An inhalation anesthesia system has been employed to overcome several of the limitations associated with the use of sodium pentobarbital and other i.p. administered anesthetics in experimental radiotherapy. The described method is reliable and time-saving. The depth and duration of anesthesia are easily controllable. Only 4 deaths have occurred with more than 6000 animal exposures. The use of polystyrene jigs is shown to provide adequate thermal isolation. Oxygen as a carrier of the anesthetic agent is expected to prevent a reduced tissue oxygenation and its radiobiological consequences. The whole system is constructed as a mobile unit in which up to 16 mice or rats can be anesthetized simultaneously and irradiated in a single field with clinical treatment equipment during short time intervals between patient irradiations. The described advantages of this method make it specially suited for experiments with protracted fractionation schedules.

  5. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.

    PubMed

    Fraass, B; Doppke, K; Hunt, M; Kutcher, G; Starkschall, G; Stern, R; Van Dyke, J

    1998-10-01

    In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics.

  6. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT): establishment of workflow and initial clinical data

    PubMed Central

    2012-01-01

    Background To report on establishment of workflow and clinical results of particle therapy at the Heidelberg Ion Therapy Center. Materials and methods We treated 36 pediatric patients (aged 21 or younger) with particle therapy at HIT. Median age was 12 years (range 2-21 years), five patients (14%) were younger than 5 years of age. Indications included pilocytic astrocytoma, parameningeal and orbital rhabdomyosarcoma, skull base and cervical chordoma, osteosarcoma and adenoid-cystic carcinoma (ACC), as well as one patient with an angiofibroma of the nasopharynx. For the treatment of small children, an anesthesia unit at HIT was established in cooperation with the Department of Anesthesiology. Results Treatment concepts depended on tumor type, staging, age of the patient, as well as availability of specific study protocols. In all patients, particle radiotherapy was well tolerated and no interruptions due to toxicity had to be undertaken. During follow-up, only mild toxicites were observed. Only one patient died of tumor progression: Carbon ion radiotherapy was performed as an individual treatment approach in a child with a skull base recurrence of the previously irradiated rhabdomyosarcoma. Besides this patient, tumor recurrence was observed in two additional patients. Conclusion Clinical protocols have been generated to evaluate the real potential of particle therapy, also with respect to carbon ions in distinct pediatric patient populations. The strong cooperation between the pediatric department and the department of radiation oncology enable an interdisciplinary treatment and stream-lined workflow and acceptance of the treatment for the patients and their parents. PMID:23072718

  7. Prospective evaluation of a hydrogel spacer for rectal separation in dose-escalated intensity-modulated radiotherapy for clinically localized prostate cancer

    PubMed Central

    2013-01-01

    Background As dose-escalation in prostate cancer radiotherapy improves cure rates, a major concern is rectal toxicity. We prospectively assessed an innovative approach of hydrogel injection between prostate and rectum to reduce the radiation dose to the rectum and thus side effects in dose-escalated prostate radiotherapy. Methods Acute toxicity and planning parameters were prospectively evaluated in patients with T1-2 N0 M0 prostate cancer receiving dose-escalated radiotherapy after injection of a hydrogel spacer. Before and after hydrogel injection, we performed MRI scans for anatomical assessment of rectal separation. Radiotherapy was planned and administered to 78 Gy in 39 fractions. Results From eleven patients scheduled for spacer injection the procedure could be performed in ten. In one patient hydrodissection of the Denonvillier space was not possible. Radiation treatment planning showed low rectal doses despite dose-escalation to the target. In accordance with this, acute rectal toxicity was mild without grade 2 events and there was complete resolution within four to twelve weeks. Conclusions This prospective study suggests that hydrogel injection is feasible and may prevent rectal toxicity in dose-escalated radiotherapy of prostate cancer. Further evaluation is necessary including the definition of patients who might benefit from this approach. Trial registration: German Clinical Trials Register DRKS00003273. PMID:23336502

  8. Design of, and some clinical experience with, a novel optical surface measurement system in radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Marchant, T. E.; Parkhurst, J. M.; Sharrock, P. J.; Whitfield, G.; Moore, C. J.

    2010-04-01

    Optical imaging is becoming more prevalent in image guided radiotherapy as a complementary technology to traditional ionizing radiation based modalities. We present a novel structured light based device that can capture a patient's body surface topology with a large field of view and high spatial and temporal resolution. The system is composed of three cross-calibrated sensor heads that enable 'wrap around' imaging previously unavailable with similar line of sight optical techniques. The system has been installed in a treatment bunker at the Christie Hospital alongside an Elekta linear accelerator equipped with cone beam CT (CBCT) on-board imaging. In this paper we describe the system, focussing on the methodologies required to create a robust and practical device. We show examples of measurements made to ascertain its repeatability and accuracy, and present some initial experiences in using the device for pre-treatment patient set-up.

  9. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    SciTech Connect

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C. . E-mail: rto_chen@yahoo.com.tw

    2007-04-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m{sup 2}) for six cycles every week. Thirty-three patients received adjuvant radiotherapy by IMRT. Before the IMRT series was initiated, 35 other patients underwent conventional four-field radiotherapy (Box-RT). The two groups did not differ significantly in respect of clinicopathologic and treatment factors. Results: IMRT provided compatible local tumor control compared with Box-RT. The actuarial 1-year locoregional control for patients in the IMRT and Box-RT groups was 93% and 94%, respectively. IMRT was well tolerated, with significant reduction in acute gastrointestinal (GI) and genitourinary (GU) toxicities compared with the Box-RT group (GI 36 vs. 80%, p = 0.00012; GU 30 vs. 60%, p = 0.022). Furthermore, the IMRT group had lower rates of chronic GI and GU toxicities than the Box-RT patients (GI 6 vs. 34%, p = 0.002; GU 9 vs. 23%, p = 0.231). Conclusion: Our results suggest that IMRT significantly improved the tolerance to adjuvant chemoradiotherapy with compatible locoregional control compared with conventional Box-RT. However, longer follow-up and more patients are needed to confirm the benefits of IMRT.

  10. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.

    PubMed

    Li, Hua; Dolly, Steven; Chen, Hsin-Chen; Anastasio, Mark A; Low, Daniel A; Li, Harold H; Michalski, Jeff M; Thorstad, Wade L; Gay, Hiram; Mutic, Sasa

    2016-07-01

    CT image reconstruction is typically evaluated based on the ability to reduce the radiation dose to as-low-as-reasonably-achievable (ALARA) while maintaining acceptable image quality. However, the determination of common image quality metrics, such as noise, contrast, and contrast-to-noise ratio, is often insufficient for describing clinical radiotherapy task performance. In this study we designed and implemented a new comparative analysis method associating image quality, radiation dose, and patient size with radiotherapy task performance, with the purpose of guiding the clinical radiotherapy usage of CT reconstruction algorithms. The iDose4iterative reconstruction algorithm was selected as the target for comparison, wherein filtered back-projection (FBP) reconstruction was regarded as the baseline. Both phantom and patient images were analyzed. A layer-adjustable anthropomorphic pelvis phantom capable of mimicking 38-58 cm lateral diameter-sized patients was imaged and reconstructed by the FBP and iDose4 algorithms with varying noise-reduction-levels, respectively. The resulting image sets were quantitatively assessed by two image quality indices, noise and contrast-to-noise ratio, and two clinical task-based indices, target CT Hounsfield number (for electron density determination) and structure contouring accuracy (for dose-volume calculations). Additionally, CT images of 34 patients reconstructed with iDose4 with six noise reduction levels were qualitatively evaluated by two radiation oncologists using a five-point scoring mechanism. For the phantom experiments, iDose4 achieved noise reduction up to 66.1% and CNR improvement up to 53.2%, compared to FBP without considering the changes of spatial resolution among images and the clinical acceptance of reconstructed images. Such improvements consistently appeared across different iDose4 noise reduction levels, exhibiting limited interlevel noise (<5 HU) and target CT number variations (<1 HU). The radiation

  11. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.

    PubMed

    Li, Hua; Dolly, Steven; Chen, Hsin-Chen; Anastasio, Mark A; Low, Daniel A; Li, Harold H; Michalski, Jeff M; Thorstad, Wade L; Gay, Hiram; Mutic, Sasa

    2016-07-08

    CT image reconstruction is typically evaluated based on the ability to reduce the radiation dose to as-low-as-reasonably-achievable (ALARA) while maintaining acceptable image quality. However, the determination of common image quality metrics, such as noise, contrast, and contrast-to-noise ratio, is often insufficient for describing clinical radiotherapy task performance. In this study we designed and implemented a new comparative analysis method associating image quality, radiation dose, and patient size with radiotherapy task performance, with the purpose of guiding the clinical radiotherapy usage of CT reconstruction algorithms. The iDose4 iterative reconstruction algorithm was selected as the target for comparison, wherein filtered back-projection (FBP) reconstruction was regarded as the baseline. Both phantom and patient images were analyzed. A layer-adjustable anthropomorphic pelvis phantom capable of mimicking 38-58 cm lateral diameter-sized patients was imaged and reconstructed by the FBP and iDose4 algorithms with varying noise-reduction-levels, respectively. The resulting image sets were quantitatively assessed by two image quality indices, noise and contrast-to-noise ratio, and two clinical task-based indices, target CT Hounsfield number (for electron density determination) and structure contouring accuracy (for dose-volume calculations). Additionally, CT images of 34 patients reconstructed with iDose4 with six noise reduction levels were qualitatively evaluated by two radiation oncologists using a five-point scoring mechanism. For the phantom experiments, iDose4 achieved noise reduction up to 66.1% and CNR improvement up to 53.2%, compared to FBP without considering the changes of spatial resolution among images and the clinical acceptance of reconstructed images. Such improvements consistently appeared across different iDose4 noise reduction levels, exhibiting limited interlevel noise (< 5 HU) and target CT number variations (< 1 HU). The radiation

  12. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    SciTech Connect

    Chen, Allen M.; Li Baoqing; Farwell, D. Gregory; Marsano, Joseph; Vijayakumar, Srinivasan; Purdy, James A.

    2011-03-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control, and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.

  13. Radical External Beam Radiotherapy for Clinically Localized Prostate Cancer in Japan: Changing Trends in the Patterns of Care Process Survey

    SciTech Connect

    Ogawa, Kazuhiko; Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Araya, Masayuki; Mukumoto, Nobutaka; Teshima, Teruki; Mitsumori, Michihide

    2011-12-01

    Purpose: To delineate changing trends in radical external beam radiotherapy (EBRT) for prostate cancer in Japan. Methods and Materials: Data from 841 patients with clinically localized prostate cancer treated with EBRT in the Japanese Patterns of Care Study (PCS) from 1996 to 2005 were analyzed. Results: Significant increases in the proportions of patients with stage T1 to T2 disease and decrease in prostate-specific antigen values were observed. Also, there were significant increases in the percentages of patients treated with radiotherapy by their own choice. Median radiation doses were 65.0 Gy and 68.4 Gy from 1996 to 1998 and from 1999 to 2001, respectively, increasing to 70 Gy from 2003 to 2005. Moreover, conformal therapy was more frequently used from 2003 to 2005 (84.9%) than from 1996 to 1998 (49.1%) and from 1999 to 2001 (50.2%). On the other hand, the percentage of patients receiving hormone therapy from 2003 to 2005 (81.1%) was almost the same as that from 1996 to 1998 (86.3%) and from 1999 to 2001 (89.7%). Compared with the PCS in the United States, patient characteristics and patterns of treatments from 2003 to 2005 have become more similar to those in the United States than those from 1996 to 1998 and those from 1999 to 2001. Conclusions: This study indicates a trend toward increasing numbers of patients with early-stage disease and increasing proportions of patients treated with higher radiation doses with advanced equipment among Japanese prostate cancer patients treated with EBRT during 1996 to 2005 survey periods. Patterns of care for prostate cancer in Japan are becoming more similar to those in the United States.

  14. Organizational development trajectory of a large academic radiotherapy department set up similarly to a prospective clinical trial: the MAASTRO experience

    PubMed Central

    Boersma, L; Dekker, A; Hermanns, E; Houben, R; Govers, M; van Merode, F; Lambin, P

    2015-01-01

    Objective: To simultaneously improve patient care processes and clinical research activities by starting a hypothesis-driven reorganization trajectory mimicking the rigorous methodology of a prospective clinical trial. Methods: The design of this reorganization trajectory was based on the model of a prospective trial. It consisted of (1) listing problems and analysing their potential causes, (2) defining interventions, (3) defining end points and (4) measuring the effect of the interventions (i.e. at baseline and after 1 and 2 years). The primary end point for patient care was the number of organizational root causes of incidents/near incidents; for clinical research, it was the number of patients in trials. There were several secondary end points. We analysed the data using two sample z-tests, χ2 test, a Mann–Whitney U test and the one-way analysis of variance with Bonferroni correction. Results: The number of organizational root causes was reduced by 27% (p < 0.001). There was no effect on the percentage of patients included in trials. Conclusion: The reorganizational trajectory was successful for the primary end point of patient care and had no effect on clinical research. Some confounding events hampered our ability to draw strong conclusions. Nevertheless, the transparency of this approach can give medical professionals more confidence in moving forward with other organizational changes in the same way. Advances in knowledge: This article is novel because managerial interventions were set up similarly to a prospective clinical trial. This study is the first of its kind in radiotherapy, and this approach can contribute to discussions about the effectiveness of managerial interventions. PMID:25679320

  15. The potential clinical relevance of visible particles in parenteral drugs.

    PubMed

    Doessegger, Lucette; Mahler, Hanns-Christian; Szczesny, Piotr; Rockstroh, Helmut; Kallmeyer, Georg; Langenkamp, Anja; Herrmann, Joerg; Famulare, Joseph

    2012-08-01

    Visible particulates (VP) are one subclass of defects seen during the final visual inspection of parenteral products and are currently one of the top ten reasons for recalls 1,2. The risk posed by particles is still unclear with limited experience reported in humans but remains an important consideration during the manufacture and use of parenteral products. From the experimental and clinical knowledge of the distribution of particulate matter in the body, clinical complications would include events occurring around parenteral administration e.g., as a result of mechanical pulmonary artery obstruction and injection site reaction, or sub-acute or chronic events e.g., granuloma. The challenge is to better understand the implication for patients of single vials with VP and align the risk with the probabilistic detection process used by manufacturers for accept/reject decisions of individual units of product.

  16. Assessment of Bladder Motion for Clinical Radiotherapy Practice Using Cine-Magnetic Resonance Imaging

    SciTech Connect

    McBain, Catherine A.; Khoo, Vincent S.; Buckley, David L.; Sykes, Jonathan S.; Green, Melanie M.; Cowan, Richard A.; Hutchinson, Charles E.; Moore, Christopher J.; Price, Patricia M.

    2009-11-01

    Purpose: Organ motion is recognized as the principal source of inaccuracy in bladder radiotherapy (RT), but there is currently little information on intrafraction bladder motion. Methods and Materials: We used cine-magnetic resonance imaging (cine-MRI) to study bladder motion relevant to intrafraction RT delivery. On two occasions, a 28 minute cine-MRI sequence was acquired from 10 bladder cancer patients and 5 control participants immediately after bladder emptying, after abstinence from drinking for the preceding hour. From the resulting cine sequences, bladder motion was subjectively assessed. To quantify bladder motion, the bladder was contoured in imaging volume sets at 0, 14, and 28 min to measure changes to bladder volumes, wall displacements, and center of gravity (COG) over time. Results: The dominant source of bladder motion during imaging was bladder filling (up to 101% volume increase); rectal and small bowel movements were transient, with minimal impact. Bladder volume changes were similar for all participants. However for bladder cancer patients, wall displacements were larger (up to 58 mm), less symmetrical, and more variable compared with nondiseased control bladders. Conclusions: Significant and individualized intrafraction bladder wall displacements may occur during bladder RT delivery. This important source of inaccuracy should be incorporated into treatment planning and verification.

  17. Clinical outcomes of stereotactic body radiotherapy for spinal metastases from hepatocellular carcinoma

    PubMed Central

    Lee, Eonju; Kim, Tae Gyu; Yu, Jeong Il; Lim, Do Hoon; Nam, Heerim; Lee, Hyebin; Lee, Joon Hyeok

    2015-01-01

    Purpose To investigate the outcomes of patients with spinal metastases from hepatocellular carcinoma (HCC), who were treated by stereotactic body radiotherapy (SBRT). Materials and Methods This retrospective study evaluated 23 patients who underwent SBRT from October 2008 to August 2012 for 36 spinal metastases from HCC. SBRT consisted of approximately 2 fractionation schedules, which were 18 to 40 Gy in 1 to 4 fractions for group A lesions (n = 15) and 50 Gy in 10 fractions for group B lesions (n = 21). Results The median follow-up period was 7 months (range, 2 to 16 months). Seven patients developed grade 1 or 2 gastrointestinal toxicity, and one developed grade 2 leucopenia. Compression fractures occurred in association with 25% of the lesions, with a median time to fracture of 2 months. Pain relief occurred in 92.3% and 68.4% of group A and B lesions, respectively. Radiologic response (complete and partial response) occurred in 80.0% and 61.9% of group A and B lesions, respectively. The estimated 1-year spinal-tumor progression-free survival rate was 78.5%. The median overall survival period and 1-year overall survival rate were 9 months (range, 2 to 16 months) and 25.7%, respectively. Conclusion SBRT for spinal metastases from HCC is well tolerated and effective at providing pain relief and radiologic response. Because compression fractures develop at a high rate following SBRT for spinal metastases from primary HCC, careful follow up of the patient is required. PMID:26484305

  18. Androgen deprivation therapy in combination with radiotherapy for high-risk clinically localized prostate cancer.

    PubMed

    Nishiyama, Tsutomu

    2012-04-01

    Androgen deprivation therapy (ADT) has remained the main therapeutic option for patients with advanced prostate cancer (PCa) for about 70 years. Several reports and our findings revealed that aggressive PCa can occur under a low dihydrotestosterone (DHT) level environment where the PCa of a low malignancy with high DHT dependency cannot easily occur. Low DHT levels in the prostate with aggressive PCa are probably sufficient to propagate the growth of the tumor, and the prostate with aggressive PCa can produce androgens from the adrenal precursors more autonomously than that with non-aggressive PCa does under the low testosterone environment with testicular suppression. In patients treated with ADT the pituitary-adrenal axis mediated by adrenocorticotropic hormone has a central role in the regulation of androgen synthesis. Several experimental studies have confirmed the potential benefits from the combination of ADT with radiotherapy (RT). A combination of external RT with short-term ADT is recommended based on the results of phase III randomized trials. In contrast, the combination of RT plus 6 months of ADT provides inferior survival as compared with RT plus 3 years of ADT in the treatment of locally advanced PCa. Notably, randomized trials included patients with diverse risk groups treated with older RT modalities, a variety of ADT scheduling and duration and, importantly, suboptimal RT doses. The use of ADT with higher doses of RT or newer RT modalities has to be properly assessed.

  19. Melanoma: Last call for radiotherapy.

    PubMed

    Espenel, Sophie; Vallard, Alexis; Rancoule, Chloé; Garcia, Max-Adrien; Guy, Jean-Baptiste; Chargari, Cyrus; Deutsch, Eric; Magné, Nicolas

    2017-02-01

    Melanoma is traditionally considered to be a radioresistant tumor. However, radiotherapy and immunotherapy latest developments might upset this radiobiological dogma. Stereotactic radiotherapy allows high dose per fraction delivery, with high dose rate. More DNA lethal damages, less sublethal damages reparation, endothelial cell apoptosis, and finally clonogenic cell dysfunction are produced, resulting in improved local control. Radiotherapy can also enhance immune responses, inducing neoantigens formation, tumor antigen presentation, and cytokines release. A synergic effect of radiotherapy with immunotherapy is expected, and might lead to abscopal effects. If hadrontherapy biological properties seem able to suppress hypoxia-induced radioresistance and increase biological efficacy, ballistic advantages over photon radiations might also improve radiotherapy outcomes on usually poor prognosis locations. The present review addresses biological and clinical effects of high fraction dose, bystander effect, abscopal effect, and hadrontherapy features in melanoma. Clinical trials results are warranted to establish indications of innovative radiotherapy in melanoma.

  20. The clinical characteristics of secondary primary tumors in patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy

    PubMed Central

    Zhao, Wei; Lei, Hao; Zhu, Xiaodong; Li, Ling; Qu, Song; Liang, Xia; Wang, Xiao

    2016-01-01

    Abstract To investigate the clinical characteristics associated with the risk of developing secondary primary tumors (SPTs) in patients with nasopharyngeal carcinoma (NPC) who underwent intensity-modulated radiotherapy (IMRT). Data from 527 patients with biopsy-proven nonmetastatic NPC who were treated with IMRT between January 2007 and December 2011 were analyzed retrospectively. The cumulative incidence of SPTs after IMRT completion was estimated using the Kaplan–Meier method. Intergroup differences in the cumulative incidence were determined using the log-rank test. The Cox proportional hazards regression model was used to confirm the risk factors associated with IMRT-induced SPTs. The median follow-up duration was 45.5 months (range, 4–97 months). Of the 527 patients, 12 (2.3%) developed posttreatment SPTs (9 men, 3 women), 6 of which were located in the irradiation field. SPTs were mostly located in the upper aerodigestive tract (n = 7), head and neck (n = 6), lungs (n = 3), and tongue (n = 2). The 1-, 3-, and 5-year cumulative SPT risk rates were 0.4%, 1.4%, and 3.1%, respectively, and the mean annual growth in cumulative incidence was approximately 0.6%. The 1-, 3-, and 5-year cumulative in-field SPT risk rates were 0.4%, 0.8%, and 1.5%, respectively, and the mean annual growth in the in-field cumulative incidence was approximately 0.3%. Univariate and multivariate analysis revealed that sex, age, clinical stage, chemotherapy, and overall IMRT duration did not significantly affect SPT risk. However, the history of smoking was the independent risk factor associated with SPT. The 5-year SPT incidence among patients with NPC after IMRT is concordant with or lower than that in previous 2-dimensional radiotherapy studies study. Among patients with NPC who underwent IMRT, the upper aerodigestive tract was the most common SPT site, and lung cancer was the most common pathology. Smoking history, but not sex, age, clinical stage, chemotherapy, and

  1. Clinical Feasibility of Using an EPID in cine Mode for Image-Guided Verification of Stereotactic Body Radiotherapy

    SciTech Connect

    Berbeco, Ross I.

    2007-09-01

    Purpose: To introduce a novel method for monitoring tumor location during stereotactic body radiotherapy (SBRT) while the treatment beam is on by using a conventional electronic portal imaging device (EPID). Methods and Materials: In our clinic, selected patients were treated under a phase I institutional review board-approved SBRT protocol for limited hepatic metastases from solid tumors. Before treatment planning multiple gold fiducial markers were implanted on the periphery of the tumor. During treatment the EPID was used in cine mode to collect the exit radiation and produce a sequence of images for each field. An in-house program was developed for calculating the location of the fiducials and their relative distance to the planned locations. Results: Three case studies illustrate the utility of the technique. Patient A exhibited a systematic shift of 4 mm during one of the treatment beams. Patient B showed an inferior drift of the target of approximately 1 cm from the time of setup to the end of the fraction. Patient C had a poor setup on the first day of treatment that was quantified and accounted for on subsequent treatment days. Conclusions: Target localization throughout each treatment beam can be quickly assessed with the presented technique. Treatment monitoring with an EPID in cine mode is shown to be a clinically feasible and useful tool.

  2. Clinical Outcome of Adjuvant Treatment of Endometrial Cancer Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Bouchard, Myriam; Nadeau, Sylvain M.Sc.; Gingras, Luc; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Fortin, Andre; Germain, Isabelle

    2008-08-01

    Purpose: To assess disease control and acute and chronic toxicity with aperture-based intensity-modulated radiotherapy (AB-IMRT) for postoperative pelvic irradiation of endometrial cancer. Methods and Materials: Between January and July 2005, after hysterectomy for endometrial cancer, 15 patients received 45 Gy to the pelvis using AB-IMRT. The AB-IMRT plans were generated by an in-house treatment planning system (Ballista). The AB-IMRT plans were used for treatment and were dosimetrically compared with three other approaches: conventional four-field, enlarged four-field, and beamlet-based IMRT (BB-IMRT). Disease control and toxicity were prospectively recorded and compared with retrospective data from 30 patients treated with a conventional four-field technique. Results: At a median follow-up of 27 months (range, 23-30), no relapse was noted among the AB-IMRT group compared with five relapses in the control group (p = 0.1). The characteristics of each group were similar, except for the mean body mass index, timing of brachytherapy, and applicator type used. Patients treated with AB-IMRT experienced more frequent Grade 2 or greater gastrointestinal acute toxicity (87% vs. 53%, p 0.02). No statistically significant difference was noted between the two groups regarding the incidence or severity of chronic toxicities. AB-IMRT plans significantly improved target coverage (93% vs. 76% of planning target volume receiving 45 Gy for AB-IMRT vs. conventional four-field technique, respectively). The sparing of organs at risk was similar to that of BB-IMRT. Conclusion: The results of our study have shown that AB-IMRT provides excellent disease control with equivalent late toxicity compared with the conventional four-field technique. AB-IMRT provided treatment delivery and quality assurance advantages compared with BB-IMRT and could reduce the risk of second malignancy compared with BB-IMRT.

  3. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    SciTech Connect

    Nishida, Yoshihiro; Kamada, Tadashi; Imai, Reiko; Tsukushi, Satoshi; Yamada, Yoshihisa; Sugiura, Hideshi; Shido, Yoji; Wasa, Junji; Ishiguro, Naoki

    2011-01-01

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  4. TU-CD-304-05: 4Ï€ Non-Coplanar Radiotherapy: From Mathematical Modeling to Clinical Implementation

    SciTech Connect

    Yu, V; Nguyen, D; Tran, A; Ruan, D; Cao, M; Kaprealian, T; Kupelian, P; Low, D; Sheng, K

    2015-06-15

    Purpose: To develop and clinically implement 4π radiotherapy, an inverse optimization platform that maximally utilizes non-coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical organ sparing. Methods: A 3D scanner was used to digitize the human and phantom subject surfaces, which were positioned in the computer assisted design (CAD) model of a TrueBeam machine to create a virtual geometrical model, based on which, the feasible beam space was calculated for different tumor locations. Beamlets were computed for all feasible beams using convolution/superposition. A column generation algorithm was employed to optimize patient specific beam orientations and fluence maps. Optimal routing through all selected beams were calculated by a level set method. The resultant plans were converted to XML files and delivered to phantoms in the TrueBeam developer mode. Finally, 4π plans were recomputed in Eclipse and manually delivered to recurrent GBM patients. Results: Compared to IMRT utilizing manually selected beams and volumetric modulated arc therapy plans, markedly improved dosimetry was observed using 4π for the brain, head and neck, liver, lung, and prostate patients. The improvements were due to significantly improved conformality and reduced high dose spillage to organs mediolateral to the PTV. The virtual geometrical model was experimentally validated. Safety margins with 99.9% confidence in collision avoidance were included to the model based model accuracy estimates determined via 300 physical machine to phantom distance measurements. Automated delivery in the developer mode was completed in 10 minutes and collision free. Manual 4 π treatment on the GBM cases resulted in significant brainstem sparing and took 35–45 minutes including multiple images, which showed submillimeter cranial intrafractional motion. Conclusion: The mathematical modeling utilized in 4π is accurate to create and guide highly complex non-coplanar IMRT

  5. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    are in the USA, three are in Germany, two are in France, and there is one institute in India. Research interests including urology and nephrology, clinical neurology, as well as rehabilitation are involved in precision radiotherapy for brain tumors studies. CONCLUSION: Precision radiotherapy for brain tumors remains a highly active area of research and development. PMID:25624798

  6. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  7. Xerostomia induced by radiotherapy: an overview of the physiopathology, clinical evidence, and management of the oral damage

    PubMed Central

    Pinna, Roberto; Campus, Guglielmo; Cumbo, Enzo; Mura, Ida; Milia, Egle

    2015-01-01

    Background The irradiation of head and neck cancer (HNC) often causes damage to the salivary glands. The resulting salivary gland hypofunction and xerostomia seriously reduce the patient’s quality of life. Purpose To analyze the literature of actual management strategies for radiation-induced hypofunction and xerostomia in HNC patients. Methods MEDLINE/PubMed and the Cochrane Library databases were electronically evaluated for articles published from January 1, 1970, to June 30, 2013. Two reviewers independently screened and included papers according to the predefined selection criteria. Results Sixty-one articles met the inclusion criteria. The systematic review of the literature suggests that the most suitable methods for managing the clinical and pathophysiological consequences of HNC radiotherapy might be the pharmacological approach, for example, through the use of cholinergic agonists when residual secretory capacity is still present, and the use of salivary substitutes. In addition, a modified diet and the patient’s motivation to enhance oral hygiene can lead to a significant improvement. Conclusion Radiation-induced xerostomia could be considered a multifactorial disease. It could depend on the type of cancer treatment and the cumulative radiation dose to the gland tissue. A preventive approach and the correct treatment of the particular radiotherapeutic patient can help to improve the condition of xerostomia. PMID:25691810

  8. Clinical impact of IMPORT HIGH trial (CRUK/06/003) on breast radiotherapy practices in the United Kingdom

    PubMed Central

    Ciurlionis, Laura; Kirby, Anna M; Locke, Imogen; Venables, Karen; Yarnold, John R; Titley, Jenny; Bliss, Judith; Coles, Charlotte E

    2015-01-01

    Objective: IMPORT HIGH is a multicentre randomized UK trial testing dose-escalated intensity-modulated radiotherapy (IMRT) after tumour excision in females with early breast cancer and higher than average local recurrence risk. A survey was carried out to investigate the impact of this trial on the adoption of advanced breast radiotherapy (RT) techniques in the UK. Methods: A questionnaire was sent to all 26 IMPORT HIGH recruiting RT centres to determine whether the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. In order to compare the clinical practice of breast RT between IMPORT HIGH and non–IMPORT HIGH centres, parts of the Royal College of Radiologists (RCR) breast RT audit result were used in this study. Results: 26/26 participating centres completed the questionnaire. After joining the trial, the number of centres routinely using tumour bed clips to guide whole-breast RT rose from 5 (19%) to 21 (81%). 20/26 (77%) centres now contour target volumes and organs at risk (OARs) in some or all patients compared with 14 (54%) before the trial. 14/26 (54%) centres offer inverse-planned IMRT for selected non-trial patients with breast cancer, and 10/14 (71%) have adopted the IMPORT HIGH trial protocol for target volume and OARs dose constraints. Only 2/26 (8%) centres used clip information routinely for breast treatment verification prior to IMPORT HIGH, a minority that has since risen to 7/26 (27%). Data on 1386 patients was included from the RCR audit. This suggested that more cases from IMPORT HIGH centres had surgical clips implanted (83 vs 67%), were treated using CT guided planning with full three-dimensional dose compensation (100 vs 75%), and were treated with photon boost RT (30 vs 8%). Conclusion: The study suggests that participation in the IMPORT HIGH trial has played an important part in providing the guidance and support networks needed for the safe integration of

  9. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    SciTech Connect

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions: Comparable

  10. Predictive models of toxicity with external radiotherapy for prostate cancer: clinical issues.

    PubMed

    Valdagni, Riccardo; Rancati, Tiziana; Fiorino, Claudio

    2009-07-01

    The objective of the current study was to analyze the state of the art and present limitations of available predictive clinical models (when available) estimating the risk of genitourinary tract and small bowel complications, erectile dysfunction, and acute and late symptoms of the rectal syndrome caused by prostate cancer external irradiation. An analysis of the literature indicated that very limited attention has been devoted to the development of "integrated," patient-tailored, user-friendly, and clinically usable tools for the prediction of external beam radiotoxicity. In this article, the authors reported on the multivariate correlation between late genitourinary and gastrointestinal toxicities and clinical/dosimetric risk factors, as well as on the first set of nomograms developed to predict acute and late rectal side effects. At the present state of knowledge, the use of nomograms as predictive instruments of radiotoxicity appears to be particularly attractive for several main reasons. They are "user friendly" and easily developed using the results of multivariate analyses, as they weigh the combined effects of multiple independent factors found to be correlated with the selected clinical endpoint. The integrated evaluation of clinical and dosimetric parameters in the single patient can help to provide a tailored probability of the specific outcome considered. Predicting a high probability of toxicity could avoid unnecessary daily costs for the individual patient in terms of quality of life modification during and after treatment, helping patients in the decision-making process of choosing the best individual, quality of life-related treatment, and clinicians in better tailoring the treatment to patient's characteristics. Cancer 2009;115(13 suppl):3141-9. (c) 2009 American Cancer Society.

  11. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    SciTech Connect

    Thwaites, D; Holloway, L; Bailey, M; Carolan, M; Miller, A; Barakat, S; Field, M; Delaney, G; Vinod, S; Dekker, A; Lustberg, T; Soest, J van; Walsh, S

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction and mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  12. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy

    SciTech Connect

    Kupelian, Patrick . E-mail: patrick.kupelian@orhs.org; Willoughby, Twyla; Mahadevan, Arul; Djemil, Toufik; Weinstein, Geoffrey; Jani, Shirish; Enke, Charles; Solberg, Timothy; Flores, Nicholas

    2007-03-15

    Purpose: To report the clinical experience with an electromagnetic treatment target positioning and continuous monitoring system in patients with localized prostate cancer receiving external beam radiotherapy. Methods and Materials: The Calypso System is a target positioning device that continuously monitors the location of three implanted electromagnetic transponders at a rate of 10 Hz. The system was used at five centers to position 41 patients over a full course of therapy. Electromagnetic positioning was compared to setup using skin marks and to stereoscopic X-ray localization of the transponders. Continuous monitoring was performed in 35 patients. Results: The difference between skin mark vs. the Calypso System alignment was found to be >5 mm in vector length in more than 75% of fractions. Comparisons between the Calypso System and X-ray localization showed good agreement. Qualitatively, the continuous motion was unpredictable and varied from persistent drift to transient rapid movements. Displacements {>=}3 and {>=}5 mm for cumulative durations of at least 30 s were observed during 41% and 15% of sessions. In individual patients, the number of fractions with displacements {>=}3 mm ranged from 3% to 87%; whereas the number of fractions with displacements {>=}5 mm ranged from 0% to 56%. Conclusion: The Calypso System is a clinically efficient and objective localization method for positioning prostate patients undergoing radiotherapy. Initial treatment setup can be performed rapidly, accurately, and objectively before radiation delivery. The extent and frequency of prostate motion during radiotherapy delivery can be easily monitored and used for motion management.

  13. Dosimetric verification in participating institutions in a stereotactic body radiotherapy trial for stage I non-small cell lung cancer: Japan clinical oncology group trial (JCOG0403)

    NASA Astrophysics Data System (ADS)

    Nishio, Teiji; Kunieda, Etsuo; Shirato, Hiroki; Ishikura, Satoshi; Onishi, Hiroshi; Tateoka, Kunihiko; Hiraoka, Masahiro; Narita, Yuichirou; Ikeda, Masataka; Goka, Tomonori

    2006-11-01

    A multicentre phase II trial of stereotactic body radiotherapy for T1N0M0 non-small cell lung cancer was initiated in Japan as the Japan Clinical Oncology Group trial (JCOG0403). Before starting the trial, a decision was made to evaluate the treatment machine and treatment planning in participating institutions to minimize the variations of the prescription dose between the institutions. We visited the 16 participating institutions and examined the absolute dose at the centre of a simulated spherical tumour of 3.0 cm diameter in the lung using the radiation treatment planning systems in each institution. A lung phantom for stereotactic body radiotherapy (SBRT) was developed and used for the treatment planning and film dosimetry. In the JCOG radiotherapy study group, the no model-based calculation algorithm or the model-based calculation algorithm with a dose kernel unscaled for heterogeneities were selected for use in the initial SBRT trials started in 2004, and the model-based calculation algorithm with a dose kernel scaled for heterogeneities was selected for the coming trial. The findings of this study suggest that the clinical results of lung SBRT trials should be carefully evaluated in comparison with the actual dose given to patients.

