Alam, Md Ferdous; Haque, Asadul
2017-10-18
An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis.
A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils
Alam, Md Ferdous
2017-01-01
An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis. PMID:29057823
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.
Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V
2018-04-06
Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.
Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I
2016-12-19
Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.
The Radiation Assessment Detector (RAD) Investigation
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.
2012-09-01
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.
Anlysis capabilities for plutonium-238 programs
NASA Astrophysics Data System (ADS)
Wong, A. S.; Rinehart, G. H.; Reimus, M. H.; Pansoy-Hjelvik, M. E.; Moniz, P. F.; Brock, J. C.; Ferrara, S. E.; Ramsey, S. S.
2000-07-01
In this presentation, an overview of analysis capabilities that support 238Pu programs will be discussed. These capabilities include neutron emission rate and calorimetric measurements, metallography/ceramography, ultrasonic examination, particle size determination, and chemical analyses. The data obtained from these measurements provide baseline parameters for fuel clad impact testing, fuel processing, product certifications, and waste disposal. Also several in-line analyses capabilities will be utilized for process control in the full-scale 238Pu Aqueous Scrap Recovery line in FY01.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude
2014-01-16
A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g(-1) at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.
NASA Astrophysics Data System (ADS)
Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude
2014-01-01
A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g-1 at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.
NASA Astrophysics Data System (ADS)
Chang, Ying; Li, Yang; Yu, Shirong; Mao, Jie; Liu, Cheng; Li, Qi; Yuan, Conghui; He, Ning; Luo, Weiang; Dai, Lizong
2015-01-01
Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.
Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...
Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
Park, Haesung; LeBrun, Thomas W
2016-12-21
We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.
NASA Astrophysics Data System (ADS)
Garno, Joshua; Ouellet, Frederick; Koneru, Rahul; Balachandar, Sivaramakrishnan; Rollin, Bertrand
2017-11-01
An analytic model to describe the hydrodynamic forces on an explosively driven particle is not currently available. The Maxey-Riley-Gatignol (MRG) particle force equation generalized for compressible flows is well-studied in shock-tube applications, and captures the evolution of particle force extracted from controlled shock-tube experiments. In these experiments only the shock-particle interaction was examined, and the effects of the contact line were not investigated. In the present work, the predictive capability of this model is considered for the case where a particle is explosively ejected from a rigid barrel into ambient air. Particle trajectory information extracted from simulations is compared with experimental data. This configuration ensures that both the shock and contact produced by the detonation will influence the motion of the particle. The simulations are carried out using a finite volume, Euler-Lagrange code using the JWL equation of state to handle the explosive products. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program,under Contract No. DE-NA0002378.
Computer-automated silica aerosol generator and animal inhalation exposure system
McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.
2015-01-01
Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015
Colour-barcoded magnetic microparticles for multiplexed bioassays.
Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon
2010-09-01
Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.
Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.
2015-01-01
The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642
USDA-ARS?s Scientific Manuscript database
Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...
Yu, Zhan; Yu, Min; Zhou, Zhimin; Zhang, Zhibao; Du, Bo; Xiong, Qingqing
2014-01-01
Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA) particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 μm to 100 μm, and most were 50-80 μm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug - rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang
2018-03-01
Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.
Optofluidics incorporating actively controlled micro- and nano-particles
Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2012-01-01
The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
3D laser traking of a particle in 3DFM
NASA Astrophysics Data System (ADS)
Desai, Kalpit; Welch, Gregory; Bishop, Gary; Taylor, Russell; Superfine, Richard
2003-11-01
The principal goal of 3D tracking in our home-built 3D Magnetic Force Microscope is to monitor movement of the particle with respect to laser beam waist and keep the particle at the center of laser beam. The sensory element is a Quadrant Photo Diode (QPD) which captures scattering of light caused by particle motion with bandwidth up to 40 KHz. XYZ translation stage is the driver element which moves particle back in the center of the laser with accuracy of couple of nanometers and with bandwidth up to 300 Hz. Since our particles vary in size, composition and shape, instead of using a priori model we use standard system identification techniques to have optimal approximation to the relationship between particle motion and QPD response. We have developed position feedback control system software that is capable of 3-dimensional tracking of beads that are attached to cilia on living cells which are beating at up to 15Hz. We have also modeled the control system of instrument to simulate performance of 3D particle tracking for different experimental conditions. Given operational level of nanometers, noise poses a great challenge for the tracking system. We propose to use stochastic control theory approaches to increase robustness of tracking.
Han, Min; Fan, Jianchao; Wang, Jun
2011-09-01
A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
Characterizing and controlling industrial dust: a case study in small particle measurement.
Combes, Richard S; Warren, D Alan
2005-07-01
Instrumentation used to measure characteristics of fine particles entrained in gas or suspended in aerosols provides information needed to develop valid regulations for emission sources and to support the design of control technologies. This case study offers a brief history of "micromeritics," a term used by early researchers to describe the science of small particles, and the related invention of laboratory instruments for characterizing very fine particles. The historical view provides insights into the role that Progressive Era government agencies played in advancing esoteric science and applying this knowledge to the regulation of workplace air pollution. Micromeritics instrumentation developed in conjunction with federal research now has many commercial applications worldwide, with characterizing airborne pollutants only a minor one. However, the continuing advances in the micromeritics field provide important laboratory measurement capabilities to environmental research organizations, such as the National Institute for Occupational Safety and Health (NIOSH).
Long Pulse Operation on Tore-Supra: Towards Steady State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, P.; Bucalossi, J.; Brosset, C.
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.
Web-Enabled Optoelectronic Particle-Fallout Monitor
NASA Technical Reports Server (NTRS)
Lineberger, Lewis P.
2008-01-01
A Web-enabled optoelectronic particle- fallout monitor has been developed as a prototype of future such instruments that (l) would be installed in multiple locations for which assurance of cleanliness is required and (2) could be interrogated and controlled in nearly real time by multiple remote users. Like prior particle-fallout monitors, this instrument provides a measure of particles that accumulate on a surface as an indication of the quantity of airborne particulate contaminants. The design of this instrument reflects requirements to: Reduce the cost and complexity of its optoelectronic sensory subsystem relative to those of prior optoelectronic particle fallout monitors while maintaining or improving capabilities; Use existing network and office computers for distributed display and control; Derive electric power for the instrument from a computer network, a wall outlet, or a battery; Provide for Web-based retrieval and analysis of measurement data and of a file containing such ancillary data as a log of command attempts at remote units; and Use the User Datagram Protocol (UDP) for maximum performance and minimal network overhead.
Self-organized internal architectures of chiral micro-particles
NASA Astrophysics Data System (ADS)
Provenzano, Clementina; Mazzulla, Alfredo; Pagliusi, Pasquale; De Santo, Maria P.; Desiderio, Giovanni; Perrotta, Ida; Cipparrone, Gabriella
2014-02-01
The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.
Performance evaluation of mobile downflow booths for reducing airborne particles in the workplace.
Lo, Li-Ming; Hocker, Braden; Steltz, Austin E; Kremer, John; Feng, H Amy
2017-11-01
Compared to other common control measures, the downflow booth is a costly engineering control used to contain airborne dust or particles. The downflow booth provides unidirectional filtered airflow from the ceiling, entraining released particles away from the workers' breathing zone, and delivers contained airflow to a lower level exhaust for removing particulates by filtering media. In this study, we designed and built a mobile downflow booth that is capable of quick assembly and easy size change to provide greater flexibility and particle control for various manufacturing processes or tasks. An experimental study was conducted to thoroughly evaluate the control performance of downflow booths used for removing airborne particles generated by the transfer of powdered lactose between two containers. Statistical analysis compared particle reduction ratios obtained from various test conditions including booth size (short, regular, or extended), supply air velocity (0.41 and 0.51 m/s or 80 and 100 feet per minute, fpm), powder transfer location (near or far from the booth exhaust), and inclusion or exclusion of curtains at the booth entrance. Our study results show that only short-depth downflow booths failed to protect the worker performing powder transfer far from the booth exhausts. Statistical analysis shows that better control performance can be obtained with supply air velocity of 0.51 m/s (100 fpm) than with 0.41 m/s (80 fpm) and that use of curtains for downflow booths did not improve their control performance.
Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A
2015-05-07
Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.
An empirical approach to predicting long term behavior of metal particle based recording media
NASA Technical Reports Server (NTRS)
Hadad, Allan S.
1992-01-01
Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.
NASA Astrophysics Data System (ADS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-11-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.
Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.
2013-12-01
Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus, computational nodes lying on fracture intersections have four associated velocities, one on each side of the intersection in each fracture plane [2]. This information is used to route particles arriving at the fracture intersection to the appropriate downstream fracture segment. Verified for small DFNs, the new simulation capability allows accurate particle tracking on more realistic representations of fractured rock sites. In the current work we focus on travel time statistics and spatial dispersion and show numerical results in DFNs of different sizes, fracture densities, and transmissivity distributions. [1] Hyman J.D., Gable C.W., Painter S.L., Automated meshing of stochastically generated discrete fracture networks, Abstract H33G-1403, 2011 AGU, San Francisco, CA, 5-9 Dec. [2] N. Makedonska, S. L. Painter, T.-L. Hsieh, Q.M. Bui, and C. W. Gable., Development and verification of a new particle tracking capability for modeling radionuclide transport in discrete fracture networks, Abstract, 2013 IHLRWM, Albuquerque, NM, Apr. 28 - May 3. [3] Lichtner, P.C., Hammond, G.E., Bisht, G., Karra, S., Mills, R.T., and Kumar, J. (2013) PFLOTRAN User's Manual: A Massively Parallel Reactive Flow Code. [4] Painter S.L., Gable C.W., Kelkar S., Pathline tracing on fully unstructured control-volume grids, Computational Geosciences, 16 (4), 2012, 1125-1134.
Fuzzy PID control algorithm based on PSO and application in BLDC motor
NASA Astrophysics Data System (ADS)
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Manipulating the Coffee-Ring Effect: Interactions at Work.
Anyfantakis, Manos; Baigl, Damien
2015-07-31
The evaporation of a drop of colloidal suspension pinned on a substrate usually results in a ring of particles accumulated at the periphery of the initial drop. Intense research has been devoted to understanding, suppressing and ultimately controlling this so-called coffee-ring effect (CRE). Although the crucial role of flow patterns in the CRE has been thoroughly investigated, the effect of interactions on this phenomenon has been largely neglected. This Concept paper reviews recent works in this field and shows that the interactions of colloids with (and at) liquid-solid and liquid-gas interfaces as well as bulk particle-particle interactions drastically affect the morphology of the deposit. General rules are established to control the CRE by tuning these interactions, and guidelines for the rational physicochemical formulation of colloidal suspensions capable of depositing particles in desirable patterns are provided. This opens perspectives for the reliable control of the CRE in real-world formulations and creates new paradigms for flexible particle patterning at all kinds of interfaces as well for the exploitation of the CRE as a robust and inexpensive diagnostic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper
NASA Astrophysics Data System (ADS)
Komazaki, Y.; Hirama, H.; Torii, T.
2015-04-01
In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.
Evaluation of stochastic particle dispersion modeling in turbulent round jets
Sun, Guangyuan; Hewson, John C.; Lignell, David O.