  14. Charged Particle Therapy for Hepatocellular Carcinoma

    PubMed Central

    Skinner, Heath D.; Hong, Theodore S.; Krishnan, Sunil

    2011-01-01

    Historically, the use of external beam radiotherapy for hepatocellular carcinoma (HCC) has been limited by toxicity to the uninvolved liver and surrounding structures. Advances in photon radiotherapy have improved dose conformality to the tumor and facilitated dose escalation, a key contributor to improved HCC radiation treatment outcomes. However, despite these advances in photon radiotherapy, significant volumes of liver still receive low doses of radiation that can preclude dose escalation, particularly in patients with limited functional liver reserves. By capitalizing on the lack of exit dose along the beam path beyond the tumor and higher biological effectiveness, charged particle therapy offers the promise of maximizing tumor control via dose escalation without excessive liver toxicity. In this review we discuss the distinctive biophysical attributes of both proton and carbon ion radiotherapy, particularly as they pertain to treatment of HCC. We also review the available literature regarding clinical outcomes and toxicity of using charged particles for the treatment of HCC. PMID:21939857

  15. Proton Radiotherapy for Childhood Ependymoma: Initial Clinical Outcomes and Dose Comparisons

    SciTech Connect

    MacDonald, Shannon M. Safai, Sairos; Trofimov, Alexei; Wolfgang, John; Fullerton, Barbara; Yeap, Beow Y.; Bortfeld, Thomas; Tarbell, Nancy J.; Yock, Torunn

    2008-07-15

    Purpose: To report preliminary clinical outcomes for pediatric patients treated with proton beam radiation for intracranial ependymoma and compare the dose distributions of intensity-modulated radiation therapy with photons (IMRT), three-dimensional conformal proton radiation, and intensity-modulated proton radiation therapy (IMPT) for representative patients. Methods and Materials: All children with intracranial ependymoma confined to the supratentorial or infratentorial brain treated at the Francis H. Burr Proton Facility and Harvard Cyclotron between November 2000 and March 2006 were included in this study. Seventeen patients were treated with protons. Proton, IMRT, and IMPT plans were generated with similar clinical constraints for representative infratentorial and supratentorial ependymoma cases. Tumor and normal tissue dose-volume histograms were calculated and compared. Results: At a median follow-up of 26 months from the start date of radiation therapy, local control, progression-free survival, and overall survival rates were 86%, 80%, and 89%, respectively. Subtotal resection was significantly associated with decreased local control (p = 0.016). Similar tumor volume coverage was achieved with IMPT, proton therapy, and IMRT. Substantial normal tissue sparing was seen with proton therapy compared with IMRT. Use of IMPT will allow for additional sparing of some critical structures. Conclusions: Preliminary disease control with proton therapy compares favorably with the literature. Dosimetric comparisons show the advantage of proton radiation compared with IMRT in the treatment of ependymoma. Further sparing of normal structures appears possible with IMPT. Superior dose distributions were accomplished with fewer beam angles with the use of protons and IMPT.

  16. Computerized tomographic simulation compared with clinical mark-up in palliative radiotherapy: A prospective study

    SciTech Connect

    Haddad, Peiman; Cheung, Fred; Pond, Gregory; Easton, Debbie; Cops, Frederick; Bezjak, Andrea; McLean, Michael; Levin, Wilfred; Billingsley, Susan; Williams, Diane; Wong, Rebecca . E-mail: Rebecca.Wong@rmp.uhn.on.ca

    2006-07-01

    Purpose To evaluate the impact of computed tomographic (CT) planning in comparison to clinical mark-up (CM) for palliative radiation of chest wall metastases. Methods and Materials In patients treated with CM for chest wall bone metastases (without conventional simulation/fluoroscopy), two consecutive planning CT scans were acquired with and without an external marker to delineate the CM treatment field. The two sets of scans were fused for evaluation of clinical tumor volume (CTV) coverage by the CM technique. Under-coverage was defined as the proportion of CTV not covered by the CM 80% isodose. Results Twenty-one treatments (ribs 17, sternum 2, and scapula 2) formed the basis of our study. Due to technical reasons, comparable data between CM and CT plans were available for 19 treatments only. CM resulted in a mean CTV under-coverage of 36%. Eleven sites (58%) had an under-coverage of >20%. Mean volume of normal tissues receiving {>=}80% of the dose was 5.4% in CM and 9.3% in CT plans (p = 0.017). Based on dose-volume histogram comparisons, CT planning resulted in a change of treatment technique from direct apposition to a tangential pair in 7 of 19 cases. Conclusions CT planning demonstrated a 36% under-coverage of CTV with CM of ribs and chest wall metastases.

  17. Outcomes of Positron Emission Tomography-Staged Clinical N3 Breast Cancer Treated With Neoadjuvant Chemotherapy, Surgery, and Radiotherapy

    SciTech Connect

    Park, Hae Jin; Shin, Kyung Hwan; Cho, Kwan Ho; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Jung, So-Youn; Lee, Seeyoun; Kim, Seok Won; Kang, Han-Sung; Chie, Eui Kyu; Ha, Sung Whan

    2011-12-01

    Purpose: To evaluate the treatment outcome and efficacy of regional lymph node irradiation after neoadjuvant chemotherapy (NCT) and surgery in positron emission tomography (PET)-positive clinical N3 (cN3) breast cancer patients. Methods and Materials: A total of 55 patients with ipsilateral infraclavicular (ICL), internal mammary (IMN), or supraclavicular (SCL) lymph node involvement in the absence of distant metastases, as revealed by an initial PET scan, were retrospectively analyzed. The clinical nodal stage at diagnosis (2002 AJCC) was cN3a in 14 patients (26%), cN3b in 12 patients (22%), and cN3c in 29 patients (53%). All patients were treated with NCT, followed by mastectomy or breast-conserving surgery and subsequent radiotherapy (RT) with curative intent. Results: At the median follow-up of 38 months (range, 9-80 months), 20 patients (36%) had developed treatment failures, including distant metastases either alone or combined with locoregional recurrences that included one ipsilateral breast recurrence (IBR), six regional failures (RF), and one case of combined IBR and RF. Only 3 patients (5.5%) exhibited treatment failure at the initial PET-positive clinical N3 lymph node. The 5-year locoregional relapse-free survival, disease-free survival (DFS), and overall survival rates were 80%, 60%, and 79%, respectively. RT delivered to PET-positive IMN regions in cN3b patients and at higher doses ({>=}55 Gy) to SCL regions in cN3c patients was not associated with improved 5-year IMN/SCL relapse-free survival or DFS. Conclusion: NCT followed by surgery and RT, including the regional lymph nodes, resulted in excellent locoregional control for patients with PET-positive cN3 breast cancer. The primary treatment failure in this group was due to distant metastasis rather than RF. Neither higher-dose RT directed at PET-positive SCL nodes nor coverage of PET-positive IMN nodes was associated with additional gains in locoregional control or DFS.

  18. NOTE Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    NASA Astrophysics Data System (ADS)

    Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2010-11-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.

  19. Clinical Behaviors and Outcomes for Adenocarcinoma or Adenosquamous Carcinoma of Cervix Treated by Radical Hysterectomy and Adjuvant Radiotherapy or Chemoradiotherapy

    SciTech Connect

    Huang, Yi-Ting; Wang, Chun-Chieh; Tsai, Chien-Sheng; Lai, Chyong-Huey; Chang, Ting-Chang; Chou, Hung-Hsueh; Lee, Steve P.; Hong, Ji-Hong

    2012-10-01

    Purpose: To compare clinical behaviors and treatment outcomes between patients with squamous cell carcinoma (SCC) and adenocarcinoma/adenosquamous carcinoma (AC/ASC) of the cervix treated with radical hysterectomy (RH) and adjuvant radiotherapy (RT) or concurrent chemoradiotherapy (CCRT). Methods and Materials: A total of 318 Stage IB-IIB cervical cancer patients, 202 (63.5%) with SCC and 116 (36.5%) with AC/ASC, treated by RH and adjuvant RT/CCRT, were included. The indications for RT/CCRT were deep stromal invasion, positive resection margin, parametrial invasion, or lymph node (LN) metastasis. Postoperative CCRT was administered in 65 SCC patients (32%) and 80 AC/ASC patients (69%). Patients with presence of parametrial invasion or LN metastasis were stratified into a high-risk group, and the rest into an intermediate-risk group. The patterns of failure and factors influencing survival were evaluated. Results: The treatment failed in 39 SCC patients (19.3%) and 39 AC/ASC patients (33.6%). The 5-year relapse-free survival rates for SCC and AC/ASC patients were 83.4% and 66.5%, respectively (p = 0.000). Distant metastasis was the major failure pattern in both groups. After multivariate analysis, prognostic factors for local recurrence included younger age, parametrial invasion, AC/ASC histology, and positive resection margin; for distant recurrence they included parametrial invasion, LN metastasis, and AC/ASC histology. Compared with SCC patients, those with AC/ASC had higher local relapse rates for the intermediate-risk group but a higher distant metastasis rate for the high-risk group. Postoperative CCRT tended to improve survival for intermediate-risk but not for high-risk AC/ASC patients. Conclusions: Adenocarcinoma/adenosquamous carcinoma is an independent prognostic factor for cervical cancer patients treated by RH and postoperative RT. Concurrent chemoradiotherapy could improve survival for intermediate-risk, but not necessarily high-risk, AC/ASC patients.

  20. Comparison of Efficacy of Regional and Extensive Clinical Target Volumes in Postoperative Radiotherapy for Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Qiao Xueying; Wang Wei; Zhou Zhiguo; Gao Xianshu; Chang, Joe Y.

    2008-02-01

    Purpose: To compare and analyze the effect of different clinical target volumes (CTVs) on survival rate after postoperative radiotherapy (RT) for esophageal squamous cell carcinoma (SCC). Methods and Materials: We studied 102 patients who underwent postoperative RT after radical resection for esophageal SCC (T3/4 or N1). The radiation dose was {>=}50 Gy. In the extensive portal group (E group, 43 patients), the CTV encompassed the bilateral supraclavicular region, all mediastinal lymph nodes, the anastomosis site, and the left gastric and pericardial lymphatic. In the regional portal group (R group, 59 patients), the CTV was confined to tumor bed and the lymph nodes in the immediate region of the primary lesion. The 1-, 3-, and 5-year survival rates were compared between the groups, and multivariate/univariate analysis for factors predicting survival was studied. Results: For the entire group, the 1-, 3- and 5-year survival rates were 76.3%, 50.5%, and 42.9%, respectively (median survival, 30 months). The 1-, 3-, and 5-year survival rates were 76.5%, 52.1%, and 41.3%, respectively, in the E group and 76.2%, 49.2%, and 44.6%, respectively, in the R group (not significant). According to the multivariate analysis, N stage, number of lymph nodes with metastatic disease, and tumor length were the independent prognostic factors for survival. Conclusions: Using a regional portal in postoperative RT for esophageal SCC is not associated with compromised survival compared with extensive portal RT and therefore should be considered. N stage, number of affected lymph nodes, and tumor length predict poor survival.

  1. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer

    SciTech Connect

    Beriwal, Sushil . E-mail: beriwals@upmc.edu; Gan, Gregory N.; Heron, Dwight E.; Selvaraj, Raj N.; Kim, Hayeon; Lalonde, Ron; Kelley, Joseph L.; Edwards, Robert P.

    2007-05-01

    Purpose: To assess the early clinical outcomes with concurrent cisplatin and extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix. Methods and Materials: Thirty-six patients with Stage IB2-IVA cervical cancer treated with EF-IMRT were evaluated. The pelvic lymph nodes were involved in 19 patients, and of these 19 patients, 10 also had para-aortic nodal disease. The treatment volume included the cervix, uterus, parametria, presacral space, upper vagina, and pelvic, common iliac, and para-aortic nodes to the superior border of L1. Patients were assessed for acute toxicities according to the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0. All late toxicities were scored with the Radiation Therapy Oncology Group late toxicity score. Results: All patients completed the prescribed course of EF-IMRT. All but 2 patients received brachytherapy. Median length of treatment was 53 days. The median follow-up was 18 months. Acute Grade {>=}3 gastrointestinal, genitourinary, and myelotoxicity were seen in 1, 1, and 10 patients, respectively. Thirty-four patients had complete response to treatment. Of these 34 patients, 11 developed recurrences. The first site of recurrence was in-field in 2 patients (pelvis in 1, pelvis and para-aortic in 1) and distant in 9 patients. The 2-year actuarial locoregional control, disease-free survival, overall survival, and Grade {>=}3 toxicity rates for the entire cohort were 80%, 51%, 65%, and 10%, respectively. Conclusion: Extended-field IMRT with concurrent chemotherapy was tolerated well, with acceptable acute and early late toxicities. The locoregional control rate was good, with distant metastases being the predominant mode of failure. We are continuing to accrue a larger number of patients and longer follow-up data to further extend our initial observations with this approach.

  2. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver.

    PubMed

    Carabe, Alejandro; España, Samuel; Grassberger, Clemens; Paganetti, Harald

    2013-04-07

    Proton relative biological effectiveness (RBE) is known to depend on the (α/β)x of irradiated tissues, with evidence of ∼60% variation over (α/β)x values from 1-10 Gy. The range of (α/β)x values reported for prostate tumors (1.2-5.0 Gy), brain tumors (10-15 Gy) and liver tumors (13-17 Gy) imply that the proton RBE for these tissues could vary significantly compared to the commonly used generic value of 1.1. Our aim is to evaluate the impact of this uncertainty on the proton dose in Gy(RBE) absorbed in normal and tumor tissues. This evaluation was performed for standard and hypofractionated regimens. RBE-weighted total dose (RWTD) distributions for 15 patients (five prostate tumors, five brain tumors and five liver tumors) were calculated using an in-house developed RBE model as a function of dose, dose-averaged linear energy transfer (LETd) and (α/β)x. Variations of the dose-volume histograms (DVHs) for the gross tumor volume (GTV) and the organs at risk due to changes of (α/β)x and fractionation regimen were calculated and the RWTD received by 10% and 90% of the organ volume reported. The goodness of the plan, bearing the uncertainties, was then evaluated compared to the delivered plan, which considers a constant RBE of 1.1. For standard fractionated regimens, the prostate tumors, liver tumors and all critical structures in the brain showed typically larger RBE values than 1.1. However, in hypofractionated regimens lower values of RBE than 1.1 were observed in most cases. Based on DVH analysis we found that the RBE variations were clinically significant in particular for the prostate GTV and the critical structures in the brain. Despite the uncertainties in the biological input parameters when estimating RBE values, the results show that the use of a variable RBE with dose, LETd and (α/β)x could help to further optimize the target dose in proton treatment planning. Most importantly, this study shows that the consideration of RBE variations could

  3. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver

    NASA Astrophysics Data System (ADS)

    Carabe, Alejandro; España, Samuel; Grassberger, Clemens; Paganetti, Harald

    2013-04-01

    Proton relative biological effectiveness (RBE) is known to depend on the (α/β)x of irradiated tissues, with evidence of ˜60% variation over (α/β)x values from 1-10 Gy. The range of (α/β)x values reported for prostate tumors (1.2-5.0 Gy), brain tumors (10-15 Gy) and liver tumors (13-17 Gy) imply that the proton RBE for these tissues could vary significantly compared to the commonly used generic value of 1.1. Our aim is to evaluate the impact of this uncertainty on the proton dose in Gy(RBE) absorbed in normal and tumor tissues. This evaluation was performed for standard and hypofractionated regimens. RBE-weighted total dose (RWTD) distributions for 15 patients (five prostate tumors, five brain tumors and five liver tumors) were calculated using an in-house developed RBE model as a function of dose, dose-averaged linear energy transfer (LETd) and (α/β)x. Variations of the dose-volume histograms (DVHs) for the gross tumor volume (GTV) and the organs at risk due to changes of (α/β)x and fractionation regimen were calculated and the RWTD received by 10% and 90% of the organ volume reported. The goodness of the plan, bearing the uncertainties, was then evaluated compared to the delivered plan, which considers a constant RBE of 1.1. For standard fractionated regimens, the prostate tumors, liver tumors and all critical structures in the brain showed typically larger RBE values than 1.1. However, in hypofractionated regimens lower values of RBE than 1.1 were observed in most cases. Based on DVH analysis we found that the RBE variations were clinically significant in particular for the prostate GTV and the critical structures in the brain. Despite the uncertainties in the biological input parameters when estimating RBE values, the results show that the use of a variable RBE with dose, LETd and (α/β)x could help to further optimize the target dose in proton treatment planning. Most importantly, this study shows that the consideration of RBE variations could

  4. TU-PIS-Exhibit Hall-4: Philips Pinnacle3 clinical solutions for adaptive radiotherapy

    SciTech Connect

    Bzdusek, K.

    2015-06-15

    Brachytherapy devices and software are designed to last for a certain period of time. Due to a number of considerations, such as material factors, wear-and-tear, backwards compatibility, and others, they all reach a date when they are no longer supported by the manufacturer. Most of these products have a limited duration for their use, and the information is provided to the user at time of purchase. Because of issues or concerns determined by the manufacturer, certain products are retired sooner than the anticipated date, and the user is immediately notified. In these situations, the institution is facing some difficult choices: remove these products from the clinic or perform tests and continue their usage. Both of these choices come with a financial burden: replacing the product or assuming a potential medicolegal liability. This session will provide attendees with the knowledge and tools to make better decisions when facing these issues. Learning Objectives: Understand the meaning of “end-of-life or “life expectancy” for brachytherapy devices and software Review items (devices and software) affected by “end-of-life” restrictions Learn how to effectively formulate “end-of-life” policies at your institution Learn about possible implications of “end-of-life” policy Review other possible approaches to “end-of-life” issue.

  5. Simulation study of dose enhancement in a cell due to nearby carbon and oxygen in particle radiotherapy

    NASA Astrophysics Data System (ADS)

    Shin, Jae Ik; Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Jung, Won-Gyun; Yoo, SeungHoon; Shin, Dongho; Lee, Se Byeong; Yoon, Myonggeun; Incerti, S.´ebastian; Geso, Moshi; Rosenfeld, Anatoly B.

    2015-07-01

    The aim of this study is to investigate the dose-deposition enhancement due to alpha-particle irradiation in a cellular model by using the carbon and the oxygen chemical compositions. A simulation study was performed to study dose enhancement due to carbon and oxygen for a human cell where the Geant4 code used for alpha-particle irradiation of a cellular phantom. The characteristics of the dose enhancements based on the concentrations of carbon and oxygen in the nucleus and cytoplasm by the alpha-particle radiation was investigated and was compared with those obtained by gold and gadolinium. The results showed that both the carbon- and the oxygen-induced dose enhancements were more effective than those of gold and gadolinium. We found that the dose enhancement effect was more dominant in the nucleus than in the cytoplasm if the carbon or the oxygen were uniformly distributed in the whole cell. For the condition that the added chemical composition was inserted only into the cytoplasm, the effect of the dose enhancement in the nucleus was weak. We showed that high-stopping-power materials offer a more effective dose enhancement efficacy and suggest that carbon nanotubes and oxygenation are promising candidates for dose enhancement tools in particle therapy.

  6. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  7. Rapid hyperfractionated radiotherapy. Clinical results in 178 advanced squamous cell carcinomas of the head and neck

    SciTech Connect

    Nguyen, T.D.; Demange, L.; Froissart, D.; Panis, X.; Loirette, M.

    1985-07-01

    The authors present a series of 178 patients with Stage III or IV squamous cell carcinoma of the head and neck treated by rapid irradiation using multiple and small fractions per day. An initial group of 91 patients (G1) received a total dose of 72 Gy in 80 sessions and 10 days, according to the following split course schedule: J1 to J5, 36 Gy in 40 sessions, eight daily fractions of .9 Gy separated by 2 hours; J6 to J20, rest period; J21 to J25, same as in J1 except that the spinal cord was shielded. This protocol was altered for the following 87 patients (G2) by lessening the total dose to 60 to 66 Gy and the number of fractions to 60. The rest period was lengthened to 4 weeks. All patients but five completed the whole program and the minimal follow-up period was 24 months. At the end of irradiation, 121 patients achieved a total remission, but local recurrences occurred in 56%. Moreover, acute intolerance was considered as severe in 34% of G1 patients, and included extensive mucosal necrosis and bleeding. Although this rate was significantly reduced in G2 patients, late complications were observed in 20 of the 25 survivors, and included trismus, cervical sclerosis, and recurrent laryngeal edema. The crude survival rate is 13% at 2 years. Although this study was not randomized, this particular type of accelerated and hyperfractionated combination of irradiation did not really improve the clinical results in advanced carcinoma of the head and neck. Other schedules and probably other tumors, less extended, should be tested.

  8. Defining the Clinical Target Volume for Bladder Cancer Radiotherapy Treatment Planning

    SciTech Connect

    Jenkins, Peter; Anjarwalla, Salim; Gilbert, Hugh; Kinder, Richard

    2009-12-01

    Purpose: There are currently no data for the expansion margin required to define the clinical target volume (CTV) around bladder tumors. This information is particularly relevant when perivesical soft tissue changes are seen on the planning scan. While this appearance may reflect extravesical extension (EVE), it may also be an artifact of previous transurethral resection (TUR). Methods and Materials: Eighty patients with muscle-invasive bladder cancer who had undergone radical cystectomy were studied. All patients underwent preoperative TUR and staging computed tomography (CT) scans. The presence and extent of tumor growth beyond the outer bladder wall was measured radiologically and histopathologically. Results: Forty one (51%) patients had histologically confirmed tumor extension into perivesical fat. The median and mean extensions beyond the outer bladder wall were 1.7 and 3.1 mm, respectively. Thirty five (44%) patients had EVE, as seen on CT scans. The sensitivity and specificity of CT scans for EVE were 56% and 79%, respectively. False-positive results were infrequent and not affected by either the timing or the amount of tissue resected at TUR. CT scans consistently tended to overestimate the extent of EVE. Tumor size and the presence of either lymphovascular invasion or squamoid differentiation predict a greater extent of EVE. Conclusions: In patients with radiological evidence of extravesical disease, the CTV should comprise the outer bladder wall plus a 10-mm margin. In patients with no evidence of extravesical disease on CT scans, the CTV should be restricted to the outer bladder wall plus a 6-mm margin. These recommendations would encompass microscopic disease extension in 90% of cases.

  9. Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials

    PubMed Central

    Coleman, C. Norman; Higgins, Geoff S.; Brown, J. Martin; Baumann, Michael; Kirsch, David G.; Willers, Henning; Prasanna, Pataje G.S.; Dewhirst, Mark W.; Bernhard, Eric J.; Ahmed, Mansoor M.

    2016-01-01

    There is an urgent need to improve reproducibility and translatability of preclinical data in order to fully exploit opportunities for molecular therapeutics involving radiation and radio-chemotherapy. For in vitro the clonogenic assay remains the current state-of-the-art of preclinical assays, while newer moderate- and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action and address immune modulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies, for example, regrowth delay measures bulk tumor killing while local tumor control assesses effects on CSC. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radio-chemotherapy for most tumors. Radiation models are compatible with, but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapy enhancer may be different than its interaction with radiation and/or radio-chemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. PMID:27154913

  10. Prospective multicenter study of combined treatment with chemotherapy and radiotherapy in breast cancer women with the rare clinical scenario of ipsilateral supraclavicular node recurrence without distant metastases

    SciTech Connect

    Pergolizzi, Stefano . E-mail: Stefano.Pergolizzi@unime.it; Adamo, Vincenzo; Russi, Elvio; Santacaterina, Anna; Maisano, Roberto; Numico, Gianmauro; Palazzolo, Carmela; Ferrau, Francesco; Settineri, Nicola; Altavilla, Giuseppe; Girlando, Andrea; Spadaro, Pietro; Cascinu, Stefano

    2006-05-01

    Purpose: To evaluate the role of chemotherapy combined with curative radiotherapy in breast cancer patients who presented with recurrent ipsilateral supraclavicular lymph node metastases (ISLM) without 'nonregional disease,' we designed an observational study performed prospectively. Patients and Methods: Forty-four consecutive patients with ISLM from breast cancer as part of recurrent regional disease without distant metastases were included in this study. All patients received chemotherapy with doxorubicin-based schema or paclitaxel for six courses and curative radiotherapy (60 Gy/30 fractions of 2 Gy/5 days a week). An 'involved field' radiation was delivered during the interval between the third and fourth chemotherapy course; hormonal therapy was given based on receptor status. Results: The rate of overall clinical response after chemotherapy and radiotherapy was 94.9%. Median time to progression and overall survival were 28 and 40 months, respectively; the 5-year actuarial overall survival and disease-free survival rates were 35% (95% confidence interval, 19-51) and 20% (95% confidence interval, 6-34), respectively. Conclusion: A curative course of intravenous chemotherapy and radical irradiation is feasible in patients with ISLM. All patients presenting recurrence in supraclavicular nodes should be treated with definitive locoregional treatments and systemic therapy because the outcomes are better than might be historically assumed.

  11. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Small, William Mell, Loren K.; Anderson, Penny; Creutzberg, Carien; De Los Santos, Jennifer; Gaffney, David; Jhingran, Anuja; Portelance, Lorraine; Schefter, Tracey; Iyer, Revathy; Varia, Mahesh; Winter, Kathryn M.S.; Mundt, Arno J.

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTV and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.

  12. Clinical Factors Predicting Late Severe Urinary Toxicity After Postoperative Radiotherapy for Prostate Carcinoma: A Single-Institute Analysis of 742 Patients

    SciTech Connect

    Cozzarini, Cesare; Fiorino, Claudio; Da Pozzo, Luigi Filippo; Alongi, Filippo; Berardi, Genoveffa; Bolognesi, Angelo; Briganti, Alberto; Broggi, Sara; Deli, Aniko; Guazzoni, Giorgio; Perna, Lucia; Pasetti, Marcella; Salvadori, Giovannella; Montorsi, Francesco; Rigatti, Patrizio; Di Muzio, Nadia

    2012-01-01

    Purpose: To investigate the clinical factors independently predictive of long-term severe urinary sequelae after postprostatectomy radiotherapy. Patients and Methods: Between 1993 and 2005, 742 consecutive patients underwent postoperative radiotherapy with either adjuvant (n = 556; median radiation dose, 70.2 Gy) or salvage (n = 186; median radiation dose, 72 Gy) intent. Results: After a median follow-up of 99 months, the 8-year risk of Grade 2 or greater and Grade 3 late urinary toxicity was almost identical (23.9% vs. 23.7% and 12% vs. 10%) in the adjuvant and salvage cohorts, respectively. On univariate analysis, acute toxicity was significantly predictive of late Grade 2 or greater sequelae in both subgroups (p <.0001 in both cases), and hypertension (p = .02) and whole-pelvis radiotherapy (p = .02) correlated significantly in the adjuvant cohort only. The variables predictive of late Grade 3 sequelae were acute Grade 2 or greater toxicity in both groups and whole-pelvis radiotherapy (8-year risk of Grade 3 events, 21% vs. 11%, p = .007), hypertension (8-year risk, 18% vs. 10%, p = .005), age {<=} 62 years at RT (8-year risk, 16% vs. 11%, p = .04) in the adjuvant subset, and radiation dose >72 Gy (8-year risk, 19% vs. 6%, p = .007) and age >71 years (8-year risk, 16% vs. 6%, p = .006) in the salvage subgroup. Multivariate analysis confirmed the independent predictive role of all the covariates indicated as statistically significant on univariate analysis. Conclusions: The risk of late Grade 2 or greater and Grade 3 urinary toxicity was almost identical, regardless of the RT intent. In the salvage cohort, older age and greater radiation doses resulted in a worse toxicity profile, and younger, hypertensive patients experienced a greater rate of severe late sequelae in the adjuvant setting. The causes of this latter correlation and apparently different etiopathogenesis of chronic damage in the two subgroups were unclear and deserve additional investigation.

  13. Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions

    PubMed Central

    Wilson, P; Jones, B; Yokoi, T; Hill, M; Vojnovic, B

    2012-01-01

    Objective To reinvestigate ultra-high dose rate radiation (UHDRR) radiobiology and consider potential implications for hadrontherapy. Methods A literature search of cellular UHDRR exposures was performed. Standard oxygen diffusion equations were used to estimate the time taken to replace UHDRR-related oxygen depletion. Dose rates from conventional and novel methods of hadrontherapy accelerators were considered, including spot scanning beam delivery, which intensifies dose rate. Results The literature findings were that, for X-ray and electron dose rates of around 109 Gy s–1, 5–10 Gy depletes cellular oxygen, significantly changing the radiosensitivity of cells already in low oxygen tension (around 3 mmHg or 0.4 kPa). The time taken to reverse the oxygen depletion of such cells is estimated to be over 20–30 s at distances of over 100 μm from a tumour blood vessel. In this time window, tumours have a higher hypoxic fraction (capable of reducing tumour control), so the next application of radiation within the same fraction should be at a time that exceeds these estimates in the case of scanned beams or with ultra-fast laser-generated particles. Conclusion This study has potential implications for particle therapy, including laser-generated particles, where dose rate is greatly increased. Conventional accelerators probably do not achieve the critical UHDRR conditions. However, specific UHDRR oxygen depletion experiments using proton and ion beams are indicated. PMID:22496068

  14. Health-Related Quality of Life 2 Years After Treatment With Radical Prostatectomy, Prostate Brachytherapy, or External Beam Radiotherapy in Patients With Clinically Localized Prostate Cancer

    SciTech Connect

    Ferrer, Montserrat Suarez, Jose Francisco; Guedea, Ferran; Fernandez, Pablo; Macias, Victor; Marino, Alfonso; Hervas, Asuncion; Herruzo, Ismael; Ortiz, Maria Jose; Villavicencio, Humberto; Craven-Bratle, Jordi; Garin, Olatz; Aguilo, Ferran

    2008-10-01

    Purpose: To compare treatment impact on health-related quality of life (HRQL) in patients with localized prostate cancer, from before treatment to 2 years after the intervention. Methods and Materials: This was a longitudinal, prospective study of 614 patients with localized prostate cancer treated with radical prostatectomy (134), three-dimensional external conformal radiotherapy (205), and brachytherapy (275). The HRQL questionnaires administered before and after treatment (months 1, 3, 6, 12, and 24) were the Medical Outcomes Study 36-Item Short Form, the Functional Assessment of Cancer Therapy (General and Prostate Specific), the Expanded Prostate Cancer Index Composite (EPIC), and the American Urological Association Symptom Index. Differences between groups were tested by analysis of variance and within-group changes by univariate repeated-measures analysis of variance. Generalized estimating equations (GEE) models were constructed to assess between-group differences in HRQL at 2 years of follow-up after adjusting for clinical variables. Results: In each treatment group, HRQL initially deteriorated after treatment with subsequent partial recovery. However, some dimension scores were still significantly lower after 2 years of treatment. The GEE models showed that, compared with the brachytherapy group, radical prostatectomy patients had worse EPIC sexual summary and urinary incontinence scores (-20.4 and -14.1; p < 0.001), and external radiotherapy patients had worse EPIC bowel, sexual, and hormonal summary scores (-3.55, -5.24, and -1.94; p < 0.05). Prostatectomy patients had significantly better EPIC urinary irritation scores than brachytherapy patients (+4.16; p < 0.001). Conclusions: Relevant differences between treatment groups persisted after 2 years of follow-up. Radical prostatectomy had a considerable negative effect on sexual functioning and urinary continence. Three-dimensional conformal radiotherapy had a moderate negative impact on bowel

  15. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  16. Clinical stage 1 non-Hodgkin's lymphoma: long-term follow-up of patients treated by the British National Lymphoma Investigation with radiotherapy alone as initial therapy.

    PubMed Central

    Vaughan Hudson, B.; Vaughan Hudson, G.; MacLennan, K. A.; Anderson, L.; Linch, D. C.

    1994-01-01

    A retrospective analysis was performed of 451 adult patients with clinical stage 1/1E non-Hodgkin's lymphoma treated initially with radiotherapy alone. Histopathologically 208 patients had low-grade disease and 243 patients high-grade disease. The complete remission (CR) rate was higher in patients with low-grade disease (98%) than in those with high-grade disease (84%) (P < 0.0001). The relapse rate was similar in both histological categories, and relapse usually occurred within 5 years. The resulting overall actuarial percentage of patients achieving CR and remaining disease free (at 10 years) was 47% in patients with low-grade disease and 45% for those with high-grade disease. Salvage therapy was frequently successful in younger patients, and the overall cause-specific survival at 10 years was 71% for low-grade disease and 67% for high-grade disease. In those patients under 60 years of age at diagnosis, the overall cause-specific survival at 10 years was 84% and 80% for those with low-grade and high-grade disease respectively. These long-term results in young patients with clinical stage 1 disease are encouraging, and it will be difficult to demonstrate improved survival with initial chemotherapy either with or without radiotherapy, until new prognostic factors are found to identify poor-risk patients. PMID:8198975

  17. Effect of irradiation on neovascularization in rat skinfold chambers: Implications for clinical trials of low-dose radiotherapy for wet-type age-related macular degeneration

    SciTech Connect

    Hori, Katsuyoshi . E-mail: k-hori@idac.tohoku.ac.jp; Saito, Sachiko; Tamai, Makoto

    2004-12-01

    Purpose: Wet-type age-related macular degeneration is a refractory eye disease that involves choroidal neovascularization. Randomized controlled trials of low-dose radiotherapy for this disease performed in Japan showed that, at 12 months of follow-up, visual acuity was significantly well preserved and the neovascular membrane size decreased. Because understanding the effect of irradiation on new vascular networks is an important prerequisite for clinical trials, we used a rat skinfold chamber technique to investigate X-ray-induced changes in neovasculature microcirculation. Methods and materials: Neovascularization was induced in rat skinfold chambers via polyvinyl chloride resin plates. Neovessels were irradiated in a single 10-Gy dose, after which, changes in vascular density, blood velocity, tissue blood flow, and interstitial fluid pressure (IFP), were measured. Results: Vascular density, tissue blood flow, and IFP measurements in resin-induced inflammatory tissue were much higher than those measurements in normal tissue. Although overall blood velocity was low and sluggish or blood-flow stasis occurred in the neovascular network, after a single 10-Gy dose of radiation, the velocity increased, stasis improved markedly, and many dilated vessels narrowed. Thereafter, vascular density, blood flow, and IFP significantly decreased and approached normal values. Conclusion: These findings may help explain clinical results related to radiotherapy-induced changes in neovascular membranes in age-related macular degeneration. Both vascular morphology and vascular function in inflammatory tissue returned to normal, without vessel destruction, after an appropriate radiation dose.

  18. Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy

    DOEpatents

    Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.

    2001-01-16

    Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of

  19. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation.

    PubMed

    Lin, Yuting; McMahon, Stephen J; Scarpelli, Matthew; Paganetti, Harald; Schuemann, Jan

    2014-12-21

    Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.

  20. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; McMahon, Stephen J.; Scarpelli, Matthew; Paganetti, Harald; Schuemann, Jan

    2014-12-01

    Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.

  1. Comparison of Clinical Outcomes of Surgery Followed by Local Brain Radiotherapy and Surgery Followed by Whole Brain Radiotherapy in Patients With Single Brain Metastasis: Single-Center Retrospective Analysis

    SciTech Connect

    Hashimoto, Kenji; Narita, Yoshitaka; Miyakita, Yasuji; Ohno, Makoto; Sumi, Minako; Mayahara, Hiroshi; Kayama, Takamasa; Shibui, Soichiro

    2011-11-15

    Purpose: Data comparing the clinical outcomes of local brain radiotherapy (LBRT) and whole brain RT (WBRT) in patients with a single brain metastasis after tumor removal are limited. Patients and Methods: A retrospective analysis was performed to compare the patterns of treatment failure, cause of death, progression-free survival, median survival time, and Karnofsky performance status for long-term survivors among patients who underwent surgery followed by either LBRT or WBRT between 1990 and 2008 at the National Cancer Center Hospital. Results: A total of 130 consecutive patients were identified. The median progression-free survival period among the patients who received postoperative LBRT (n = 64) and WBRT (n = 66) was 9.7 and 11.5 months, respectively (p = .75). The local recurrence rates (LBRT, 9.4% vs. WBRT, 12.1%) and intracranial new metastasis rate (LBRT, 42.2% vs. WBRT, 33.3%) were similar in each arm. The incidence of leptomeningeal metastasis was also equivalent (LBRT, 9.4% vs. WBRT, 10.6%). The median survival time for the LBRT and WBRT patients was 13.9 and 16.7 months, respectively (p = .88). A neurologic cause of death was noted in 35.6% of the patients in the LBRT group and 36.7% of the WBRT group (p = .99). The Karnofsky performance status at 2 years was comparable between the two groups. Conclusions: The clinical outcomes of LBRT and WBRT were similar. A prospective evaluation is warranted.

  2. The clinical effects of low-dose splenic irradiation combined with chest three-dimensional conformal radiotherapy on patients with locally advanced non-small-cell lung cancer: a randomized clinical trial

    PubMed Central

    Yu, Hongsheng; Qu, Yong; Shang, Qingjun; Yan, Chao; Jiang, Peng; Wang, Xiang; Liang, Donghai; Jiang, Tao

    2016-01-01

    Objective The objective of this study was to explore the clinical effects of low-dose splenic irradiation on locally advanced non-small-cell lung cancer (NSCLC) patients. Methods Thirty-eight patients with stage III NSCLC were randomly divided into a control group and a combined treatment group. The control group only received chest three-dimensional conformal radiotherapy, while the combined treatment group received low-dose splenic irradiation followed by chest three-dimensional conformal radiotherapy after 6 hours. T lymphocyte subsets of the blood cells were tested before, during, and after treatment once a week. The side effects induced by radiation were observed, and a follow-up was done to observe the survival statistics. Results The ratio differences in CD4+ cells, CD8+ cells, and CD4+/CD8+ before and after treatment were not statistically significant (P>0.05) in both the groups. The immune indexes were also not statistically significant (P>0.05) before and after radiotherapy in the combined treatment group. However, the numbers of CD4+ cells and CD4+/CD8+ ratios before radiotherapy were higher than after radiotherapy in the control group. There were no differences in the incidence of radiation toxicities between the two groups; however, the incidence of grade III or IV radiation toxicities was lower, and the dose at which the radiation toxicities appeared was higher in the combined treatment group. The total response rate was 63.16% (12/19) in the combined treatment group vs 42.11% (8/19) in the control group. The median 2-year progression-free survival (15 months in the combined treatment group vs 10 months in the control group) was statistically significant (P<0.05). The median 2-year overall survival (17.1 months in the combined treatment group vs 15.8 months in the control group) was not statistically significant (P>0.05). Conclusion Low-dose radiation can alleviate the radiation toxicities, improve the short-term efficacy of radiotherapy, and improve

  3. SU-E-T-175: Clinical Evaluations of Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Radiotherapy

    SciTech Connect

    Chi, Y; Li, Y; Tian, Z; Gu, X; Jiang, S; Jia, X

    2015-06-15

    Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine was used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.

  4. Estimating the Magnitude and Field-Size Dependence of Radiotherapy-Induced Mortality and Tumor Control After Postoperative Radiotherapy For Non-Small-Cell Lung Cancer: Calculations From Clinical Trials

    SciTech Connect

    Miles, Edward F. . E-mail: edward.miles@duke.edu; Kelsey, Chris R.; Kirkpatrick, John P.; Marks, Lawrence B.

    2007-07-15

    Purpose: To create, on the basis of available data, a mathematical model to describe the tumor stage- and field size-dependent risks/benefits of postoperative radiotherapy (PORT) for non-small-cell lung cancer (NSCLC), and to assess whether this simple model can accurately describe the reported changes in overall survival. Methods and Materials: The increase in overall survival afforded by PORT is assumed equal to the increase in cancer-specific survival minus the rate of RT-induced mortality. The increase in cancer-specific survival is the product of the probabilities of (residual local disease) x (sterilization of residual disease with PORT) x (absence of metastatic disease). Data were extracted from the literature to estimate these probabilities. Different models were considered to relate the RT-induced mortality to field size. Results: The rate of RT-induced mortality seems to be proportional to the cube of the field size. When these mortality rates are included in the model, the predicted changes in overall survival approximate the literature values. Conclusion: Clinical data can be explained by a simple model that suggests that RT-induced mortality is strongly dependent on field size and at least partly offsets the benefit afforded by PORT. Smaller RT fields, tailored to treat the areas most at risk for recurrence, provide the highest therapeutic ratio. The data used do not reflect the impact of chemotherapy, which will reduce the rate of distant metastases and enhance the efficacy of RT.

  5. TH-E-BRF-05: Comparison of Survival-Time Prediction Models After Radiotherapy for High-Grade Glioma Patients Based On Clinical and DVH Features

    SciTech Connect

    Magome, T; Haga, A; Igaki, H; Sekiya, N; Masutani, Y; Sakumi, A; Mukasa, A; Nakagawa, K

    2014-06-15

    Purpose: Although many outcome prediction models based on dose-volume information have been proposed, it is well known that the prognosis may be affected also by multiple clinical factors. The purpose of this study is to predict the survival time after radiotherapy for high-grade glioma patients based on features including clinical and dose-volume histogram (DVH) information. Methods: A total of 35 patients with high-grade glioma (oligodendroglioma: 2, anaplastic astrocytoma: 3, glioblastoma: 30) were selected in this study. All patients were treated with prescribed dose of 30–80 Gy after surgical resection or biopsy from 2006 to 2013 at The University of Tokyo Hospital. All cases were randomly separated into training dataset (30 cases) and test dataset (5 cases). The survival time after radiotherapy was predicted based on a multiple linear regression analysis and artificial neural network (ANN) by using 204 candidate features. The candidate features included the 12 clinical features (tumor location, extent of surgical resection, treatment duration of radiotherapy, etc.), and the 192 DVH features (maximum dose, minimum dose, D95, V60, etc.). The effective features for the prediction were selected according to a step-wise method by using 30 training cases. The prediction accuracy was evaluated by a coefficient of determination (R{sup 2}) between the predicted and actual survival time for the training and test dataset. Results: In the multiple regression analysis, the value of R{sup 2} between the predicted and actual survival time was 0.460 for the training dataset and 0.375 for the test dataset. On the other hand, in the ANN analysis, the value of R{sup 2} was 0.806 for the training dataset and 0.811 for the test dataset. Conclusion: Although a large number of patients would be needed for more accurate and robust prediction, our preliminary Result showed the potential to predict the outcome in the patients with high-grade glioma. This work was partly supported by

  6. Definitive radiotherapy for early (T1-T2) Glottic Squamous cell carcinoma: a 20 year Cleveland clinic experience

    PubMed Central

    2012-01-01

    Purpose To report our 20 yr experience of definitive radiotherapy for early glottic squamous cell carcinoma (SCC). Methods and materials Radiation records of 141 patients were retrospectively evaluated for patient, tumor, and treatment characteristics. Cox proportional hazard models were used to perform univariate (UVA) and multivariate analyses (MVA). Cause specific survival (CSS) and overall survival (OS) were plotted using cumulative incidence and Kaplan-Meir curves, respectively. Results Of the 91% patients that presented with impaired voice, 73% noted significant improvement. Chronic laryngeal edema and dysphagia were noted in 18% and 7%, respectively. The five year LC was 94% (T1a), 83% (T1b), 87% (T2a), 65% (T2b); the ten year LC was 89% (T1a), 83% (T1b), 87% (T2a), and 53% (T2b). The cumulative incidence of death due to larynx cancer at 10 yrs was 5.5%, respectively. On MVA, T-stage, heavy alcohol consumption during treatment, and used of weighted fields were predictive for poor outcome (p < 0.05). The five year CSS and OS was 95.9% and 76.8%, respectively. Conclusions Definitive radiotherapy provides excellent LC and CSS for early glottis carcinoma, with excellent voice preservation and minimal long term toxicity. Alternative management strategies should be pursued for T2b glottis carcinomas. PMID:23164282

  7. Particle therapy for noncancer diseases

    SciTech Connect

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.

  8. Inhalation anesthesia in experimental radiotherapy: a reliable and time-saving system for multifractionation studies in a clinical department. [Rats; Mice

    SciTech Connect

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1982-01-01

    An inhalation anesthesia system has been employed to overcome several of the limitations associated wih the use of sodium pentobarbital and other i.p. administered anesthetics in experimental radiotherapy. The described method is reliable and time-saving. The depth and duration of anesthesia are easily controllable. Only 4 deaths have occurred with more than 6000 animal exposures. The use of polystyrene jigs is shown to provide adequate thermal isolation. Oxygen as a carrier of the anesthetic agent is expected to prevent a reduced tissue oxygenation and its radiobiologial consequences. The whole system is constructed as a mobile unit in which up to 16 mice or rats can be anesthetized simultaneously and irradiated in a single field with clinical treatment equipment during short time intervals between patient irradiations. The described advantages of this method make it specially suited for experiments with protracted fractionation schedules.

  9. Derivation and representation of dose-volume response from large clinical trial data sets: an example from the RADAR prostate radiotherapy trial

    NASA Astrophysics Data System (ADS)

    Ebert, M. A.; Foo, K.; Haworth, A.; Gulliford, S. L.; Kearvall, R.; Kennedy, A.; Richardson, S.; Krawiec, M.; Stewart, N.; Joseph, D. J.; Denham, J. W.

    2014-03-01

    Large multicentre radiotherapy trials incorporating assessment of multiple outcomes at multiple timepoints can generate extensive datasets. We have investigated graphical techniques for presentation of this data and the associated underlying dose-volume response information, necessary for guiding statistical analyses and translating outcomes to future patient treatments. A relational database was used to archive reviewed plan data for patients accrued to the TROG 03.04 RADAR trial. Viewing software was used to clean and enhance the data. Scripts were developed to export arbitrary dose-histogram data which was combined with clinical toxicity data with a median follow-up of 72 months. Graphical representations of dose-volume response developed include prevalence atlasing, univariate logistic regression and dose-volume-point odds ratios, and continuous cut-point derivation via ROC analysis. These representations indicate variable association of toxicities across structures and time-points.

  10. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    SciTech Connect

    Lim, Karen; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-02-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  11. Radiotherapy for Early-Stage Hodgkin's Lymphoma: A 21st Century Perspective and Review of Multiple Randomized Clinical Trials

    SciTech Connect

    Bar Ad, Voichita Paltiel, Ora; Glatstein, Eli

    2008-12-01

    The treatment of Hodgkin's lymphoma has improved dramatically over the past decades. Over the last half century, Hodgkin's lymphoma has become one of the most curable cancers of adulthood. More than 90% of the patients with localized stages of the disease can be cured with modern treatment strategies. Long-term toxicities are now the major concern for survivors of early-stage disease. Contemporary therapeutic approaches for Hodgkin's lymphoma attempt to preserve the high cure rate achieved, while reducing treatment-related acute and late toxicities. The aim of this review is to re-examine the historical and the current role of radiotherapy for early-stage Hodgkin's lymphoma, given the latest evidence of an increasing role of chemotherapy for the treatment of this malignancy. The literature search was performed in PubMed Plus. Studies on children were excluded.

  12. [Radiotherapy for Graves' ophthalmopathy].

    PubMed

    Kuhnt, T; Müller, A C; Janich, M; Gerlach, R; Hädecke, J; Duncker, G I W; Dunst, J

    2004-11-01

    Graves' ophthalmopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease, an autoimmune disorder of the thyroid, whereas the precise pathogenesis still remains unclear. In Hashimoto's thyroiditis the occurrence of proptosis is an extremely rare event. The therapy for middle and severe courses of GO shows in partly disappointing results, although several therapy modalities are possible (glucocorticoid therapy, radiotherapy, antithyroid drug treatment, surgery). All these therapies lead in only 40 - 70 % to an improvement of the pathogenic symptoms. An intensive interdisciplinary cooperation is necessary to satisfy the requirements for the treatment of Graves' ophthalmopathy. As a consequence of the very different results of the few of clinical studies that were accomplished with reference to this topic, treatment by radiotherapy in the management of the disease is presently controversially discussed. In the German-speaking countries the radiotherapy is, however, firmly established as a therapy option in the treatment of the moderate disease classes (class 2-5 according to NO SPECS), especially if diplopia is present. This article describes the sequences, dosages and fractionation schemes as well as the risks and side effects of the radiotherapy. Altogether, radiotherapy is assessed as an effective and sure method. The administration of glucocorticoids can take place before the beginning of or during the radiotherapy. For the success of treatment the correct selection of patients who may possibly profit from a radiotherapy is absolutely essential. By realising that GO proceeds normally over a period of 2-5 years, which is followed by a period of fibrotic alteration, the application of the radiotherapy in the early, active phase is indispensable. A precise explanation for the effects of radiotherapy in treatment of the GO does not exist at present. The determination of the most effective irradiation doses was made from retrospectively evaluated

  13. Quantitative effect of combined chemotherapy and fractionated radiotherapy on the incidence of radiation-induced lung damage: A prospective clinical study

    SciTech Connect

    Mah, K.; Van Dyk, J.; Braban, L.E.; Hao, Y.; Keane, T.J. ); Poon, P.Y. )

    1994-02-01

    The objective of this work was to assess the incidence of radiological changes compatible with radiation-induced lung damage as determined by computed tomography (CT), and subsequently calculate the dose effect factors (DEF) for specified chemotherapeutic regimens. Radiation treatments were administered once daily, 5 days-per-week. Six clinical protocols were evaluated: ABVD (adriamycin, bleomycin, vincristine, and DTIC) followed by 35 Gy in 20 fractions; MOPP (nitrogen mustard, vincristine, procarbazine, and prednisone) followed by 35 Gy in 20; MOPP/ABVD followed by 35 Gy in 20; CAV (cyclophosphamide, adriamycin, and vincristine) followed by 25 Gy in 10; and 5-FU (5-fluorouracil) concurrent with either 50-52 Gy in 20-21 or 30-36 Gy in 10-15 fractions. CT examinations were taken before and at predetermined intervals following radiotherapy. CT evidence for the development of radiation-induced damage was defined as an increase in lung density within the irradiated volume. The radiation dose to lung was calculated using a CT-based algorithm to account for tissue inhomogeneities. Different fractionation schedules were converted using two isoeffect models, the estimated single dose (ED) and the normalized total dose (NTD). The actuarial incidence of radiological pneumonitis was 71% for the ABVD, 49% for MOPP, 52% for MOPP/ABVD, 67% for CAV, 73% for 5-FU radical, and 58% for 5-FU palliative protocols. Depending on the isoeffect model selected and the method of analysis, the DEF was 1.11-1.14 for the ABVD, 0.96-0.97 for the MOPP, 0.96-1.02 for the MOPP/ABVD, 1.03-1.10 for the CAV, 0.74-0.79 for the 5-FU radical, and 0.94 for the 5-FU palliative protocols. DEF were measured by comparing the incidence of CT-observed lung damage in patients receiving chemotherapy and radiotherapy to those receiving radiotherapy alone. The addition of ABVD or CAV appeared to reduce the tolerance of lung to radiation. 40 refs., 3 figs., 3 tabs.

  14. Acute Toxicity Profile and Compliance to Accelerated Radiotherapy Plus Carbogen and Nicotinamide for Clinical Stage T2-4 Laryngeal Cancer: Results of a Phase III Randomized Trial

    SciTech Connect

    Janssens, Geert O.; Terhaard, Chris H.; Doornaert, Patricia A.; Bijl, Hendrik P.; Ende, Piet van den; Chin, Alim; Pop, Lucas A.; Kaanders, Johannes H.

    2012-02-01

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with cT2-4 squamous cell laryngeal cancer were randomized to AR (n = 174) and ARCON (n = 171). Acute toxicity was scored weekly until Week 8 and every 2-4 weeks thereafter. Compliance to carbogen and nicotinamide was reported. Results: Between both treatment arms (AR vs. ARCON) no statistically significant difference was observed for incidence of acute skin reactions (moist desquamation: 56% vs. 58%, p = 0.80), acute mucosal reactions (confluent mucositis: 79% vs. 85%, p = 0.14), and symptoms related to acute mucositis (severe pain on swallowing: 53% vs. 58%, p = 0.37; nasogastric tube feeding: 28% vs. 28%, p = 0.98; narcotic medicines required: 58% vs. 58%, p = 0.97). There was a statistically significant difference in median duration of confluent mucositis in favor of AR (2.0 vs 3.0 weeks, p = 0.01). There was full compliance with carbogen breathing and nicotinamide in 86% and 80% of the patients, with discontinuation in 6% and 12%, respectively. Adjustment of antiemesis prophylaxis was needed in 42% of patients. Conclusion: With the exception of a slight increase in median duration of acute confluent mucositis, the present data reveal a similar acute toxicity profile between both regimens and a good compliance with ARCON for clinical stage T2-4 laryngeal cancers. Treatment outcome and late morbidity will determine the real therapeutic benefit.

  15. Post-Irradiation Bladder Syndrome After Radiotherapy of Malignant Neoplasm of Small Pelvis Organs: An Observational, Non-Interventional Clinical Study Assessing VESIcare®/Solifenacin Treatment Results.

    PubMed

    Jaszczyński, Janusz; Kojs, Zbigniew; Stelmach, Andrzej; Wohadło, Łukasz; Łuczyńska, Elzbieta; Heinze, Sylwia; Rys, Janusz; Jakubowicz, Jerzy; Chłosta, Piotr

    2016-07-30

    BACKGROUND Radiotherapy is explicitly indicated as one of the excluding factors in diagnosing overactive bladder syndrome (OAB). Nevertheless, symptoms of OAB such as urgent episodes, incontinence, pollakiuria, and nocturia, which are consequences of irradiation, led us to test the effectiveness of VESIcare®/Solifenacin in patients demonstrating these symptoms after radiation therapy of small pelvis organs due to malignant neoplasm. MATERIAL AND METHODS We conducted an observatory clinical study including 300 consecutive patients with symptoms of post-irradiation bladder; 271 of those patients completed the study. The observation time was 6 months and consisted of 3 consecutive visits taking place at 12-week intervals. We used VESIcare® at a dose of 5 mg a day. Every sixth patient was examined urodynamically at the beginning and at the end of the observation period, with an inflow speed of 50 ml/s. RESULTS We noticed improvement and decline in the average number of episodes a day in the following parameters: number of micturitions a day (-36%, P<0.01), nocturia (-50%, P<0.01), urgent episodes (-41%, P<0.03), and episodes of incontinence (-43%, P<0.01). The patients' quality of life improved. The average maximal cystometric volume increased by 34 ml (21%, p<0.01), average bladder volume of "first desire" increased by 42 ml (49%, P<0.01), and average detrusor muscle pressure at maximal cystometric volume diminished by 9 cmH2O (-36%, P<0.03). CONCLUSIONS The substance is well-tolerated. Solifenacin administered long-term to patients with symptoms of OAB after radiotherapy of a malignant neoplasm of the small pelvis organs has a daily impact in decreasing number of urgent episodes, incontinence, pollakiuria, and nocturia.

  16. Effect of Bevacizumab Plus Temozolomide-Radiotherapy for Newly Diagnosed Glioblastoma with Different MGMT Methylation Status: A Meta-Analysis of Clinical Trials

    PubMed Central

    Du, Chigang; Ren, Junquan; Zhang, Rui; Xin, Tao; Li, Zhongmin; Zhang, Zhiti; Xu, Xinghua; Pang, Qi

    2016-01-01

    Background MGMT methylation status can influence the therapeutic effect and prognosis of glioblastoma (GBM). There are conflicting results from studies evaluating the efficacy of bevacizumab (BV) when it is combined with temozolomide (TMZ) and radiotherapy (RT) in patients diagnosed with GBM with different MGMT methylation status. Material/Methods Data were extracted from publications in PubMed, Embase, and The Cochrane Library, with the last search performed March 23, 2016. Data on overall survival (OS), progression-free survival (PFS), and MGMT methylation status were obtained. Results Data from 3 clinical trials for a total of 1443 subjects were used for this meta-analysis. MGMT methylated and unmethylated patients showed improved PFS in the BV group (pooled HRs, 0.769, 95% CIs 0.604–0.978, P=0.032; 0.675, 95%CIs 0.466–0.979, P=0.038). For patients with either type of GBM, BV did not improve the OS based on the pooled HRs 1.132 (95% CIs 0.876–1.462; P=0.345) for methylated and 1.018 (95% CIs 0.879–1.179; P=0.345) for unmethylated. Conclusions Bevacizumab combined with temozolomide-radiotherapy correlated with improved PFS for treatment of patients with different MGMT methylation status of newly diagnosed GBM. There was insufficient evidence to determine the synergistic effects of combining BV with TMZ and RT on improving survival in patients with different MGMT methylation status. PMID:27684457

  17. SU-E-CAMPUS-J-04: Image Guided Radiation Therapy (IGRT): Review of Technical Standards and Credentialing in Radiotherapy Clinical Trials

    SciTech Connect

    Giaddui, T; Chen, W; Yu, J; Gong, Y; Galvin, J; Xiao, Y; Cui, Y; Yin, F; Craig, T; Dawson, L; Al-Hallaq, H; Chmura, S

    2014-06-15

    Purpose: To review IGRT credentialing experience and unexpected technical issues encountered in connection with advanced radiotherapy technologies as implemented in RTOG clinical trials. To update IGRT credentialing procedures with the aim of improving the quality of the process, and to increase the proportion of IGRT credentialing compliance. To develop a living disease site-specific IGRT encyclopedia. Methods: Numerous technical issues were encountered during the IGRT credentialing process. The criteria used for credentialing review were based on: image quality; anatomy included in fused data sets and shift results. Credentialing requirements have been updated according to the AAPM task group reports for IGRT to ensure that all required technical items are included in the quality review process. Implementation instructions have been updated and expanded for recent protocols. Results: Technical issues observed during the credentialing review process include, but are not limited to: poor quality images; inadequate image acquisition region; poor data quality; shifts larger than acceptable; no soft tissue surrogate. The updated IGRT credentialing process will address these issues and will also include the technical items required from AAPM: TG 104; TG 142 and TG 179 reports. An instruction manual has been developed describing a remote credentialing method for reviewers. Submission requirements are updated, including images/documents as well as facility questionnaire. The review report now includes summary of the review process and the parameters that reviewers check. We have reached consensus on the minimum IGRT technical requirement for a number of disease sites. RTOG 1311(NRG-BR002A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases) is an example, here; the protocol specified the minimum requirement for each anatomical sites (with/without fiducials). Conclusion: Technical issues are identified and reported. IGRT

  18. SU-E-QI-21: Iodinated Contrast Agent Time Course In Human Brain Metastasis: A Study For Stereotactic Synchrotron Radiotherapy Clinical Trials

    SciTech Connect

    Obeid, L; Esteve, F; Adam, J; Tessier, A; Balosso, J

    2014-06-15

    Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0 and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.

  19. Post-Irradiation Bladder Syndrome After Radiotherapy of Malignant Neoplasm of Small Pelvis Organs: An Observational, Non-Interventional Clinical Study Assessing VESIcare®/Solifenacin Treatment Results

    PubMed Central

    Jaszczyński, Janusz; Kojs, Zbigniew; Stelmach, Andrzej; Wohadło, Łukasz; Łuczyńska, Elżbieta; Heinze, Sylwia; Rys, Janusz; Jakubowicz, Jerzy; Chłosta, Piotr

    2016-01-01

    Background Radiotherapy is explicitly indicated as one of the excluding factors in diagnosing overactive bladder syndrome (OAB). Nevertheless, symptoms of OAB such as urgent episodes, incontinence, pollakiuria, and nocturia, which are consequences of irradiation, led us to test the effectiveness of VESIcare®/Solifenacin in patients demonstrating these symptoms after radiation therapy of small pelvis organs due to malignant neoplasm. Material/Methods We conducted an observatory clinical study including 300 consecutive patients with symptoms of post-irradiation bladder; 271 of those patients completed the study. The observation time was 6 months and consisted of 3 consecutive visits taking place at 12-week intervals. We used VESIcare® at a dose of 5 mg a day. Every sixth patient was examined urodynamically at the beginning and at the end of the observation period, with an inflow speed of 50 ml/s. Results We noticed improvement and decline in the average number of episodes a day in the following parameters: number of micturitions a day (−36%, P<0.01), nocturia (−50%, P<0.01), urgent episodes (−41%, P<0.03), and episodes of incontinence (−43%, P<0.01). The patients’ quality of life improved. The average maximal cystometric volume increased by 34 ml (21%, p<0.01), average bladder volume of “first desire” increased by 42 ml (49%, P<0.01), and average detrusor muscle pressure at maximal cystometric volume diminished by 9 cmH2O (−36%, P<0.03). Conclusions The substance is well-tolerated. Solifenacin administered long-term to patients with symptoms of OAB after radiotherapy of a malignant neoplasm of the small pelvis organs has a daily impact in decreasing number of urgent episodes, incontinence, pollakiuria, and nocturia. PMID:27474270

  20. Correlation in Rectal Cancer Between Clinical Tumor Response After Neoadjuvant Radiotherapy and Sphincter or Organ Preservation: 10-Year Results of the Lyon R 96-02 Randomized Trial

    SciTech Connect

    Ortholan, Cecile; Romestaing, Pascale; Chapet, Olivier; Gerard, Jean Pierre

    2012-06-01

    Purpose: To investigate, in rectal cancer, the benefit of a neoadjuvant radiation dose escalation with endocavitary contact radiotherapy (CXRT) in addition to external beam radiotherapy (EBRT). This article provides an update of the Lyon R96-02 Phase III trial. Methods and Materials: A total of 88 patients with T2 to T3 carcinoma of the lower rectum were randomly assigned to neoadjuvant EBRT 39 Gy in 13 fractions (43 patients) vs. the same EBRT with CXRT boost, 85 Gy in three fractions (45 patients). Median follow-up was 132 months. Results: The 10-year cumulated rate of permanent colostomy (CRPC) was 63% in the EBRT group vs. 29% in the EBRT+CXRT group (p < 0.001). The 10-year rate of local recurrence was 15% vs. 10% (p = 0.69); 10-year disease-free survival was 54% vs. 53% (p = 0.99); and 10-year overall survival was 56% vs. 55% (p = 0.85). Data of clinical response (CR) were available for 78 patients (36 in the EBRT group and 42 in the EBRT+CXRT group): 12 patients were in complete CR (1 patient vs. 11 patients), 53 patients had a CR {>=}50% (24 patients vs. 29 patients), and 13 patients had a CR <50% (11 patients vs. 2 patients) (p < 0.001). Of the 65 patients with CR {>=}50%, 9 had an organ preservation procedure (meaning no rectal resection) taking advantage of major CR. The 10-year CRPC was 17% for patients with complete CR, 42% for patients with CR {>=}50%, and 77% for patients with CR <50% (p = 0.014). Conclusion: In cancer of the lower rectum, CXRT increases the complete CR, turning in a significantly higher rate of long-term permanent sphincter and organ preservation.

  1. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  2. Radiological and Clinical Pneumonitis After Stereotactic Lung Radiotherapy: A Matched Analysis of Three-Dimensional Conformal and Volumetric-modulated Arc Therapy Techniques

    SciTech Connect

    Palma, David A.; Senan, Suresh; Haasbeek, Cornelis J.A.; Verbakel, Wilko F.A.R.; Vincent, Andrew; Lagerwaard, Frank

    2011-06-01

    Purpose: Lung fibrosis is common after stereotactic body radiotherapy (SBRT) for lung tumors, but the influence of treatment technique on rates of clinical and radiological pneumonitis is not well described. After implementing volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) for SBRT, we scored the early pulmonary changes seen with arc and conventional three-dimensional SBRT (3D-CRT). Methods and Materials: Twenty-five SBRT patients treated with RA were matched 1:2 with 50 SBRT patients treated with 3D-CRT. Dose fractionations were based on a risk-adapted strategy. Clinical pneumonitis was scored using Common Terminology Criteria for Adverse Events version 3.0. Acute radiological changes 3 months posttreatment were scored by three blinded observers. Relationships among treatment type, baseline factors, and outcomes were assessed using Spearman's correlation, Cochran-Mantel-Haenszel tests, and logistic regression. Results: The RA and 3D-CRT groups were well matched. Forty-three patients (57%) had radiological pneumonitis 3 months after treatment. Twenty-eight patients (37%) had computed tomography (CT) findings of patchy or diffuse consolidation, and 15 patients (20%) had ground-glass opacities only. Clinical pneumonitis was uncommon, and no differences were seen between 3D-CRT vs. RA patients in rates of grade 2/3 clinical pneumonitis (6% vs. 4%, respectively; p = 0.99), moderate/severe radiological changes (24% vs. 36%, respectively, p = 0.28), or patterns of CT changes (p = 0.47). Radiological severity scores were associated with larger planning target volumes (p = 0.09) and extended fractionation (p = 0.03). Conclusions: Radiological changes after lung SBRT are common with both approaches, but no differences in early clinical or radiological findings were observed after RA. Longer follow-up will be required to exclude late changes.

  3. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    SciTech Connect

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schoeller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3 Degree-Sign (mean of means), standard deviation of means {+-}4.9 Degree-Sign , maximum at 30.7 Degree-Sign . Three-dimensional vector translations relative to skin markings were 9.3 {+-} 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 {+-} 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5 Degree-Sign {+-} 2.3 Degree-Sign (maximum, 26.9 Degree-Sign ), and three-dimensional vector translations of 3.0 {+-}3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online

  4. The approaches in the care for terminal cancer patients in radiotherapy and oncology clinic, Rijeka University Hospital Center.

    PubMed

    Dobrila-Dintinjana, Renata; Redzović, Arnela; Perić, Jana; Petranović, Duska

    2013-04-01

    We sought to determine the proportion of our admitted patients in terminal phase of ilness who recieved some kind of active oncological therapy. We conducted a pilot study on the records of patients who died in the University Hospital. We assessed the percentage of mortality, a therapeutic approach in terms of treating the underlying disease, and access to palliative treatment. Of 2097 patients hospitalized in the UHC Rijeka Department of Radiation Therapy and Oncology during 2010 and 2011, 44 pts died which accounts for 2.1%. The most common primary sites of cancer in patients who died in our Department were the lungs and then the breast. Ten (22.7%) patients were admitted exclusively to receive palliative care, while others (34-77.3%) were admitted for planned active chemo- and/or radiotherapy administration. Within three months before death, 18 (40.9%) patients underwent chemotherapy treatment. The number of patients hospitalized due to providing palliative care is extremely low, which could indicate a good supply of out-patient treatment of cancer patients in the terminal stage of the disease. However, concerned about the high percentage of patients who tried to provide oncology treatments in the three months before his death. The percentages referred to in their daily work is still guided by the principles of healing "to the end" and thus we plunge into the realm disthanasia.

  5. Whole Brain Radiotherapy and RRx-001: Two Partial Responses in Radioresistant Melanoma Brain Metastases from a Phase I/II Clinical Trial12

    PubMed Central

    Kim, Michelle M.; Parmar, Hemant; Cao, Yue; Pramanik, Priyanka; Schipper, Matthew; Hayman, James; Junck, Larry; Mammoser, Aaron; Heth, Jason; Carter, Corey A.; Oronsky, Arnold; Knox, Susan J.; Caroen, Scott; Oronsky, Bryan; Scicinski, Jan; Lawrence, Theodore S.; Lao, Christopher D.

    2016-01-01

    BACKGROUND: Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with RRx-001 and whole brain radiotherapy (WBRT) without neurologic or systemic toxicity in the context of a phase I/II clinical trial. RRx-001 is an reactive oxygen and reactive nitrogen species (ROS/RNS)-dependent systemically nontoxic hypoxic cell radiosensitizer with vascular normalizing properties under investigation in patients with various solid tumors including those with brain metastases. SIGNIFICANCE: Metastatic melanoma to the brain is historically associated with poor outcomes and a median survival of 4 to 5 months. WBRT is a mainstay of treatment for patients with multiple brain metastases, but no significant therapeutic advances for these patients have been described in the literature. To date, candidate radiosensitizing agents have failed to demonstrate a survival benefit in patients with brain metastases, and in particular, no agent has demonstrated improved outcome in patients with metastatic melanoma. Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with novel radiosensitizing agent RRx-001 and WBRT without neurologic or systemic toxicity in the context of a phase I/II clinical trial. PMID:27084426

  6. Clinical evaluation of BIOXTRA in relieving signs and symptoms of dry mouth after head and neck radiotherapy of cancer patients at Seyed-al-Shohada Hospital, Isfahan, Iran

    PubMed Central

    Gookizadeh, Abbas; Emami, Hamid; Najafizadeh, Nadia; Roayaei, Mahnaz

    2012-01-01

    Background: Radiotherapy of head and neck cancers causes acute and chronic xerostomia and acute mucositis. Xerostomia increases risk of radiation caries and affects on oral comfort, fit of prostheses, speech, swallowing, and the growth of caries-producing organisms. Salivary flow rate can be measured by asking patients some questions. There are different types of commercial synthetic saliva such as BIOXTRA, but until now, no one can effectively relieve xerostomia. We tried to design a clinical research on BIOXTRA efficacy for treating xerostomia. Materials and Methods: In this research, 58 patients with head and neck cancer (except salivary gland cancers) treated in Seyed-al-Shohada Hospital. The patients received at least 40-50 GY; and after 2 months of compilation treatment, they were evaluated by asking about having xerostomia. Before and after treatment with the BIOXTRA, the PH of the oral cavity, candida albicans, and lactobacillus counts measured and documented in laboratory. We used BIOXTRA for 2 weeks, 3 times daily, and then re-evaluated patients with some questions. Results: The counts of candida albicans and lactobacilli statistically significant decreased. Conclusion: Xerostomia for most patients improved clinically during the day and night while PH of the oral cavity increased. PMID:23326802

  7. Intraoperative Radiotherapy in Childhood Malignant Astrocytoma

    PubMed Central

    Rana, Sohail R.; Haddy, Theresa B.; Ashayeri, Ebrahim; Goldson, Alfred L.

    1984-01-01

    A 12-year-old black male patient with glioblastoma multiforme was treated with intraoperative radiotherapy followed by conventional external beam radiation and chemotherapy. The authors' clinical experience with these therapeutic measures is discussed. PMID:6330375

  8. Radiotherapy in the UK

    SciTech Connect

    Ramsay, S.

    1993-10-09

    What is wrong with radiation treatment in the UK Is it bad practice or merely bad publicity Between 1982 and 1991, 1,000 patients receiving isocentric radiation therapy at the North Staffordshire Royal Infirmary received a substantial underdose of radiation; the clinical report on this incident was published last week. The operator had been using a correction factor for tumor-to-skin distance, unaware that this factor had already been applied by the computer system. Although the report pointed out that it is not surprising that the clinicians were not alerted to the undertreatment, is also noted that there were no resources at the hospital to audit the outcome of radiotherapy.

  9. [Radiotherapy during pregnancy].

    PubMed

    Mazeron, R; Barillot, I; Mornex, F; Giraud, P

    2016-09-01

    The diagnostic of cancer during pregnancy is a rare and delicate situation. As the developments of the embryo and the human fetus are extremely sensitive to ionizing radiations, the treatment of these tumors should be discussed. The studies - preclinical and clinical - based mostly on exposure accidents show that subdiaphragmatic treatments are possible during pregnancy. When radiotherapy is used, phantom estimations of the dose to the fetus, confirmed by in vivo measurements are required. Irradiation and imaging techniques should be arranged to decrease as much as possible the dose delivered to the fetus and hold below the threshold of 0.1Gy.

  10. TU-G-BRB-00: Clinical Trials in Proton and Particle Therapy

    SciTech Connect

    2015-06-15

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  11. TU-G-BRB-02: Clinical Trials in Particle Therapy - Open Questions

    SciTech Connect

    Choy, H.

    2015-06-15

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  12. Clinical study on the influence of motion and other factors on stereotactic radiotherapy in the treatment of adrenal gland tumor

    PubMed Central

    Wang, Jingsheng; Li, Fengtong; Dong, Yang; Song, Yongchun; Yuan, Zhiyong

    2016-01-01

    Background The aim of this study was to investigate the adrenal tumor motion law and influence factors in the treatment of adrenal gland tumor and provide a reference value basis for determining the planning target volume margins for therapy. Materials and methods The subjects considered in this study were 38 adrenal tumor patients treated with CyberKnife with the placement of 45 gold fiducials. Fiducials were implanted into each adrenal tumor using β-ultrasonic guidance. Motion amplitudes of gold fiducials were measured with a Philips SLS simulator and motion data in the left–right, anterior–posterior, and cranio–caudal directions were obtained. Multiple linear regression models were used to analyze influencing factors. t-Test was used for motion amplitude comparison of different tumor locations along the z-axis. Results The motion distances were 0.1–0.4 cm (0.27±0.07 cm), 0.1–0.5 cm (0.31±0.11 cm), and 0.5–1.2 cm (0.87±0.21 cm) along the x-, y-, and z-axes, respectively. Motion amplitude along the z-axis may be affected by tumor location, but movement along the other axes was not affected by age, height, body mass, location, and size. Conclusion The maximum motion distance was along the z-axis. Therefore, this should be the main consideration when defining the planning target volume safety margin. Due to the proximity of the liver, adrenal gland tumor motion amplitude was smaller on the right than the left. This study analyzed adrenal tumor motion amplitude data to evaluate how motion and other factors influence the treatment of adrenal tumor with a goal of providing a reference for stereotactic radiotherapy boundary determination. PMID:27486331

  13. Clinical Practice Guidance for Radiotherapy Planning After Induction Chemotherapy in Locoregionally Advanced Head-and-Neck Cancer

    SciTech Connect

    Salama, Joseph K.; Haddad, Robert I.; Kies, Merril S.; Busse, Paul M.; Dong Lei; Brizel, David M.; Eisbruch, Avraham; Tishler, Roy B.; Trotti, Andy M.; Garden, Adam S.