2016-11-02
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less
Yang, Shuo; Schmidt, Dirk Oliver; Khetan, Abhishek; Schrader, Felix; Jakobi, Simon; Homberger, Melanie; Noyong, Michael; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-Albert; Pitsch, Heinz; Simon, Ulrich
2018-05-16
LiNi 0.5 Mn 1.5 O₄ (LNMO) spinel has been extensively investigated as one of the most promising high-voltage cathode candidates for lithium-ion batteries. The electrochemical performance of LNMO, especially its rate performance, seems to be governed by its crystallographic structure, which is strongly influenced by the preparation methods. Conventionally, LNMO materials are prepared via solid-state reactions, which typically lead to microscaled particles with only limited control over the particle size and morphology. In this work, we prepared Ni-doped LiMn₂O₄ (LMO) spinel via the polyol method. The cycling stability and rate capability of the synthesized material are found to be comparable to the ones reported in literature. Furthermore, its electronic charge transport properties were investigated by local electrical transport measurements on individual particles by means of a nanorobotics setup in a scanning electron microscope, as well as by performing DFT calculations. We found that the scarcity of Mn 3+ in the LNMO leads to a significant decrease in electronic conductivity as compared to undoped LMO, which had no obvious effect on the rate capability of the two materials. Our results suggest that the rate capability of LNMO and LMO materials is not limited by the electronic conductivity of the fully lithiated materials.
Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.
Flower, Verity J B; Kahn, Ralph A
2017-10-28
Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.
Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido
2009-01-01
Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.
Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Ting
2016-03-01
Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less
Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
Jdpd: an open java simulation kernel for molecular fragment dissipative particle dynamics.
van den Broek, Karina; Kuhn, Hubert; Zielesny, Achim
2018-05-21
Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics with parallelizable force calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed input/output communication, parallelization and process control as well as internal logging capabilities for debugging purposes are supported. The new kernel may be utilized in different simulation environments ranging from flexible scripting solutions up to fully integrated "all-in-one" simulation systems.
The rotary subwoofer: a controllable infrasound source.
Park, Joseph; Garcés, Milton; Thigpen, Bruce
2009-04-01
The rotary subwoofer is a novel acoustic transducer capable of projecting infrasonic signals at high sound pressure levels. The projector produces higher acoustic particle velocities than conventional transducers which translate into higher radiated sound pressure levels. This paper characterizes measured performance of a rotary subwoofer and presents a model to predict sound pressure levels.
NASA Astrophysics Data System (ADS)
Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.
2016-12-01
The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.
Sample preparation and detection device for infectious agents
Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June
2003-06-10
A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.
Noll, J.; Cecala, A.; Hummer, J.
2016-01-01
The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent. PMID:26834293
Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets
NASA Astrophysics Data System (ADS)
Covert, Paul A.; Cremer, Johannes W.; Signorell, Ruth
2017-08-01
Photoacoustics have been widely used for the study of aerosol optical properties. To date, these studies have been performed on particle ensembles, with minimal ability to control for particle size. Here, we present our singleparticle photoacoustic spectrometer. The sensitivity and stability of the instrument is discussed, along with results from two experiments that illustrate the unique capabilities of this instrument. In the first experiment, we present a measurement of the particle size-dependence of the photoacoustic response. Our results confirm previous models of aerosol photoacoustics that had yet to be experimentally tested. The second set of results reveals a size-dependence of photochemical processes within aerosols that results from the nanofocusing of light within individual droplets.
Supersonic Particle Impact Test Capabilities: Investigative Report
NASA Technical Reports Server (NTRS)
Rosales, Keisa
2007-01-01
NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).
Second harmonic generation from small particle aggregates
NASA Astrophysics Data System (ADS)
Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.
2001-03-01
Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).
Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komazaki, Y., E-mail: komazaki@dt.k.u-tokyo.ac.jp; Hirama, H.; Torii, T.
In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventionalmore » color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.« less
Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems
NASA Astrophysics Data System (ADS)
Khane, Vaibhav; Al-Dahhan, Muthanna H.
2017-04-01
The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
Flow measurements in a water tunnel using a holocinematographic velocimeter
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.; Beeler, George B.
1987-01-01
Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.
Perspective: Advanced particle imaging
Chandler, David W.; Houston, Paul L.; Parker, David H.
2017-05-26
This study discuss, the first ion imaging experiment demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variancemore » and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.
2013-07-01
This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.
Li, Chuan; Peng, Juan; Liang, Ming
2014-01-01
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730
Li, Chuan; Peng, Juan; Liang, Ming
2014-03-28
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
PIV/HPIV Film Analysis Software Package
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
A PIV/HPIV film analysis software system was developed that calculates the 2-dimensional spatial autocorrelations of subregions of Particle Image Velocimetry (PIV) or Holographic Particle Image Velocimetry (HPIV) film recordings. The software controls three hardware subsystems including (1) a Kodak Megaplus 1.4 camera and EPIX 4MEG framegrabber subsystem, (2) an IEEE/Unidex 11 precision motion control subsystem, and (3) an Alacron I860 array processor subsystem. The software runs on an IBM PC/AT host computer running either the Microsoft Windows 3.1 or Windows 95 operating system. It is capable of processing five PIV or HPIV displacement vectors per second, and is completely automated with the exception of user input to a configuration file prior to analysis execution for update of various system parameters.
Gueon, Donghee; Hwang, Jeong Tae; Yang, Seung Bo; Cho, Eunkyung; Sohn, Kwonnam; Yang, Doo-Kyung; Moon, Jun Hyuk
2018-01-23
A carbon host capable of effective and uniform sulfur loading is the key for lithium-sulfur batteries (LSBs). Despite the application of porous carbon materials of various morphologies, the carbon hosts capable of uniformly impregnating highly active sulfur is still challenging. To address this issue, we demonstrate a hierarchical pore-structured CNT particle host containing spherical macropores of several hundred nanometers. The macropore CNT particles (M-CNTPs) are prepared by drying the aerosol droplets in which CNTs and polymer particles are dispersed. The spherical macropore greatly improves the penetration of sulfur into the carbon host in the melt diffusion of sulfur. In addition, the formation of macropores greatly develops the volume of the micropore between CNT strands. As a result, we uniformly impregnate 70 wt % sulfur without sulfur residue. The S-M-CNTP cathode shows a highly reversible capacity of 1343 mA h g -1 at a current density of 0.2 C even at a high sulfur content of 70 wt %. Upon a 10-fold current density increase, a high capacity retention of 74% is observed. These cathodes have a higher sulfur content than those of conventional CNT hosts but nevertheless exhibit excellent performance. Our CNTPs and pore control technology will advance the commercialization of CNT hosts for LSBs.
ERIC Educational Resources Information Center
Nikelshpur, Dmitry O.
2014-01-01
Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…
Fabrication and Modification of Nanoporous Silicon Particles
NASA Technical Reports Server (NTRS)
Ferrari, Mauro; Liu, Xuewu
2010-01-01
Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.
Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M
2009-12-15
The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.
NASA Astrophysics Data System (ADS)
Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua
2015-10-01
Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.
Artificial neural network based particle size prediction of polymeric nanoparticles.
Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf
2017-10-01
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.
Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong
2017-09-04
This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.
Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub
2016-01-13
Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.
NASA Technical Reports Server (NTRS)
Perkins, Hugh Douglas
2010-01-01
In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.
Julin, Jan; Murphy, Benjamin N; Patoulias, David; Fountoukis, Christos; Olenius, Tinja; Pandis, Spyros N; Riipinen, Ilona
2018-01-16
Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.
Neutrophil-inspired propulsion in a combined acoustic and magnetic field.
Ahmed, Daniel; Baasch, Thierry; Blondel, Nicolas; Läubli, Nino; Dual, Jürg; Nelson, Bradley J
2017-10-03
Systems capable of precise motion in the vasculature can offer exciting possibilities for applications in targeted therapeutics and non-invasive surgery. So far, the majority of the work analysed propulsion in a two-dimensional setting with limited controllability near boundaries. Here we show bio-inspired rolling motion by introducing superparamagnetic particles in magnetic and acoustic fields, inspired by a neutrophil rolling on a wall. The particles self-assemble due to dipole-dipole interaction in the presence of a rotating magnetic field. The aggregate migrates towards the wall of the channel due to the radiation force of an acoustic field. By combining both fields, we achieved a rolling-type motion along the boundaries. The use of both acoustic and magnetic fields has matured in clinical settings. The combination of both fields is capable of overcoming the limitations encountered by single actuation techniques. We believe our method will have far-reaching implications in targeted therapeutics.Devising effective swimming and propulsion strategies in microenvironments is attractive for drug delivery applications. Here Ahmed et al. demonstrate a micropropulsion strategy in which a combination of magnetic and acoustic fields is used to assemble and propel colloidal particles along channel walls.
Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.
Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo
2017-07-12
In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
Leggett, Graham J
2011-03-22
Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.
Park, SungJun; Ko, Young-Seon; Jung, Haeyong; Lee, Cheonghoon; Woo, Kyoungja; Ko, GwangPyo
2018-06-01
Silver nanoparticles (AgNPs) have been reported as an effective alternative for controlling a broad-spectrum of pathogenic viruses. We developed a micrometer-sized silica hybrid composite decorated with AgNPs (AgNP-SiO 2 ) to prevent the inherent aggregation of AgNPs, and facilitated their recovery from environmental media after use. The production process had a high-yield, and fabrication was cost-effective. We evaluated the antiviral capabilities of Ag30-SiO 2 particles against two model viruses, bacteriophage MS2 and murine norovirus (MNV), in four different types of water (deionized, tap, surface, and ground). MNV was more susceptible to Ag30-SiO 2 particles in all four types of water compared to MS2. Furthermore, several water-related factors, including temperature and organic matter content, were shown to affect the antimicrobial capabilities of Ag30-SiO 2 particles. The modified Hom model was the best-fit disinfection model for MNV disinfection in the different types of water. Additionally, this study demonstrated that the effects of a certain level of physical obstacles in water were negligible in regards to the use of Ag30-SiO 2 particles. Thus, effective use of AgNPs in water disinfection processes can be achieved using our novel hybrid composites to inactivate various waterborne viruses. Copyright © 2018 Elsevier B.V. All rights reserved.
Active spacecraft potential control system selection for the Jupiter orbiter with probe mission
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Goldstein, R.
1977-01-01
It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.
Cytotoxic effect of galvanically coupled magnesium-titanium particles.
Kim, Jua; Gilbert, Jeremy L
2016-01-01
Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruno, Giacomo; Geninatti, Thomas; Hood, R. Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro
2015-03-01
General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06209d
Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh
2016-01-01
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C. PMID:27383135
Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh
2016-01-01
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Perspective: Advanced particle imaging
Chandler, David W.
2017-01-01
Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445–1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control. PMID:28688442
[Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].
Terahara, A; Nakano, T; Tsujii, H
1998-01-01
Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.
Advances in heterogeneous ice nucleation research: Theoretical modeling and measurements
NASA Astrophysics Data System (ADS)
Beydoun, Hassan
In the atmosphere, cloud droplets can remain in a supercooled liquid phase at temperatures as low as -40 °C. Above this temperature, cloud droplets freeze via heterogeneous ice nucleation whereby a rare and poorly understood subset of atmospheric particles catalyze the ice phase transition. As the phase state of clouds is critical in determining their radiative properties and lifetime, deficiencies in our understanding of heterogeneous ice nucleation poses a large uncertainty on our efforts to predict human induced global climate change. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established model and parameterizations that accurately predict heterogeneous ice nucleation. Conversely, the sparsity of reliable measurement techniques available struggle to be interpreted by a single consistent theoretical or empirical framework, which results in layers of uncertainty when attempting to extrapolate useful information regarding ice nucleation for use in atmospheric cloud models. In this dissertation a new framework for describing heterogeneous ice nucleation is developed. Starting from classical nucleation theory, the surface of an ice nucleating particle is treated as a continuum of heterogeneous ice nucleating activity and a particle specific distribution of this activity g is derived. It is hypothesized that an individual particle species exhibits a critical surface area. Above this critical area the ice nucleating activity of a particle species can be described by one g distribution, g, while below it g expresses itself expresses externally resulting in particle to particle variability in ice nucleating activity. The framework is supported by cold plate droplet freezing measurements for dust and biological particles in which the total surface area of particle material available is varied. Freezing spectra above a certain surface area are shown to be successfully fitted with g while a process of random sampling from g can predict the freezing behavior below the identified critical surface area threshold. The framework is then extended to account for droplets composed of multiple particle species and successfully applied to predict the freezing spectra of a mixed proxy for an atmospheric dust-biological particle system. The contact freezing mode of ice nucleation, whereby a particle induces freezing upon collision with a droplet, is thought to be more efficient than particle initiated immersion freezing from within the droplet bulk. However, it has been a decades' long challenge to accurately measure this ice nucleation mode, since it necessitates reliably measuring the rate at which particles hit a droplet surface combined with direct determination of freezing onset. In an effort to remedy this longstanding deficiency a temperature controlled chilled aerosol optical tweezers capable of stably isolating water droplets in air at subzero temperatures has been designed and implemented. The new temperature controlled system retains the powerful capabilities of traditional aerosol optical tweezers: retrieval of a cavity enhanced Raman spectrum which could be used to accurately determine the size and refractive index of a trapped droplet. With these capabilities, it is estimated that the design can achieve ice supersaturation conditions at the droplet surface. It was also found that a KCl aqueous droplet simultaneously cooling and evaporating exhibited a significantly higher measured refractive index at its surface than when it was held at a steady state temperature. This implies the potential of a "salting out" process. Sensitivity of the cavity enhanced Raman spectrum as well as the visual image of a trapped droplet to dust particle collisions is shown, an important step in measuring collision frequencies of dust particles with a trapped droplet. These results may pave the way for future experiments of the exceptionally poorly understood contact freezing mode of ice nucleation.
Advanced control of neutral beam injected power in DIII-D
Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...
2017-03-23
In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less
Miniature PCR based portable bioaerosol monitor development.
Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V
2017-01-01
A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is capable of detecting selected airborne micro-organisms on the spot within a short time period. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Resolved-particle simulation by the Physalis method: Enhancements and new capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede
2016-03-15
We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less
Wang, Jing-Tao; Wang, Juan; Han, Jun-Jie
2011-07-04
Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.
Vazquez, M E; Kirk, E
2000-01-01
The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1977-01-01
Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.
Importance of the mixing state for ice nucleating capabilities of individual aerosol particles
NASA Astrophysics Data System (ADS)
Ebert, Martin; Worringen, Annette; Benker, Nathalie; Weinbruch, Stephan
2010-05-01
The effects of aerosol particles on heterogeneous ice formation are currently insufficiently understood. Modelling studies have shown that the type and quantity of atmospheric aerosol particles acting as ice nuclei (IN) can influence ice cloud microphysical and radiative properties as well as their precipitation efficiency. Therefore, the physicochemical identification of IN and a quantitative description of the ice nucleation processes are crucial for a better understanding of formation, life cycles, and the optical properties of clouds as well as for numerical precipitation forecast. During the CLACE 5 campaign in 2006 at the high alpine research station Jungfraujoch (3580 m asl), Switzerland, the physicochemical parameters of IN within mixed-phase clouds were studied. By the use of special Ice-Counterflow Virtual Impactor, residual particles of small ice nuclei (IN) and the interstitial aerosol fraction were sampled seperately within mixed-phase clouds. The size, morphology, elemental composition and mixing state of more than 7000 particles of selected IN- and interstitial-samples were analyzed by scanning electron microscopy (SEM) combined with energy-dispersive X-ray analysis (EDX). For selected particles, the mineralogical phase composition was determined by transmission electron microscopy. In order to receive detailed information about the mixing state (coatings, agglomerates, heterogeneous inclusions) of the IN- and interstitial-samples, the complete individual particle analysis was performed operator controlled. Four different particle types were identified to act as IN. 1) Carbonaceous particles, which were identified to be a complex mixture of soot (main component), sulfate and nitrate. 2) Complex mixtures of two or more diverse particle groups. In almost 75% of these particles silicates or metal oxides are the main-component. 3) Aluminium oxide particles, which were internally mixed with calcium and sulphate rich material and 4) Pb bearing particles. The high abundance of Pb-bearing particles in the IN-samples (up to 24% by number) was an unexpected finding. Besides a smaller content of larger PbO and PbCl2-particles the main component of the particles within this type are predominantly sea salt, soot or silicates, while Pb in these particles is only present as small (50 - 500 nm) heterogeneous Pb or PbS inclusions. In all 4 particle types identified as IN, the mixing state seems to play an essential role. Therefore it can be concluded that the determination of the main-component of a particle is not sufficient for the prediction of its IN-capability.
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.
Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T
2017-12-01
In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.
Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches
NASA Astrophysics Data System (ADS)
Beesabathuni, Shilpa Naidu
The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Baba, M.
2014-06-01
Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.
Optimum size of nanorods for heating application
NASA Astrophysics Data System (ADS)
Seshadri, G.; Thaokar, Rochish; Mehra, Anurag
2014-08-01
Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions.
Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redondo, Antonio
2010-01-01
The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, ourmore » opinion of the overall status of the theme area, and challenges and issues.« less
Orzol, Leonard L.
1997-01-01
MODTOOLS uses the particle data calculated by MODPATH to construct several types of GIS output. MODTOOLS uses particle information recorded by MODPATH such as the row, column, or layer of the model grid, to generate a set of characteristics associated with each particle. The user can choose from the set of characteristics associated with each particle and use the capabilities of the GIS to selectively trace the movement of water discharging from specific cells in the model grid. MODTOOLS allows the hydrogeologist to utilize the capabilities of the GIS to graphically combine the results of the particle-tracking analysis, which facilitates the analysis and understanding of complex ground-water flow systems.
Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.
Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo
2018-04-17
The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply adjusting the amplitude and phase of the applied current, MNTs based on electromagnets allow for dynamic control of the magnetic field from microseconds to hours. Chemical design and the nanoscale effects of magnetic particles are also essential for optimizing MNT performance. We discuss key strategies to develop magnetic nanoparticles with improved force-generation capabilities with a particular focus on the effects of size, shape, and composition of the nanoparticles. We then introduce various strategies and design considerations for target-specific biomechanical stimulations with MNTs. One-to-one particle-receptor engagement for delivering a defined force to the targeted receptor and the small size of the nanoparticles are important. Finally, we demonstrate the utility of MNTs for manipulating biological functions and activities with various spatial (single molecule/cell to organisms) and temporal resolution (microseconds to days). MNTs have the potential to be utilized in many exciting applications across diverse biological systems spanning from fundamental biology investigations of spatial and mechanical signaling dynamics at the single-cell and systems levels to in vivo therapeutic applications.
Material properties of viral nanocages explored by atomic force microscopy.
van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L
2015-01-01
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
Recombinant vaccine for canine parvovirus in dogs.
López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I
1992-05-01
VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection.
Recombinant vaccine for canine parvovirus in dogs.
López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I
1992-01-01
VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection. Images PMID:1313899
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; ...
2018-01-25
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.
Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.
2018-03-01
The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
Flocculation and aggregation in a microgravity environment (FAME)
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.
1994-01-01
An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Elftmann, R.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Steinhagen, J.; Tammen, J.; Terasa, C.; Yu, J.
2016-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.
2017-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Patchy particles made by colloidal fusion
NASA Astrophysics Data System (ADS)
Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2017-10-01
Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.
Hazards posed by distal ash transport and sedimentation from extreme volcanic eruptions
NASA Astrophysics Data System (ADS)
Sahagian, D. L.; Proussevitch, A. A.; White, C. M.; Klewicki, J.
2016-12-01
Volcanic ash injected into the upper troposphere and lower stratosphere poses a significant hazard to aviation and human security as a result of extreme, explosive eruptions. These have occurred in the recent geologic past, and are expected to occur again, now that modern society and its infrastructure is far more vulnerable than ever before. Atmospheric transport, dispersion, and sedimentation of Ash particles is controlled by fundamentally different processes than control other particles normally transported in the atmosphere due to their complex internal and external morphology. It is thus necessary to elucidate the fundamental processes of particle-fluid interactions in the upper troposphere and lower stratosphere, where most air traffic resides, and thereby enhance the capability of volcanic ash transport models to predict the ash concentration in distal regions that pose aviation and other hazards. Current Volcanic Ash Transport and Dispersion (VATD) models use simplistic stokes settling velocities for larger ash particles, and treat smaller ash particles (that are a large part of the hazard) merely as passive tracers. By incorporating the dynamics of fine ash particle-atmosphere interactions into existing VATD models provides the foundation for a much more accurate assessment framework applied to the hazard posed by specific future extreme eruptions, and thus dramatically reduce both the risk to air traffic and the cost of airport and flight closures, in addition to human health, water quality, agricultural, infrastructure hazards, as well as ice cap albedo and short term climate impacts.
Strategies for Controlled Placement of Nanoscale Building Blocks
2007-01-01
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185
Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding
NASA Astrophysics Data System (ADS)
Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.
Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.
NASA Astrophysics Data System (ADS)
Paustian, Joel Scott
Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.
Monodisperse aerosol generator
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
NASA Astrophysics Data System (ADS)
Worrall, Michael Jason
One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.
EPICS-based control and data acquisition for the APS slope profiler (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sullivan, Joseph; Assoufid, Lahsen; Qian, Jun; Jemian, Peter R.; Mooney, Tim; Rivers, Mark L.; Goetze, Kurt; Sluiter, Ronald L.; Lang, Keenan
2016-09-01
The motion control, data acquisition and analysis system for APS Slope Measuring Profiler was implemented using the Experimental Physics and Industrial Control System (EPICS). EPICS was designed as a framework with software tools and applications that provide a software infrastructure used in building distributed control systems to operate devices such as particle accelerators, large experiments and major telescopes. EPICS was chosen to implement the APS Slope Measuring Profiler because it is also applicable to single purpose systems. The control and data handling capability available in the EPICS framework provides the basic functionality needed for high precision X-ray mirror measurement. Those built in capabilities include hardware integration of high-performance motion control systems (3-axis gantry and tip-tilt stages), mirror measurement devices (autocollimator, laser spot camera) and temperature sensors. Scanning the mirror and taking measurements was accomplished with an EPICS feature (the sscan record) which synchronizes motor positioning with measurement triggers and data storage. Various mirror scanning modes were automatically configured using EPICS built-in scripting. EPICS tools also provide low-level image processing (areaDetector). Operation screens were created using EPICS-aware GUI screen development tools.