    2009-11-01

    Purpose: The use of induction chemotherapy (IC) for locoregionally advanced head-and-neck cancer is increasing. The response to IC often causes significant alterations in tumor volume and location and shifts in normal anatomy. Proper determination of the radiotherapy (RT) targets after IC becomes challenging, especially with the use of conformal and precision RT techniques. Therefore, a consensus conference was convened to discuss issues related to RT planning and coordination of care for patients receiving IC. Methods and Materials: Ten participants with special expertise in the various aspects of integration of IC and RT for the treatment of locoregionally advanced head-and-neck cancer, including radiation oncologists, medical oncologists, and a medical physicist, participated. The individual members were assigned topics for focused, didactic presentations. Discussion was encouraged after each presentation, and recommendations were formulated. Results: Recommendations and guidelines emerged that emphasize up-front evaluation by all members of the head-and-neck management team, high-quality baseline and postinduction planning scans with the patient in the treatment position, the use of preinduction target volumes, and the use of full-dose RT, even in the face of a complete response. Conclusion: A multidisciplinary approach is strongly encouraged. Although these recommendations were provided primarily for patients treated with IC, many of these same principles apply to concurrent chemoradiotherapy without IC. A rapid response during RT is quite common, requiring the development of two or more plans in a sizeable fraction of patients, and suggesting the need for similar guidance in the rapidly evolving area of adaptive RT.

  14. Intensity-Modulated Radiotherapy for Tumors of the Nasal Cavity and Paranasal Sinuses: Clinical Outcomes and Patterns of Failure

    SciTech Connect

    Wiegner, Ellen A.; Daly, Megan E.; Murphy, James D.; Abelson, Jonathan; Chapman, Chris H.; Chung, Melody; Yu, Yao; Colevas, A. Dimitrios; Kaplan, Michael J.; Fischbein, Nancy; Le, Quynh-Thu; Chang, Daniel T.

    2012-05-01

    Purpose: To report outcomes in patients treated with intensity-modulated radiotherapy (IMRT) for tumors of the paranasal sinuses and nasal cavity (PNS/NC). Methods/Materials: Between June 2000 and December 2009, 52 patients with tumors of the PNS/NC underwent postoperative or definitive radiation with IMRT. Twenty-eight (54%) patients had squamous cell carcinoma (SCC). Twenty-nine patients (56%) received chemotherapy. The median follow-up was 26.6 months (range, 2.9-118.4) for all patients and 30.9 months for living patients. Results: Eighteen patients (35%) developed local-regional failure (LRF) at median time of 7.2 months. Thirteen local failures (25%) were observed, 12 in-field and 1 marginal. Six regional failures were observed, two in-field and four out-of-field. No patients treated with elective nodal radiation had nodal regional failure. Two-year local-regional control (LRC), in-field LRC, freedom from distant metastasis (FFDM), and overall survival (OS) were 64%, 74%, 71%, and 66% among all patients, respectively, and 43%, 61%, 61%, and 53% among patients with SCC, respectively. On multivariate analysis, SCC and >1 subsite involved had worse LRC (p = 0.0004 and p = 0.046, respectively) and OS (p = 0.003 and p = 0.046, respectively). Cribriform plate invasion (p = 0.005) and residual disease (p = 0.047) also had worse LRC. Acute toxicities included Grade {>=}3 mucositis in 19 patients (37%), and Grade 3 dermatitis in 8 patients (15%). Six patients had Grade {>=}3 late toxicity including one optic toxicity. Conclusions: IMRT for patients with PNS/NC tumors has good outcomes compared with historical series and is well tolerated. Patients with SCC have worse LRC and OS. LRF is the predominant pattern of failure.

  15. One Decade Later: Trends and Disparities in the Application of Post-Mastectomy Radiotherapy Since the Release of the American Society of Clinical Oncology Clinical Practice Guidelines

    SciTech Connect

    Dragun, Anthony E.; Huang, Bin; Gupta, Saurabh; Crew, John B.; Tucker, Thomas C.

    2012-08-01

    Purpose: In 2001 ASCO published practice guidelines for post mastectomy radiotherapy (PMRT). We analyzed factors that influence the receipt of radiotherapy therapy and trends over time. Methods and Materials: We analyzed 8889 women who underwent mastectomy as primary surgical treatment for stage II or III breast cancer between 1995 and 2008 using data from the Kentucky Cancer Registry. We categorized patients according to ASCO group: group 1, PMRT not routinely recommended (T2, N0); group 2, PMRT controversial/evidence insufficient (T1-2, N1); group 3, PMRT recommended or suggested (T3-4 or N2-3). Probability of receiving PMRT was assessed using logistic regression. Results: Overall, 24.0% of women received PMRT over the study period. The rates of PMRT for group 1, 2, and 3 were 7.5%, 19.5%, and 47.3%, respectively. Since 2001, there was an increase in the use of PMRT (from 21.1%-26.5%, P<.0001), which occurred mainly among group 3 members (from 40.8%-51.2%, P<.0001). The average rate remained constant in group 1 (from 7.1%-7.4%, P=.266) and decreased in group 2 (from 20.0%-18.1%, P<.0001). On multivariate analysis, the rate of PMRT was significantly lower for women aged >70 years (vs. younger), rural Appalachia (vs. non-Appalachia) populations, and Medicaid (vs. privately insured) patients. Conclusions: ASCO guidelines have influenced practice in an underserved state; however PMRT remains underused, even for highest-risk patients. Barriers exist for elderly, rural and poor patients, which independently predict for lack of adequate care. Updated guidelines are needed to clarify the use of PMRT for patients with T1-2, N1 disease.

  16. Particle therapy

    SciTech Connect

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  17. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  18. [Postoperative radiotherapy of prostate cancer].

    PubMed

    Guérif, S; Latorzeff, I; Lagrange, J-L; Hennequin, C; Supiot, S; Garcia, A; François, P; Soulié, M; Richaud, P; Salomon, L

    2014-10-01

    Between 10 and 40% of patients who have undergone a radical prostatectomy may have a biologic recurrence. Local or distant failure represents the possible patterns of relapse. Patients at high-risk for local relapse have extraprostatic disease, positive surgical margins or seminal vesicles infiltration or high Gleason score at pathology. Three phase-III randomized clinical trials have shown that, for these patients, adjuvant irradiation reduces the risk of tumoral progression without higher toxicity. Salvage radiotherapy for late relapse allows a disease control in 60-70% of the cases. Several research in order to improve the therapeutic ratio of the radiotherapy after prostatectomy are evaluate in the French Groupe d'Étude des Tumeurs Urogénitales (Gétug) and of the French association of urology (Afu). The Gétug-Afu 17 trial will provide answers to the question of the optimal moment for postoperative radiotherapy for pT3-4 R1 pN0 Nx patients, with the objective of comparing an immediate treatment to a differed early treatment initiated at biological recurrence. The Gétug-Afu 22 questions the place of a short hormonetherapy combined with image-guided, intensity-modulated radiotherapy (IMRT) in adjuvant situation for a detectable prostate specific antigen (PSA). The implementation of a multicenter quality control within the Gétug-Afu in order to harmonize a modern postoperative radiotherapy will allow the development of a dose escalation IMRT after surgery.

  19. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer

    PubMed Central

    Pötter, Richard; Georg, Petra; Dimopoulos, Johannes C.A.; Grimm, Magdalena; Berger, Daniel; Nesvacil, Nicole; Georg, Dietmar; Schmid, Maximilian P.; Reinthaller, Alexander; Sturdza, Alina; Kirisits, Christian

    2011-01-01

    Background To analyse the overall clinical outcome and benefits by applying protocol based image guided adaptive brachytherapy combined with 3D conformal external beam radiotherapy (EBRT) ± chemotherapy (ChT). Methods Treatment schedule was EBRT with 45–50.4 Gy ± concomitant cisplatin chemotherapy plus 4 × 7 Gy High Dose Rate (HDR) brachytherapy. Patients were treated in the “protocol period” (2001–2008) with the prospective application of the High Risk CTV concept (D90) and dose volume constraints for organs at risk including biological modelling. Dose volume adaptation was performed with the aim of dose escalation in large tumours (prescribed D90 > 85 Gy), often with inserting additional interstitial needles. Dose volume constraints (D2cc) were 70–75 Gy for rectum and sigmoid and 90 Gy for bladder. Late morbidity was prospectively scored, using LENT/SOMA Score. Disease outcome and treatment related late morbidity were evaluated and compared using actuarial analysis. Findings One hundred and fifty-six consecutive patients (median age 58 years) with cervix cancer FIGO stages IB–IVA were treated with definitive radiotherapy in curative intent. Histology was squamous cell cancer in 134 patients (86%), tumour size was >5 cm in 103 patients (66%), lymph node involvement in 75 patients (48%). Median follow-up was 42 months for all patients. Interstitial techniques were used in addition to intracavitary brachytherapy in 69/156 (44%) patients. Total prescribed mean dose (D90) was 93 ± 13 Gy, D2cc 86 ± 17 Gy for bladder, 65 ± 9 Gy for rectum and 64 ± 9 Gy for sigmoid. Complete remission was achieved in 151/156 patients (97%). Overall local control at 3 years was 95%; 98% for tumours 2–5 cm, and 92% for tumours >5 cm (p = 0.04), 100% for IB, 96% for IIB, 86% for IIIB. Cancer specific survival at 3 years was overall 74%, 83% for tumours 2–5 cm, 70% for tumours >5 cm, 83% for IB, 84% for IIB, 52% for IIIB. Overall

  20. Monte Carlo dose calculations in advanced radiotherapy

    NASA Astrophysics Data System (ADS)

    Bush, Karl Kenneth

    The remarkable accuracy of Monte Carlo (MC) dose calculation algorithms has led to the widely accepted view that these methods should and will play a central role in the radiotherapy treatment verification and planning of the future. The advantages of using MC clinically are particularly evident for radiation fields passing through inhomogeneities, such as lung and air cavities, and for small fields, including those used in today's advanced intensity modulated radiotherapy techniques. Many investigators have reported significant dosimetric differences between MC and conventional dose calculations in such complex situations, and have demonstrated experimentally the unmatched ability of MC calculations in modeling charged particle disequilibrium. The advantages of using MC dose calculations do come at a cost. The nature of MC dose calculations require a highly detailed, in-depth representation of the physical system (accelerator head geometry/composition, anatomical patient geometry/composition and particle interaction physics) to allow accurate modeling of external beam radiation therapy treatments. To perform such simulations is computationally demanding and has only recently become feasible within mainstream radiotherapy practices. In addition, the output of the accelerator head simulation can be highly sensitive to inaccuracies within a model that may not be known with sufficient detail. The goal of this dissertation is to both improve and advance the implementation of MC dose calculations in modern external beam radiotherapy. To begin, a novel method is proposed to fine-tune the output of an accelerator model to better represent the measured output. In this method an intensity distribution of the electron beam incident on the model is inferred by employing a simulated annealing algorithm. The method allows an investigation of arbitrary electron beam intensity distributions and is not restricted to the commonly assumed Gaussian intensity. In a second component of

  1. SU-E-T-547: A Method to Correlate Treatment Planning Issue with Clinical Analysis for Prostate Stereotactic Body Radiotherapy (SBRT)

    SciTech Connect

    Li, K; Jung, E; Newton, J; Cornell, D; Able, A

    2014-06-01

    Purpose: In this study, the algorithms and calculation setting effect and contribution weighing on prostate Volumetric Modulated Arc Therapy (VMAT) based SBRT were evaluated for clinical analysis. Methods: A low risk prostate patient under SBRT was selected for the treatment planning evaluation. The treatment target was divided into low dose prescription target volume (PTV) and high Dose PTV. Normal tissue constraints include urethra and femur head, and rectum was separated into anterior, lateral and posterior parts. By varying the constraint limit of treatment plan calculation setting and algorithms, the effect on dose coverage and normal tissue dose constraint parameter carried effective comparison for the nominal prescription and constraint. For each setting, their percentage differences to the nominal value were calculated with geometric mean and harmonic mean. Results: In the arbitrary prostate SBRT case, 14 variables were selected for this evaluation by using nominal prescription and constraint. Six VMAT planning settings were anisotropic analytic algorithm stereotactic beam with and without couch structure in grid size of 1mm and 2mm, non stereotactic beam, Acuros algorithm . Their geometry means of the variable sets for these plans were 112.3%, 111.9%, 112.09%, 111.75%, 111.28%, and 112.05%. And the corresponding harmonic means were 2.02%, 2.16%, 3.15%, 4.74%, 5.47% and 5.55%. Conclusions: In this study, the algorithm difference shows relatively larger harmonic mean between prostate SBRT VMAT plans. This study provides a methodology to find sensitive combined variables related to clinical analysis, and similar approach could be applied to the whole treatment procedure from simulation to treatment in radiotherapy for big clinical data analysis.

  2. Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    PubMed Central

    van Sörnsen de Koste, John R; Cuijpers, Johan P; de Geest, Frank GM; Lagerwaard, Frank J; Slotman, Ben J; Senan, Suresh

    2007-01-01

    Background Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery Methods TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude. Results Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD). Conclusion TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns. PMID:17760960

  3. Clinical outcomes in patients with brain metastases from breast cancer treated with single-session radiosurgery or whole brain radiotherapy.

    PubMed

    Mix, Michael; Elmarzouky, Rania; O'Connor, Tracey; Plunkett, Robert; Prasad, Dheerendra

    2016-12-01

    OBJECTIVE Gamma Knife radiosurgery (GKRS) is used to treat brain metastases from breast cancer (BMB) as the sole treatment or in conjunction with tumor resection and/or whole brain radiotherapy (WBRT). This study evaluates outcomes in BMB based on treatment techniques and tumor biological features. METHODS The authors reviewed all patients treated with BMB between 2004 and 2014. Patients were identified from a prospectively collected radiosurgery database and institutional tumor registry; 214 patients were identified. Data were collected from aforementioned sources and supplemented with chart review where needed. Independent radiological review was performed for all available brain imaging in those treated with GKRS. Survival analyses are reported using Kaplan-Meier estimates. RESULTS During the 10-year study period, 214 patients with BMB were treated; 23% underwent GKRS alone, 46% underwent a combination of GKRS and WBRT, and 31% underwent WBRT alone. Median survival after diagnosis of BMB in those treated with GKRS alone was 21 months, and in those who received WBRT alone it was 3 months. In those treated with GKRS plus WBRT, no significant difference in median survival was observed between those receiving WBRT upfront or in a salvage setting following GKRS (19 months vs 14 months, p = 0.63). The median survival of patients with total metastatic tumor volume of ≤ 7 cm(3) versus > 7 cm(3) was 20 months vs 7 months (p < 0.001). Human epidermal growth factor receptor-2 (Her-2) positively impacted survival after diagnosis of BMB (19 months vs 12 months, p = 0.03). Estrogen receptor status did not influence survival after diagnosis of BMB. No difference was observed in survival after diagnosis of BMB based on receptor status in those who received WBRT alone. CONCLUSIONS In this single-institution series of BMB, the addition of WBRT to GKRS did not significantly influence survival, nor did the number of lesions treated with GKRS. Survival after the diagnosis of BMB

  4. Clinical and endocrine responses to pituitary radiotherapy in pediatric Cushing's disease: an effective second-line treatment.

    PubMed

    Storr, Helen L; Plowman, P Nicholas; Carroll, Paul V; François, Inge; Krassas, Gerasimos E; Afshar, Farhad; Besser, G Michael; Grossman, Ashley B; Savage, Martin O

    2003-01-01

    Transsphenoidal surgery (TSS) is considered first-line treatment for Cushing's disease (CD). Options for treatment of postoperative persisting hypercortisolemia are pituitary radiotherapy (RT), repeat TSS, or bilateral adrenalectomy. From 1983 to 2001, we treated 18 pediatric patients (age, 6.4-17.8 yr) with CD. All underwent TSS, and 11 were cured (postoperative serum cortisol, <50 nM). Seven (39%) had 0900-h serum cortisol of 269-900 nM during the immediate postoperative period (2-20 d), indicating lack of cure. These patients (6 males and 1 female; mean age, 12.8 yr; range, 6.4-17.8 yr; 4 prepubertal; 3 pubertal) received external beam RT to the pituitary gland, using a 6-MV linear accelerator, with a dose of 45 Gy in 25 fractions over 35 d. Until the RT became effective, hypercortisolemia was controlled with ketoconazole (dose, 200-600 mg/d) (n = 4) and metyrapone (750 mg-3 g/d) +/- aminoglutethimide (1 g/d) or o'p'DDD (mitotane, 3 mg/d) (n = 3). All patients were cured after pituitary RT. The mean interval from RT to cure (mean serum cortisol on 5-point day curve, <150 nM) was 0.94 yr (0.25-2.86 yr). Recovery of pituitary-adrenal function (mean cortisol, 150-300 nM) occurred at mean 1.16 yr (0.40-2.86 yr) post RT. At 2 yr post RT, puberty occurred early in one male patient (age, 9.8 yr) but was normal in the others. GH secretion was assessed at 0.6-2.5 yr post RT in all patients: six had GH deficiency (peak on glucagon/insulin provocation, <1.0-17.9 mU/liter) and received human GH replacement. Follow-up of pituitary function 7.6 and 9.5 yr post RT in two patients showed normal gonadotropin secretion and recovery of GH peak to 29.7 and 19.2 mU/liter. The seven patients were followed for mean 6.9 yr (1.4-12.0 yr), with no evidence of recurrence of CD. In conclusion, pituitary RT is an effective and relatively rapid-onset treatment for pediatric CD after failure of TSS. GH deficiency occurred in 86% patients. Long-term follow-up suggests some recovery of GH

  5. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    SciTech Connect

    Patel, Shilpen; DiBiase, Steven; Meisenberg, Barry; Flannery, Todd; Patel, Ashish; Dhople, Anil; Cheston, Sally; Amin, Pradip

    2012-02-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were given tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status {>=}60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m{sup 2} divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m{sup 2} increments until the MTD was reached. When {>=}2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m{sup 2}. A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m{sup 2}. One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m{sup 2}. Conclusions: The MTD of tamoxifen was 100 mg/m{sup 2} when given concurrently with temozolomide 75 mg/m{sup 2} and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.

  6. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  7. Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas

    PubMed Central

    2012-01-01

    Background To examine the potential improvement in treatment planning for patients with skull base meningioma using IMRT compared to carbon ion or proton beams with and without a gantry. Methods Five patients originally treated with photon IMRT were selected for the study. Ion beams were chosen using a horizontal beam or an ion gantry. Intensity controlled raster scanning and the intensity modulated particle therapy mode were used for plan optimization. The evaluation included analysis of dose-volume histograms of the target volumes and organs at risk. Results In comparison with carbon and proton beams only with horizontal beams, carbon ion treatment plans could spare the OARs more and concentrated on the target volumes more than proton and photon IMRT treatment plans. Using only a horizontal fixed beam, satisfactory plans could be achieved for skull base tumors. Conclusion The results of the case studies showed that using IMPT has the potential to overcome the lack of a gantry for skull base tumors. Carbon ion plans offered slightly better dose distributions than proton plans, but the differences were not clinically significant with established dose prescription concepts. PMID:22439607

  8. AEG-1 expression is an independent prognostic factor in rectal cancer patients with preoperative radiotherapy: a study in a Swedish clinical trial

    PubMed Central

    Gnosa, S; Zhang, H; Brodin, V P; Carstensen, J; Adell, G; Sun, X-F

    2014-01-01

    Background: Preoperative radiotherapy (RT) is widely used to downstage rectal tumours, but the rate of recurrence varies significantly. Therefore, new biomarkers are needed for better treatment and prognosis. It has been shown that astrocyte elevated gene-1 (AEG-1) is a key mediator of migration, invasion, and treatment resistance. Our aim was to analyse the AEG-1 expression in relation to RT in rectal cancer patients and to test its radiosensitising properties. Methods: The AEG-1 expression was examined by immunohistochemistry in 158 patients from the Swedish clinical trial of RT. Furthermore, we inhibited the AEG-1 expression by siRNA in five colon cancer cell lines and measured the survival after irradiation by colony-forming assay. Results: The AEG-1 expression was increased in the primary tumours compared with the normal mucosa independently of the RT (P<0.01). High AEG-1 expression in the primary tumour of the patients treated with RT correlated independently with higher risk of distant recurrence (P=0.009) and worse disease-free survival (P=0.007). Downregulation of AEG-1 revealed a decreased survival after radiation in radioresistant colon cancer cell lines. Conclusions: The AEG-1 expression was independently related to distant recurrence and disease-free survival in rectal cancer patients with RT and could therefore be a marker to discriminate patients for distant relapse. PMID:24874474

  9. Patterns of Practice in Palliative Radiotherapy for Painful Bone Metastases: Impact of a Regional Rapid Access Clinic on Access to Care

    SciTech Connect

    Wu, Jackson S.Y.; Kerba, Marc; Wong, Rebecca K.S.; Mckimmon, Erin; Eigl, Bernhard; Hagen, Neil A.

    2010-10-01

    Purpose: External beam radiotherapy (RT) is commonly indicated for the palliation of symptomatic bone metastases, but there is evidence of underutilization of this treatment modality in palliative care for cancer populations. This study was conducted to investigate factors that influenced the use of palliative RT services at a regional comprehensive cancer center. Methods and Materials: A cohort of patients with radiographically confirmed bone metastases and first-time users of palliative RT between 2003 and 2005 was retrospectively reviewed from the time of initial diagnosis of bone metastases to death or last follow-up. Type of radiation treatment service provider used (rapid access or routine access) and patient-, tumor-, and treatment-related factors were analyzed for their influences on the number of treatment courses given over the duration of disease. Results: A total of 887 patients received 1,354 courses of palliative RT for bone metastases at a median interval of 4.0 months between courses. Thirty-three percent of patients required more than one RT course. Increased age and travel distance reduced the likelihood and number of treatment courses, while service through a rapid access clinic was independently associated with an increase in subsequent use of palliative RT. Conclusions: A rapid access service model for palliative RT facilitated access to RT. Travel distance and other factors remained substantial barriers to use of palliative RT services. The pattern of practice suggests an unmet need for symptom control in patients with bone metastases.

  10. Volumetric Modulated Arc-Based Hypofractionated Stereotactic Radiotherapy for the Treatment of Selected Intracranial Arteriovenous Malformations: Dosimetric Report and Early Clinical Experience

    SciTech Connect

    Subramanian, Sai; Srinivas, Chilukuri; Ramalingam, K.; Babaiah, M.; Swamy, S. Thirumalai; Arun, G.; Kathirvel, M.; Ashok, S.; Clivio, Alessandro; Fogliata, Antonella; Nicolini, Giorgia; Rao, K. Srinivasa; Reddy, T. Pratap; Amit, Jotwani; Vanetti, Eugenio; Cozzi, Luca

    2012-03-01

    Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Delivery parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be

  11. Short course radiotherapy with simultaneous integrated boost for stage I-II breast cancer, early toxicities of a randomized clinical trial

    PubMed Central

    2012-01-01

    Background TomoBreast is a unicenter, non-blinded randomized trial comparing conventional radiotherapy (CR) vs. hypofractionated Tomotherapy (TT) for post-operative treatment of breast cancer. The purpose of the trial is to compare whether TT can reduce heart and pulmonary toxicity. We evaluate early toxicities. Methods The trial started inclusion in May 2007 and reached its recruitment in August 2011. Women with stage T1-3N0M0 or T1-2N1M0 breast cancer completely resected by tumorectomy (BCS) or by mastectomy (MA) who consented to participate were randomized, according to a prescribed computer-generated randomization schedule, between control arm of CR 25x2 Gy/5 weeks by tangential fields on breast/chest wall, plus supraclavicular-axillary field if node-positive, and sequential boost 8x2 Gy/2 weeks if BCS (cumulative dose 66 Gy/7 weeks), versus experimental TT arm of 15x2.8 Gy/3 weeks, including nodal areas if node-positive and simultaneous integrated boost of 0.6 Gy if BCS (cumulative dose 51 Gy/3 weeks). Outcomes evaluated were the pulmonary and heart function. Comparison of proportions used one-sided Fisher's exact test. Results By May 2010, 70 patients were randomized and had more than 1 year of follow-up. Out of 69 evaluable cases, 32 were assigned to CR (21 BCS, 11 MA), 37 to TT (20 BCS, 17 MA). Skin toxicity of grade ≥1 at 2 years was 60% in CR, vs. 30% in TT arm. Heart function showed no significant difference for left ventricular ejection fraction at 2 years, CR 4.8% vs. TT 4.6%. Pulmonary function tests at 2 years showed grade ≥1 decline of FEV1 in 21% of CR, vs. 15% of TT and decline of DLco in 29% of CR, vs. 7% of TT (P = 0.05). Conclusions There were no unexpected severe toxicities. Short course radiotherapy of the breast with simultaneous integrated boost over 3 weeks proved feasible without excess toxicities. Pulmonary tests showed a slight trend in favor of Tomotherapy, which will need confirmation with longer

  12. Statistical methods for clinical verification of dose response parameters related to esophageal stricture and AVM obliteration from radiotherapy

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders

    2004-08-01

    The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.

  13. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy

    NASA Astrophysics Data System (ADS)

    Fossati, Piero; Molinelli, Silvia; Matsufuji, Naruhiru; Ciocca, Mario; Mirandola, Alfredo; Mairani, Andrea; Mizoe, Junetsu; Hasegawa, Azusa; Imai, Reiko; Kamada, Tadashi; Orecchia, Roberto; Tsujii, Hirohiko

    2012-11-01

    In carbon ion radiotherapy there is an urgent clinical need to develop objective tools for the conversion of relative biological effectiveness (RBE)-weighted doses based on different models. In this work we introduce a clinically oriented method to compare NIRS-based and LEM-based GyE systems, minimizing differences in physical dose distributions between treatment plans. Carbon ion plans were optimized on target volumes of cubic and spherical shapes, for RBE-weighted dose prescription levels ranging from 3.6 to 4.4 GyE. Plans were calculated for target sizes from 4 to 12 cm defining three beam geometries: single beam, opposed beam and orthogonal beam configurations. The two treatment planning systems currently employed in clinical practice were used, providing the NIRS-based and LEM-based GyE calculations. Physical dose distributions of NIRS-based and LEM-based treatment plans were compared. LEM-based prescription doses that minimize differences in physical dose distributions between the two systems were found. These doses were compared with the mean RBE-weighted dose obtained with a Monte Carlo code (FLUKA) interfaced with LEM I. In the investigated dose range, LEM-based RBE-weighted prescription doses, that minimize differences with NIRS plans, should be higher than NIRS reported prescription doses. The optimal dose depends on target size, shape and position, number of beams and dose level. The opposed beam configuration resulted in the smallest average prescription dose difference (0.45 ± 0.09 GyE). The second approach of recalculating NIRS RBE-weighted dose with a Monte Carlo code interfaced with LEM resulted in no significant difference with the results obtained from the planning study. The delivery of a voxel by voxel iso-effective plan, if different RBE models are employed, is not feasible; it is however possible to minimize differences in a treatment plan with the simple approach presented here. Dose prescription ultimately represents a clinical task under

  14. The effect of radiotherapy in liver-confined but non-resectable Barcelona Clinic Liver Cancer stage C large hepatocellular carcinoma

    PubMed Central

    Yoon, Hong In; Jung, Inkyung; Han, Kwang-Hyub; Seong, Jinsil

    2016-01-01

    Background and aims Clinical trials to determine the efficacy of radiotherapy (RT) in liver-confined but non-resectable Barcelona Clinic Liver Cancer (BCLC) stage C hepatocellular carcinoma (HCC) are scarce. We aimed to determine the benefit of RT in such tumors and investigated large HCC tumors. Methods HCC data from the Korea Central Cancer Registry recorded from 2008 to 2010 were used. A total of 593 patients met our inclusion criteria; 67 were treated with RT while the remainder made up the non-RT group. Fifty-two RT recipients underwent combination treatments within 4 weeks after the first RT treatment, and were defined as the combination RT group. We performed propensity score matching (PSM) to compare the RT or combination RT groups with the non-RT group. The endpoint was overall survival (OS). Results Median follow-up time for surviving patients was 48 months. After PSM, there was no difference in OS between the RT and non-RT groups or between the combination RT and non-RT groups. However, the combination RT group had a longer median survival time (MST) (10.7 vs. 6.9 months, respectively). Next, we conducted PSM between the combination RT and non-RT groups in patients with tumor sizes ≥10 cm; MST was significantly longer in the former group (10.1 vs. 5.4 months, respectively; bootstrap 95% confidence interval of the difference in MST: 0.2-11.8). Conclusions As a combined modality, RT is a plausible therapeutic option for liver-confined but non-resectable BCLC stage C large HCC patients. PMID:27486881

  15. Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy

    SciTech Connect

    Narayan, Samir Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan

    2008-11-01

    Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.

  16. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    PubMed Central

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  17. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    SciTech Connect

    Kumarasiri, Akila Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  18. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    PubMed

    Snyder, Karen Chin; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-08

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine

  19. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  20. [Radiotherapy of bone metastases].

    PubMed

    Thureau, S; Vieillard, M-H; Supiot, S; Lagrange, J-L

    2016-09-01

    Radiotherapy plays a major role in palliative treatment of bone metastases. Recent developments of stereotactic radiotherapy and intensity modulated radiation therapy give the possibility to treat oligometastatic diseases. The objective of this paper is to report indications and treatment modalities of radiotherapy in these situations.

  1. [Treatment with charged particles beams: hadrontherapy part I: physical basis and clinical experience of treatment with protons].

    PubMed

    Noël, G; Feuvret, L; Ferrand, R; Mazeron, J-J

    2003-10-01

    Protons have physical characteristics, which differ from those of photons used in conventional radiotherapy. Better shielding of critical organs is obtained by using their particular ballistic (Bragg peak and lateral narrow penumbra). Some indications as ocular melanoma, chordoma and chondrosarcoma of the base of skull are now strongly accepted by the radiation oncologist community. Others are still in evaluation: meningioma, locally advanced nasopharynx tumor and paediatric tumors. The aim of this review is to present the clinical results of a technic which seems "confidential" because of the rarety and the cost of equipments.

  2. TU-C-12A-09: Modeling Pathologic Response of Locally Advanced Esophageal Cancer to Chemo-Radiotherapy Using Quantitative PET/CT Features, Clinical Parameters and Demographics

    SciTech Connect

    Zhang, H; Chen, W; Kligerman, S; D’Souza, W; Suntharalingam, M; Lu, W; Tan, S; Kim, G

    2014-06-15

    Purpose: To develop predictive models using quantitative PET/CT features for the evaluation of tumor response to neoadjuvant chemo-radiotherapy (CRT) in patients with locally advanced esophageal cancer. Methods: This study included 20 patients who underwent tri-modality therapy (CRT + surgery) and had {sup 18}F-FDG PET/CT scans before initiation of CRT and 4-6 weeks after completion of CRT but prior to surgery. Four groups of tumor features were examined: (1) conventional PET/CT response measures (SUVmax, tumor diameter, etc.); (2) clinical parameters (TNM stage, histology, etc.) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changes resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, using cross-validations to avoid model over-fitting. Prediction accuracy was assessed via area under the receiver operating characteristic curve (AUC), and precision was evaluated via confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). Using spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications), significantly better than using conventional PET/CT measures or clinical parameters and demographics alone. For groups with a large number of tumor features (groups 3 and 4), the SVM model achieved significantly higher accuracy than the LR model. Conclusion: The SVM model using all features

  3. MO-FG-303-06: Evaluation of the Performance of Very High-Energy Electron (VHEE) Beams in Radiotherapy: Five Clinical Cases

    SciTech Connect

    Palma, B; Bazalova-Carter, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2015-06-15

    Purpose: To evaluate the performance of 100–120 MeV very-high energy electron (VHEE) scanning pencil beams to radiotherapy by means of Monte Carlo (MC) simulations. Methods: We selected five clinical cases with target sizes of 1.2 cm{sup 3} to 990.4 cm{sup 3}. We calculated VHEE treatment plans using the MC EGSnrc code implemented in a MATLAB-based graphical user interface developed by our group. We generated phase space data for beam energies: 100 and 120 MeV and pencil beam spot sizes of 1, 3, and 5 mm at FWHM. The number of equidistant beams considered in this work was 16 or 32. Dose was calculated and then imported into a research version of RayStation where treatment plan optimization was performed. We compared the VHEE plans with the clinically delivered volumetric modulated arc therapy (VMAT) plan to evaluate VHEE plans performance. Results: VHEE plans provided the same PTV coverage and dose homogeneity than VMAT plans for all the cases. In average, the mean dose to organs at risk (OARs) was 24% lower for the VHEE plans. The structures that benefited the most from using VHEE were: large bowel for the esophagus case, chest wall for the liver case, brainstem for the acoustic case, carina for the lung case, and genitalia for the anal case, with 23.7–34.6% lower dose. VHEE dose distributions were more conformal than VMAT solution as confirmed by conformity indices CI100 and CI50. Integral dose to the body was in average 19.6% (9.2%–36.5%) lower for the VHEE plans. Conclusion: We have shown that VHEE plans resulted in similar or superior dose distributions compared to clinical VMAT plans for five different cases and a wide range of target volumes, including a case with a small target (1.2 cm{sup 3}), which represents a challenge for VMAT planning and might require the use of more complex non-coplanar VMAT plans. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Laboratories AB. E Hynning: Employee, RaySearch Laboratories AB. B Qu: None. B

  4. Predicting the Effect of Accelerated Fractionation in Postoperative Radiotherapy for Head and Neck Cancer Based on Molecular Marker Profiles: Data From a Randomized Clinical Trial

    SciTech Connect

    Suwinski, Rafal; Jaworska, Magdalena; Nikiel, Barbara; Grzegorz, Wozniak; Bankowska-Wozniak, Magdalena; Wojciech, Majewski; Krzysztof, Skladowski; Dariusz, Lange

    2010-06-01

    Purpose: To determine the prognostic and predictive values of molecular marker expression profiles based on data from a randomized clinical trial of postoperative conventional fractionation (p-CF) therapy versus 7-day-per-week postoperative continuous accelerated irradiation (p-CAIR) therapy for squamous cell cancer of the head and neck. Methods and Materials: Tumor samples from 148 patients (72 p-CF and 76 p-CAIR patients) were available for molecular studies. Immunohistochemistry was used to assess levels of EGFR, nm23, Ki-67, p-53, and cyclin D1 expression. To evaluate the effect of fractionation relative to the expression profiles, data for locoregional tumor control (LRC) were analyzed using the Cox proportional hazard regression model. Survival curves were compared using the Cox f test. Results: Patients who had tumors with low Ki-67, low p-53, and high EGFR expression levels and oral cavity/oropharyngeal primary cancer sites tended to benefit from p-CAIR. A joint score for the gain in LRC from p-CAIR based of these features was used to separate the patients into two groups: those who benefited significantly from p-CAIR with respect to LRC (n = 49 patients; 5-year LRC of 28% vs. 68%; p = 0.01) and those who did not benefit from p-CAIR (n = 99 patients; 5-year LRC of 72% vs. 66%; p = 0.38). The nm23 expression level appeared useful as a prognostic factor but not as a predictor of fractionation effect. Conclusions: These results support the studies that demonstrate the potential of molecular profiles to predict the benefit from accelerated radiotherapy. The molecular profile that favored accelerated treatment (low Ki-67, low p-53, and high EGFR expression) was in a good accordance with results provided by other investigators. Combining individual predictors in a joint score may improve their predictive potential.