Particle and Power Exhaust in EAST
NASA Astrophysics Data System (ADS)
Wang, Liang; Ding, Fang; Yu, Yaowei; Gan, Kaifu; Liang, Yunfeng; Xu, Guosheng; Xiao, Bingjia; Sun, Youwen; Luo, Guangnan; Gong, Xianzu; Hu, Jiansheng; Li, Jiangang; Wan, Baonian; Maingi, Rajesh; Guo, Houyang; Garofalo, Andrea; EAST Team
2017-10-01
A total power injection up to 0.3GJ has been achieved in EAST long pulse USN operation with ITER-like water-cooling W-monoblock divertor, which has steady-state power exhaust capability of 10 MWm-2. The peak temperature of W target saturated at t = 12 s to the value T 500oC and a heat flux 3MWm-2was maintained. Great efforts to reduce heat flux and accommodate particle exhaust simultaneously have been made towards long pulse of 102s time scale. By exploiting the observation of Pfirsch-Schlüter flow direction in the SOL, the Bt direction with Bx ∇B away from the W divertor (more particles favor outer target in USN) was adopted along with optimizing the strike point location near the pumping slot, to facilitate particle and impurity exhaust with the top cryo-pump. By tailoring the 3D divertor footprint through edge magnetic topology change, the heat load was dispersed widely and thus peak heat flux and W sputtering was well controlled. Active feedback control of total radiative power with neon seeding was achieved within frad = 17-35%, exhibiting further potential for heat flux reduction with divertor and edge radiation. Other heat flux handling techniques, including quasi snowflake configuration, will also be presented.
NASA Astrophysics Data System (ADS)
Babick, Frank; Mielke, Johannes; Wohlleben, Wendel; Weigel, Stefan; Hodoroaba, Vasile-Dan
2016-06-01
Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given.
Microfluidic Controlled Conformal Coating of Particles
NASA Astrophysics Data System (ADS)
Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard
2011-11-01
Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.
Deposit Structure for Particle-laden Droplets Targeted by Electrospray
NASA Astrophysics Data System (ADS)
Ghafouri, Aref; Singler, Timothy; Yong, Xin; Chiarot, Paul
2017-11-01
A hybrid printing technique that combines electrospray atomization with inkjet printing provides unique capabilities for exploring transport creating nanoparticle deposits with controlled structures. In this research, we use electrospray to deliver dry nanoparticles to the interface of particle-laden sessile droplets. Upon evaporation of the target sessile droplet, the particles at the interface are mapped to the underlying substrate. Particle locations in the final deposit were observed separately by tagging the particles dispersed inside the droplet and at its interface with different fluorophores. As expected, surfactant-free particles inside the target droplet were transported to its (pinned) contact line, creating a ``coffee ring'' morphology in the final deposit. The transport and final location of the interfacial particles was highly dependent on the presence of surfactant in the electrosprayed solution. If surfactant was present, the interfacial particles were transported to the apex of the target droplet, forming a dense region at the center of the final deposit. If the electrosprayed solution was surfactant-free, the transport of the interfacial particles was arrested and they were distributed uniformly across the final deposit. Similar deposit morphologies were found when experimenting with various surfactants, including Tween and sodium dodecyl sulfate. These results highlight the important of Marangoni flow in governing the final deposit structure for hybrid printing. This research supported by the National Science Foundation (Award 1538090).
Feedback Controlled Colloidal Assembly at Fluid Interfaces
NASA Astrophysics Data System (ADS)
Bevan, Michael
The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.
Microwaving of normally opaque and semi-opaque substances
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
Method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.
NASA Technical Reports Server (NTRS)
Yoda, M.; Bailey, B. C.
2000-01-01
On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.
Method for producing monodisperse aerosols
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
NASA Astrophysics Data System (ADS)
Carpino, Francesca
In the last few decades, the development and use of nanotechnology has become of increasing importance. Magnetic nanoparticles, because of their unique properties, have been employed in many different areas of application. They are generally made of a core of magnetic material coated with some other material to stabilize them and to help disperse them in suspension. The unique feature of magnetic nanoparticles is their response to a magnetic field. They are generally superparamagnetic, in which case they become magnetized only in a magnetic field and lose their magnetization when the field is removed. It is this feature that makes them so useful for drug targeting, hyperthermia and bioseparation. For many of these applications, the synthesis of uniformly sized magnetic nanoparticles is of key importance because their magnetic properties depend strongly on their dimensions. Because of the difficulty of synthesizing monodisperse particulate materials, a technique capable of characterizing the magnetic properties of polydisperse samples is of great importance. Quadrupole magnetic field-flow fractionation (MgFFF) is a technique capable of fractionating magnetic particles based on their content of magnetite or other magnetic material. In MgFFF, the interplay of hydrodynamic and magnetic forces separates the particles as they are carried along a separation channel. Since the magnetic field and the gradient in magnetic field acting on the particles during their migration are known, it is possible to calculate the quantity of magnetic material in the particles according to their time of emergence at the channel outlet. Knowing the magnetic properties of the core material, MgFFF can be used to determine both the size distribution and the mean size of the magnetic cores of polydisperse samples. When magnetic material is distributed throughout the volume of the particles, the derived data corresponds to a distribution in equivalent spherical diameters of magnetic material in the particles. MgFFF is unique in its ability to characterize the distribution in magnetic properties of a particulate sample. This knowledge is not only of importance to the optimization and quality control of particle preparation. It is also of great importance in modeling magnetic cell separation, drug targeting, hyperthermia, and other areas of application.
NASA Technical Reports Server (NTRS)
Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo
2016-01-01
This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.
End-to-end plasma bubble PIC simulations on GPUs
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Fox, William; Matteucci, Jackson; Bhattacharjee, Amitava
2017-10-01
Accelerator technologies play a crucial role in eventually achieving exascale computing capabilities. The current and upcoming leadership machines at ORNL (Titan and Summit) employ Nvidia GPUs, which provide vast computational power but also need specifically adapted computational kernels to fully exploit them. In this work, we will show end-to-end particle-in-cell simulations of the formation, evolution and coalescence of laser-generated plasma bubbles. This work showcases the GPU capabilities of the PSC particle-in-cell code, which has been adapted for this problem to support particle injection, a heating operator and a collision operator on GPUs.
Angle-adjustable density field formulation for the modeling of crystalline microstructure
NASA Astrophysics Data System (ADS)
Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng
2018-05-01
A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.
Single-particle mapping of nonequilibrium nanocrystal transformations
Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; ...
2016-11-18
Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. For this study, we monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates themore » importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.« less
Lippmann, M.
1964-04-01
A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)
Fully Mechanically Controlled Automated Electron Microscopic Tomography
Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...
2016-07-11
Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob
2016-03-01
Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL -1 ). The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacchi, R; Guarachi, L Fanola; Monaco, V
2015-06-15
Purpose: Monitoring the prescribed dose in particle therapy is typically carried out by using parallel plate ionization chambers working in transmission mode. The use of gas detectors has several drawbacks: they need to be calibrated daily against standard dosimeters and their dependence on beam quality factors need to be fully characterized and controlled with high accuracy. A detector capable of single particle counting is proposed which would overcome all these limitations. Combined with a gas ionization chamber, it will allow determining the average particle stopping power, thus providing an effective method for the online verification of the selected particle energymore » and range. Methods: Low-Gain Avalanche Detectors (LGADs) are innovative n-in-p silicon sensors with moderate internal charge multiplication occurring in the strong field generated by an additional p+ doping layer implanted at a depth of a few µm in the bulk of the sensor. The increased signal-to-noise ratio allows designing very thin, few tens of microns, segmented LGADs, called Ultra Fast Silicon Detectors (UFSD), optimized for very fast signal, which would be suitable for charged particle counting at high rates. A prototype UFSD is being designed for this purpose. Results: Different LGAD diodes have been characterized both in laboratory and beam tests, and the results compared both with those obtained with similar diodes without the gain layer and with a program simulating the signal in the sensors. The signal is found to be enhanced in LGADs, while the leakage current and the noise is not affected by the gain. Possible alternative designs and implementations are also presented and discussed. Conclusion: Thanks to their excellent counting capabilities, UFSD detectors are a promising technology for future beam monitor devices in hadron-therapy applications. Studies are ongoing to better understand their properties and optimize the design in view of this application.« less
NASA Astrophysics Data System (ADS)
Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias
2018-04-01
A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.
Inertial microfluidic physics.
Amini, Hamed; Lee, Wonhee; Di Carlo, Dino
2014-08-07
Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials synthesis, and chemical process control.
Teychene, Benoît; Guigui, Christelle; Cabassud, Corinne
2011-02-01
For membrane bioreactors (MBR) applied to wastewater treatment membrane fouling is still the prevalent issue. The main limiting phenomena related to fouling is a sudden jump of the transmembrane pressure (TMP) often attributed to the collapse of the fouling layer. Among existing techniques to avoid or to delay this collapse, the addition of active particles membrane fouling reducers (polymer, resins, powdered activated carbon (PAC), zeolithe...) showed promising results. Thus the main objective of this work is to determine if fouling can be reduced by inclusion of inert particles (500 nm and inert compared to other fouling reducers) and which is the impact on filtration performances of the structuring of the fouling. Those particles were chosen for their different surface properties and their capability to form well structured layer. Results, obtained at constant pressure in dead end mode, show that the presence of particles changes foulant deposition and induces non-compressible fouling (in the range of 0.5-1 bar) and higher rejection values compared to filtration done on supernatant alone. Indeed dead end filtration tests show that whatever interactions between biofluid and particles, the addition of particles leads to better filtration performances (in terms of rejection, and fouling layer compressibility). Moreover results confirm the important role played by macromolecular compounds, during supernatant filtration, creating highly compressible and reversible fouling. In conclusion, this study done at lab-scale suggests the potential benefit to engineer fouling structure to control or to delay the collapse of the fouling layer. Finally this study offers the opportunities to enlarge the choice of membrane fouling reducers by taking into consideration their ability to form more consistent fouling (i.e. rigid, structured fouling). Copyright © 2010 Elsevier Ltd. All rights reserved.
Synthesis and self-assembly of Janus and patchy colloidal particles
NASA Astrophysics Data System (ADS)
Jiang, Shan
Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle concentration, and the Janus balance. Various cluster and chain structures were observed. Using in situ optical microscopy, I found these structures to be dynamic in structure, in this respect analogous to the micelles formed by small surfactant molecules. A qualitative explanation about the possible underlying mechanism was proposed, based on considering the tradeoff between enthalpy gain from hydrophobic contacts, and entropy involving rotational orientation between neighboring particles. Monolayer crystals of Janus amphiphilic particles were investigated in a system of silica-based particles. Regarding positional order, these particles adopted a conventional hexagonal packing, but their orientations formed strikingly ordered linear clusters that extended the length of tens of particles. Study of their rotational dynamics using single particle tracking showed rotation to be strongly coupled between adjacent particles, with a correlation length extending to sevearl particle diameters. This is a beautiful example of a unique physical phenomenon that simply does not exist when dealing with classical particles whose surface chemical makeup is homogeneous. At the oil-water interface, Janus amphiphilic particles adsorb strongly. With simple calculations, I showed that the adsorption energy depends not only on surface tension but also on the Janus balance. I developed a rigorous mathematical definition of "Janus balance" that may find application in emulsions stabilized by Janus particles. On the experimental side, I performed experiments to quantify the efficacy of Janus particles to stabilize emulsions for extended times.
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2015-11-01
A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.
Plasmonic optical nanotweezers
NASA Astrophysics Data System (ADS)
Kotb, Rehab; El Maklizi, Mahmoud; Ismail, Yehea; Swillam, Mohamed A.
2017-02-01
Plasmonic grating structures can be used in many applications such as nanolithography and optical trapping. In this paper, we used plasmonic grating as optical tweezers to trap and manipulate dielectric nano-particles. Different plasmonic grating structures with single, double, and triple slits have been investigated and analyzed. The three configurations are optimized and compared to find the best candidate to trap and manipulate nanoparticles. The three optimized structures results in capability to super focusing and beaming the light effectively beyond the diffraction limit. A high transverse gradient optical force is obtained using the triple slit configuration that managed to significantly enhance the field and its gradient. Therefore, it has been chosen as an efficient optical tweezers. This structure managed to trap sub10nm particles efficiently. The resultant 50KT potential well traps the nano particles stably. The proposed structure is used also to manipulate the nano-particles by simply changing the angle of the incident light. We managed to control the movement of nano particle over an area of (5μm x 5μm) precisely. The proposed structure has the advantage of trapping and manipulating the particles outside the structure (not inside the structure such as the most proposed optical tweezers). As a result, it can be used in many applications such as drug delivery and biomedical analysis.
The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.
2003-01-01
The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.
Particle protection capability of SEMI-compliant EUV-pod carriers
NASA Astrophysics Data System (ADS)
Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank
2010-04-01
With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.
Varney, Michael C M; Jenness, Nathan J; Smalyukh, Ivan I
2014-02-01
Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocker, Anna; Bugiel, Sebastian; Srama, Ralf
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flightmore » mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.« less
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
NASA Astrophysics Data System (ADS)
Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf
2011-09-01
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.
Compositions and methods for adoptive and active immunotherapy
Fahmy, Tarek; Steenblock, Erin
2014-01-14
Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
NASA Technical Reports Server (NTRS)
Marshall, John R.; Bridges, Frank; Gault, Donald; Greeley, Ronald; Houpis, Harry; Lin, Douglas; Weidenschilling, Stuart
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed.
NASA Astrophysics Data System (ADS)
Shallcross, Gregory; Capecelatro, Jesse
2017-11-01
Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.
Sajeesh, S; Sharma, Chandra P
2011-05-01
The study was aimed at the evaluation of N-vinyl pyrrolidone (NVP) incorporated polymethacrylic acid-chitosan microparticles for oral drug delivery applications. Poly (methacrylic acid)-chitosan (PMC) and poly(methacrylic acid-vinyl pyrrolidone)-chitosan (PMVC) microparticles were prepared by an ionic-gelation method. Mucoadhesion behaviour of these particles was evaluated by ex-vivo adhesion method using freshly excised rat intestinal tissue. Cytotoxicity and absorption enhancing property of PMC and PMVC particles were evaluated on Caco 2 cell monolayers. Protease enzyme inhibition capability and insulin loading/release properties of these hydrogel particles was evaluated under in vitro experimental conditions. Addition of NVP units enhanced the mucoadhesion behavior of PMC particles on isolated rat intestinal tissue. Both PMC and PMVC particles were found non-toxic on Caco 2 cell monolayers and PMC particles was more effective in improving paracellular transport of fluorescent dextran across Caco 2 cell monolayers as compared to PMVC particles. However, protease inhibition efficacy of PMC particles was not significantly affected with NVP addition. NVP incorporation improved the insulin release properties of PMC microparticles at acidic pH. Hydrophilic modification seems to be an interesting approach in improving mucoadhesion capability of PMC microparticles.
A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family
NASA Astrophysics Data System (ADS)
Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.
2014-06-01
CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadle, S. H.; Ayala, A.; Black, K. N.
2009-02-01
The Coordinating Research Council (CRC) convened its 18th On-Road Vehicle Emissions Workshop March 31-April 2, 2008, with 104 presentations describing the most recent mobile source-related emissions research. In this paper we summarize the presentations from researchers whose efforts are improving our understanding of the contribution of mobile sources to air quality. Participants in the workshop discussed emission models and emissions inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles (with an emphasis in this workshop on particle emissions), effects of fuels on emissions, evaluation of in-use emission-control programs, and efforts to improve our capabilities in performingmore » on-board emissions measurements, as well as topics for future research.« less
Environmental nanoparticles are significantly over-expressed in acute myeloid leukemia.
Visani, G; Manti, A; Valentini, L; Canonico, B; Loscocco, F; Isidori, A; Gabucci, E; Gobbi, P; Montanari, S; Rocchi, M; Papa, S; Gatti, A M
2016-11-01
The increase in the incidence of acute myeloid leukemia (AML) may suggest a possible environmental etiology. PM2.5 was declared by IARC a Class I carcinogen. No report has focused on particulate environmental pollution together with AML. The study investigated the presence and composition of particulate matter in blood with a Scanning Electron Microscope coupled with an Energy Dispersive Spectroscope, a sensor capable of identifying the composition of foreign bodies. 38 peripheral blood samples, 19 AML cases and 19 healthy controls, were analyzed. A significant overload of particulate matter-derived nanoparticles linked or aggregated to blood components was found in AML patients, while almost absent in matched healthy controls. Two-tailed Student's t-test, MANOVA and Principal Component Analysis indicated that the total numbers of aggregates and particles were statistically different between cases and controls (MANOVA, P<0.001 and P=0.009 respectively). The particles detected showed to contain highly-reactive, non-biocompatible and non-biodegradable metals; in particular, micro- and nano-sized particles grouped in organic/inorganic clusters, with statistically higher frequency of a subgroup of elements in AML samples. The demonstration, for the first time, of an overload of nanoparticles linked to blood components in AML patients could be the basis for a possible, novel pathogenetic mechanism for AML development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monitor for detecting and assessing exposure to airborne nanoparticles
NASA Astrophysics Data System (ADS)
Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen
2010-01-01
An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; <100 nm) and ultrafine particles (UFP; <300 nm). Depending on their size and chemical nature, exposure to these particles through inhalation can be hazardous because of their intrinsic ability to deposit in the deep lung regions and the possibility to subsequently pass into the blood stream. Recommended safety measures in the nanomaterials industry are pragmatic, aiming at exposure minimization in general, and advocating continuous control by monitoring both the workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.
The Pursuit of a Scalable Nanofabrication Platform for Use in Material and Life Science Applications
GRATTON, STEPHANIE E. A.; WILLIAMS, STUART S.; NAPIER, MARY E.; POHLHAUS, PATRICK D.; ZHOU, ZHILIAN; WILES, KENTON B.; MAYNOR, BENJAMIN W.; SHEN, CLIFTON; OLAFSEN, TOVE; SAMULSKI, EDWARD T.; DESIMONE, JOSEPH M.
2008-01-01
CONSPECTUS In this Account, we describe the use of perfluoropolyether (PFPE)-based materials that are able to accurately mold and replicate micro- and nanosized features using traditional techniques such as embossing as well as new techniques that we developed to exploit the exceptional surface characteristics of fluorinated substrates. Because of the unique partial wetting and nonwetting characteristics of PFPEs, we were able to go beyond the usual molding and imprint lithography approaches and have created a technique called PRINT (Particle [or Pattern] Replication In Nonwetting Templates). PRINT is a distinctive “top-down” fabrication technique capable of generating isolated particles, arrays of particles, and arrays of patterned features for a plethora of applications in both nanomedicine and materials science. A particular strength of the PRINT technology is the high-resolution molding of well-defined particles with precise control over size, shape, deformability, and surface chemistry. The level of replication obtained showcases some of the unique characteristics of PFPE molding materials. In particular, these materials arise from very low surface energy precursors with positive spreading coefficients, can be photocured at ambient temperature, and are minimally adhesive, nonswelling, and conformable. These distinctive features enable the molding of materials with unique attributes and nanometer resolution that have unprecedented scientific and technological value. For example, in nanomedicine, the use of PFPE materials with the PRINT technique allows us to design particles in which we can tailor key therapeutic parameters such as bioavailability, biodistribution, target-specific cell penetration, and controlled cargo release. Similarly, in materials science, we can fabricate optical films and lens arrays, replicate complex, naturally occurring objects such as adenovirus particles, and create 2D patterned arrays of inorganic oxides. PMID:18720952
Ocean Wave Simulation Based on Wind Field
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718
Ocean Wave Simulation Based on Wind Field.
Li, Zhongyi; Wang, Hao
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.
NASA Astrophysics Data System (ADS)
Shields, Charles
Acoustic radiation forces offer a promising approach to rapidly arrange particles across a broad range of scales, yet it remains largely unexplored compared to classical methods like centrifugation, electrophoresis, and magnetophoresis. Acoustic forces offer numerous advantages, including scalability, programmability, and the ability to manipulate particles of variable composition (i.e., without narrowly defined electromagnetic or other properties). While some groups have shown the ability to concentrate particles with ultrasonic radiation, the capabilities and limitations for precise particle assembly and morphological control remain poorly understood. Here, I will discuss our recent efforts to explore the flexibility and limitations of acoustophoresis to rapidly arrange microparticles into organized and programmable structures. In order to execute these studies, we employ a simple ``sonocrystallization chamber'' that creates multidimensional bulk acoustic standing waves to propel particles toward the pressure nodes or antinodes, depending on their contrast factor. We can thus create thousands of size-limited assemblies within minutes. We pair these experiments with simulations and theory to model the migration kinetics and assembly patterns of different particles types. I will further discuss how we have extended these results to understand the lower particle size limit for assembly in systems such as gold nanoparticles with diameters <200 nm. Finally, I will show how we incorporated a simple light-based crosslinking approach for stabilizing the assembly in the small particle limit (i.e., beyond the acoustic focusing limit), which might enable use in a variety of plasmonic and photonic applications.
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob
2016-01-01
Background Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. Objective The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Materials and Methods Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. Results The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL-1). Conclusions The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size. PMID:28959317
FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout
NASA Astrophysics Data System (ADS)
Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.
2016-02-01
The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.
Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe
2013-03-19
A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn
Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction andmore » Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.« less
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Future implementations might enhance the optical microscopy with spectroscopy, or incorporate advanced AFM techniques for thermogravimetric and chemical analysis.
Dielectric particle injector for material processing
NASA Technical Reports Server (NTRS)
Leung, Philip L. (Inventor)
1992-01-01
A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation
NASA Astrophysics Data System (ADS)
Miller, Carla J.; Cespedes, Ernesto R.
2012-12-01
Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.
A microarray MEMS device for biolistic delivery of vaccine and drug powders.
Pirmoradi, Fatemeh Nazly; Pattekar, Ashish V; Linn, Felicia; Recht, Michael I; Volkel, Armin R; Wang, Qian; Anderson, Greg B; Veiseh, Mandana; Kjono, Sandra; Peeters, Eric; Uhland, Scott A; Chow, Eugene M
2015-01-01
We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles.