  5. Tafazzin Protein Expression Is Associated with Tumorigenesis and Radiation Response in Rectal Cancer: A Study of Swedish Clinical Trial on Preoperative Radiotherapy

    PubMed Central

    Pathak, Surajit; Meng, Wen-Jian; Zhang, Hong; Gnosa, Sebastian; Nandy, Suman Kumar; Adell, Gunnar; Holmlund, Birgitta; Sun, Xiao-Feng

    2014-01-01

    Background Tafazzin (TAZ), a transmembrane protein contributes in mitochondrial structural and functional modifications through cardiolipin remodeling. TAZ mutations are associated with several diseases, but studies on the role of TAZ protein in carcinogenesis and radiotherapy (RT) response is lacking. Therefore we investigated the TAZ expression in rectal cancer, and its correlation with RT, clinicopathological and biological variables in the patients participating in a clinical trial of preoperative RT. Methods 140 rectal cancer patients were included in this study, of which 65 received RT before surgery and the rest underwent surgery alone. TAZ expression was determined by immunohistochemistry in primary cancer, distant, adjacent normal mucosa and lymph node metastasis. In-silico protein-protein interaction analysis was performed to study the predictive functional interaction of TAZ with other oncoproteins. Results TAZ showed stronger expression in primary cancer and lymph node metastasis compared to distant or adjacent normal mucosa in both non-RT and RT patients. Strong TAZ expression was significantly higher in stages I-III and non-mucinious cancer of non-RT patients. In RT patients, strong TAZ expression in biopsy was related to distant recurrence, independent of gender, age, stages and grade (p = 0.043, HR, 6.160, 95% CI, 1.063–35.704). In silico protein-protein interaction study demonstrated that TAZ was positively related to oncoproteins, Livin, MAC30 and FXYD-3. Conclusions Strong expression of TAZ protein seems to be related to rectal cancer development and RT response, it can be a predictive biomarker of distant recurrence in patients with preoperative RT. PMID:24858921

  6. Dosimetric and Clinical Outcomes of Involved-Field Intensity-Modulated Radiotherapy After Chemotherapy for Early-Stage Hodgkin's Lymphoma With Mediastinal Involvement

    SciTech Connect

    Lu Ningning; Li Yexiong; Wu Runye; Zhang Ximei; Wang Weihu; Jin Jing; Song Yongwen; Fang Hui; Ren Hua; Wang Shulian; Liu Yueping; Liu Xinfan; Chen Bo; Dai Jianrong; Yu Zihao

    2012-09-01

    Purpose: To evaluate the dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy (IF-IMRT) for patients with early-stage Hodgkin's lymphoma (HL) with mediastinal involvement. Methods and Materials: Fifty-two patients with early-stage HL that involved the mediastinum were reviewed. Eight patients had Stage I disease, and 44 patients had Stage II disease. Twenty-three patients (44%) presented with a bulky mediastinum, whereas 42 patients (81%) had involvement of both the mediastinum and either cervical or axillary nodes. All patients received combination chemotherapy followed by IF-IMRT. The prescribed radiation dose was 30-40 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The median mean dose to the primary involved regions (planning target volume, PTV1) and boost area (PTV2) was 37.5 Gy and 42.1 Gy, respectively. Only 0.4% and 1.3% of the PTV1 and 0.1% and 0.5% of the PTV2 received less than 90% and 95% of the prescribed dose, indicating excellent PTV coverage. The median mean lung dose and V20 to the lungs were 13.8 Gy and 25.9%, respectively. The 3-year overall survival, local control, and progression-free survival rates were 100%, 97.9%, and 96%, respectively. No Grade 4 or 5 acute or late toxicities were reported. Conclusions: Despite the large target volume, IF-IMRT gave excellent dose coverage and a favorable prognosis, with mild toxicity in patients with early-stage mediastinal HL.

  7. Contouring variations and the role of atlas in non-small-cell lung cancer radiotherapy: analysis of a multi-institutional pre-clinical trial planning study

    PubMed Central

    Cui, Yunfeng; Chen, Wenzhou; Kong, Feng-Ming (Spring); Olsen, Lindsey A.; Beatty, Ronald E.; Maxim, Peter G.; Ritter, Timothy; Sohn, Jason W.; Higgins, Jane; Galvin, James M.; Xiao, Ying

    2014-01-01

    Purpose To quantify variations in target and normal structure contouring and evaluate dosimetric impact of these variations in non-small-cell lung cancer (NSCLC) cases. To study whether providing an atlas can reduce potential variation. Methods and Materials Three NSCLC cases were distributed sequentially to multiple institutions for contouring and radiotherapy planning. No segmentation atlas was provided for the first two cases (Case1 and Case2). Contours were collected from submitted plans and consensus contour sets were generated. The volume variation among institution contours and the deviation of them from consensus contours were analyzed. The dose-volume histograms (DVH) for individual institution plans were re-calculated using consensus contours to quantify the dosimetric changes. An atlas containing targets and critical structures was constructed and was made available when the third case (Case3) was distributed for planning. The contouring variability in the submitted plans of Case3 was compared with that in first two cases. Results Planning Target Volume (PTV) showed large variation among institutions. The PTV coverage in institutions’ plans decreased dramatically when re-evaluated using the consensus PTV contour. The PTV contouring consistency did not show improvement with atlas use in Case3. For normal structures, lung contours presented very good agreement, while the brachial plexus showed the largest variation. The consistency of esophagus and heart contouring improved significantly (t-test, p<0.05) in Case3. Major factors contributing to the contouring variation were identified through a survey questionnaire. Conclusions The amount of contouring variations in NSCLC cases was presented. Its impact on dosimetric parameters can be significant. The segmentation atlas improved the contour agreement for esophagus and heart, but not for the PTV in this study. Quality assurance of contouring is essential for a successful multi-institutional clinical trial

  8. Differences in Clinical Results After LINAC-Based Single-Dose Radiosurgery Versus Fractionated Stereotactic Radiotherapy for Patients With Vestibular Schwannomas

    SciTech Connect

    Combs, Stephanie E.; Welzel, Thomas; Schulz-Ertner, Daniela; Huber, Peter E.; Debus, Juergen

    2010-01-15

    Purpose: To evaluate the outcomes of patients with vestibular schwannoma (VS) treated with fractionated stereotactic radiotherapy (FSRT) vs. those treated with stereotactic radiosurgery (SRS). Methods and Materials: This study is based on an analysis of 200 patients with 202 VSs treated with FSRT (n = 172) or SRS (n = 30). Patients with tumor progression and/or progression of clinical symptoms were selected for treatment. In 165 out of 202 VSs (82%), RT was performed as the primary treatment for VS, and for 37 VSs (18%), RT was conducted for tumor progression after neurosurgical intervention. For patients receiving FSRT, a median total dose of 57.6 Gy was prescribed, with a median fractionation of 5 x 1.8 Gy per week. For patients who underwent SRS, a median single dose of 13 Gy was prescribed to the 80% isodose. Results: FSRT and SRS were well tolerated. Median follow-up time was 75 months. Local control was not statistically different for both groups. The probability of maintaining the pretreatment hearing level after SRS with doses of <=13 Gy was comparable to that of FSRT. The radiation dose for the SRS group (<=13 Gy vs. >13 Gy) significantly influenced hearing preservation rates (p = 0.03). In the group of patients treated with SRS doses of <=13 Gy, cranial nerve toxicity was comparable to that of the FSRT group. Conclusions: FSRT and SRS are both safe and effective alternatives for the treatment of VS. Local control rates are comparable in both groups. SRS with doses of <=13 Gy is a safe alternative to FSRT. While FSRT can be applied safely for the treatment of VSs of all sizes, SRS should be reserved for smaller lesions.

  9. Long-Term Clinical Outcome of Intensity-Modulated Radiotherapy for Inoperable Non-Small Cell Lung Cancer: The MD Anderson Experience

    SciTech Connect

    Jiang Zhiqin; Yang Kunyu; Komaki, Ritsuko; Wei Xiong; Tucker, Susan L.; Zhuang Yan; Martel, Mary K.; Vedam, Sastray; Balter, Peter; Zhu Guangying; Gomez, Daniel; Lu, Charles; Mohan, Radhe; Cox, James D.; Liao Zhongxing

    2012-05-01

    Purpose: In 2007, we published our initial experience in treating inoperable non-small-cell lung cancer (NSCLC) with intensity-modulated radiation therapy (IMRT). The current report is an update of that experience with long-term follow-up. Methods and Materials: Patients in this retrospective review were 165 patients who began definitive radiotherapy, with or without chemotherapy, for newly diagnosed, pathologically confirmed NSCLC to a dose of {>=}60 Gy from 2005 to 2006. Early and late toxicities assessed included treatment-related pneumonitis (TRP), pulmonary fibrosis, esophagitis, and esophageal stricture, scored mainly according to the Common Terminology Criteria for Adverse Events 3.0. Other variables monitored were radiation-associated dermatitis and changes in body weight and Karnofsky performance status. The Kaplan-Meier method was used to compute survival and freedom from radiation-related acute and late toxicities as a function of time. Results: Most patients (89%) had Stage III to IV disease. The median radiation dose was 66 Gy given in 33 fractions (range, 60-76 Gy, 1.8-2.3 Gy per fraction). Median overall survival time was 1.8 years; the 2-year and 3-year overall survival rates were 46% and 30%. Rates of Grade {>=}3 maximum TRP (TRP{sub max}) were 11% at 6 months and 14% at 12 months. At 18 months, 86% of patients had developed Grade {>=}1 maximum pulmonary fibrosis (pulmonary fibrosis{sub max}) and 7% Grade {>=}2 pulmonary fibrosis{sub max}. The median times to maximum esophagitis (esophagitis{sub max}) were 3 weeks (range, 1-13 weeks) for Grade 2 and 6 weeks (range, 3-13 weeks) for Grade 3. A higher percentage of patients who experienced Grade 3 esophagitis{sub max} later developed Grade 2 to 3 esophageal stricture. Conclusions: In our experience, using IMRT to treat NSCLC leads to low rates of pulmonary and esophageal toxicity, and favorable clinical outcomes in terms of survival.

  10. Robotic radiosurgery vs. brachytherapy as a boost to intensity modulated radiotherapy for tonsillar fossa and soft palate tumors: the clinical and economic impact of an emerging technology.

    PubMed

    Nijdam, W; Levendag, P; Fuller, D; Schulz, R; Prevost, J-B; Noever, I; Uyl-de Groot, C

    2007-12-01

    As a basis for making decisions regarding optimal treatment for patients with tonsillar fossa and soft palate tumors, we conducted a preliminary investigation of costs and quality of life (QoL) for two modalities [brachytherapy (BT) and robotic radiosurgery] used to boost radiation to the primary tumors following external beam radiotherapy. BT was well established in our center; a boost by robotic radiosurgery was begun more recently in patients for whom BT was not technically feasible. Robotic radiosurgery boost treatment has the advantage of being non-invasive and is able to reach tumors in cases where there is deep parapharyngeal tumor extension. A neck dissection was performed for patients with nodal-positive disease. Quality of life (pain and difficulty swallowing) was established in long-term follow-up for patients undergoing BT and over a one-year follow-up in robotic radiosurgery patients. Total hospital costs for both groups were computed. Our results show that efficacy and quality of life at one year are comparable for BT and robotic radiosurgery. Total cost for robotic radiosurgery was found to be less than BT primarily due to the elimination of hospital admission and operating room expenses. Confirmation of robotic radiosurgery treatment efficacy and reduced morbidity in the long term requires further study. Quality of life and cost analyses are critical to Health Technology Assessments (HTA). The present study shows how a preliminary HTA of a new medical technology such as robotic radiosurgery with its typical hypofractionation characteristics might be based on short-term clinical outcomes and assumptions of equivalence.

  11. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  12. Limited Chemotherapy and Shrinking Field Radiotherapy for Osteolymphoma (Primary Bone Lymphoma): Results From the Trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 Prospective Trial;Bone; Lymphoma; Radiotherapy; Chemotherapy; Clinical trial

    SciTech Connect

    Christie, David; Dear, Keith; Le, Thai; Barton, Michael; Wirth, Andrew; Porter, David; Roos, Daniel; Pratt, Gary

    2011-07-15

    Purpose: To establish benchmark outcomes for combined modality treatment to be used in future prospective studies of osteolymphoma (primary bone lymphoma). Methods and Materials: In 1999, the Trans-Tasman Radiation Oncology Group (TROG) invited the Australasian Leukemia and Lymphoma Group (ALLG) to collaborate on a prospective study of limited chemotherapy and radiotherapy for osteolymphoma. The treatment was designed to maintain efficacy but limit the risk of subsequent pathological fractures. Patient assessment included both functional imaging and isotope bone scanning. Treatment included three cycles of CHOP chemotherapy and radiation to a dose of 45 Gy in 25 fractions using a shrinking field technique. Results: The trial closed because of slow accrual after 33 patients had been entered. Accrual was noted to slow down after Rituximab became readily available in Australia. After a median follow-up of 4.3 years, the five-year overall survival and local control rates are estimated at 90% and 72% respectively. Three patients had fractures at presentation that persisted after treatment, one with recurrent lymphoma. Conclusions: Relatively high rates of survival were achieved but the number of local failures suggests that the dose of radiotherapy should remain higher than it is for other types of lymphoma. Disability after treatment due to pathological fracture was not seen.

  13. [Stereotactic radiotherapy for pelvic tumors].

    PubMed

    Mazeron, R; Fumagalli, I

    2014-01-01

    Extracranial stereotactic radiotherapy is booming. The development and spread of dedicated accelerators coupled with efficient methods of repositioning can now allow treatments of mobile lesions with moderate size, with high doses per fraction. Intuitively, except for the prostate, pelvic tumours, often requiring irradiation of regional lymph node drainage, lend little to this type of treatment. However, in some difficult circumstances, such as boost or re-radiation, stereotactic irradiation condition is promising and clinical experiences have already been reported.

  14. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  15. Pion radiotherapy at LAMPF

    SciTech Connect

    Bush, S.E.; Smith, A.R.; Zink, S.

    1982-12-01

    Clinical investigations of pi meson radiotherapy were conducted by the Cancer Research and Treatment Center of the University of New Mexico and the Los Alamos National Laboratory from 1974 until 1982. Two hundred and thirty patients have been treated for a variety of locally advanced primary and metastatic neoplasms. One hundred and ninety-six patients have been followed for a minimum of 18 months. Crude survival data range from 11% for unresectable pancreatic carcinoma to 82% for Stages C and D1 adenocarcinoma of the prostate. Acute tolerance of normal tissues is approximately 4500 pion rad in 36 fractions over 7 weeks. Severe chronic reactions have appeared with increasing frequency after doses in excess of 4000 pion rad.

  16. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-10-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL "dose intercomparison" for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values.

  17. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: Clinical correlation of dose to the pharyngo-esophageal axis and dysphagia

    SciTech Connect

    Fua, Tsien F. . E-mail: tsien-fei.fua@petermac.org; Corry, June; Milner, Alvin D.; Cramb, Jim; Walsham, Sue F.; Peters, Lester J.

    2007-03-15

    Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteral feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.

  18. Clinical Application of High-Dose, Image-Guided Intensity-Modulated Radiotherapy in High-Risk Prostate Cancer

    SciTech Connect

    Bayley, Andrew; Rosewall, Tara; Craig, Tim; Bristow, Rob; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2010-06-01

    Purpose: To report the feasibility and early toxicity of dose-escalated image-guided IMRT to the pelvic lymph nodes (LN), prostate (P), and seminal vesicles (SV). Methods and Materials: A total of 103 high-risk prostate cancer patients received two-phase, dose-escalated, image-guided IMRT with 3 years of androgen deprivation therapy. Clinical target volumes (CTVs) were delineated using computed tomography/magnetic resonance co-registration and included the prostate, portions of the SV, and the LN. Planning target volume margins (PTV) used were as follows: P (10 mm, 7 mm posteriorly), SV (10 mm), and LN (5 mm). Organs at risk (OaR) were the rectal and bladder walls, femoral heads, and large and small bowel. The IMRT was planned with an intended dose of 55.1 Gy in 29 fractions to all CTVs (Phase 1), with P+SV consecutive boost of 24.7 Gy in 13 fractions. Daily online image guidance was performed using bony landmarks and intraprostatic markers. Feasibility criteria included delivery of intended doses in 80% of patients, 95% of CTV displacements incorporated within PTV during Phase 1, and acute toxicity rate comparable to that of lower-dose pelvic techniques. Results: A total of 91 patients (88%) received the total prescription dose. All patients received at least 72 Gy. In Phase 1, 63 patients (61%) received the intended 55.1 Gy, whereas 87% of patients received at least 50 Gy. Dose reductions were caused by small bowel and rectal wall constraints. All CTVs received the planned dose in >95% of treatment fractions. There were no Radiation Therapy Oncology Group acute toxicities greater than Grade 3, although there were five incidences equivalent to Grade 3 within a median follow-up of 23 months. Conclusion: These results suggest that dose escalation to the PLN+P+SV using IMRT is feasible, with acceptable rates of acute toxicity.

  19. Long-Term Outcome After Radiotherapy in Patients With Atypical and Malignant Meningiomas-Clinical Results in 85 Patients Treated in a Single Institution Leading to Optimized Guidelines for Early Radiation Therapy

    SciTech Connect

    Adeberg, Sebastian; Hartmann, Christian; Welzel, Thomas; Rieken, Stefan; Habermehl, Daniel; Deimling, Andreas von; Debus, Juergen; Combs, Stephanie E.

    2012-07-01

    Purpose: Previously, we could show that the new World Health Organization (WHO) classification of meningiomas significantly correlated with outcome in patients with atypical and anaplastic histology. In the present work, we analyzed our long-term experience in radiotherapy for atypical and malignant meningioma diagnosed according to the most recent WHO categorization system. Patients and Methods: Sixty-two patients with atypical and 23 patients with malignant meningioma have been treated with radiotherapy. Sixty percent of all patients received radiotherapy (RT) after surgical resection, 19% at disease progression and 8.3% as a primary treatment. Radiation was applied using different techniques including fractionated stereotactic RT (FSRT), intensity-modulated RT, and combination treatment with carbon ions. The median PTV was 156.0 mL. An average dose of 57.6 Gy (range, 30-68.4 Gy) in 1.8-3 Gy fractions was applied. All patients were followed regularly including clinical-neurological follow-up as well as computed tomographies or magnetic resonance imaging. Results: Overall survival was impacted significantly by histological grade, with 81% and 53% at 5 years for atypical or anaplastic meningiomas, respectively. This difference was significant at p = 0.022. Eighteen patients died of tumor progression during follow-up. Progression-free survival was 95% and 50% for atypical, and 63% and 13% for anaplastic histology at 2 and 5 years. This difference was significant at p = 0.017. Despite histology, we could not observe any prognostic factors including age, resection status, or Karnofsky performance score. However, preexisting clinical symptoms observed in 63 patients improved in 29.3% of these patients. Conclusion: RT resulted in improvement of preexisting clinical symptoms; outcome is comparable to other series reported in the literature. RT should be offered after surgical resection after initial diagnosis to increase progression-free survival as well as overall

  20. Results of intraoperative electron beam radiotherapy containing multimodality treatment for locally unresectable T4 rectal cancer: a pooled analysis of the Mayo Clinic Rochester and Catharina Hospital Eindhoven

    PubMed Central

    Holman, Fabian A.; Haddock, Michael G.; Gunderson, Leonard L.; Kusters, Miranda; Nieuwenhuijzen, Grard A. P.; van den Berg, Hetty A.; Nelson, Heidi

    2016-01-01

    Background The aim of this study is to analyse the pooled results of intraoperative electron beam radiotherapy (IOERT) containing multimodality treatment of locally advanced T4 rectal cancer, initially unresectable for cure, from the Mayo Clinic, Rochester, USA (MCR) and Catharina Hospital, Eindhoven, The Netherlands (CHE), both major referral centers for locally advanced rectal cancer. A rectal tumor is called locally unresectable for cure if after full clinical work-up infiltration into the surrounding structures or organs has been demonstrated, which would result in positive surgical margins if resection was the initial component of treatment. This was the reason to refer these patients to the IOERT program of one of the centers. Methods In the period from 1981 to 2010, 417 patients with locally unresectable T4 rectal carcinomas at initial presentation were treated with multimodality treatment including IOERT at either one of the two centres. The preferred treatment approach was preoperative (chemo) radiation and intended radical surgery combined with IOERT. Risk factors for local recurrence (LR), cancer specific survival, disease free survival and distant metastases (DM) were assessed. Results A total of 306 patients (73%) underwent a R0 resection. LRs and metastases occurred more frequently after an R1-2 resection (P<0.001 and P<0.001 respectively). Preoperative chemoradiation (preop CRT) was associated with a higher probability of having a R0 resection. Waiting time after preoperative treatment was inversely related with the chance of developing a LR, especially after R+ resection. In 16% of all cases a LR developed. Five-year disease free survival and overall survival (OS) were 55% and 56% respectively. Conclusions An acceptable survival can be achieved in treatment of patients with initially unresectable T4 rectal cancer with combined modality therapy that includes preop CRT and IOERT. Completeness of the resection is the most important predictive and

  1. SU-E-T-629: Prediction of the ViewRay Radiotherapy Treatment Time for Clinical Logistics

    SciTech Connect

    Liu, S; Wooten, H; Wu, Y; Yang, D

    2015-06-15

    Purpose: An algorithm is developed in our clinic, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance-image guided radiation therapy (MR-IGRT) delivery system. This algorithm is necessary for managing patient treatment appointments, and is useful as an indicator to assess the treatment plan complexity. Methods: A patient’s total treatment delivery time, not including time required for localization, may be described as the sum of four components: (1) the treatment initialization time; (2) the total beam-on time; (3) the gantry rotation time; and (4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected delivery dose rate. To predict the remaining components, we quantitatively analyze the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle and MLC leaf positions of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, and between the furthest MLC leaf moving distance and the corresponding MLC motion time, the total delivery time is predicted using linear regression. Results: The proposed algorithm has demonstrated the feasibility of predicting the ViewRay treatment delivery time for any treatment plan of any patient. The average prediction error is 0.89 minutes or 5.34%, and the maximal prediction error is 2.09 minutes or 13.87%. Conclusion: We have developed a treatment delivery time prediction algorithm based on the analysis of previous patients’ treatment delivery records. The accuracy of our prediction is sufficient for guiding and arranging patient treatment appointments on a daily basis. The predicted delivery time could also be used as an indicator to assess the

  2. Overview of Carbon-ion Radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko

    2017-01-01

    The outcome of radiotherapy depends on potential efficiency of accelerators and their related accessories. In charged particle therapy before the 1990s, accelerators that were primarily installed for physics research had been shared, which however had limited flexibility for clinical use. Therapy-dedicated facility was first constructed at Loma Linda University for PBT in 1990 and at NIRS for CIRT in 1993. Currently, there are more than 56 facilities for PBT, 6 for CIRT, and 6 for PBT/CIRT, and even more facilities are under construction or active planning. CIRT has beneficial property for cancer therapy because, as compared with photon therapy, it offers superior dose distributions by exhibiting a Bragg peak in the body and, as compared with PBT, it has higher radiobiological effectiveness. The number of potential candidates for charged particle therapy is estimated to range from 0.018% to 0.035% of all irradiated cancer patients. In CIRT at NIRS, Japan, more than 9,000 patients have been treated with promising results in non-SCC tumors and photon-resistant types of tumors at various sites. It is of note that in CIRT a significant reduction in overall treatment time and fractions has been successfully achieved.

  3. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    PubMed

    Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-01

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans generated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0±1.6Gy compared to clinical plans, p=0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy±0.8Gy, p=0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2±0.4Gy, p=0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2±2.2Gy, p=0.01) and GI (0.2±0.4, p=0.01) for the nine-field plans relative to KBPs

  4. [Radiotherapy of hypopharynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Trémolières, P; Legouté, F; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    The intensity-modulated radiotherapy is the gold standard in the treatment of hypopharynx cancers. Early T1 and T2 tumours could be treated by exclusive radiotherapy or surgery. For tumours requiring total pharyngolaryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy are possible. For T4 tumours, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, curative dose is 70Gy and prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used for locally advanced cancers with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation is based on guidelines.

  5. Radiotherapy in Phyllodes Tumour

    PubMed Central

    Sasidharan, Balukrishna; Manipadam, Marie Therese; Paul, M J; Backianathan, Selvamani

    2017-01-01

    Introduction Phyllodes Tumour (PT) of the breast is a relatively rare breast neoplasm (<1%) with diverse range of pathology and biological behaviour. Aim To describe the clinical course of PT and to define the role of Radiotherapy (RT) in PT of the breast. Materials and Methods Retrospective analysis of hospital data of patients with PT presented from 2005 to 2014 was done. Descriptive statistics was used to analyze the results. Simple description of data was done in this study. Age and duration of symptoms were expressed in median and range. Percentages, tables and general discussions were used to understand the meaning of the data analyzed. Results Out of the 98 patients, 92 were eligible for analysis. The median age of presentation was 43 years. A total of 64/92 patients were premenopausal. There was no side predilection for this tumour but 57/92 patients presented as an upper outer quadrant lump. Fifty percent of the patients presented as giant (10 cm) PT. The median duration of symptoms was 12 months (range: 1-168 months). A 60% of patients had Benign (B), 23% had Borderline (BL) and 17% had malignant (M) tumours. The surgical treatment for benign histology included Lumpectomy (L) for 15%, Wide Local Excision (WLE) for 48%, and Simple Mastectomy (SM) for 37%. All BL and M tumours were treated with WLE or SM. There was no recurrence in B and BL group when the margin was ≥1 cm. All non-metastatic M tumours received adjuvant RT irrespective of their margin status. Total 3/16 patients with M developed local recurrence. Total 6/16 M patients had distant metastases (lung or bone). Our median duration of follow up was 20 months (range: 1-120 months). Conclusion Surgical resection with adequate margins (>1 cm) gave excellent local control in B and BL tumours. For patients with BL PT, local radiotherapy is useful, if margins are close or positive even after the best surgical resection. There is a trend towards improved local control with adjuvant radiotherapy for

  6. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  7. Comparison between nedaplatin and cisplatin plus docetaxel combined with intensity-modulated radiotherapy for locoregionally advanced nasopharyngeal carcinoma: a multicenter randomized phase II clinical trial

    PubMed Central

    Tang, Chunyuan; Wu, Fang; Wang, Rensheng; Lu, Heming; Li, Guisheng; Liu, Meilian; Zhu, Haisheng; Zhu, Jinxian; Zhang, Yong; Hu, Kai

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is highly incident in southern China. Metastasis is the major cause of death in NPC patients. Concurrent chemoradiotherapy (CCRT) has been accepted as standard in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma (NPC). However, induction chemotherapy (IC) also has benefits in this disease, especially in the patients with certain high-risk factors such as bulky and/or extensive nodal disease. It has been presented that adding IC to CCRT might be a reasonable approach and need more work to confirm. The optimal chemotherapeutic regimen combined with radiotherapy has not been determined so far. It is important to explore high effective and low toxic chemotherapy for the patients. In the multicenter prospective study, 223 patients with locoregionally advanced untreated NPC were randomized into experimental group and control group. The patients received two cycles of induction chemotherapy (IC) with docetaxel (DOC) plus nedaplatin (NDP) in experimental group every 3 weeks, followed by IMRT concurrent with weekly NDP for six cycles, and NDP was replaced by cisplatin (CDDP) in control group. More patients in experimental group could receive full courses of IC and concurrent chemoradiotherapy (CCRT) (P=0.013). There was no significant difference between the two groups in the percentage of reduction of GTVnx and GTVnd after IC (P=0.207 and P=0.107) and CR rate three months after completion of chemoradiotherapy (P=0.565 and P=0.738). With a mean follow-up of 35.1 months, no statistically significant difference in the 3-year OS, LRFS, RRFS, DMFS, and PFS was found. During IC, more patients suffered vomiting in control group (P=0.001). During CCRT, grade 3/4 neutropenia/thrombocytopenia were more common in experimental group (P=0.028 and P=0.035); whereas, severe anemia and vomiting were more common in control group (P=0.0001 and P=0.023). In conclusions, patients with locoregionally advanced NPC showed good

  8. [Radiotherapy of oropharynx carcinoma].

    PubMed

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  9. Accuracy and Robustness Improvements of Echocardiographic Particle Image Velocimetry for Routine Clinical Cardiac Evaluation

    NASA Astrophysics Data System (ADS)

    Meyers, Brett; Vlachos, Pavlos; Charonko, John; Giarra, Matthew; Goergen, Craig

    2015-11-01

    Echo Particle Image Velocimetry (echoPIV) is a recent development in flow visualization that provides improved spatial resolution with high temporal resolution in cardiac flow measurement. Despite increased interest a limited number of published echoPIV studies are clinical, demonstrating that the method is not broadly accepted within the medical community. This is due to the fact that use of contrast agents are typically reserved for subjects whose initial evaluation produced very low quality recordings. Thus high background noise and low contrast levels characterize most scans, which hinders echoPIV from producing accurate measurements. To achieve clinical acceptance it is necessary to develop processing strategies that improve accuracy and robustness. We hypothesize that using a short-time moving window ensemble (MWE) correlation can improve echoPIV flow measurements on low image quality clinical scans. To explore the potential of the short-time MWE correlation, evaluation of artificial ultrasound images was performed. Subsequently, a clinical cohort of patients with diastolic dysfunction was evaluated. Qualitative and quantitative comparisons between echoPIV measurements and Color M-mode scans were carried out to assess the improvements delivered by the proposed methodology.

  10. Stereotactic Body Radiotherapy for Clinically Localized Prostate Cancer: Toxicity and Biochemical Disease-Free Outcomes from a Multi-Institutional Patient Registry

    PubMed Central

    Sharma, Sanjeev; Shumway, Richard; Perry, David; Bydder, Sean; Simpson, C. Kelley; D'Ambrosio, David

    2015-01-01

    Objectives: To report on initial patient characteristics, treatment practices, toxicity, and early biochemical disease-free survival (bDFS) of localized prostate cancer treated with stereotactic body radiotherapy (SBRT) and enrolled in the RSSearch® Patient Registry. Methods: A retrospective analysis was conducted on patients with clinically localized prostate cancer enrolled in RSSearch® from June 2006 - January 2015. Patients were classified as low-risk (PSA ≤ 10 ng/ml, T1c-T2a, Gleason score ≤ 6), intermediate-risk (PSA 10.1 - 20 ng/ml, T2b-T2c, or Gleason 7), or high-risk (PSA > 20 ng/ml, T3 or Gleason ≥ 8). Toxicity was reported using Common Toxicity Criteria for Adverse Events, version 3. Biochemical failure was assessed using the Phoenix definition (nadir + 2 ng/ml). The Kaplan-Meier analysis was used to calculate bDFS and association of patient and tumor characteristics with the use of SBRT. Results: Four hundred thirty-seven patients (189 low, 215 intermediate, and 33 high-risk) at a median of 69 years (range: 48-88) received SBRT at 17 centers. Seventy-eight percent of patients received 36.25 Gy/5 fractions, 13% received 37 Gy/5 fractions, 6% received 35 Gy/5 fractions, 3% received 38 Gy/4 fractions, and 5% received a boost dose of 19.5-29 Gy following external beam radiation therapy. Median follow-up was 20 months (range: 1–64 months). Genitourinary (GU) and gastrointestinal (GI) toxicities were minimal, with no acute or late Grade 3+ GU or GI toxicity. Late Grade 1 and 2 urinary frequency was 25% and 8%. Late Grade 1 and 2 proctitis was 3% and 2%. Median PSA decreased from 5.8 ng/ml (range: 0.3-43) to 0.88, 0.4, and 0.3 ng/ml at one, two, and three years. Two-year bDFS for all patients was 96.1%. Two-year bDFS was 99.0%, 94.5%, and 89.8% for low, intermediate, and high-risk patients (p < 0.0001). Two-year bDFS was 99.2%, 93.2%, and 90.4% for Gleason ≤ 6, Gleason 7, and Gleason ≥ 8 (p < 0.0001). Two-year bDFS was 96.4%, 97

  11. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules.

  12. [Clinical experience in image-guided ultra-conformal hypofractionated radiotherapy in case of metastatic diseases at the University of Pécs].

    PubMed

    László, Zoltán; Boronkai, Árpád; Lõcsei, Zoltán; Kalincsák, Judit; Szappanos, Szabolcs; Farkas, Róbert; Al Farhat, Yousuf; Sebestyén, Zsolt; Sebestyén, Klára; Kovács, Péter; Csapó, László; Mangel, László

    2015-06-01

    With the development of radiation therapy technology, the utilization of more accurate patient fixation, inclusion of PET/CT image fusion into treatment planning, 3D image-guided radiotherapy, and intensity-modulated dynamic arc irradiation, the application of hypofractionated stereotactic radiotherapy can be extended to specified extracranial target volumes, and so even to the treatment of various metastases. Between October 2012 and August 2014 in our institute we performed extracranial, hypofractionated, image-többguided radiotherapy with RapidArc system for six cases, and 3D conformal multifield technique for one patient with Novalis TX system in case of different few-numbered and slow-growing metastases. For the precise definition of the target volumes we employed PET/CT during the treatment planning procedure. Octreotid scan was applied in one carcinoid tumour patient. Considering the localisation of the metastases and the predictable motion of the organs, we applied 5 to 20 mm safety margin during the contouring procedure. The average treatment volume was 312 cm3. With 2.5-3 Gy fraction doses we delivered 39-45 Gy total dose, and the treatment duration was 2.5 to 3 weeks. The image guidance was carried out via ExacTrac, and kV-Cone Beam CT equipment based on an online protocol, therefore localisation differences were corrected before every single treatment. The patients tolerated the treatments well without major (Gr>2) side effects. Total or near total regression of the metastases was observed at subsequent control examinations in all cases (the median follow-up time was 5 months). According to our first experience, extracranial, imageguided hypofractionated radiotherapy is well-tolerated by patients and can be effectively applied in the treatment of slow-growing and few-numbered metastases.

  13. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    PubMed Central

    Zhou, Qian; Cheng Tang; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I–III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range. PMID:26872078

  14. Oral verrucous carcinoma. Treatment with radiotherapy

    SciTech Connect

    Nair, M.K.; Sankaranarayanan, R.; Padmanabhan, T.K.; Madhu, C.S.

    1988-02-01

    Fifty-two cases of oral verrucous carcinoma treated with radiotherapy at the Regional Cancer Centre, Trivandrum, Kerala, India in 1982 were evaluated to determine the distribution within the oral cavity, clinical extent, and effectiveness of radiotherapy in controlling the disease. The most common site was the buccal mucosa. Fifty percent of the patients had clinically negative regional lymph nodes and 33% were in earlier stages (T1, T2, N0, and M0). The overall 3-year no evidence of disease (NED) survival rate was 44%. The 3-year NED survival rate with radium implant was 86%. We cannot comment on anaplastic transformation after radiotherapy because our treatment failures have not been subjected for biopsy concerning this matter. Because the results are comparable with those of well-differentiated squamous cell carcinoma, we think that the treatment policies advocated for oral squamous cell carcinoma are also applicable to oral verrucous carcinoma.

  15. Radiotherapy-induced hypopituitarism: a review.

    PubMed

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  16. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  17. Chromosome aberrations and cellular premature senescence as radiation-induced sub-lethal effects: Implications for laser-driven charged-particle radiotherapy

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Grossi, G.

    2013-07-01

    The use of charged particles significantly reduces the dose absorbed by normal cells due to the inverse dose-depth deposition profile. This is the physical pillar justifying hadrontherapy as the eligible treatment for deepseated tumours. However, a non-negligible amount of radiation is nevertheless absorbed in correspondence with the plateau region of the Bragg curve, which may result in the induction of sub-lethal effects. Very little experimental data exist on the induction of such effects. Moreover, reliable follow-up data on such adverse effects in hadrontherapy patients are limited since this type of treatment has been adopted relatively recently. A fortiori, the dependence of sub-lethal effects on unprecedented factors, such as the exceedingly high dose rates and/or the pulsed nature of beams originated by laser interaction with target materials, is unknown. This warrants investigation prior to a therapeutic use of such beams.

  18. Clinical results of stereotactic heavy-charged-particle radiosurgery for intracranial angiographically occult vascular malformations

    SciTech Connect

    Levy, R.P.; Fabrikant, J.I.; Phillips, M.H.; Frankel, K.A.; Steinberg, G.K.; Marks, M.P.; DeLaPaz, R.L.; Chuang, F.Y.S.; Lyman, J.T.