A microarray MEMS device for biolistic delivery of vaccine and drug powders
Pirmoradi, Fatemeh Nazly; Pattekar, Ashish V; Linn, Felicia; Recht, Michael I; Volkel, Armin R; Wang, Qian; Anderson, Greg B; Veiseh, Mandana; Kjono, Sandra; Peeters, Eric; Uhland, Scott A; Chow, Eugene M
2015-01-01
We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles. PMID:26090875
Particle compositions with a pre-selected cell internalization mode
NASA Technical Reports Server (NTRS)
Ferrari, Mauro (Inventor); Decuzzi, Paolo (Inventor)
2012-01-01
A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.
Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study.
Catte, Andrea; Patterson, James C; Jones, Martin K; Jerome, W Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P; Harvey, Stephen C; Li, Ling; Weinstein, Gilbert; Segrest, Jere P
2006-06-15
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 angstroms and 78 angstroms by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules.
Novel Changes in Discoidal High Density Lipoprotein Morphology: A Molecular Dynamics Study
Catte, Andrea; Patterson, James C.; Jones, Martin K.; Jerome, W. Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P.; Harvey, Stephen C.; Li, Ling; Weinstein, Gilbert; Segrest, Jere P.
2006-01-01
ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 Å and 78 Å by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules. PMID:16581834
Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF
McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...
2015-03-29
The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less
Isolation of N-linked glycopeptides by hydrazine-functionalized magnetic particles.
Sun, Shisheng; Yang, Ganglong; Wang, Ting; Wang, Qinzhe; Chen, Chao; Li, Zheng
2010-04-01
We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130 +/- 5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides.
The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, Rajendran
2012-01-01
We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detectormore » and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.« less
Fast Particle Methods for Multiscale Phenomena Simulations
NASA Technical Reports Server (NTRS)
Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew
2000-01-01
We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.
Biosorption of heavy metals in polluted water, using different waste fruit cortex
NASA Astrophysics Data System (ADS)
Kelly-Vargas, Kevin; Cerro-Lopez, Monica; Reyna-Tellez, Silvia; Bandala, Erick R.; Sanchez-Salas, Jose Luis
The biosorption capacity of different cortex fruit wastes including banana (Musa paradisiaca), lemon (Citrus limonum) and orange (Citrus sinensis) peel were evaluated. In order to perform these experiments, grinded dried cortexes were used as package in 100 mm high, 10 mm i.d. columns. The grinded material was powdered in a mortar and passed through a screen in order to get two different particle sizes, 2 and 1 mm, for all powders. To estimate the biosorption capabilities of the tested materials, different heavy metals were passed through the columns and the elution filtrate reloaded different times to increase the retention of metals. The heavy metals used were prepared as synthetic samples at 10 mg/L of Pb(NO3)2, Cd(NO3)2, and Cu(NO3)2·6H2O using primary standards. In preliminary experiments using banana cortex, it was found that material with 1 mm of particle size showed higher retention capability (up to12%) than the material with 2 mm of particle size. Considering these results, 1 mm particle size material was used in further experiments with the other waste materials. It was found that for Pb and Cu removal, lemon and orange cortex showed better biosorption capability when compared with banana cortex (up to 15% less for Pb and 48% less for Cu). For Cd, banana cortex showed better biosorption capability 57% (67.2 mg/g of cortex) more than orange (28.8 mg/g of cortex), and 82% more than lemon (12 mg/g of cortex). Reload of the columns with the filtrate after passing through the column improved the removal capability of all the materials tested from 10% to 50% depending on the cortex and metal tested.
Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.
Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin
2013-01-01
Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.
Nanoparticle Superlattice Engineering with DNA
NASA Astrophysics Data System (ADS)
Macfarlane, Robert John
In this thesis, we describe a set of design rules for using programmable oligonucleotide interactions, elements of both thermodynamic and kinetic control, and an understanding of the dominant forces that are responsible for particle assembly to design and deliberately make a wide variety of nanoparticle-based superlattices. Like the rules for ionic solids developed by Linus Pauling, these rules are guidelines for determining relative nanoparticle superlattice stability, rather than rigorous mathematical descriptions. However, unlike Pauling's rules, the set of rules developed herein allow one to not just predict crystal stability, but also to deliberately and independently control the nanoparticle sizes, interparticle spacings, and crystallographic symmetries of a superlattice. In the first chapter of this thesis, a general background is given for using DNA as a tool in programmable materials synthesis. Chapter 2 demonstrates how altering oligonucleotide length and nanoparticle size can be used to control nanoparticle superlattice lattice parameters with nanometer-scale precision. In the third chapter, the kinetics of crystallization are examined, and a method to selectively stabilize kinetic products is presented. The data in chapter 4 prove that it is the overall hydrodynamic radius of a DNA-functionalized particle, rather than the sizes of the inorganic nanoparticles being assembled, that dictates particle packing behavior. Chapter 5 demonstrates how particles that exhibit non-equivalent packing behavior can be used to control superlattice symmetry, and chapter 6 utilizes these data to develop a phase diagram that predicts lattice stability a priori to synthesis. In chapter 7, the ability to functionalize a particle with multiple types of oligonucleotides is used to synthesize complex lattices, including ternary superlattices that are capable of dynamic symmetry conversion between a binary and a ternary state. The final chapter provides an outlook on other developments in DNA-programmed nanoparticle assembly not covered in this thesis, as well as future challenges for this field. Supplementary information to support the conclusions of the thesis, as well as provide technical details on how these materials are synthesized, are provided in appendices at the end of the thesis. As a whole, this methodology presents a major advance towards nanoparticle superlattice engineering, as it effectively separates the identity of a particle core (and thereby its physical properties) from the variables that control its assembly, enabling the synthesis of designer nanoparticle-based materials.
NASA Astrophysics Data System (ADS)
Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.
2017-12-01
Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.
Acceleration technologies for charged particles: an introduction
NASA Astrophysics Data System (ADS)
Carter, Richard G.
2011-01-01
Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.
Stoney, David A; Stoney, Paul L
2015-08-01
An effective trace evidence capability is defined as one that exploits all useful particle types, chooses appropriate technologies to do so, and directly integrates the findings with case-specific problems. Limitations of current approaches inhibit the attainment of an effective capability and it has been strongly argued that a new approach to trace evidence analysis is essential. A hypothetical case example is presented to illustrate and analyze how forensic particle analysis can be used as a powerful practical tool in forensic investigations. The specifics in this example, including the casework investigation, laboratory analyses, and close professional interactions, provide focal points for subsequent analysis of how this outcome can be achieved. This leads to the specification of five key elements that are deemed necessary and sufficient for effective forensic particle analysis: (1) a dynamic forensic analytical approach, (2) concise and efficient protocols addressing particle combinations, (3) multidisciplinary capabilities of analysis and interpretation, (4) readily accessible external specialist resources, and (5) information integration and communication. A coordinating role, absent in current approaches to trace evidence analysis, is essential to achieving these elements. However, the level of expertise required for the coordinating role is readily attainable. Some additional laboratory protocols are also essential. However, none of these has greater staffing requirements than those routinely met by existing forensic trace evidence practitioners. The major challenges that remain are organizational acceptance, planning and implementation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hoeprich, Paul D.; Whalen, Maureen
2016-04-05
Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEE,Y.N.; SONG,Z.; LIU,Y.
2001-01-13
Knowledge of aerosol chemical composition is key to understanding a number of properties of ambient aerosol particles including sources, size/number distribution, chemical evolution, optical properties and human health effects. Although filter based techniques have been widely used to determine aerosol chemical constituents, they generally cannot provide sufficiently fast time resolution needed to investigate sources and chemical evolution that effect aerosol chemical, size and number changes. In order to gain an ability to describe and predict the life cycles of ambient aerosols as a basis for ambient air quality control, fast and sensitive determination of the aerosol chemical composition must bemore » made available. To help to achieve this goal, we deployed a newly developed technique, referred to as PILS (particle-into-liquid-sampler), on the DOE G1 aircraft during the 2000 Texas Air Quality Study (TexAQS 2000) to characterize the major ionic species of aerosol particles with aerodynamic size smaller than 2.5 {micro}m (PM 2.5). The results obtained are examined in the context of other simultaneously collected data for insights into the measurement capability of the PILS system.« less
Advancing the understanding of plasma transport in mid-size stellarators
NASA Astrophysics Data System (ADS)
Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams
2017-01-01
The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.
SiD Linear Collider Detector R&D, DOE Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, James E.; Demarteau, Marcel
2015-05-15
The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Siliconmore » detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and are described in this report.« less
Baseline scheme for polarization preservation and control in the MEIC ion complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Lin, Fanglei; Morozov, Vasiliy
2015-09-01
The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarizationmore » orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.« less
NASA Astrophysics Data System (ADS)
Lee, Yi Seul; Bae, Ji Young; Koo, Hye Young; Lee, Young Boo; Choi, Won San
2016-03-01
We present the synthesis of polydopamine particle-gold composites (PdopP-Au) and unique release of Au@Pdop core@shell nanoparticles (NPs) from the PdopP-Au upon external stimuli. The PdopP-Au was prepared by controlled synthesis of AuNPs on the Pdop particles. Upon near infrared (NIR) irradiation or NaBH4 treatment on the PdopP-Au, the synthesized AuNPs within the PdopPs could be burst-released as a form of Au@Pdop NPs. The PdopP-Au composite showed outstanding photothermal conversion ability under NIR irradiation due to the ultrahigh loading of the AuNPs within the PdopPs, leading to a remote-controlled explosion of the PdopP-Au and rapid formation of numerous Au@Pdop NPs. The release of the Au@Pdop NPs could be instantly stopped or re-started by off or reboot of NIR, respectively. The structure of the released Au@Pdop NPs is suitable for a catalyst or adsorbent, thus we demonstrated that the PdopP-Au composite exhibited excellent and sustained performances for environmental remediation due to its capability of the continuous production of fresh catalysts or adsorbents during the reuse.
The use of temperature programmable flow tubes for the study of atmospheric aerosols
NASA Astrophysics Data System (ADS)
Khalizov, A.; Sloan, J. J.
2003-04-01
In order to understand the response of atmospheric aerosols to changes they encounter in the natural atmosphere, it is usually necessary to observe models of these aerosol systems under carefully controlled laboratory conditions. This is particularly difficult for the condensed phase, for which agglomeration, gas-particle exchange and gravitational settling affect the composition and limit the observation time. Traditionally, studies of this kind have been carried out in large static chambers and flow tubes. While large chambers provide relatively long observations times, they afford the experimenter less direct control over the environment of the particles. Flow tubes, on the other hand provide very precise control of the experimental conditions, but a much shorter contact time. We have used temperature programmable flow tubes for the past decade to study the composition, size and phase changes that occur when aerosols are exposed to variations in the temperature and composition of the surrounding atmosphere. In many cases, our measurements also yield accurate rate constants for the nucleation of solids in liquid droplets. In this presentation, we will illustrate the capabilities of this method using results obtained from a new temperature programmable flow tube recently built in our laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffner, D. A.; Carter, T. A.; Rossi, G. D.
Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocitymore » fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate (γ{sub s}=∂V{sub θ}/∂r) is comparable to the turbulent decorrelation rate (1/τ{sub ac}). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak (γ{sub s}τ{sub ac}<1) or strong (γ{sub s}τ{sub ac}>1) shear limits.« less
Active illumination using a digital micromirror device for quantitative phase imaging.
Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun
2015-11-15
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.
Importance biasing scheme implemented in the PRIZMA code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandiev, I.Z.; Malyshkin, G.N.
1997-12-31
PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.
Image reconstruction of muon tomographic data using a density-based clustering method
NASA Astrophysics Data System (ADS)
Perry, Kimberly B.
Muons are subatomic particles capable of reaching the Earth's surface before decaying. When these particles collide with an object that has a high atomic number (Z), their path of travel changes substantially. Tracking muon movement through shielded containers can indicate what types of materials lie inside. This thesis proposes using a density-based clustering algorithm called OPTICS to perform image reconstructions using muon tomographic data. The results show that this method is capable of detecting high-Z materials quickly, and can also produce detailed reconstructions with large amounts of data.
NASA Astrophysics Data System (ADS)
Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang
2015-05-01
Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.
Initial data from a new High Spectral Resolution Lidar. Appendix A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eloranta, E.W.; Piironen, P.K.
1993-12-31
The University of Wisconsin High Spectral Resolution Lidar (HSRL) has been recently redesigned for operation in an electronics semitrailer van. The HSRL can now be deployed in support of field experiments. This paper presents initial observations with the new configuration along with an analysis of measurement accuracy. New measurement capabilities have been added. These include: observation of the signal variation with angular field of view, and observation of depolarization in all data channels. Depolarization measurements have been implemented by transmitting orthogonal linear polarizations on alternate laser pulses. Pulses are transmitted at 250 {micro}s intervals such that the lidar observes themore » same ensemble of particles for both polarizations. Orthogonal polarizations are measured with a single detector per channel. Since the optical components and detector gains are identical for the two polarizations the measured depolarization ratios are independent of these factors and the system delivers very precise depolarizations. A new data channel with a computer controlled aperture allows measurements of multiple scattering as a function of receiver field of view. Since the field of view variation is dependent on the size of the scattering particles it is expected that this will allow remote measurements of cloud particle size. Other technical improvements in the new system include active control of spectrometer temperatures, greatly increased mechanical stability, an increased receiver aperture, injection of calibration signals into the signal profiles to allow continuous monitoring of system calibration drifts, and extensive computer control of system operations.« less
Electronically tunable metamaterials using subwavelength magnetoresponsive particles
NASA Astrophysics Data System (ADS)
Allen, Monica; Allen, Jeffery; Parrow, Jacob; Asif, Sajid; Iftikar, Adnan; Wenner, Brett; Braaten, Benjamin
We demonstrate tunability of material properties of an engineered electromagnetic material in the RF regime using microparticles that respond to static magnetic biasing fields. The magnetic particles align with field lines creating a short/inductive state of the switch in the addressed voxel. When the biasing magnetic field is removed, the switch returns to an open/capacitive state. Each voxel measures 1.5 mm x 1.5 mm x 0.508 mm in the x, y, and z direction respectively, with a 0.9 mm diameter cylindrical cavity. The cavity is along the z-axis and is partially filled with microparticles composed of a magnetite core with Ag coating. Cu foil placed on the top and bottom encloses the particles in the cavity and acts as the biasing electrodes. Switching between inductive and capacitive states in spatially addressed voxels controls the cumulative ɛ and μ of the host material (i.e., layer) and controls the phase of an incident wave. We present finite element based models of prototype voxels with experimental measurements that validate the models on a host. This research can be applied to real-time tuning of material parameters with subwavelength voxel precision enabling wave control/manipulation as well as devices for switching and software-dictated tunable impedance capabilities. Authors JWA, MSA and BRW are grateful for support from AFOSR Lab Task 17RWCOR397 (Dr. H. Weinstock). NDSU was supported by (FA-8651-15-2-002) from the US Air Force Research Laboratory Munitions Directorate.
Modelling Solar Energetic Particle Events Using the iPATH Model
NASA Astrophysics Data System (ADS)
Li, G.; Hu, J.; Ao, X.; Zank, G. P.; Verkhoglyadova, O. P.
2016-12-01
Solar Energetic Particles (SEPs) is the No. 1 space weather hazard. Understanding how particles are energized and propagated in these events is of practical concerns to the manned space missions. In particular, both the radial evolution and the longitudinal extent of a gradual solarenergetic particle (SEP) event are central topics for space weather forecasting. In this talk, I discuss the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model. The iPATH model consists of three parts: (1) an updated ZEUS3D V3.5 MHD module that models thebackground solar wind and the initiation of a CME in a 2D domain; (2) an updated shock acceleration module where we investigate particle acceleration at different longitudinal locations along the surface of a CME-driven shock. Accelerated particle spectrum are obtained at the shock under the diffusive shock acceleration mechanism. Shock parameters and particle distributions are recorded and used as inputs for the later part. (3) an updated transport module where we follow the transport of accelerated particles from the shock to any destinations (Earth and/or Mars, e.g.) using a Monte-Carlo method. Both pitch angle scattering due to MHD turbulence and perpendicular diffusion across magnetic field are included. Our iPATH model is therefore intrinsically 2D in nature. The model is capable of generating time intensity profiles and instantaneous particle spectra atvarious locations and can greatly improve our current space weather forecasting capability.
Free-Standing and Self-Crosslinkable Hybrid Films by Core-Shell Particle Design and Processing.
Vowinkel, Steffen; Paul, Stephen; Gutmann, Torsten; Gallei, Markus
2017-11-15
The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS) or poly(methyl methacrylate) (PMMA), while the comparably soft particle shell consists of poly(ethyl acrylate) (PEA) and different alkoxysilane-based poly(methacrylate)s. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR) spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC) measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM).
Shafagati, Nazly; Narayanan, Aarthi; Baer, Alan; Fite, Katherine; Pinkham, Chelsea; Bailey, Charles; Kashanchi, Fatah; Lepene, Benjamin; Kehn-Hall, Kylene
2013-01-01
Background Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses. Results Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics. Conclusion This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV. PMID:23861988
Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David
2014-09-01
This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated concentrations of airborne metals at short time scales.
Representation of Probability Density Functions from Orbit Determination using the Particle Filter
NASA Technical Reports Server (NTRS)
Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell
2012-01-01
Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.
Automated data collection in single particle electron microscopy
Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget
2016-01-01
Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.; Lee, W. Wei-Li
1999-11-01
The Beam Equilibrium Stability and Transport (BEST) code, a 3D multispecies nonlinear perturbative particle simulation code, has been developed to study collective effects in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations. A Darwin model is adopted for transverse electromagnetic effects. As a 3D multispecies perturbative particle simulation code, it provides several unique capabilities. Since the simulation particles are used to simulate only the perturbed distribution function and self-fields, the simulation noise is reduced significantly. The perturbative approach also enables the code to investigate different physics effects separately, as well as simultaneously. The code can be easily switched between linear and nonlinear operation, and used to study both linear stability properties and nonlinear beam dynamics. These features, combined with 3D and multispecies capabilities, provides an effective tool to investigate the electron-ion two-stream instability, periodically focused solutions in alternating focusing fields, and many other important problems in nonlinear beam dynamics and accelerator physics. Applications to the two-stream instability are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, J.C.; Littlefield, L.G.; Tillery, M.I.
1978-06-01
A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less
2017-01-01
Conductive polymer composites are manufactured by randomly dispersing conductive particles along an insulating polymer matrix. Several authors have attempted to model the piezoresistive response of conductive polymer composites. However, all the proposed models rely upon experimental measurements of the electrical resistance at rest state. Similarly, the models available in literature assume a voltage-independent resistance and a stress-independent area for tunneling conduction. With the aim of developing and validating a more comprehensive model, a test bench capable of exerting controlled forces has been developed. Commercially available sensors—which are manufactured from conductive polymer composites—have been tested at different voltages and stresses, and a model has been derived on the basis of equations for the quantum tunneling conduction through thin insulating film layers. The resistance contribution from the contact resistance has been included in the model together with the resistance contribution from the conductive particles. The proposed model embraces a voltage-dependent behavior for the composite resistance, and a stress-dependent behavior for the tunneling conduction area. The proposed model is capable of predicting sensor current based upon information from the sourcing voltage and the applied stress. This study uses a physical (non-phenomenological) approach for all the phenomena discussed here. PMID:28906467
Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2
Mi, Yang; Weng, Yuxiang
2015-01-01
TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699
Conceptual study and key technology development for Mars Aeroflyby sample collection
NASA Astrophysics Data System (ADS)
Fujita, K.; Ozawa, T.; Okudaira, K.; Mikouchi, T.; Suzuki, T.; Takayanagi, H.; Tsuda, Y.; Ogawa, N.; Tachibana, S.; Satoh, T.
2014-01-01
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.
Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A
2014-05-19
Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.
An empirical approach to predicting long term behavior of metal particle based recording media
NASA Technical Reports Server (NTRS)
Hadad, Allan S.
1991-01-01
Alpha iron particles used for magnetic recording are prepared through a series of dehydration and reduction steps of alpha-Fe2O3-H2O resulting in acicular, polycrystalline, body centered cubic (bcc) alpha-Fe particles that are single magnetic domains. Since fine iron particles are pyrophoric by nature, stabilization processes had to be developed in order for iron particles to be considered as a viable recording medium for long term archival (i.e., 25+ years) information storage. The primary means of establishing stability is through passivation or controlled oxidation of the iron particle's surface. Since iron particles used for magnetic recording are small, additional oxidation has a direct impact on performance especially where archival storage of recorded information for long periods of time is important. Further stabilization chemistry/processes had to be developed to guarantee that iron particles could be considered as a viable long term recording medium. In an effort to retard the diffusion of iron ions through the oxide layer, other elements such as silicon, aluminum, and chromium have been added to the base iron to promote more dense scale formation or to alleviate some of the non-stoichiometric behavior of the oxide or both. The presence of water vapor has been shown to disrupt the passive layer, subsequently increasing the oxidation rate of the iron. A study was undertaken to examine the degradation in magnetic properties as a function of both temperature and humidity on silicon-containing iron particles between 50-120 deg C and 3-89 percent relative humidity. The methodology to which experimental data was collected and analyzed leading to predictive capability is discussed.
Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process.
Han, Mooyoung; Kim, Tschung-il; Kim, Jinho
2007-01-01
Dissolved air flotation (DAF) is a method for removing particles from water using micro bubbles instead of settlement. The process has proved to be successful and, since the 1960s, accepted as an alternative to the conventional sedimentation process for water and wastewater treatment. However, limited research into the process, especially the fundamental characteristics of bubbles and particles, has been carried out. The single collector collision model is not capable of determining the effects of particular characteristics, such as the size and surface charge of bubbles and particles. Han has published a set of modeling results after calculating the collision efficiency between bubbles and particles by trajectory analysis. His major conclusion was that collision efficiency is maximum when the bubbles and particles are nearly the same size but have opposite charge. However, experimental verification of this conclusion has not been carried out yet. This paper describes a new method for measuring the size of particles and bubbles developed using computational image analysis. DAF efficiency is influenced by the effect of the recycle ratio on various average floc sizes. The larger the recycle ratio, the higher the DAF efficiency at the same pressure and particle size. The treatment efficiency is also affected by the saturation pressure, because the bubble size and bubble volume concentration are controlled by the pressure. The highest efficiency is obtained when the floc size is larger than the bubble size. These results, namely that the highest collision efficiency occurs when the particles and bubbles are about the same size, are more in accordance with the trajectory model than with the white water collector model, which implies that the larger the particles, the higher is the collision efficiency.