    1989-12-01

    Angiographically occult vascular malformations (AOVMs) of the brain have been recognized for many years to cause neurologic morbidity and mortality. They generally become symptomatic due to intracranial hemorrhage, focal mass effect, seizures or headaches. The true incidence of AOVMs is unknown, but autopsy studies suggest that they are more common than high-flow angiographically demonstrable arteriovenous malformations (AVMs). We have developed stereotactic heavy-charged-particle Bragg peak radiosurgery for the treatment of inoperable intracranial vascular malformations, using the helium ion beams at the Lawrence Berkeley Laboratory 184-inch Synchrocyclotron and Bevatron. This report describes the protocol for patient selection, radiosurgical treatment planning method, clinical and neuroradiologic results and complications encountered, and discusses the strengths and limitations of the method. 10 refs., 1 fig.

  19. Fiducial marker guided prostate radiotherapy: a review.

    PubMed

    O'Neill, Angela G M; Jain, Suneil; Hounsell, Alan R; O'Sullivan, Joe M

    2016-12-01

    Image-guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogeneous whole-pelvic radiotherapy dose, but these surrogates are not reliable when using reduced margins, dose escalation or hypofractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990s. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aimed to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied, which resulted in 50 articles being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft-tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardization of all techniques and procedures in relation to the use of prostate FMs is required. Finally, a clinical trial investigating a non-surgical alternative to prostate FMs is introduced.

  20. RTOG Sarcoma Radiation Oncologists Reach Consensus on Gross Tumor Volume and Clinical Target Volume on Computed Tomographic Images for Preoperative Radiotherapy of Primary Soft Tissue Sarcoma of Extremity in Radiation Therapy Oncology Group Studies

    SciTech Connect

    Wang Dian; Bosch, Walter; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Kirsch, David G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-11-15

    Objective: To develop a Radiation Therapy Oncology Group (RTOG) atlas delineating gross tumor volume (GTV) and clinical target volume (CTV) to be used for preoperative radiotherapy of primary extremity soft tissue sarcoma (STS). Methods and Materials: A consensus meeting was held during the RTOG meeting in January 2010 to reach agreement about GTV and CTV delineation on computed tomography (CT) images for preoperative radiotherapy of high-grade large extremity STS. Data were presented to address the local extension of STS. Extensive discussion ensued to develop optimal criteria for GTV and CTV delineation on CT images. Results: A consensus was reached on appropriate CT-based GTV and CTV. The GTV is gross tumor defined by T1 contrast-enhanced magnetic resonance images. Fusion of magnetic resonance and images is recommended to delineate the GTV. The CTV for high-grade large STS typically includes the GTV plus 3-cm margins in the longitudinal directions. If this causes the field to extend beyond the compartment, the field can be shortened to include the end of a compartment. The radial margin from the lesion should be 1.5 cm, including any portion of the tumor not confined by an intact fascial barrier, bone, or skin surface. Conclusion: The consensus on GTV and CTV for preoperative radiotherapy of high-grade large extremity STS is available as web-based images and in a descriptive format through the RTOG. This is expected to improve target volume consistency and allow for rigorous evaluation of the benefits and risks of such treatment.

  1. Long-Term Outcome and Morbidity After Treatment With Accelerated Radiotherapy and Weekly Cisplatin for Locally Advanced Head-and-Neck Cancer: Results of a Multidisciplinary Late Morbidity Clinic

    SciTech Connect

    Ruetten, Heidi; Pop, Lucas A.M.; Janssens, Geert O.R.J.; Takes, Robert P.; Knuijt, Simone; Berg, Manon van den; Merkx, Matthias A.; Herpen, Carla M.L. van; Kaanders, Johannes H.A.M.

    2011-11-15

    Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least five cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence-free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.

  2. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy.

  3. Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes.

    PubMed

    Hatton, A; Nevelos, J E; Matthews, J B; Fisher, J; Ingham, E

    2003-03-01

    The recent introduction of microseparation of the components of ceramic-on-ceramic hip prostheses during hip simulations has produced clinically relevant wear rates, wear patterns and wear particles. This provided an opportunity to determine the response of primary human peripheral blood mononuclear cells to clinically relevant alumina ceramic wear particles in vitro. Alumina ceramic wear particles were generated in a hip joint simulator under microseparation conditions. The particles showed a bi-modal size distribution with nanometer sized (5-20nm) and larger particles (0.2->10 micrometer). The particles were cultured with human peripheral blood mononuclear cells obtained from six different donors at particle volume to cell number ratios of 1, 10, 100 and 500 micrometer(3). After 24h incubation the viability of the cells and the levels of TNF-alpha were determined. The response to the microseparation wear particles was compared to that of commercially available alumina powder with a uniform morphology and mean size of 0.5 micrometer. All six Donors PBMNC produced significantly elevated levels of TNF-alpha when stimulated with 100 micrometer(3) of the alumina powder per cell. Volumetric concentrations of 10 and 1.0 micrometer(3) per cell failed to stimulate a significant response by the cells from any of the six donors. Three of the six Donors PBMNC secreted significantly elevated levels of TNF-alpha when stimulated with 100 micrometer(3) of the microseparation wear particles, whereas the other three failed to respond to the wear debris at this concentration. All of the Donors PBMNC produced significantly elevated levels of TNF-alpha when stimulated with 500 micrometer(3) of the microseparation wear particles per cell. Thus, a greater volume of the microseparation wear particles was required to activate the PBMNC than the alumina powder. This was probably due to the microseparation wear particles having fewer particles in the critical size range (0.1-1 micrometer

  4. Radiotherapy for inverted papilloma: a case report.

    PubMed

    Levendag, P C; Annyas, A A; Escajadillo, J R; Elema, J D

    1984-06-01

    Inverted papilloma is an infrequent tumour of the nasal cavity and paranasal sinuses associated with controversy. The incidence of carcinoma in situ associated with inverted papilloma, has not been very well documented until now. Therefore, we present a case report characterized by an aggressive clinical behaviour, treated by extensive surgery and ultimately controlled by radiotherapy.

  5. Randomized Clinical Trial of Weekly vs. Triweekly Cisplatin-Based Chemotherapy Concurrent With Radiotherapy in the Treatment of Locally Advanced Cervical Cancer

    SciTech Connect

    Ryu, Sang-Young; Lee, Won-Moo; Kim, Kidong; Park, Sang-Il; Kim, Beob-Jong; Kim, Moon-Hong; Choi, Seok-Cheol; Cho, Chul-Koo; Nam, Byung-Ho; Lee, Eui-Don

    2011-11-15

    Purpose: To compare compliance, toxicity, and outcome of weekly and triweekly cisplatin administration concurrent with radiotherapy in locally advanced cervical cancer. Methods and Materials: In this open-label, randomized trial, 104 patients with histologically proven Stage IIB-IVA cervical cancer were randomly assigned by a computer-generated procedure to weekly (weekly cisplatin 40 mg/m{sup 2}, six cycles) and triweekly (cisplatin 75 mg/m{sup 2} every 3 weeks, three cycles) chemotherapy arms during concurrent radiotherapy. The difference of compliance and the toxicity profiles between the two arms were investigated, and the overall survival rate was analyzed after 5 years. Results: All patients tolerated both treatments very well, with a high completion rate of scheduled chemotherapy cycles. There was no statistically significant difference in compliance between the two arms (86.3% in the weekly arm, 92.5% in the triweekly arm, p > 0.05). Grade 3-4 neutropenia was more frequent in the weekly arm (39.2%) than in the triweekly arm (22.6%) (p = 0.03). The overall 5-year survival rate was significantly higher in the triweekly arm (88.7%) than in the weekly arm (66.5%) (hazard ratio 0.375; 95% confidence interval 0.154-0.914; p = 0.03). Conclusions: Triweekly cisplatin 75-mg/m{sup 2} chemotherapy concurrent with radiotherapy is more effective and feasible than the conventional weekly cisplatin 40-mg/m{sup 2} regimen and may be a strong candidate for the optimal cisplatin dose and dosing schedule in the treatment of locally advanced cervical cancer.

  6. WE-G-18A-07: Clinical Evaluation of Normalized Metal Artifact Reduction in KVCT Using MVCT Prior Images (MVCT-NMAR) Technique in Radiotherapy

    SciTech Connect

    Paudel, M; MacKenzie, M; Fallone, B; Rathee, S

    2014-06-15

    Purpose: To evaluate the metal artifacts in diagnostic kVCT images of patients that are corrected using a normalized metal artifact reduction method with MVCT prior images, MVCT-NMAR. Methods: An MVCTNMAR algorithm was developed and applied to five patients: three with bilateral hip prostheses, one with unilateral hip prosthesis and one with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces, and for radiotherapy dose calculations. They were also compared against the corresponding images corrected by a commercial metal artifact reduction technique, O-MAR, on a Phillips™ CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiotherapy. These improvements are significant over the commercial correction method, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in O-MAR corrected images are removed in the MVCT-NMAR corrected images. Large dose reduction is possible outside the planning target volume (e.g., 59.2 Gy in comparison to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images are used in TomoTherapy™ treatment plans, as the corrected images no longer require directional blocks for prostate plans in order to avoid the image artifact regions. Conclusion: The use of MVCT-NMAR corrected images in radiotherapy treatment planning could improve the treatment plan quality for cancer patients with metallic implants. Moti Raj Paudel is supported by the Vanier Canada Graduate Scholarship, the Endowed Graduate Scholarship in Oncology and the Dissertation Fellowship at the University of Alberta. The authors acknowledge the CIHR operating grant number MOP 53254.

  7. Clinical reversible myelopathy in T-cell lymphoblastic lymphoma treated with nelarabine and radiotherapy: report of a case and review of literature of an increasing complication.

    PubMed

    Tisi, Maria Chiara; Ausoni, Giuseppe; Vita, Maria Gabriella; Tartaglione, Tommaso; Balducci, Mario; Laurenti, Luca; Chiusolo, Patrizia; Hohaus, Stefan; Sica, Simona

    2015-01-01

    Eleven cases of neurological defects in T-ALL patients treated with nelarabine have been described in the last 4 years, seven of these after stem cell transplantation (SCT) for T Lymphoblastic Lymphoma (T-LBL). Most of these patients had an unfavorable outcome or irreversible neurological damage. We now report the case of a 41-year-old woman suffering from T-LBL who presented with severe, but reversible myelopathy after receiving nelarabine-based treatment and mediastinal radiotherapy, and we provide a review of the literature on the topic.

  8. Biologically Weighted Quantities in Radiotherapy: an EMRP Joint Research Project

    NASA Astrophysics Data System (ADS)

    Rabus, Hans; Palmans, Hugo; Hilgers, Gerhard; Sharpe, Peter; Pinto, Massimo; Villagrasa, Carmen; Nettelbeck, Heidi; Moro, Davide; Pola, Andrea; Pszona, Stanislaw; Teles, Pedro

    2014-08-01

    Funded within the European Metrology Research Programme (EMRP) [1], the joint research project "Biologically weighted quantities in radiotherapy" (BioQuaRT) [2] aims to develop measurement and simulation techniques for determining the physical properties of ionising particle tracks on different length scales (about 2 nm to 10 μm), and to investigate the correlation of these track structure characteristics with the biological effects of radiation at the cellular level. Work package 1 develops micro-calorimeter prototypes for the direct measurement of lineal energy and will characterise their response for different ion beams by experiment and modelling. Work package 2 develops techniques to measure particle track structure on different length scales in the nanometre range as well as a measurement device integrating a silicon microdosimeter and a nanodosimeter. Work package 3 investigates the indirect effects of radiation based on probes for quantifying particular radical and reactive oxygen species (ROS). Work package 4 focuses on the biological aspects of radiation damage and will produce data on initial DNA damage and late effects for radiotherapy beams of different qualities. Work package 5 provides evaluated data sets of DNA cross-sections and develops a multi-scale model to address microscopic and nanometric track structure properties. The project consortium includes three linked researchers holding so-called Researcher Excellence Grants, who carry out ancillary investigations such as developing and benchmarking a new biophysical model for induction of early radiation damage and developing methods for the translation of quantities derived from particle track structure to clinical applications in ion beam therapy.

  9. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  10. A Randomized Trial (Irish Clinical Oncology Research Group 97-01) Comparing Short Versus Protracted Neoadjuvant Hormonal Therapy Before Radiotherapy for Localized Prostate Cancer

    SciTech Connect

    Armstrong, John G.; Gillham, Charles M.; Dunne, Mary T.; Fitzpatrick, David A.; Finn, Marie A.; Cannon, Mairin E.; Taylor, Judy C.; O'Shea, Carmel M.; Buckney, Steven J.; Thirion, Pierre G.

    2011-09-01

    Purpose: To examine the long-term outcomes of a randomized trial comparing short (4 months; Arm 1) and long (8 months; Arm 2) neoadjuvant hormonal therapy before radiotherapy for localized prostate cancer. Methods and Materials: Between 1997 and 2001, 276 patients were enrolled and the data from 261 were analyzed. The stratification risk factors were prostate-specific antigen level >20 ng/mL, Gleason score {>=}7, and Stage T3 or more. The intermediate-risk stratum had one factor and the high-risk stratum had two or more. Staging was done from the bone scan and computed tomography findings. The primary endpoint was biochemical failure-free survival. Results: The median follow-up was 102 months. The overall survival, biochemical failure-free survival. and prostate cancer-specific survival did not differ significantly between the two treatment arms, overall or at 5 years. The cumulative probability of overall survival at 5 years was 90% (range, 87-92%) in Arm 1 and 83% (range, 80-86%) in Arm 2. The biochemical failure-free survival rate at 5 years was 66% (range, 62-71%) in Arm 1 and 63% (range, 58-67%) in Arm 2. Conclusion: No statistically significant difference was found in biochemical failure-free survival between 4 months and 8 months of neoadjuvant hormonal therapy before radiotherapy for localized prostate cancer.

  11. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

    SciTech Connect

    Kruijf, Wilhelmus de . E-mail: kruijf.de.w@bvi.nl; Heijmen, Ben; Levendag, Peter C.

    2007-05-01

    Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

  12. Image-Guided Radiotherapy and -Brachytherapy for Cervical Cancer

    PubMed Central

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  13. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    PubMed

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer.

  14. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    SciTech Connect

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash; Yu, Hsiang-Hsuan Michael

    2011-09-01

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysis included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions: Elderly

  15. Application of (212)Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation.

    PubMed

    Yong, Kwon; Brechbiel, Martin

    Targeted α-particle therapy (TAT), in which an α-particle emitting radionuclide is specifically directed to a biological target, is gaining more attention to treat cancers as new targets are validated. Bio-vectors such as monoclonal antibodies are able to selectively transport α-particles to destroy targeted cancer cells. TAT has the potential for an improved therapeutic ratio over β-particle targeted conjugate therapy. The short path length and the intense ionization path generated render α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking. (212)Pb is the longer-lived parent radionuclide of (212)Bi and serves as an in vivo generator of (212)Bi. (212)Pb has demonstrated significant utility in both in vitro and in vivo models. Recent evaluation of (212)Pb-TCMC-trastuzumab in a Phase I clinical trial has demonstrated the feasibility of (212)Pb in TAT for the treatment of ovarian cancer patients. This review highlights progress in radionuclide production, radiolabeling chemistry, molecular mechanisms, and application of (212)Pb to targeted pre-clinical and clinical radiation therapy for the management and treatment of cancer.

  16. Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation

    PubMed Central

    Yong, Kwon; Brechbiel, Martin

    2015-01-01

    Targeted α-particle therapy (TAT), in which an α-particle emitting radionuclide is specifically directed to a biological target, is gaining more attention to treat cancers as new targets are validated. Bio-vectors such as monoclonal antibodies are able to selectively transport α-particles to destroy targeted cancer cells. TAT has the potential for an improved therapeutic ratio over β-particle targeted conjugate therapy. The short path length and the intense ionization path generated render α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking. 212Pb is the longer-lived parent radionuclide of 212Bi and serves as an in vivo generator of 212Bi. 212Pb has demonstrated significant utility in both in vitro and in vivo models. Recent evaluation of 212Pb-TCMC-trastuzumab in a Phase I clinical trial has demonstrated the feasibility of 212Pb in TAT for the treatment of ovarian cancer patients. This review highlights progress in radionuclide production, radiolabeling chemistry, molecular mechanisms, and application of 212Pb to targeted pre-clinical and clinical radiation therapy for the management and treatment of cancer. PMID:26858987

  17. Topical Hyaluronic Acid vs. Standard of Care for the Prevention of Radiation Dermatitis After Adjuvant Radiotherapy for Breast Cancer: Single-Blind Randomized Phase III Clinical Trial

    SciTech Connect

    Pinnix, Chelsea; Perkins, George H.; Strom, Eric A.; Tereffe, Welela; Woodward, Wendy; Oh, Julia L.; Arriaga, Lisa; Munsell, Mark F.; Kelly, Patrick; Hoffman, Karen E.; Smith, Benjamin D.; Buchholz, Thomas A.; Yu, T. Kuan

    2012-07-15

    Purpose: To determine the efficacy of an emulsion containing hyaluronic acid to reduce the development of {>=}Grade 2 radiation dermatitis after adjuvant breast radiation compared with best supportive care. Methods and Materials: Women with breast cancer who had undergone lumpectomy and were to receive whole-breast radiotherapy to 50 Gy with a 10- to 16-Gy surgical bed boost were enrolled in a prospective randomized trial to compare the effectiveness of a hyaluronic acid-based gel (RadiaPlex) and a petrolatum-based gel (Aquaphor) for preventing the development of dermatitis. Each patient was randomly assigned to use hyaluronic acid gel on the medial half or the lateral half of the irradiated breast and to use the control gel on the other half. Dermatitis was graded weekly according to the Common Terminology Criteria v3.0 by the treating physician, who was blinded as to which gel was used on which area of the breast. The primary endpoint was development of {>=}Grade 2 dermatitis. Results: The study closed early on the basis of a recommendation from the Data and Safety Monitoring Board after 74 of the planned 92 patients were enrolled. Breast skin treated with the hyaluronic acid gel developed a significantly higher rate of {>=}Grade 2 dermatitis than did skin treated with petrolatum gel: 61.5% (40/65) vs. 47.7% (31/65) (p = 0.027). Only 1ne patient developed Grade 3 dermatitis using either gel. A higher proportion of patients had worse dermatitis in the breast segment treated with hyaluronic acid gel than in that treated with petrolatum gel at the end of radiotherapy (42% vs. 14%, p = 0.003). Conclusion: We found no benefit from the use of a topical hyaluronic acid-based gel for reducing the development of {>=}Grade 2 dermatitis after adjuvant radiotherapy for breast cancer. Additional studies are needed to determine the efficacy of hyaluronic acid-based gel in controlling radiation dermatitis symptoms after they develop.

  18. The Immunoregulatory Potential of Particle Radiation in Cancer Therapy.

    PubMed

    Ebner, Daniel K; Tinganelli, Walter; Helm, Alexander; Bisio, Alessandra; Yamada, Shigeru; Kamada, Tadashi; Shimokawa, Takashi; Durante, Marco

    2017-01-01

    Cancer treatment, today, consists of surgery, chemotherapy, radiation, and most recently immunotherapy. Combination immunotherapy-radiotherapy (CIR) has experienced a surge in public attention due to numerous clinical publications outlining the reduction or elimination of metastatic disease, following treatment with specifically ipilimumab and radiotherapy. The mechanism behind CIR, however, remains unclear, though it is hypothesized that radiation transforms the tumor into an in situ vaccine which immunotherapy modulates into a larger immune response. To date, the majority of attention has focused on rotating out immunotherapeutics with conventional radiation; however, the unique biological and physical benefits of particle irradiation may prove superior in generation of systemic effect. Here, we review recent advances in CIR, with a particular focus on the usage of charged particles to induce or enhance response to cancerous disease.

  19. The Immunoregulatory Potential of Particle Radiation in Cancer Therapy

    PubMed Central

    Ebner, Daniel K.; Tinganelli, Walter; Helm, Alexander; Bisio, Alessandra; Yamada, Shigeru; Kamada, Tadashi; Shimokawa, Takashi; Durante, Marco

    2017-01-01

    Cancer treatment, today, consists of surgery, chemotherapy, radiation, and most recently immunotherapy. Combination immunotherapy-radiotherapy (CIR) has experienced a surge in public attention due to numerous clinical publications outlining the reduction or elimination of metastatic disease, following treatment with specifically ipilimumab and radiotherapy. The mechanism behind CIR, however, remains unclear, though it is hypothesized that radiation transforms the tumor into an in situ vaccine which immunotherapy modulates into a larger immune response. To date, the majority of attention has focused on rotating out immunotherapeutics with conventional radiation; however, the unique biological and physical benefits of particle irradiation may prove superior in generation of systemic effect. Here, we review recent advances in CIR, with a particular focus on the usage of charged particles to induce or enhance response to cancerous disease. PMID:28220126

  20. Clinical Outcomes among Children with Standard Risk Medulloblastoma Treated with Proton and Photon Radiotherapy: A Comparison of Disease Control and Overall Survival

    PubMed Central

    Eaton, Bree R; Esiashvili, Natia; Kim, Sungjin; Weyman, Elizabeth A.; Thornton, Lauren T.; Mazewski, Claire; MacDonald, Tobey; Ebb, David; MacDonald, Shannon M.; Tarbell, Nancy J.; Yock, Torunn

    2015-01-01

    Purpose/Objective(s) To compare long-term disease control and overall survival between children treated with proton and photon radiotherapy (RT) for standard risk medulloblastoma. Methods and Materials This multi-institution cohort study includes 88 children treated with chemotherapy and proton (n=45) or photon (n=43) RT between 2000 and 2009. Overall survival (OS), recurrence-free survival (RFS) and patterns of failure were compared among the two cohorts. Results Median (range) age at diagnosis was 6 yrs (3 - 21) for proton pts vs. 8 yrs (3 -19) for photon pts (p=0.011). Cohorts were similar with respect to gender, histology, extent of surgical resection, craniospinal (CSI) RT dose, total RT dose, whether the RT boost was delivered to the posterior fossa (PF) or tumor bed (TB), time from surgery to RT start, or total duration of RT. RT consisted of a median (range) CSI dose of 23.4 Gy (18 - 27) and a boost of 30.6 Gy (27 - 37.8). Median (95% CI) f/up time is 6.2 yrs (5.1 – 6.6) for proton pts vs. 7.0 yrs (5.8 – 8.9) for photon pts. There was no significant difference in RFS or OS between pts treated with proton vs. photon RT: 6 yr RFS 78.8% vs. 76.5% (p=0.948) and 6 yr OS 82.0 vs. 87.6% (p=0.285). On multivariable analysis, there was a trend for longer RFS with female gender (p=0.058) and higher CSI dose (p=0.096), and for longer OS with female gender (p=0.093). Patterns of failure were similar among the two cohorts (p=0.908). Conclusions Disease control with proton and photon radiotherapy appears equivalent for standard risk medulloblastoma. PMID:26700707

  1. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines.

  2. New Methods for Targeted Alpha Radiotherapy

    NASA Astrophysics Data System (ADS)

    Robertson, J. David

    2014-03-01

    Targeted radiotherapies based on alpha emitters are a promising alternative to beta emitting radionuclides. Because of their much shorter range, targeted α-radiotherapy (TAT) agents have great potential for application to small, disseminated tumors and micro metastases and treatment of hematological malignancies consisting of individual, circulating neoplastic cells. A promising approach to TAT is the use of the in vivo α-generator radionuclides 223 = 11.4 d) and 225Ac 1/2 = 10.0 d). In addition to their longer half-lives, these two isotopes have the potential of dramatically increasing the therapeutic efficacy of TAT as they each emit four α particles in their decay chain. This principle has recently been exploited in the development of Xofigo®, the first TAT agent approved for clinical use by the U.S. FDA. Xofigo, formulated as 223RaCl2, is used for treatment of metastatic bone cancer in men with castration-resistant prostate cancer. TAT with 223Ra works, however, only in the case of bone cancer because radium, as a chemical analogue of calcium, efficiently targets bone. In order to bring the benefits of TAT with 223Ra or 225Ac to other tumor types, a new delivery method must be devised. Retaining the in vivo α generator radionuclides at the target site through the decay process is one of the major challenges associated with the development of TAT. Because the recoil energy of the daughter radionuclides from the α-emission is ~ 100 keV - a value which is four orders of magnitude greater than the energy of a covalent bond - the daughters will not remain bound to the bioconjugate at the targeting site. Various approaches have been attempted to achieve retention of the α-generator daughter radionuclides at the target site, including incorporation of the in vivo generator into liposomes and fullerenes. Unfortunately, to date single wall liposomes and fullerenes are able to retain less than 10% of the daughter radionuclides. We have recently demonstrated that a

  3. What is changing in radiotherapy for the treatment of locally advanced nonsmall cell lung cancer patients? A review.

    PubMed

    Giaj-Levra, Niccoló; Ricchetti, Francesco; Alongi, Filippo

    2016-01-01

    Radiotherapy treatment continues to have a relevant impact in the treatment of nonsmall cell cancer (NSCLC). Use of concurrent chemotherapy and radiotherapy is considered the gold standard in the treatment of locally advanced NSCLC but clinical outcomes are not satisfactory. Introduction of new radiotherapy technology and chemotherapy regimens are under investigation in this setting with the goal to improve unsatisfactory results. We report how radiotherapy is changing in the treatment of locally advanced NSCLC.

  4. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  5. The role of postmastectomy radiotherapy in clinically node-positive, stage II-III breast cancer patients with pathological negative nodes after neoadjuvant chemotherapy: an analysis from the NCDB

    PubMed Central

    Jiang, Shuai; Jiang, Wen; Chen, Kai; Kim, Betty Y.S.; Liu, Qiang; Jacobs, Lisa K.

    2016-01-01

    Purpose The role of postmastectomy radiotherapy (PMRT) in clinically node-positive, stage II-III breast cancer patients with pathological negative nodes (ypN0) after neoadjuvant chemotherapy (NAC) remains controversial. Methods A total of 1560 clinically node-positive, stage II-III breast cancer patients treated with NAC and mastectomy who achieved ypN0 between 1998 and 2009 in the National Cancer Database were analyzed. The effects of PMRT on overall survival (OS) for the entire cohort and multiple subgroups were evaluated. Imputation and propensity score matching were used as sensitivity analyses to minimize biases. Results Of the entire 1560 eligible patients, 903 (57.9%) received PMRT and 657 (42.1%) didn’t. At a median follow-up of 56.0 months, no statistical difference was observed for OS between two groups by univariate and multivariate analyses (P = 0.120; HR 1.571, 95% CI 0.839-2.943). On subgroup analyses, PMRT significantly improved OS in patients with clinical stage IIIB/IIIC disease, T3/T4 tumor, or residual invasive breast cancer after NAC (P < 0.05). This improvement in OS remained significant after sensitivity analyses for the propensity score-matched patients. Conclusions This study demonstrated that PMRT showed a heterogeneous effect in clinically node-positive, stage II-III breast cancer patients with ypN0 following NAC. PMRT improved OS for patients with clinical stage IIIB/IIIC disease, T3/T4 tumor, or residual invasive breast tumor after NAC. In the absence of definitive conclusions from prospective studies, including the ongoing NSABP B-51 trial, our findings may help identify specific groups of women with clinically node-positive, stage II-III breast cancers who could benefit from PMRT after NAC. PMID:26709538

  6. [Radiotherapy for retroperitoneal sarcomas].

    PubMed

    Sargos, P; Stoeckle, E; Henriques de Figueiredo, B; Antoine, M; Delannes, M; Mervoyer, A; Kantor, G

    2016-10-01

    The management of retroperitoneal sarcoma can be very challenging, and the quality of initial treatment strategy appears to be a crucial prognostic factor. En bloc surgery is currently the standard of care for these rare tumours and perioperative treatments such as chemotherapy or radiotherapy have not been validated yet. However, local-regional relapse constitutes the most common disease course. While adjuvant radiotherapy is less and less common due to gastrointestinal toxicities, preoperative radiation therapy offers numerous advantages and is being evaluated as part of a national multicentre phase II study (TOMOREP trial) and is the subject of a European randomized phase III study (STRASS trial). The objective of this article is to present data on preoperative irradiation in terms of dose, volumes and optimal radiotherapy techniques for the treatment of this rare disease.

  7. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  8. Medical physics aspects of particle therapy.

    PubMed

    Jäkel, Oliver

    2009-11-01

    Charged particle beams offer an improved dose conformation to the target volume when compared with photon radiotherapy, with better sparing of normal tissue structures close to the target. In addition, beams of heavier ions exhibit a strong increase of the linear energy transfer in the Bragg peak when compared with the entrance region. These physical and biological properties make ion beams more favourable for radiation therapy of cancer than photon beams. As a consequence, particle therapy with protons and heavy ions has gained increasing interest worldwide. This contribution summarises the physical and biological principles of charged particle therapy with ion beams and highlights some of the developments in the field of beam delivery, the principles of treatment planning and the determination of absorbed dose in ion beams. The clinical experience gathered so far with carbon ion therapy is briefly reviewed.

  9. Personalized radiotherapy: concepts, biomarkers and trial design

    PubMed Central

    Redalen, K R

    2015-01-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points—given the imperative development of open-source data repositories to allow investigators the access to the complex data sets—will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  10. Personalized radiotherapy: concepts, biomarkers and trial design.

    PubMed

    Ree, A H; Redalen, K R

    2015-07-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.

  11. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  12. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  13. [Radiotherapy and targeted therapy/immunotherapy].

    PubMed

    Antoni, D; Bockel, S; Deutsch, E; Mornex, F

    2016-10-01

    Thanks to recent advances achieved in oncologic systemic and local ablative treatment, the treatments become more and more efficient in term of local control and overall survival. Thus, the targeted therapies, immunotherapy or stereotactic radiotherapy have modified the management of patients, especially in case of oligometastatic disease. Many questions are raised by these innovations, particularly the diagnosis and management of new side effects or that of the combination of these different treatments, depending on the type of primary tumor. Fundamental data are available, while clinical data are still limited. Ongoing trials should help to clarify the clinical management protocols. This manuscript is a review of the combination of radiotherapy and targeted therapy/immunotherapy.

  14. Basic immunology of antibody targeted radiotherapy

    SciTech Connect

    Wong, Jeffrey Y.C. . E-mail: jwong@coh.org

    2006-10-01

    Antibody targeted radiotherapy brings an important new treatment modality to Radiation oncology clinic. Radiation dose to tumor and normal tissues are determined by a complex interplay of antibody, antigen, tumor, radionuclide, and host-related factors. A basic understanding of these immunologic and physiologic factors is important to optimally utilize this therapy in the clinic. Preclinical and clinical studies need to be continued to broaden our understanding and to develop new strategies to further improve the efficacy of this promising form of targeted therapy.

  15. Three-dimensional conformal radiotherapy for locally advanced (Stage II and worse) head-and-neck cancer: Dosimetric and clinical evaluation

    SciTech Connect

    Portaluri, Maurizio . E-mail: portaluri@hotmail.com; Fucilli, Fulvio I.M.; Castagna, Roberta; Bambace, Santa; Pili, Giorgio; Tramacere, Francesco; Russo, Donatella; Francavilla, Maria Carmen

    2006-11-15

    Purpose: To evaluate the dosimetric parameters of three-dimensional conformal radiotherapy (3D-CRT) in locally advanced head-and-neck tumors (Stage II and above) and the effects on xerostomia. Methods and Materials: A total of 49 patients with histologically proven squamous cell cancer of the head and neck were consecutively treated with 3D-CRT using a one-point setup technique; 17 had larynx cancer, 12 oropharynx, 12 oral cavity, and 6 nasopharynx cancer; 2 had other sites of cancer. Of the 49 patients, 41 received postoperative RT and 8 definitive treatment. Also, 13 were treated with cisplatin-based chemotherapy before and during RT; in 6 cases, 5-fluorouracil was added. The follow-up time was 484-567 days (median, 530 days). Results: One-point setup can deliver 96% of the prescribed dose to the isocenter, to the whole planning target volume, including all node levels of the neck and without overdosages. The mean dose to the primary planning target volume was 49.54 {+-} 4.82 Gy (51.53 {+-} 5.47 Gy for larynx cases). The average dose to the contralateral parotid gland was approximately 38 Gy (30 Gy for larynx cases). The maximal dose to the spinal cord was 46 Gy. A Grade 0 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer xerostomia score corresponded to a mean dose of 30 Gy to one parotid gland. A lower xerostomia score with a lower mean parotid dose and longer follow-up seemed to give rise to a sort of functional recovery phenomenon. Conclusion: Three dimensional-CRT in head-and-neck cancers permits good coverage of the planning target volume with about 10-11 segments and one isocenter. With a mean dose of approximately 30 Gy to the contralateral parotid, we observed no or mild xerostomia.

  16. Demographic, clinical and treatment related predictors for event-free probability following low-dose radiotherapy for painful heel spurs - a retrospective multicenter study of 502 patients.

    PubMed

    Muecke, Ralph; Micke, Oliver; Reichl, Berthold; Heyder, Rainer; Prott, Franz-Josef; Seegenschmiedt, M Heinrich; Glatzel, Michael; Schneider, Oliver; Schäfer, Ulrich; Kundt, Guenther

    2007-01-01

    A total of 502 patients treated between 1990 and 2002 with low-dose radiotherapy (RT) for painful heel spurs were analysed for prognostic factors for long-term treatment success. The median follow-up was 26 months, ranging from 1 to 103 months. Events were defined as (1) slightly improved or unchanged pain after therapy, or (2) recurrent pain sensations during the follow-up period. Overall 8-year event-free probability was 60.9%. Event-free probabilities of patients with one/two series (414/88) were 69.7%/32.2% (p<0.001); >58/ < or = 58 years (236/266), 81.3%/47.9% (p=0.001); high voltage/orthovoltage (341/161), 67.9%/60.6% (p=0.019); pain anamnesis < or = 6 months/ >6 months (308/194), 76.3%/43.9% (p=0.001); single dose 0.5/1.0 Gy (100/401), 86.2%/55.1% (p=0.009); without/with prior treatment (121/381), 83.1%/54.9% (p=0.023); men/women (165/337), 61.2%/61.5% (p=0.059). The multivariate Cox regression analysis with inclusion of the number of treatment series, age, photon energy, pain history, single-dose and prior treatments revealed patients with only one treatment series (p<0.001), an age >58 years (p=0.011) and therapy with high voltage photons (p=0.050) to be significant prognostic factors for pain relief. Overall low-dose RT is a very effective treatment in painful heel spurs.

  17. Scapula alata in early breast cancer patients enrolled in a randomized clinical trial of post-surgery short-course image-guided radiotherapy

    PubMed Central

    2012-01-01

    Background Scapula alata (SA) is a known complication of breast surgery associated with palsy of the serratus anterior, but it is seldom mentioned. We evaluated the risk factors associated with SA and the relationship of SA with ipsilateral shoulder/arm morbidity in a series of patients enrolled in a trial of post-surgery radiotherapy (RT). Methods The trial randomized women with completely resected stage I-II breast cancer to short-course image-guided RT, versus conventional RT. SA, arm volume and shoulder-arm mobility were measured prior to RT and at one to three months post-RT. Shoulder/arm morbidities were computed as a post-RT percentage change relative to pre-RT measurements. Results Of 119 evaluable patients, 13 (= 10.9%) had pre-RT SA. Age younger than 50 years old, a body mass index less than 25 kg/m2, and axillary lymph node dissection were significant risk factors, with odds ratios of 4.8 (P = 0.009), 6.1 (P = 0.016), and 6.1 (P = 0.005), respectively. Randomization group was not significant. At one to three months’ post-RT, mean arm volume increased by 4.1% (P = 0.036) and abduction decreased by 8.6% (P = 0.046) among SA patients, but not among non-SA patients. SA resolved in eight, persisted in five, and appeared in one patient. Conclusion The relationship of SA with lower body mass index suggests that SA might have been underestimated in overweight patients. Despite apparent resolution of SA in most patients, pre-RT SA portended an increased risk of shoulder/arm morbidity. We argue that SA warrants further investigation. Incidentally, the observation of SA occurring after RT in one patient represents the second case of post-RT SA reported in the literature. PMID:22591589

  18. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: First clinical trial results

    SciTech Connect

    Madsen, Berit L. . E-mail: ronblm@vmmc.org; Hsi, R. Alex; Pham, Huong T.; Fowler, Jack F.; Esagui, Laura C.; Corman, John

    2007-03-15

    Purpose: To evaluate the feasibility and toxicity of stereotactic hypofractionated accurate radiotherapy (SHARP) for localized prostate cancer. Methods and Materials: A Phase I/II trial of SHARP performed for localized prostate cancer using 33.5 Gy in 5 fractions, calculated to be biologically equivalent to 78 Gy in 2 Gy fractions ({alpha}/{beta} ratio of 1.5 Gy). Noncoplanar conformal fields and daily stereotactic localization of implanted fiducials were used for treatment. Genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated by American Urologic Association (AUA) score and Common Toxicity Criteria (CTC). Prostate-specific antigen (PSA) values and self-reported sexual function were recorded at specified follow-up intervals. Results: The study includes 40 patients. The median follow-up is 41 months (range, 21-60 months). Acute toxicity Grade 1-2 was 48.5% (GU) and 39% (GI); 1 acute Grade 3 GU toxicity. Late Grade 1-2 toxicity was 45% (GU) and 37% (GI). No late Grade 3 or higher toxicity was reported. Twenty-six patients reported potency before therapy; 6 (23%) have developed impotence. Median time to PSA nadir was 18 months with the majority of nadirs less than 1.0 ng/mL. The actuarial 48-month biochemical freedom from relapse is 70% for the American Society for Therapeutic Radiology and Oncology definition and 90% by the alternative nadir + 2 ng/mL failure definition. Conclusions: SHARP for localized prostate cancer is feasible with minimal acute or late toxicity. Dose escalation should be possible.

  19. Alpha-particles for targeted therapy.

    PubMed

    Sgouros, George

    2008-09-01

    Alpha-particles are helium nuclei that deposit DNA damaging energy along their track that is 100 to 1000 times greater than that of conventionally used beta-particle emitting radionuclides for targeted therapy; the damage caused by alpha-particles is predominately double-stranded DNA breaks severe enough so as to be almost completely irreparable. This means that a small number of tracks through a cell nucleus can sterilize a cell and that, because the damage is largely irreparable, alpha-particle radiation is not susceptible to resistance as seen with external radiotherapy (e.g., in hypoxic tissue). The ability of a single track to influence biological outcome and the stochastic nature of alpha-particle decay require statistical or microdosimetric techniques to properly reflect likely biological outcome when the biologically relevant target is small or when a low number of radionuclide decays have occurred. In therapeutic implementations, microdosimetry is typically not required and the average absorbed dose over a target volume is typically calculated. Animal and cell culture studies have shown that, per unit absorbed dose, the acute biological effects of alpha-particles are 3 to 7 times greater than the damage caused by external beam or beta-particle radiation. Over the past ten to 15 years, alpha-particle emitting radionuclides have been investigated as a possible new class of radionuclides for targeted therapy. Results from the small number of clinical trials reported to date have shown efficacy without significant toxicity.

  20. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  1. Combined radiotherapy and chemotherapy for high-grade brain tumours

    NASA Astrophysics Data System (ADS)

    Barazzuol, Lara

    Glioblastoma (GBM) is the most common primary brain tumour in adults and among the most aggressive of all tumours. For several decades, the standard care of GBM was surgical resection followed by radiotherapy alone. In 2005, a landmark phase III clinical trial coordinated by the European Organization for Research and Treatment of Cancer (EORTC) and the National Cancer Institute of Canada (NCIC) demonstrated the benefit of radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy. With TMZ, the median life expectancy in optimally managed patients is still only 12-14 months, with only 25% surviving 24 months. There is an urgent need for new therapies in particular in those patients whose tumour has an unmethylated methylguanine methyltransferase gene (MGMT) promoter, which is a predictive factor of benefit from TMZ. In this dissertation, the nature of the interaction between TMZ and radiation is investigated using both a mathematical model, based on in vivo population statistics of survival, and in vitro experimentation on a panel of human GBM cell lines. The results show that TMZ has an additive effect in vitro and that the population-based model may be insufficient in predicting TMZ response. The combination of TMZ with particle therapy is also investigated. Very little preclinical data exists on the effects of charged particles on GBM cell lines as well as on the concomitant application of chemotherapy. In this study, human GBM cells are exposed to 3 MeV protons and 6 MeV alpha particles in concomitance with TMZ. The results suggest that the radiation quality does not affect the nature of the interaction between TMZ and radiation, showing reproducible additive cytotoxicity. Since TMZ and radiation cause DNA damage in cancer cells, there has been increased attention to the use of poly(ADP-ribose) polymerase (PARP) inhibitors. PARP is a family of enzymes that play a key role in the repair of DNA breaks. In this study, a novel PARP inhibitor, ABT-888

  2. Treatment of cancer with heavy charged particles

    SciTech Connect

    Castro, J.R.; Saunders, W.M.; Tobias, C.A.; Chen, G.T.Y.; Curtis, S.; Lyman, J.T.; Collier, J.M.; Pitluck, S.; Woodruff, K.A.; Blakely, E.A.

    1982-12-01

    A clinical radiotherapeutic trial using heavy charged particles in the treatment of human cancers has accrued over 400 patients since 1975, 378 of whom were treated with particles and 28 with low LET photons as control patients. Heavy charged particle radiotherapy offers the potential advantages of improved dose localization and/or enhanced biologic effect, depending on particle selected for treatment. Target sites have included selected head and neck tumors, ocular melanomata, malignant gliomata of the brain, carcinoma of the esophagus, carcinoma of the stomach, carcinoma of the pancreas, selected juxtaspinal tumors and other locally advanced, unresectable tumors. A Phase III prospective clinical trial has been started in carcinoma of the pancreas using helium ions. Phase I-II studies are underway with heavier particles such as carbon, neon and argon ions in order to prepare for prospective Phase III trials. Silicon ions are also under consideration for clinical trial. These studies are supported by the United States Department of Energy and National Institutes of Health.

  3. [Implantation of collagen coated hydroxyapatite particles. A clinical-histological study in humans].

    PubMed

    Sanz, M; Bascones, A; Kessler, A; García Nuñez, J; Newman, M G; Robertson, M A; Carranza, F A

    1989-05-01

    In this study, histologic behaviour of collagen coated hydroxylapatite particles implanted in human periodontal osseous defects has been analyzed. This material was surgically implanted in four patients, and reentry and block biopsies were carried out 4 and 6 months later. The histologic results demonstrate that this material is well tolerated by surrounding tissues, not eliciting an inflammatory reaction. At four months, the hydroxylapatite particles appear encapsulated by a very cellular connective tissue and at 6 months are found in direct contact with osteoid and mature bone. This material acts as a filler material, being fully biocompatible and stimulating an osseoconductive reaction of the adjacent alveolar bone.

  4. Neo-adjuvant radiotherapy in rectal cancer

    PubMed Central

    Glimelius, Bengt

    2013-01-01

    In rectal cancer treatment, attention has focused on the local primary tumour and the regional tumour cell deposits to diminish the risk of a loco-regional recurrence. Several large randomized trials have also shown that combinations of surgery, radiotherapy and chemotherapy have markedly reduced the risk of a loco-regional recurrence, but this has not yet had any major influence on overall survival. The best results have been achieved when the radiotherapy has been given preoperatively. Preoperative radiotherapy improves loco-regional control even when surgery has been optimized to improve lateral clearance, i.e., when a total mesorectal excision has been performed. The relative reduction is then 50%-70%. The value of radiotherapy has not been tested in combination with more extensive surgery including lateral lymph node clearance, as practised in some Asian countries. Many details about how the radiotherapy is performed are still open for discussion, and practice varies between countries. A highly fractionated radiation schedule (5 Gy × 5), proven efficacious in many trials, has gained much popularity in some countries, whereas a conventionally fractionated regimen (1.8-2.0 Gy × 25-28), often combined with chemotherapy, is used in other countries. The additional therapy adds morbidity to the morbidity that surgery causes, and should therefore be administered only when the risk of loco-regional recurrence is sufficiently high. The best integration of the weakest modality, to date the drugs (conventional cytotoxics and biologicals) is not known. A new generation of trials exploring the best sequence of treatments is required. Furthermore, there is a great need to develop predictors of response, so that treatment can be further individualized and not solely based upon clinical factors and anatomic imaging. PMID:24379566

  5. Is Biochemical Response More Important Than Duration of Neoadjuvant Hormone Therapy Before Radiotherapy for Clinically Localized Prostate Cancer? An Analysis of the 3- Versus 8-Month Randomized Trial

    SciTech Connect

    Alexander, Abraham; Crook, Juanita; Jones, Stuart; Malone, Shawn; Bowen, Julie; Truong, Pauline; Pai, Howard; Ludgate, Charles

    2010-01-15

    Purpose: To ascertain whether biochemical response to neoadjuvant androgen-deprivation therapy (ADT) before radiotherapy (RT), rather than duration, is the critical determinant of benefit in the multimodal treatment of localized prostate cancer, by comparing outcomes of subjects from the Canadian multicenter 3- vs 8-month trial with a pre-RT, post-hormone PSA (PRPH-PSA) <=0.1 ng/ml vs those >0.1 ng/ml. Methods and Materials: From 1995 to 2001, 378 men with localized prostate cancer were randomized to 3 or 8 months of neoadjuvant ADT before RT. On univariate analysis, survival indices were compared between those with a PRPH-PSA <=0.1 ng/ml vs >0.1 ng/ml, for all patients and subgroups, including treatment arm, risk group, and gleason Score. Multivariate analysis identified independent predictors of outcome. Results: Biochemical disease-free survival (bDFS) was significantly higher for those with a PRPH-PSA <=0.1 ng/ml compared with PRPH-PSA >0.1 ng/ml (55.3% vs 49.4%, p = 0.014). No difference in survival indices was observed between treatment arms. There was no difference in bDFS between patients in the 3- and 8-month arms with a PRPH-PSA <=0.1 ng/ml nor those with PRPH-PSA >0.1 ng/ml. bDFS was significantly higher for high-risk patients with PRPH-PSA <=0.1 ng/ml compared with PRPH-PSA >0.1 ng/ml (57.0% vs 29.4%, p = 0.017). Multivariate analysis identified PRPH-PSA (p = 0.041), Gleason score (p = 0.001), initial PSA (p = 0.025), and T-stage (p = 0.003), not ADT duration, as independent predictors of outcome. Conclusion: Biochemical response to neoadjuvant ADT before RT, not duration, appears to be the critical determinant of benefit in the setting of combined therapy. Individually tailored ADT duration based on PRPH-PSA would maximize therapeutic gain, while minimizing the duration of ADT and its related toxicities.

  6. Antibody-mediated radiotherapy

    SciTech Connect

    Bloomer, W.D.; Lipsztein, R.; Dalton, J.F.

    1985-05-01

    Antibodies that react with antigens on the surface of tumor cells but not normal cells have great potential for cancer detection and therapy. If radiolabeled without loss of immunologic specificity, such antibodies may be able to deliver cytoxic amounts of radiation. Target- cell specificity and a high extraction coefficient are necessary with any radionuclide in order to minimize normal tissue irradiation. Tumor- cell-retention time and the rate of catabolized radionuclide will also influence ultimate applicability. Among the unanswered questions for choosing a radionuclide is the choice of particle emitter. Although classic beta emitters have been used in a number of clinical situations, they have not had a major impact on disease outcome except in diseases of the thyroid. Unfortunately, Auger emitters such as iodine 125 are cytotoxic only when localized within close proximity to the genome. On the other hand, alpha emitters such as astatine 211 eliminate the need for subcellular sequestration but not cell-specific localization. 34 references.

  7. Hypothyroidism After Radiotherapy for Nasopharyngeal Cancer Patients

    SciTech Connect

    Wu, Y.-H.; Wang, H-M.; Chen, Hellen Hi-Wen; Lin, C.-Y.; Chen, Eric Yen-Chao; Fan, K.-H.; Huang, S.-F.; Chen, I-How; Liao, C.-T.; Cheng, Ann-Joy; Chang, Joseph Tung-Chieh

    2010-03-15

    Purpose: The aim of this study was to determine the long-term incidence and possible predictive factors for posttreatment hypothyroidism in nasopharyngeal carcinoma (NPC) patients after radiotherapy. Methods and Materials: Four hundred and eight sequential NPC patients who had received regular annual thyroid hormone surveys prospectively after radiotherapy were included in this study. Median patient age was 47.3 years, and 286 patients were male. Thyroid function was prospectively evaluated by measuring thyroid-stimulating hormone (TSH) and serum free thyroxine (FT4) levels. Low FT4 levels indicated clinical hypothyroidism in this study. Results: With a median follow-up of 4.3 years (range, 0.54-19.7 years), the incidence of low FT4 level was 5.3%, 9.0%, and 19.1% at 3, 5, and 10 years after radiotherapy, respectively. Hypothyroidism was more common with early T stage (p = 0.044), female sex (p = 0.037), and three-dimensional conformal therapy with the altered fractionation technique (p = 0.005) after univariate analysis. N stage, chemotherapy, reirradiation, and neck electron boost did not affect the incidence of hypothyroidism. Younger age and conformal therapy were significant factors that determined clinical hypothyroidism after multivariate analysis. Overall, patients presented with a low FT4 level about 1 year after presenting with an elevated TSH level. Conclusion: Among our study group of NPC patients, 19.1% experienced clinical hypothyroidism by 10 years after treatment. Younger age and conformal therapy increased the risk of hypothyroidism. We suggest routine evaluation of thyroid function in NPC patients after radiotherapy. The impact of pituitary injury should be also considered.

  8. Nuclear physics in particle therapy: a review.

    PubMed

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  9. Nuclear physics in particle therapy: a review

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  10. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  11. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    PubMed

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  12. Clinical Long-Term Outcome and Reinterventional Rate After Uterine Fibroid Embolization with Nonspherical Versus Spherical Polyvinyl Alcohol Particles

    SciTech Connect

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders; Andersen, Poul Erik

    2016-02-15

    PurposeThis study was designed to evaluate the long-term clinical outcome and frequency of reinterventions in patients with uterine fibroids treated with embolization at a single center using polyvinyl alcohol microparticles.MethodsThe study included all patients with symptomatic uterine fibroids treated with uterine fibroid embolization (UFE) with spherical (s-PVA) and nonspherical (ns-PVA) polyvinyl alcohol microparticles during the period January 2001 to January 2011. Clinical success and secondary interventions were examined. Hospital records were reviewed during follow-up, and symptom-specific questionnaires were sent to all patients.ResultsIn total, 515 patients were treated with UFE and 350 patients (67 %) were available for long-term clinical follow-up. Median time of follow-up was 93 (range 76–120.2) months. Eighty-five patients (72 %) had no reinterventions during follow-up in the group embolized with ns-PVA compared with 134 patients (58 %) treated with s-PVA. Thirty-three patients (28 %) underwent secondary interventions in the ns-PVA group compared with 98 patients (42 %) in s-PVA group (χ{sup 2} test, p < 0.01).ConclusionsSpherical PVA particles 500–700 µm showed high reintervention rate at long-term follow-up, and almost one quarter of the patients underwent secondary interventions, suggesting that this type of particle is inappropriate for UFE.

  13. Radiotherapy for bone pain.

    PubMed Central

    Needham, P R; Mithal, N P; Hoskin, P J

    1994-01-01

    Painful bone metastases are a common problem for cancer patients. Although current evidence supports the use of a single fraction of radiotherapy as the treatment of choice, many radiotherapists, for a variety of reasons, continue to use fractionated regimens. Over one six month period 105 patients received external beam irradiation for painful bone metastases at the Royal London Hospital (RLH). Thirty-one per cent of the patients were aged 70 or over. The treatment of 97 of these patients was assessed. They had a total of 280 sites treated over the course of their disease. Fifty-nine per cent of sites treated received a fractionated course of radiotherapy. Site significantly influenced fractionation. Overall response rates of 82% were achieved. Fractionation did not appear to influence this. Ten patients received large field irradiation. Fifteen patients had five or more sites irradiated, of whom only one received hemibody irradiation. PMID:7523672

  14. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  15. Accident prevention in radiotherapy

    PubMed Central

    Holmberg, O

    2007-01-01

    In order to prevent accidents in radiotherapy, it is important to learn from accidents that have occurred previously. Lessons learned from a number of accidents are summarised and underlying patterns are looked for in this paper. Accidents can be prevented by applying several safety layers of preventive actions. Categories of these preventive actions are discussed together with specific actions belonging to each category of safety layer. PMID:21614274

  16. [Radiotherapy of bladder cancer].

    PubMed

    Riou, O; Chauvet, B; Lagrange, J-L; Martin, P; Llacer Moscardo, C; Charissoux, M; Lauche, O; Aillères, N; Fenoglietto, P; Azria, D

    2016-09-01

    Surgery (radical cystectomy) is the standard treatment of muscle-invasive bladder cancer. Radiochemotherapy has risen as an alternative treatment option to surgery as part as organ-sparing combined modality treatment or for patients unfit for surgery. Radiochemotherapy achieves 5-year bladder intact survival of 40 to 65% and 5-year overall survival of 40 to 50% with excellent quality of life. This article introduces the French recommendations for radiotherapy of bladder cancer: indications, exams, technique, dosimetry, delivery and image guidance.

  17. Basics of particle therapy II: relative biological effectiveness

    PubMed Central

    Choi, Jinhyun

    2012-01-01

    In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society. PMID:23120738

  18. Radiotherapy DICOM packet sniffing.

    PubMed

    Ackerly, T; Gesoand, M; Smith, R

    2008-09-01

    The Digital Imaging and Communications in Medicine (DICOM) standard is meant to allow communication of medical images between equipment provided by different vendors, but when two applications do not interact correctly in a multi-vendor environment it is often first necessary to demonstrate non-compliance of either the sender or the receiver before a resolution to the problem can be progressed. Sometimes the only way to do this is to monitor the network communication between the two applications to find out which one is not complying with the DICOM standard. Packet sniffing is a technique of network traffic analysis by passive observation of all information transiting a point on the network, regardless of the specified sender or receiver. DICOM packet sniffing traps and interprets the network communication between two DICOM applications to determine which is non compliant. This is illustrated with reference to three examples, a radiotherapy planning system unable to receive CT data from a particular CT scanner, a radiotherapy simulator unable to print correctly on a DICOM printer, and a PACS unable to respond when queried about what images it has in its archive by a radiotherapy treatment planning system. Additionally in this work it has been proven that it is feasible to extract DICOM images from the intercepted network data. This process can be applied to determine the cause of a DICOM image being rendered differently by the sender and the receiver.

  19. Imaging in radiotherapy.

    PubMed

    Van den Berge, D L; De Ridder, M; Storme, G A

    2000-10-01

    Radiotherapy, more then any other treatment modality, relies heavily and often exclusively on medical imaging to determine the extent of disease and the spatial relation between target region and neighbouring healthy tissues. Radically new approaches to radiation delivery are inspired on CT scanning and treat patients in a slice-by-slice fashion using intensity modulated megavoltage fan beams. For quality assurance of complex 3-D dose distributions, MR based 3-D verificative dosimetry on irradiated phantoms has been described. As treatment delivery becomes increasingly refined, the need for accurate target definition increases as well and sophisticated imaging tools like image fusion and 3-D reconstruction are routinely used for treatment planning. While in the past patients were positioned on the treatment machines based exclusively on surface topography and the well-known skin marks, such approach is no longer sufficient for high-accuracy radiotherapy and special imaging tools like on-line portal imaging are used to verify and correct target positioning. Much of these applications rely on digital image processing, transmission and storage, and the development of standards, like DICOM and PACS have greatly contributed to these applications. Digital imaging plays an increasing role in many areas in radiotherapy and has been fundamental in new developments that have demonstrated impact on patient care.

  20. [Radiotherapy for primary lung carcinoma].

    PubMed

    Giraud, P; Lacornerie, T; Mornex, F

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy, for primary lung carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  1. [Radiotherapy as primary treatment for chemodectoma?].

    PubMed

    Verniers, D; Van Limbergen, E; Leysen, J; Ostyn, F; Segers, A

    1990-01-01

    Chemodectomas are slowly growing tumours originating in the chemoreceptor bodies. The diagnosis is based on typical clinical symptoms and radiological investigation. CT scanning with contrast enhancement permits to establish diagnosis in most cases and gives a correct idea of tumour size, tumour extension, displacement of arteries and bone destruction. Small tympanic chemodectomas are successfully managed by surgery, without causing additional cranial nerve palsies. Surgery of larger lesions is frequently followed by a high percentage of local recurrence (greater than 50%) and important morbidity (neurologic sequelae). Our present series confirms that these tumours can successfully be treated by radiotherapy. Persisting local control rates can be obtained in more than 90% of cases with moderate doses (45-50 Gy in 5 weeks) of carefully planned radiotherapy.

  2. Proton Radiotherapy for Solid Tumors of Childhood

    PubMed Central

    Cotter, Shane E.; McBride, Sean M.; Yock, Torunn I.

    2012-01-01

    The increasing efficacy of pediatric cancer therapy over the past four decades has produced many long-term survivors that now struggle with serious treatment related morbidities affecting their quality of life. Radiation therapy is responsible for a significant proportion of these late effects, but a relatively new and emerging modality, proton radiotherapy hold great promise to drastically reduce these treatment related late effects in long term survivors by sparing dose to normal tissues. Dosimetric studies of proton radiotherapy compared with best available photon based treatment show significant dose sparing to developing normal tissues. Furthermore, clinical data are now emerging that begin to quantify the benefit in decreased late treatment effects while maintaining excellent cancer control rates. PMID:22417062

  3. Radiotherapy With 8-MHz Radiofrequency-Capacitive Regional Hyperthermia for Stage III Non-Small-Cell Lung Cancer: The Radiofrequency-Output Power Correlates With the Intraesophageal Temperature and Clinical Outcomes

    SciTech Connect

    Ohguri, Takayuki Imada, Hajime; Yahara, Katsuya; Morioka, Tomoaki; Nakano, Keita; Terashima, Hiromi; Korogi, Yukunori

    2009-01-01

    Purpose: To assess the efficacy of radiotherapy (RT) combined with regional hyperthermia (HT) guided by radiofrequency (RF)-output power and intraesophageal temperature and evaluate the potential contribution of HT to clinical outcomes in patients with Stage III non-small-cell lung cancer (NSCLC). Methods and Materials: Thirty-five patients with Stage III NSCLC treated with RT plus regional HT were retrospectively analyzed. Twenty-two of the 35 patients underwent intraesophageal temperature measurements. Patients with subcutaneous fat of 2.5 cm or greater, older age, or other serious complications did not undergo this therapy. The 8-MHz RF-capacitive heating device was applied, and in all patients, both the upper and lower electrodes were 30 cm in diameter, placed on opposite sides of the whole thoracic region, and treatment posture was the prone position. The HT was applied within 15 minutes after RT once or twice a week. Results: All thermal parameters, minimum, maximum, and mean of the four intraesophageal temperature measurements at the end of each session and the proportion of the time during which at least one of the four intraesophageal measurements was 41{sup o}C or higher in the total period of each session of HT, of the intraesophageal temperature significantly correlated with median RF-output power. Median RF-output power ({>=}1,200 W) was a statistically significant prognostic factor for overall, local recurrence-free, and distant metastasis-free survival. Conclusions: The RT combined with regional HT using a higher RF-output power could contribute to better clinical outcomes in patients with Stage III NSCLC. The RF-output power thus may be used as a promising parameter to assess the treatment of deep regional HT if deep heating using this device is performed with the same size electrodes and in the same body posture.

  4. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  5. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  6. Status of carbon-ion radiotherapy facilities in Japan

    NASA Astrophysics Data System (ADS)

    Kitagawa, Atsushi

    2013-05-01

    Carbon-ion radiotherapy has large physical and biological advantages, and clinical results performed by HIMAC at NIRS awaken a deep interest. Several hospital-specified facilities are recently under commissioning or construction in Japan. Carbon-ion radiotherapy is based on the advanced technology in wide various fields. In order to promote this treatment method to the daily treatment, constant cooperative efforts by public and private organizations are necessary, i.e. providing of abundant clinical data, technology transfer, personnel training, organizing of the specialists' network, and so on. The present status and future prospects in Japan are reported.

  7. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  8. Results of radiotherapy in non round cell spinal metastasis.

    PubMed

    Kraiwattanapong, Chaiwat; Buranapanitkit, Boonsin; Kiriratnikom, Theerasan

    2004-03-01

    Spinal metastases are commonly encountered by physicians in a variety of clinical fields. There are some controversies in choice of treatment between surgery and radiotherapy. This report is a study of the outcomes of radiotherapy for metastatic nonround cell tumors of the spine. Medical records and films of 31 patients who were treated with radiotherapy at Songklanakarind Hospital were retrospectively reviewed. The most common primary tumors were prostate and breast. One patient had spinal metastases from malignant serous cystadenoma of the fallopian tube of which no previous report has been published. This patient had excellent results after radiotherapy. Back and neck pain were the primary symptoms of the patients, while motor or sensory deficits (or both) were found in 58 per cent of the cases. Seven patients had neurological recovery and 18 patients had pain relief after radiotherapy. Cause of compression is the only factor effecting the result from univariate and multivariate analysis. Spinal cord compressed by a tumor had a better recovery than those which were compressed by a bony fragment or intervertebral disc. The authors concluded that radiotherapy remains a good treatment for patient with non round cell spinal metastasis. Cause of spinal cord compression is the only factor predicting the result of treatment.

  9. Malignant cerebral glioma--I: Survival, disability, and morbidity after radiotherapy.

    PubMed Central

    Davies, E.; Clarke, C.; Hopkins, A.

    1996-01-01

    OBJECTIVE: To describe survival, disability, and morbidity after radiotherapy for malignant glioma. DESIGN: Two year prospective study with home interviews with patients and relatives. SETTING: Seven neurosurgical and radiotherapy centres in London. SUBJECTS: 105 patients aged 21 to 75: 59 had biopsy; 46 had partial macroscopic resection; 92 received radiotherapy; and 13 received steroids alone. MAIN OUTCOME MEASURES: Survival, time free from disability, and changes in disability after treatment. RESULTS: Six and 12 month survival for radiotherapy patients was 70% and 39%, respectively. Age, World Health Organisation clinical performance status, extent of surgery, and history of seizures before diagnosis each influenced survival. The Medical Research Council prognostic index was also significantly related to survival. Multivariate analysis showed that initial clinical performance status was the most important component of the index. Most (80%; 49/61) patients with a clinical performance status of 0, 1, or 2 lived at least six months before becoming permanently disabled. Most patients who had initially had a good clinical performance status (0-2) and who were alive six months after radiotherapy (68%; 36/52), however, had experienced either clinical deterioration or severe tiredness after treatment. In 17% (9/52) of these some permanent loss of function remained. These adverse effects were associated with increasing radiotherapy dose. Severely disabled patients (clinical performance status 3 or 4) gained little benefit. CONCLUSION: Severely disabled patients gain little physical benefit from radiotherapy, whereas those not so disabled may experience considerable adverse effects. Images Fig 1 Fig 2 PMID:8978224

  10. Bystander effects and radiotherapy.

    PubMed

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  11. Results of heavy ion radiotherapy

    SciTech Connect

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  12. Effect of Kangfuxin Solution on Chemo/Radiotherapy-Induced Mucositis in Nasopharyngeal Carcinoma Patients: A Multicenter, Prospective Randomized Phase III Clinical Study

    PubMed Central

    Luo, Yangkun; Feng, Mei; Fan, Zixuan; Zhu, Xiaodong; Jin, Feng; Li, Rongqing; Wu, Jingbo; Yang, Xia; Jiang, Qinghua; Bai, Hongfang; Huang, Yecai; Lang, Jinyi

    2016-01-01

    Objective. To evaluate the efficacy and safety of Kangfuxin Solution, a pure Chinese herbal medicine, on mucositis induced by chemoradiotherapy in nasopharyngeal carcinoma patients. Methods. A randomized, parallel-group, multicenter clinical study was performed. A total of 240 patients were randomized to receive either Kangfuxin Solution (test group) or compound borax gargle (control group) during chemoradiotherapy. Oral mucositis, upper gastrointestinal mucositis, and oral pain were evaluated by Common Terminology Criteria for Adverse Events (CTCAE) v3.0 and the Verbal Rating Scale (VRS). Results. Of 240 patients enrolled, 215 were eligible for efficacy analysis. Compared with the control group, the incidence and severity of oral mucositis in the test group were significantly reduced (P = 0.01). The time to different grade of oral mucositis occurrence (grade 1, 2, or 3) was longer in test group (P < 0.01), and the accumulated radiation dose was also higher in test group comparing to the control group (P < 0.05). The test group showed lower incidence of oral pain and gastrointestinal mucositis than the control group (P < 0.01). No significant adverse events were observed. Conclusion. Kangfuxin Solution demonstrated its superiority to compound borax gargle on mucositis induced by chemoradiotherapy. Its safety is acceptable for clinical application. PMID:27375766

  13. Radiotherapy physics research in the UK: challenges and proposed solutions.

    PubMed

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-10-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.

  14. Radiotherapy physics research in the UK: challenges and proposed solutions

    PubMed Central

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-01-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research. PMID:22972972

  15. Medical treatment for biochemical relapse after radiotherapy.

    PubMed

    Quero, L; Hennequin, C

    2014-10-01

    This article's purpose was to review the medical data justifying the use of a medical treatment for biochemical relapse after external beam radiotherapy. The MEDLINE database was searched to identify relevant information with the following medical subject headings: "prostate cancer", "radiotherapy" and "biochemical relapse". Prognostic factors affecting the overall survival of patients with a biochemical relapse after external beam radiotherapy have been identified: short prostate specific antigen (PSA)-doubling time (< 12 months), high PSA value (> 10 ng/mL) and short interval between treatment and biochemical relapse (< 18 months). If a second local treatment is not feasible, timing to initiate a salvage medical treatment is not defined. Particularly, randomized trials did not demonstrate a significant benefit of an early initiation of androgen deprivation treatment. Some retrospective studies suggest that an early androgen deprivation is justified if poor prognostic factors are found. However, if an androgen deprivation treatment is prescribed, intermittent schedule is non-inferior to a continuous administration and seems to offer a better quality of life. Many non-hormonal treatments have also been evaluated in this setting: only 5-alpha-reductase inhibitors could be proposed in some specific situations. In conclusion, the judicious use of a medical treatment for biochemical relapse is still debated. Given the natural history of this clinical situation, a simple surveillance is justified in many cases.

  16. [Influence of radiotherapy on lymphocyte stimulation].

    PubMed

    Renner, H; Renner, K H; Hassenstein, E

    1976-08-01

    More than 300 lymphocyte cultures of 12 patients with seminomas were examined during the prophylactic radiotherapy and, in several cases, during an extended period until 20.5 months after the end of the treatment. The object of this study was to find out by measuring the capacity of the lymphocytes to be stimulated in vitro wheather they could be damaged by the radiotherapy. Among other reasons, the above mentioned patients were chosen because they had been submitted to irradiations of vast volumes of lymphatic tissues at a uniform focal dose of 4000 rad. The different opinions expressed in the literature (stimulation decreassed resp. increased resp. unchanged) are reflected by our results in such a way that we did not find a qualitative loss of the capacity to be stimulated cultures. The problem of the different opinions about the capacity of lymphocytes to be stimulated after a radiotherapy appears; among other things, to be based on different examination methods. According to these methods- morphological determination of the relative number of lymphoblasts, synthesis of DNA by fluid scintillation counting, or determination of the number of surviving cells in vitro -different results are obtained. It seems not possible to use the lymphocyte stimulation in vitro as a method of testing clinical sideefects occuring during the characteristics of immunity and radiation biology are not differentiated in a more precise manner.

  17. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  18. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy

    PubMed Central

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533

  19. Monte Carlo calculations of positron emitter yields in proton radiotherapy.

    PubMed

    Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F

    2012-03-21

    Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring.

  20. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry.

    PubMed

    Siegel, Jeffry A

    2005-04-01

    In either heavily pretreated or previously untreated patient populations, dosimetry holds the promise of playing an integral role in the physician's ability to adjust therapeutic activity prescriptions to limit excessive hematologic toxicity in individual patients. However, red marrow absorbed doses have not been highly predictive of hematopoietic toxicity. Although the accuracy of red marrow dose estimates is expected to improve as more patient-specific models are implemented, these model-calculated absorbed doses more than likely will have to be adjusted by parameters that adequately characterize bone marrow tolerance in the heavily pretreated patients most likely to receive nonmyeloablative radiolabeled antibody therapy. Models need to be established that consider not only absorbed dose but also parameters that are indicative of pretherapy bone marrow reserve and radiosensitivity so that a clinically meaningful predictive model of hematologic toxicity can be established.

  1. SU-E-J-102: Performance Variations Among Clinically Available Deformable Image Registration Tools in Adaptive Radiotherapy: How Should We Evaluate and Interpret the Result?

    SciTech Connect

    Nie, K; Pouliot, J; Smith, E; Chuang, C

    2015-06-15

    Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparable among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future.

  2. Marginal prescription equivalent to the isocenter prescription in lung stereotactic body radiotherapy: preliminary study for Japan Clinical Oncology Group trial (JCOG1408)

    PubMed Central

    Kawahara, Daisuke; Ozawa, Shuichi; Kimura, Tomoki; Saito, Akito; Nishio, Teiji; Nakashima, Takeo; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi

    2017-01-01

    A new randomized Phase III trial, the Japan Clinical Oncology Group (JCOG) 1408, which compares two dose fractionations (JCOG 0403 and JCOG 0702) for medically inoperable Stage IA NSCLC or small lung lesions clinically diagnosed as primary lung cancer, involves the introduction of a prescribed dose to the D95% of the planning target volume (PTV) using a superposition/convolution algorithm. Therefore, we must determine the prescribed dose in the D95% prescribing method to begin JCOG1408. JCOG 0702 uses density correction and the D95% prescribing method. However, JCOG 0403 uses no density correction and isocenter- prescribing method. The purpose of this study was to evaluate the prescribed dose to the D95% of the PTV equivalent to a dose of 48 Gy to the isocenter (JCOG 0403) using a superposition algorithm. The peripheral isodose line, which has the highest conformity index, and the D95% of the PTV were analyzed by considering the weighting factor, i.e. the inverse of the difference between the doses obtained using the superposition and Clarkson algorithms. The average dose at the isodose line of the highest conformity index and the D95% of the PTV were 41.5 ± 0.3 and 42.0 ± 0.3 Gy, respectively. The D95% of the PTV had a small correlation with the target volume (r2 = 0.0022) and with the distance between the scatterer and tumor volumes (r2 = 0.19). Thus, the prescribed dose of 48 Gy using the Clarkson algorithm (JCOG0403) was found to be equivalent to the prescribed dose of 42 Gy to the D95% of the PTV using the superposition algorithm. PMID:28115532

  3. Use of a Conventional Low Neck Field (LNF) and Intensity-Modulated Radiotherapy (IMRT): No Clinical Detriment of IMRT to an Anterior LNF During the Treatment of Head-and Neck-Cancer

    SciTech Connect

    Turaka, Aruna; Li Tianyu; Nicolaou, Nicos; Lango, Miriam N.; Burtness, Barbara; Horwitz, Eric M.; Ridge, John A.; Feigenberg, Steven J.

    2011-01-01

    Purpose: To determine differences in clinical outcomes using intensity-modulated radiotherapy (IMRT) or a standard low neck field (LNF) to treat low neck. Methods and Materials: This is a retrospective, single-institution study. Ninety-one patients with squamous cell carcinoma of the head and neck were treated with curative intent. According to physician preference, some patients were treated with LNF (Planning Target Volume 3) field using a single anterior photon field matched to the IMRT field. Field junctions were not feathered. The endpoints were time to failure and use of a percutaneous endoscopic gastrostomy (PEG) tube (as a surrogate of laryngeal edema causing aspiration), and analysis was done with {chi}{sup 2} and log-rank tests. Results: Median follow-up was 21 months (range, 2-89 months). Median age was 60 years. Thirty-seven patients (41%) were treated with LNF, 84% were Stage III or IV. A PEG tube was required in 30%, as opposed to 33% without the use of LNF. Node 2 or 3 neck disease was treated more commonly without LNF (38% vs. 24%, p = 0.009). Failures occurred in 12 patients (13%). Only 1 patient treated with LNF failed regionally, 4.5 cm above the match line. The 3-year disease-free survival rate was 87% and 79% with LNF and without LNF, respectively (p = 0.2), and the 3-year LR failure rate was 4% and 21%, respectively (p = 0.04). Conclusions: Using LNF to treat the low neck did not increase the risk of regional failure 'in early T and early N diseases' or decrease PEG tube requirements.

  4. Final Report of Multicenter Canadian Phase III Randomized Trial of 3 Versus 8 Months of Neoadjuvant Androgen Deprivation Therapy Before Conventional-Dose Radiotherapy for Clinically Localized Prostate Cancer

    SciTech Connect

    Crook, Juanita Ludgate, Charles; Malone, Shawn; Perry, Gad; Eapen, Libni; Bowen, Julie; Robertson, Susan; Lockwood, Gina M.Math.

    2009-02-01

    Purpose: To evaluate the effect of 3 vs. 8 months of neoadjuvant hormonal therapy before conventional-dose radiotherapy (RT) on disease-free survival for localized prostate cancer. Methods and Materials: Between February 1995 and June 2001, 378 men were randomized to either 3 or 8 months of flutamide and goserelin before 66 Gy RT at four participating centers. The median baseline prostate-specific antigen level was 9.7 ng/mL (range, 1.3-189). Of the 378 men, 26% had low-, 43% intermediate-, and 31% high-risk disease. The two arms were balanced in terms of age, Gleason score, clinical T category, risk group, and presenting prostate-specific antigen level. The median follow-up for living patients was 6.6 years (range, 1.6-10.1). Of the 378 patients, 361 were evaluable, and 290 were still living. Results: The 5-year actuarial freedom from failure rate for the 3- vs. 8-month arms was 72% vs. 75%, respectively (p = 0.18). No difference was found in the failure types between the two arms. The median prostate-specific antigen level at the last follow-up visit for patients without treatment failure was 0.6 ng/mL in the 3-month arm vs. 0.50 ng/mL in the 8-month arm. The disease-free survival rate at 5 years was improved for the high-risk patients in the 8-month arm (71% vs. 42%, p = 0.01). Conclusion: A longer period of NHT before standard-dose RT did not alter the patterns of failure when combined with 66-Gy RT. High-risk patients in the 8-month arm had significant improvement in the 5-year disease-free survival rate.

  5. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients.

    PubMed

    Houweling, Antonetta C; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R N; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-21

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ([Formula: see text]) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  6. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients

    NASA Astrophysics Data System (ADS)

    Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-01

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  7. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  8. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  9. [Hodgkin's lymphoma and radiotherapy].

    PubMed

    Datsenko, P V; Panshin, G A

    2015-01-01

    After a median observation time of 4,5 years, 440 patients with Hodgkin's lymphoma stage I-IV to the Ann Arbor classification were treated with radiotherapy (2200 lymph areas) and ABVD (n=204) or BEACOPP (n=117) or CEA/ABVD (lomustine, etoposide, adriamycine, bleomycine, vinblastine and dacarbacine; n=119) regimens in 1995-2012. Correct allocation of groups with "CR or PR ≥80%" and "PR: 0-79%", after first-line chemotherapy, is extremely important for following RT planning. Adaptation of patients with Hodgkin's lymphoma can take place only after successful treatment, the probability of relapse and fear of repeated courses strongly interfere with this process, especially in the first years after its closure. Duration of remission period, especially in young people, is no less important than the criteria for overall survival. It is impossible to build recommendations for treatment for Hodgkin's lymphoma, based only on long-term survival rates. Importance of radiotherapy in reducing the number of relapses is undeniable, so the idea that the development of the role of chemotherapy in the treatment of the ray method Hodgkin's lymphoma gradually becomes secondary is in serious doubt. Our findings suggest the importance of both maintaining a high disease-free survival and reducing long-term complications in designing treatments of Hodgkin's lymphoma.

  10. [Stereotactic radiosurgery and radiotherapy for brain metastases].

    PubMed

    Tanguy, Ronan; Métellus, Philippe; Mornex, Françoise; Mazeron, Jean-Jacques

    2013-01-01

    Brain metastases management is still controversial even though many trials are trying to define the respective roles of neurosurgery, whole-brain radiotherapy, single-dose stereotactic radiotherapy and fractionated stereotactic radiotherapy. In this article, we review data from trials that examine the role of radiosurgery and fractionated stereotactic radiotherapy in the management of brain metastases.

  11. Dynamic targeting image-guided radiotherapy

    SciTech Connect

    Huntzinger, Calvin; Munro, Peter; Johnson, Scott; Miettinen, Mika; Zankowski, Corey; Ahlstrom, Greg; Glettig, Reto; Filliberti, Reto; Kaissl, Wolfgang; Kamber, Martin; Amstutz, Martin; Bouchet, Lionel; Klebanov, Dan; Mostafavi, Hassan; Stark, Richard

    2006-07-01

    Volumetric imaging and planning for 3-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) have highlighted the need to the oncology community to better understand the geometric uncertainties inherent in the radiotherapy delivery process, including setup error (interfraction) as well as organ motion during treatment (intrafraction). This has ushered in the development of emerging technologies and clinical processes, collectively referred to as image-guided radiotherapy (IGRT). The goal of IGRT is to provide the tools needed to manage both inter- and intrafraction motion to improve the accuracy of treatment delivery. Like IMRT, IGRT is a process involving all steps in the radiotherapy treatment process, including patient immobilization, computed tomogaphy (CT) simulation, treatment planning, plan verification, patient setup verification and correction, delivery, and quality assurance. The technology and capability of the Dynamic Targeting{sup TM} IGRT system developed by Varian Medical Systems is presented. The core of this system is a Clinac (registered) or Trilogy{sup TM} accelerator equipped with a gantry-mounted imaging system known as the On-Board Imager{sup TM} (OBI). This includes a kilovoltage (kV) x-ray source, an amorphous silicon kV digital image detector, and 2 robotic arms that independently position the kV source and imager orthogonal to the treatment beam. A similar robotic arm positions the PortalVision{sup TM} megavoltage (MV) portal digital image detector, allowing both to be used in concert. The system is designed to support a variety of imaging modalities. The following applications and how they fit in the overall clinical process are described: kV and MV planar radiographic imaging for patient repositioning, kV volumetric cone beam CT imaging for patient repositioning, and kV planar fluoroscopic imaging for gating verification. Achieving image-guided motion management throughout the radiation oncology process

  12. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    SciTech Connect

    Gong, R; Bruder, R; Schweikard, A; Schlosser, J; Hristov, D

    2015-06-15

    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in a prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the

  13. Consensus for Radiotherapy in Hepatocellular Carcinoma from The 5th Asia-Pacific Primary Liver Cancer Expert Meeting (APPLE 2014): Current Practice and Future Clinical Trials

    PubMed Central

    Park, Hee Chul; Yu, Jeong Il; Cheng, Jason Chia-Hsien; Zeng, Zhao Chong; Hong, Ji Hong; Wang, Michael Lian Chek; Kim, Mi Sook; Chi, Kwan Hwa; Liang, Po-Ching; Lee, Rheun-Chuan; Lau, Wan-Yee; Han, Kwang Hyub; Chow, Pierce Kah-Hoe; Seong, Jinsil

    2016-01-01

    A consensus meeting to develop practice guidelines and to recommend future clinical trials for radiation therapy (RT), including external beam RT (EBRT), and selective internal RT (SIRT) in hepatocellular carcinoma (HCC) was held at the 5th annual meeting of the Asia-Pacific Primary Liver Cancer Expert consortium. Although there is no randomized phase III trial evidence, the efficacy and safety of RT in HCC has been shown by prospective and retrospective studies using modern RT techniques. Based on these results, the committee came to a consensus on the utility and efficacy of RT in the management of HCC according to each disease stage as follows: in early and intermediate stage HCC, if standard treatment is not compatible, RT, including EBRT and SIRT can be considered. In locally advanced stage HCC, combined EBRT with transarterial chemoembolization or hepatic arterial infusion chemotherapy, and SIRT can be considered. In terminal stage HCC, EBRT can be considered for palliation of symptoms and reduction of morbidity caused by the primary tumor or its metastases. Despite the currently reported benefits of RT in HCC, the committee agreed that there is a compelling need for large prospective studies, including randomized phase III trial evidence evaluating the role of RT. Specifically studies evaluating the efficacy and safety of sequential combination of EBRT and SIRT are strongly recommended. PMID:27493892

  14. Radiotherapy of non-malignant disorders: where do we stand?

    PubMed

    Leer, Jan Willem; van Houtte, Paul; Seegenschmiedt, Heinrich

    2007-05-01

    During a consensus meeting in Nice the role of radiotherapy in benign disorders was discussed. Based on this meeting we categorized the indication into three categories: (A) accepted indication; (B) only accepted in clinical trial; (C) not accepted. The results of this consensus meeting are presented for disorders of the eye, joints and bones, brain and soft tissue.

  15. Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy

    PubMed Central

    Hong, Beom-Ju; Kim, Jeongwoo; Jeong, Hoibin; Bok, Seoyeon; Kim, Young-Eun; Ahn, G-One

    2016-01-01

    Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy. PMID:28030900

  16. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  17. Coregistration of Prechemotherapy PET-CT for Planning Pediatric Hodgkin's Disease Radiotherapy Significantly Diminishes Interobserver Variability of Clinical Target Volume Definition

    SciTech Connect

    Metwally, Hussein; Courbon, Frederic; David, Isabelle; Filleron, Thomas; Blouet, Aurelien; Rives, Michel; Izar, Francoise; Zerdoud, Slimane; Plat, Genevieve; Vial, Julie; Robert, Alain; Laprie, Anne

    2011-07-01

    Purpose: To assess the interobserver variability in clinical target volume (CTV) definitions when using registered {sup 18}F-labeled deoxyglucose positron emission tomography (FDG-PET-CT) versus side-by-side image sets in pediatric Hodgkin's disease (HD). Methods and Materials: Prechemotherapy FDG-PET-CT scans performed in the treatment position were acquired from 20 children (median age, 14 years old) with HD (stages 2A to 4B) and registered with postchemotherapy planning CT scans. The patients had a median age of 14 years and stages of disease ranging between 2A and 4B. Image sets were coregistered using a semiautomatic coregistration system. The biological target volume was defined on all the coregistered images as a guide to defining the initial site of involvement and to avoid false-positive or negative results. Five radiation oncologists independently defined the CTV for all 20 patients: once using separate FDG-PET-CT images as a guide (not registered) to define CTVa and once using the registered FDG-PET-CT data to define CTVb. The total volumes were compared, as well as their coefficients of variation (COV). To assess the interobserver variability, the percentages of intersection between contours drawn by all observers for each patient were calculated for CTVa and for CTVb. Results: The registration of a prechemotherapy FDG-PET-CT scan caused a change in the CTV for all patients. Comparing CTVa with CTVb showed that the mean CTVb increased in 14 patients (range, 0.61%-101.96%) and decreased in 6 patients (range, 2.97%-37.26%). The COV for CTVb significantly decreased for each patient; the mean COVs for CTVa and CTVb were 45% (21%-65%) and 32% (13%-57%), respectively (p = 0.0004). The percentage of intersection among all CTVbs for the five observers increased significantly by 89.77% (1.99%-256.41%) compared to that of CTVa (p = 0.0001). Conclusions: High observer variability can occur during CT-based definition of CTVs for children diagnosed with HD

  18. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability.

  19. Overview of recent advances in treatment planning for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Krämer, Michael; Scifoni, Emanuele; Schmitz, Frederike; Sokol, Olga; Durante, Marco

    2014-10-01

    To achieve practical calculations of dose delivery in ion beam radiotherapy, the physical models of beam propagation need to be properly implemented and supplemented by models describing the complex mechanisms of radiation damage in the biological tissues. TRiP98 is the first and most advanced treatment planning system for particles, in which physical and biological models have been incorporated to develop a clinically applicable tool for dose optimization and delivery. We report our recent advances in TRiP98 code development, in particular towards hypoxia-driven and multi-modal dose optimization. We also discuss the present needs and possible extensions of our models for which input from nanoscale physics is required. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  20. Waiting time for radiotherapy in women with cervical cancer

    PubMed Central

    do Nascimento, Maria Isabel; Azevedo e Silva, Gulnar

    2016-01-01

    ABSTRACT OBJECTIVE To describe the waiting time for radiotherapy for patients with cervical cancer. METHODS This descriptive study was conducted with 342 cervical cancer cases that were referred to primary radiotherapy, in the Baixada Fluminense region, RJ, Southeastern Brazil, from October 1995 to August 2010. The waiting time was calculated using the recommended 60-day deadline as a parameter to obtaining the first cancer treatment and considering the date at which the diagnosis was confirmed, the date of first oncological consultation and date when the radiotherapy began. Median and proportional comparisons were made using the Kruskal Wallis and Chi-square tests. RESULTS Most of the women (72.2%) began their radiotherapy within 60 days from the diagnostic confirmation date. The median of this total waiting time was 41 days. This median worsened over the time period, going from 11 days (1995-1996) to 64 days (2009-2010). The median interval between the diagnostic confirmation and the first oncological consultation was 33 days, and between the first oncological consultation and the first radiotherapy session was four days. The median waiting time differed significantly (p = 0.003) according to different stages of the tumor, reaching 56 days, 35 days and 30 days for women whose cancers were classified up to IIA; from IIB to IIIB, and IVA-IVB, respectively. CONCLUSIONS Despite most of the women having had access to radiotherapy within the recommended 60 days, the implementation of procedures to define the stage of the tumor and to reestablish clinical conditions took a large part of this time, showing that at least one of these intervals needs to be improved. Even though the waiting times were ideal for all patients, the most advanced cases were quickly treated, which suggests that access to radiotherapy by women with cervical cancer has been reached with equity. PMID:26786473

  1. Radiotherapy on hidradenocarcinoma

    PubMed Central

    Lalya, Issam; Hadadi, Khalid; Tazi, El Mehdi; Lalya, Ilham; Bazine, Amine; Andaloussy, Khalid; Elmarjany, Mohamed; Sifat, Hassan; Hassouni, Khalid; Kebdani, Tayeb; Mansouri, Hamid; Benjaafar, Noureddine; Elgueddari, Brahim Khalil

    2011-01-01

    Context: Clear cell Hidradenocarcinoma is a rare carcinoma arising from sweat glands. It is an aggressive tumor that most metastasizes to regional lymph nodes and distant viscera; surgery with safe margins is the mainstay of treatment. Case Report: We report a case of 68-year-old woman who presented with an invasive clear cell hidradenocarcinoma situated in the left parotid area which recurred 5 months after surgery, this recurrence was managed successfully by high-dose irradiation of the tumor bed (66 Gy) and regional lymphatic chains (50 Gy), after a follow-up of more than 15 months, the patient is in good local control without significant toxicity. Conclusion: Post operative radiotherapy allows better local control and should be mandatory when histological features predictive of recurrence are present: positive margins, histology poorly differentiated, perineural invasion, vascular and lymphatic invasion, lymph node involvement, and extracapsular spread. PMID:22540063

  2. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT.

  3. [Radiotherapy for nasopharyngeal carcinoma].

    PubMed

    Maingon, P; Blanchard, P; Bidault, F; Calmels, L

    2016-09-01

    Nasapharyngeal carcinoma is a rare disease. Oftenly, the diagnostic is made for advanced disease. Localized tumors, T1 or T2 NO observed a good prognosis and are locally controlled in more than 90 % of the cases by radiotherapy alone. The standard treatment of locally advanced disease is combined chemoradiation. A special vigilance of fast decrease of the volume of the pathological lymph nodes, sometimes associated to loss of weight might indicate an adaptive dosimetric revision. The treatment of recurrent disease is of great importance. Surgical indications are limited but should be discussed in multidisciplinary tumor board when possible. Surgical nodal sampling has to be proposed for nodal recurrence as well as reirradiation, which could be indicated according to the technical issues.

  4. A new fixation aid for the radiotherapy of eye tumors

    SciTech Connect

    Buchgeister, Markus; Grisanti, Salvatore; Suesskind, Daniela; Bamberg, Michael; Paulsen, Frank

    2007-12-15

    A modified swim goggle holding a light spot as an optical guide for actively aligning the eye in a reproducible orientation has been constructed to perform radiotherapy of ocular tumors. This device is compatible with computed tomography (CT) and magnetic resonance imaging systems. Image fusion of these data sets yielded clinically acceptable results. The reproducibility of the eye's positioning is tested by repeated CT. The eye's alignment during radiotherapy is monitored by an infrared TV camera with individual markings of the eye's position on the TV-monitor screen. From 2003-2006, 50 patients were treated with this fixation aid by radiosurgery with good patient compliance.

  5. A new fixation aid for the radiotherapy of eye tumors.

    PubMed

    Buchgeister, Markus; Grisanti, Salvatore; Süsskind, Daniela; Bamberg, Michael; Paulsen, Frank

    2007-12-01

    A modified swim goggle holding a light spot as an optical guide for actively aligning the eye in a reproducible orientation has been constructed to perform radiotherapy of ocular tumors. This device is compatible with computed tomography (CT) and magnetic resonance imaging systems. Image fusion of these data sets yielded clinically acceptable results. The reproducibility of the eye's positioning is tested by repeated CT. The eye's alignment during radiotherapy is monitored by an infrared TV camera with individual markings of the eye's position on the TV-monitor screen. From 2003-2006, 50 patients were treated with this fixation aid by radiosurgery with good patient compliance.

  6. Carotid artery disease after head and neck radiotherapy.

    PubMed

    Thalhammer, Christoph; Husmann, Marc; Glanzmann, Christoph; Studer, Gabriela; Amann-Vesti, Beatrice R

    2015-01-01

    Radiation induced atherosclerosis of the carotid artery is a clinically relevant late complication after head and neck radiotherapy. Improved long-term survival after multimodality therapy in neck malignancies result in an increased risk of carotid artery disease in patients after radiotherapy (RT). This review focuses on the current knowledge of occlusive carotid disease after head and neck radiotherapy and highlights the exceeding morphologic post-radiation vessel wall pathologies. More severe and extensive carotid artery atherosclerosis with plaque in all segments including the common carotid artery is a frequent finding after RT. Therefore, colour coded duplex ultrasound surveillance in patients after head and neck RT is recommended. Some histopathological studies indicate differences to “classical” atherosclerosis, and pathogenesis of chronic radiation vasculopathy is still under discussion.

  7. Role of hypofractionated radiotherapy in breast locoregional radiation.

    PubMed

    Caudrelier, J-M; Truong, P T

    2015-06-01

    Long-term results of randomised trials have confirmed the safety and efficacy of hypofractionated radiotherapy using approximately 2.6 Gy per fraction to lower total doses of 40-42.6 Gy delivered over 3 weeks, for postoperative treatment of early breast cancer. In these trials, hypofractionated radiotherapy was predominantly used for breast only treatment, while there are fewer trials that specifically examined hypofractionated radiotherapy to the breast plus regional nodes. Hypofractionated locoregional radiation is considered a standard of care in the United Kingdom and in some parts of Canada. We aim to review the radiobiology and normal tissue effects of hypofractionated locoregional radiation and to summarize available published clinical experiences using this treatment strategy as adjuvant therapy after breast conserving surgery or mastectomy for women with early breast cancer.

  8. The role of radiotherapy in multimodal treatment of pancreatic carcinoma

    PubMed Central

    2010-01-01

    Pancreatic ductal carcinoma is one of the most lethal malignancies, but in recent years a number of positive developments have occurred in the management of pancreatic carcinoma. This article aims to give an overview of the current knowledge regarding the role of radiotherapy in the treatment of pancreatic ductal adenocarcinoma (PDAC). The results of meta-analyses, phase III-studies, and phase II-studies using chemoradiotherapy and chemotherapy for resectable and non-resectable PDAC were reviewed. The use of radiotherapy is discussed in the neoadjuvant and adjuvant settings as well as in the locally advanced situation. Whenever possible, radiotherapy should be performed as simultaneous chemoradiotherapy. Patients with PDAC should be offered entry into clinical trials to identify optimal treatment results. PMID:20615227

  9. Radiotherapy for extramammary Paget disease of the anogenital region.

    PubMed

    Dilmé-Carreras, Elisabet; Iglesias-Sancho, Maribel; Márquez-Balbás, Gemma; Sola-Ortigosa, Joaquín; Umbert-Millet, Pablo

    2011-07-01

    Extramammary Paget disease is a rare condition that most commonly affects the anogenital region in the elderly. The treatment of choice has been surgical excision of the affected area with adequate depth and lateral margins, criteria that cannot always be fulfilled, especially when the vulva, anal canal, or penis are involved. More recently radiotherapy has been suggested as a suitable treatment when surgical excision or other modalities are not appropriate. We report a case of anogenital extramammary Paget disease and the clinical response to treatment with radiotherapy. The aim of this article is to review relevant aspects of radiotherapy as a first-choice curative treatment in specific situations of anogenital extramammary Paget disease in situ.

  10. Imaging practices and radiation doses from imaging in radiotherapy.

    PubMed

    Siiskonen, Teemu; Kaijaluoto, Sampsa; Florea, Tudor

    2017-03-25

    Modern radiotherapy treatments require frequent imaging for accurate patient positioning relative to the therapeutic radiation beam. Imaging practices in five Finnish radiotherapy clinics were assessed and discussed from the patient dose optimization point of view. The results show that imaging strategies are not jointly established and variations exist. The organ absorbed doses depend on imaging technique and imaging frequency. In particular, organ doses from the cone beam computed tomography can have very large variations (a factor of 10-50 in breast imaging and factor of 5 in prostate imaging). The cumulative imaging organ dose from the treatment can vary by a factor of ten or more for the same treatment, depending on the chosen technique and imaging frequency. Awareness and optimization of the imaging dose in image-guided radiotherapy should be strengthened.

  11. [The need for a paradigm shift in radiotherapy].

    PubMed

    Mayer, Árpád; Katona, Csilla; Farkas, Róbert; Póti, Zsuzsa

    2015-11-01

    The status and indications of radiotherapy have significantly changed in the past decade because novel techniques, radiobiological research and major advances in informatics have made better local control possible. Using supplemented marking of the target volume with computer tomography based other image-making methods adapted made it possible to define the tumor and intact surrounding tissues more precisely. With novel radiotherapy techniques the dosage of the homogenity and the covering in the target volume can be raised optimally, especially with intensity modulated arc radiotherapy (volumetric modulated arc therapy) without causing radiation injury or damage to intact surrounding tissues. Furthermore, with novel techniques and target volume marking, new indications have appeared in clinical practice and besides stereotactic radiotherapy for intracranial metastases, the extracranial so-called oligometastic conditions can be maintained close to a curative state (or in remission) for many years. Among these, perhaps the most striking is the stereotactic radiotherapy treatment of liver, lung and spinal cord metastases in one or more fractions, for which the indispensable condition is the image or respiratory guided technique.

  12. Bone Health and Pelvic Radiotherapy.

    PubMed

    Higham, C E; Faithfull, S

    2015-11-01

    Survivors who have received pelvic radiotherapy make up many of the long-term cancer population, with therapies for gynaecological, bowel, bladder and prostate malignancies. Individuals who receive radiotherapy to the pelvis as part of their cancer treatment are at risk of insufficiency fractures. Symptoms of insufficiency fractures include pelvic and back pain and immobility, which can affect substantially quality of life. This constellation of symptoms can occur within 2 months of radiotherapy up to 63 months post-treatment, with a median incidence of 6-20 months. As a condition it is under reported and evidence is poor as to the contributing risk factors, causation and best management to improve the patient's bone health and mobility. As radiotherapy advances, chronic symptoms, such as insufficiency fractures, as a consequence of treatment need to be better understood and reviewed. This overview explores the current evidence for the effect of radiotherapy on bone health and insufficiency fractures and identifies what we know and where gaps in our knowledge lie. The overview concludes with the need to take seriously complaints of pelvic pain from patients after pelvic radiotherapy and to investigate and manage these symptoms more effectively. There is a clear need for definitive research in this field to provide the evidence-based guidance much needed in practice.

  13. [Definition of accurate planning target volume margins for esophageal cancer radiotherapy].

    PubMed

    Lesueur, P; Servagi-Vernat, S

    2016-10-01

    More than 4000 cases of esophagus neoplasms are diagnosed every year in France. Radiotherapy, which can be delivered in preoperative or exclusive with a concomitant chemotherapy, plays a central role in treatment of esophagus cancer. Even if efficacy of radiotherapy no longer has to be proved, the prognosis of esophagus cancer remains unfortunately poor with a high recurrence rate. Toxicity of esophageal radiotherapy is correlated with the irradiation volume, and limits dose escalation and local control. Esophagus is a deep thoracic organ, which undergoes cardiac and respiratory motion, making the radiotherapy delivery more difficult and increasing the planning target volume margins. Definition of accurate planning target volume margins, taking into account the esophagus' intrafraction motion and set up margins is very important to be sure to cover the clinical target volume and restrains acute and late radiotoxicity. In this article, based on a review of the literature, we propose planning target volume margins adapted to esophageal radiotherapy.

  14. X-ray volume imaging in bladder radiotherapy verification

    SciTech Connect

    Henry, Ann M. . E-mail: amhenry@doctors.net.uk; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-03-15

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology.

  15. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery.

  16. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    SciTech Connect

    Wang Dian; Bosch, Walter; Kirsch, David G.; Al Lozi, Rawan; El Naqa, Issam; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-12-01

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) were 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.

  17. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  18. Imaging for Stereotactic Spine Radiotherapy: Clinical Considerations

    SciTech Connect

    Dahele, Max; Zindler, Jaap D.; Sanchez, Esther; Verbakel, Wilko F.; Kuijer, Joost P.A.; Slotman, Ben J.; Senan, Suresh

    2011-10-01

    There is growing interest in the use of stereotactic body radiation therapy (SBRT) for spinal metastases. With the need for accurate target definition and conformal avoidance of critical normal structures, high-quality multimodal imaging has emerged as a key component at each stage of the treatment process. Multidisciplinary collaboration is necessary to optimize imaging protocols and implement imaging advances into routine patient care.

  19. TU-G-BRB-01: Topic Introduction: Do We Need Clinical Trials in Particle Therapy and How Can Medical Physics Support Them?

    SciTech Connect

    Schulte, R.

    2015-06-15

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  20. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  1. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    SciTech Connect

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Bednarz, B. P.; Sterpin, E.

    2015-02-15

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy{sup ®} Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code GEANT4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can

  2. Inhibitory effects of facemasks and eyeglasses on invasion of pollen particles in the nose and eye: a clinical study.

    PubMed

    Gotoh, Minoru; Okubo, Kimihiro; Okuda, Minoru

    2005-12-01

    The incidence of Japanese cedar pollinosis is estimated to be about 13% of the Japanese population. In Japan it is generic to wear a facemask and eyeglasses to prevent pollen inhalation. We examined the usefulness of a facemask and eyeglasses in cooperation with volunteers. The number of pollen particles in the nasal cavity and on the conjunctiva was unchanged by wearing a facemask and eyeglasses. However, the pollen invasion rate was lower in subjects with a facemask and eyeglasses than in subjects without a facemask and eyeglasses. The decrease in pollen invasion rate in the nasal cavity due to wearing a facemask was statistically significant. This suggested that wearing a facemask has a protective effect on pollen invasion to the nose. The pollen invasion rate in the nasal cavity and on the conjunctiva was increased with increases in the wind speed. It may be difficult to avoid pollen even when wearing a facemask and eyeglasses when the wind speed is high. Further study is required to clarify the relationship between the amount of allergens and clinical symptoms.

  3. Breast cellulitis after conservative surgery and radiotherapy

    SciTech Connect

    Rescigno, J.; McCormick, B.; Brown, A.E.; Myskowski, P.L. )

    1994-04-30

    Cellulitis is a previously unreported complication of conservative surgery and radiation therapy for early stage breast cancer. Patients who presented with breast cellulitis after conservative therapy are described. Eleven patients that developed cellulitis of the breast over a 38-month period of observation are the subject of this report. Clinical characteristics of patients with cellulitis and their treatment and outcome are reported. Potential patient and treatment-related correlates for the development of cellulitis are analyzed. The risk of cellulitis persists years after initial breast cancer therapy. The clinical course of the patients was variable: some patients required aggressive, long-duration antibiotic therapy, while others had rapid resolution with antibiotics. Three patients suffered from multiple episodes of cellulitis. Patients with breast cancer treated with conservative surgery and radiotherapy are at risk for breast cellulitis. Systematic characterization of cases of cellulitis may provide insight into diagnosis, prevention, and more effective therapy for this uncommon complication. 15 refs., 1 fig., 2 tabs.

  4. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  5. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  6. Hypothyroidism after radiotherapy for patients with head and neck cancer.

    PubMed

    Ozawa, Hiroyuki; Saitou, Hideyuki; Mizutari, Kunio; Takata, Yasunori; Ogawa, Kaoru

    2007-01-01

    We report on 2 cases of hypothyroidism presenting clinical symptoms that occurred after radiotherapy for cancer of the head and neck and on the results of estimating thyroid function in patients with head and neck cancer who received radiotherapy. The first patient underwent total laryngectomy for laryngeal cancer without sacrificing the thyroid gland and partial gastrectomy for gastric cancer. Radiotherapy of the neck was carried out postoperatively. Two years later, the patient developed chest pain; pericardial effusion was detected, leading to a diagnosis of myxedema caused by hypothyroidism. The second patient received radiotherapy alone for laryngeal cancer. Two months later, low serum sodium concentration and anemia were detected in this patient. The cause of these changes was subsequently found to be hypothyroidism. Based on our experience with these 2 cases, we measured thyroid function in 35 patients who had undergone neck radiation for head and neck cancer at our hospital over the past 10 years. Hypothyroidism was observed in 13 of the 35 patients (37%). The prevalence of hypothyroidism was 46% (6/13) for patients treated with both radiation and surgery, as compared with 32% (7/22) for those who received radiation alone. The risk factors responsible for hypothyroidism were not evident from the statistical analysis of these cases. We believe that thyroid function should be evaluated periodically in patients who have undergone neck radiation because it is often difficult to diagnose hypothyroidism only from clinical symptoms.

  7. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

    PubMed Central

    Sancey, L; Kotb, S; Roux, S; Dufort, S; Bianchi, A; Crémillieux, Y; Fries, P; Coll, J-L; Rodriguez-Lafrasse, C; Janier, M; Dutreix, M; Barberi-Heyob, M; Boschetti, F; Denat, F; Louis, C; Porcel, E; Lacombe, S; Le Duc, G; Deutsch, E; Perfettini, J-L; Detappe, A; Verry, C; Berbeco, R; Butterworth, K T; McMahon, S J; Prise, K M; Perriat, P; Tillement, O

    2014-01-01

    A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed. PMID:24990037

  8. Hadrontherapy from the Italian Radiation Oncologist point of view: face the reality. The Italian Society of Oncological Radiotherapy (AIRO) survey.

    PubMed

    Marvaso, Giulia; Vischioni, Barbara; Jereczek-Fossa, Barbara Alicja; Ciardo, Delia; Fossati, Piero; Giandini, Tommaso; Morlino, Sara; Carrara, Mauro; Romanelli, Paola; Russi, Elvio; Valvo, Francesca; Valdagni, Riccardo; Orecchia, Roberto

    2017-02-01

    Hadrontherapy has been in constant progress in the past decades. Due to the increasing interest in this field and the spreading of the technique in Italy and worldwide, the Italian Society of Radiation Oncology surveyed (by an online survey) its members regarding their perception of hadrontherapy. The survey outline addressed different items all related to hadrontherapy, such as: demographics (3 items), personal knowledge (5 items), actual use in clinical practice (5 items), and future perspectives and development (5 items). The survey was filled in by 224 radiation oncologists (RO). Among them, 74.6 % were RO with more than 5 years of clinical practice, and only 10.4 % RO in training. Median age was 46 years (range 27-77). 32.24 % admitted average knowledge about heavy particles radiobiology rationale and 32.42 % about the ongoing particle therapy clinical trials. Radioresistant tumors are perceived as-principal indications for carbon ions in 39.3 % of responders, and pediatric malignancies for protons in 37 %. Re-irradiation is highly recommended for 52.2 %. Strikingly, 38.8 % of participating ROs reported that, in the daily clinical practice, approximately less than 1 out of 10 patients asks to be referred for hadrontherapy. On the other side, 35.7 % claimed need for at least 3 up to 5 particle therapy centers in Italy. Overall, the results of the present survey highlight the interest of the Italian RO community for particle therapy among the other radiotherapy technique. Analysis of our results might picture the clinical attitude of the RO community towards hadrontherapy in Italy, and help in promoting targeted initiatives to spread clinical results and knowledge about technical innovations in this field.

  9. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  10. Assessing the risk of second malignancies after modern radiotherapy

    PubMed Central

    Newhauser, Wayne D.; Durante, Marco

    2014-01-01

    Recent advances in radiotherapy have enabled the use of different types of particles, such as protons and heavy ions, as well as refinements to the treatment of tumours with standard sources (photons). However, the risk of second cancers arising in long-term survivors continues to be a problem. The long-term risks from treatments such as particle therapy have not yet been determined and are unlikely to become apparent for many years. Therefore, there is a need to develop risk assessments based on our current knowledge of radiation-induced carcinogenesis. PMID:21593785

  11. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  12. [What is the role of intraoperative radiotherapy in breast cancer treatment?].

    PubMed

    Aumont, M

    2016-10-01

    Breast-conserving surgery followed by whole breast postoperative irradiation is considered to be the current standard treatment for patients with early stage breast cancer. It allows an excellent local tumour control with 6% of local recurrence. Over the last years, partial breast radiotherapy has been developed to reduce treatment volume and duration. Intraoperative radiotherapy is one of the techniques. It offers an excellent delineation of the tumour bed and high normal tissue sparing. This purpose of this review is to describe the different intraoperative radiotherapy techniques available, to assess their potential clinical efficiency and tolerance, the recommendations for new practice with a selected population of patients and for future research.

  13. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al{sub 2}O{sub 3}:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    SciTech Connect

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-15

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.

  14. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  15. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  16. Inflammatory Skin Conditions Associated With Radiotherapy.

    PubMed

    Hernández Aragüés, I; Pulido Pérez, A; Suárez Fernández, R

    2017-04-01

    Radiotherapy for cancer is used increasingly. Because skin cells undergo rapid turnover, the ionizing radiation of radiotherapy has collateral effects that are often expressed in inflammatory reactions. Some of these reactions-radiodermatitis and recall phenomenon, for example-are very familiar to dermatologists. Other, less common radiotherapy-associated skin conditions are often underdiagnosed but must also be recognized.

  17. Radiotherapy supports protective tumor-specific immunity

    PubMed Central

    Gupta, Anurag; Sharma, Anu; von Boehmer, Lotta; Surace, Laura; Knuth, Alexander; van den Broek, Maries

    2012-01-01

    Radiotherapy is an important therapeutic option for the treatment of cancer. Growing evidence indicates that, besides inducing an irreversible DNA damage, radiotherapy promotes tumor-specific immune response, which significantly contribute to therapeutic efficacy. We postulate that radiotherapy activates tumor-associated dendritic cells, thus changing the tolerogenic tumor environment into an immunogenic one. PMID:23264910

  18. Baseline Utilization of Breast Radiotherapy Before Institution of the Medicare Practice Quality Reporting Initiative

    SciTech Connect

    Smith, Benjamin D. Smith, Grace L.; Roberts, Kenneth B.; Buchholz, Thomas A.

    2009-08-01

    Purpose: In 2007, Medicare implemented the Physician Quality Reporting Initiative (PQRI), which provides financial incentives to physicians who report their performance on certain quality measures. PQRI measure no. 74 recommends radiotherapy for patients treated with conservative surgery (CS) for invasive breast cancer. As a first step in evaluating the potential impact of this measure, we assessed baseline use of radiotherapy among women diagnosed with invasive breast cancer before implementation of PQRI. Methods and Materials: Using the SEER-Medicare data set, we identified women aged 66-70 diagnosed with invasive breast cancer and treated with CS between 2000 and 2002. Treatment with radiotherapy was determined using SEER and claims data. Multivariate logistic regression tested whether receipt of radiotherapy varied significantly across clinical, pathologic, and treatment covariates. Results: Of 3,674 patients, 94% (3,445) received radiotherapy. In adjusted analysis, the presence of comorbid illness (odds ratio [OR] 1.69; 95% confidence interval [CI], 1.19-2.42) and unmarried marital status were associated with omission of radiotherapy (OR 1.65; 95% CI, 1.22-2.20). In contrast, receipt of chemotherapy was protective against omission of radiotherapy (OR 0.25; 95% CI, 0.16-0.38). Race and geographic region did not