A small-angle large-acceptance detection system for hadrons
NASA Astrophysics Data System (ADS)
Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.
2000-04-01
The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.
Evolution of Combustion-Generated Particles at Tropospheric Conditions
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Heath, Christopher M.
2012-01-01
This paper describes particle evolution measurements taken in the Particulate Aerosol Laboratory (PAL). The PAL consists of a burner capable of burning jet fuel that exhausts into an altitude chamber that can simulate temperature and pressure conditions up to 13,700 m. After presenting results from initial temperature distributions inside the chamber, particle count data measured in the altitude chamber are shown. Initial particle count data show that the sampling system can have a significant effect on the measured particle distribution: both the value of particle number concentration and the shape of the radial distribution of the particle number concentration depend on whether the measurement probe is heated or unheated.
Powder fed sheared dispersal particle generator
NASA Technical Reports Server (NTRS)
Morrisette, E. L.; Bushnell, D. M. (Inventor)
1984-01-01
A particle generating system is described which is capable of breaking up agglomerations of particles and producing a cloud of uniform, submicron-sized particles at high pressure and high flow rates. This is achieved by utilizing a tubular structure which has injection microslits on is periphery to accept and disperse the desired particle feed. By suppling a carrying fluid at a pressure, of approximately twice the ambient pressure of the velocimeter's settling chamber, the microslits operate at choked flow conditions. The shearing action of this choked flow is sufficient to overcome interparticle bonding forces, thereby breaking up the agglomerates of the particles feed into individual particles.
NASA Astrophysics Data System (ADS)
Da Silva, Antonio; Sánchez Prieto, Sebastián; Rodriguez Polo, Oscar; Parra Espada, Pablo
Computer memories are not supposed to forget, but they do. Because of the proximity of the Sun, from the Solar Orbiter boot software perspective, it is mandatory to look out for permanent memory errors resulting from (SEL) latch-up failures in application binaries stored in EEPROM and its SDRAM deployment areas. In this situation, the last line in defense established by FDIR mechanisms is the capability of the boot software to provide an accurate report of the memories’ damages and to perform an application software update, that avoid the harmed locations by flashing EEPROM with a new binary. This paper describes the OTA EEPROM firmware update procedure verification of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. Since the maximum number of rewrites on real EEPROM is limited and permanent memory faults cannot be friendly emulated in real hardware, the verification has been accomplished by the use of a LEON2 Virtual Platform (Leon2ViP) with fault injection capabilities and real SpaceWire interfaces developed by the Space Research Group (SRG) of the University of Alcalá. This way it is possible to run the exact same target binary software as if was run on the real ICU platform. Furthermore, the use of this virtual hardware-in-the-loop (VHIL) approach makes it possible to communicate with Electrical Ground Support Equipment (EGSE) through real SpaceWire interfaces in an agile, controlled and deterministic environment.
NASA Astrophysics Data System (ADS)
Forbes, Lauren Marie
Heterogeneous catalysts have widespread industrial applications. Platinum nanomaterials in particular, due to their particularly high electrocatalytic activity and durability, are used to catalyze a wide variety of reactions, including oxygen reduction, which is frequently used as the cathode reaction in fuel cells. As platinum is a very expensive material, a high priority in fuel cell research is the exploration of less expensive, more efficient catalysts for the oxygen reduction reaction (ORR). We demonstrate here the use of phage display to identify peptides that bind to Pt (100) which were then used to synthesize platinum cubes in solution. However, while the peptides were able to control particle growth, the bio-synthesized Pt particles showed extremely poor activity when tested for ORR. This could be attributed to peptide coverage on the surface or strong interactions between particular amino acids and the metal that are detrimental for catalysis. To investigate this further, we decided to investigate the role of individual amino acids on Pt nanocrystal synthesis and catalysis. For this, we conjugated the R-groups of single amino acids to polyethylene glycol (PEG) chains. Through this work we have determined that the identity of the amino acid R-group is important in both the synthesis and the catalytic activity of the particles. For Pt nanoparticle synthesis, we found that the hydrophobicity of the functional groups affected their ability to interact well with the particles during nucleation and growth, and thus only the hydrophilic functional groups were capable of mediating the synthesis to produce well-defined faceted particles. With respect to ORR, we found distinct trends that showed that the inclusion of certain amino acids could significantly enhance catalysis---even at high polymer loadings. This work presents evidence that counters the common conception that organic capping ligands decrease catalytic activity; in fact activity may actually be improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.
High field gradient particle accelerator
Nation, John A.; Greenwald, Shlomo
1989-01-01
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
Electrically recharged battery employing a packed/spouted bed metal particle electrode
Siu, Stanley C.; Evans, James W.; Salas-Morales, Juan
1995-01-01
A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.
COMPARATIVE STUDY OF SPRAY BOOTH FILTER SYSTEM EFFICIENCY
The paper summarizes results of research conducted to determine the capability of various dry paint overspray arrestor systems to capture particles as small as about 1 micrometer in surface diameter. The testing used on optical particle counter to determine the concentration of p...
A ferrofluid-based neural network: design of an analogue associative memory
NASA Astrophysics Data System (ADS)
Palm, R.; Korenivski, V.
2009-02-01
We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a training phase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern pair, the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated into the output pads. The actual memory consists of spin distributions that are dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system, we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.
Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.
Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371
NASA Technical Reports Server (NTRS)
Andac, M. Gurhan; Egolfopoulos, Fokion N.; Campbell, Charles S.; Lauvergne, Romain; Wu, Ming-Shin (Technical Monitor)
2000-01-01
A combined experimental and detailed numerical study was conducted on the interaction between chemically inert solid particles and strained, atmospheric methane/air and propane/air laminar flames, both premixed and non-premixed. Experimentally, the opposed jet configuration was used with the addition of a particle seeder capable of operating in conditions of varying gravity. The particle seeding system was calibrated under both normal and micro gravity and a noticeable gravitational effect was observed. Flame extinction experiments were conducted at normal gravity by seeding inert particles at various number densities and sizes into the reacting gas phase. Experimental data were taken for 20 and 37 (mu) nickel alloy and 25 and 60 (mu) aluminum oxide particles. The experiments were simulated by solving along the stagnation streamline the conservation equations of mass, momentum, energy, and species conservation for both phases, with detailed descriptions of chemical kinetics, molecular transport, and thermal radiation. The experimental data were compared with numerical simulations, and insight was provided into the effects on extinction of the fuel type, equivalence ratio, flame configuration, strain rate. particle type. particle size. particle mass, delivery rate. the orientation of particle injection with respect to the flame and gravity. It was found that for the same injected solid mass, larger particles can result in more effective flame cooling compared to smaller particles, despite the fact that equivalent masses of the larger particles have smaller total surface area to volume ratio. This counter-intuitive finding resulted from the fact that the heat exchange between the two phases is controlled by the synergistic effect of the total contact area and the temperature difference between the two phases. Results also demonstrate that meaningful scaling of interactions between the two phases may not be possible due to the complexity of the couplings between the dynamic and thermal parameters of the problem.
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter
Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu
2014-01-01
We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418
Wang, Jie-Sheng; Han, Shuang
2015-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E
2011-07-01
Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Mars aqueous chemistry experiment
NASA Technical Reports Server (NTRS)
Clark, Benton C.; Mason, Larry W.
1994-01-01
Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.
Mars aqueous chemistry experiment
NASA Astrophysics Data System (ADS)
Clark, Benton C.; Mason, Larry W.
1994-06-01
Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.
Dropper for micron and submicron size powders for a plasma mass filter
NASA Astrophysics Data System (ADS)
Evans, Eugene S.; Zweben, Stewart J.; Gueroult, Renaud; Fisch, Nathaniel J.; Levinton, Fred
2014-10-01
The goal of the Plasma Mass Filter (PMF) experiment at PPPL, in collaboration with Nova Photonics, Inc., is to achieve separation between high-Z and low-Z atoms, for possible application to processing of nuclear waste to remove the highly radioactive high-Z components. The PMF features a rotating plasma column in which centrifugal forces push high-mass ions out of the plasma radially, while low-mass ions exit the plasma axially. In order to control the injection location, high-Z materials are introduced in powder form into the PMF plasma. The current experiment is limted to ~1 kW RF, giving a calculated maximum flow rate of ~0.1 mg/s. An electron temperature of a few eV and assumptions about the residence time of the dust particles in the PMF plasma limits the calculated maximum particle size to ~1 μm. While previous dusty plasma experiments have dealt with particles on the order of 2-3 μm, submicron particles are comparatively more difficult to manipulate under vacuum due to increased Van Der Waals and electrostatic forces. A powder dropper capable of reliably dropping micron and submicron-size particles at this flow rate is being developed, consisting of a mesh-bottomed container that is coupled to vibration motors. This work supported by DOE contract DE-AC02-09CH11466.
NASA Technical Reports Server (NTRS)
Himmel, R. P.
1975-01-01
The selection, test, and evaluation of organic coating materials for contamination control in hybrid circuits is reported. The coatings were evaluated to determine their suitability for use as a conformal coating over the hybrid microcircuit (including chips and wire bonds) inside a hermetically sealed package. Evaluations included ease of coating application and repair and effect on thin film and thick film resistors, beam leads, wire bonds, transistor chips, and capacitor chips. The coatings were also tested for such properties as insulation resistance, voltage breakdown strength, and capability of immobilizing loose particles inside the packages. The selected coatings were found to be electrically, mechanically, and chemically compatible with all components and materials normally used in hybrid microcircuits.
Advanced manufacturing—A transformative enabling capability for fusion
Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.; ...
2018-05-24
Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less
Advanced manufacturing—A transformative enabling capability for fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, Richard E.; Dehoff, Ryan R.; Youchison, Dennis L.
Additive Manufacturing (AM) can create novel and complex engineered material structures. Features such as controlled porosity, micro-fibers and/or nano-particles, transitions in materials and integral robust coatings can be important in developing solutions for fusion subcomponents. A realistic understanding of this capability would be particularly valuable in identifying development paths. Major concerns for using AM processes with lasers or electron beams that melt powder to make refractory parts are the power required and residual stresses arising in fabrication. A related issue is the required combination of lasers or e-beams to continue heating of deposited material (to reduce stresses) and to depositmore » new material at a reasonable built rate while providing adequate surface finish and resolution for meso-scale features. In conclusion, Some Direct Write processes that can make suitable preforms and be cured to an acceptable density may offer another approach for PFCs.« less
Nanoparticles for heat transfer and thermal energy storage
Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael
2015-07-14
An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
Fischbach, Ephraim; Jenkins, Jere
2013-08-27
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
Fischbach, Ephraim; Jenkins, Jere
2016-05-10
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
Fischbach, Ephraim; Jenkins, Jere
2014-02-04
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia
2013-01-01
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011
Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia
2013-01-01
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.
NASA Astrophysics Data System (ADS)
Ludwig, Jennifer; Haering, Dominik; Doeff, Marca M.; Nilges, Tom
2017-03-01
Particle size-tuned platelets of the high-voltage cathode material LiCoPO4 for Li-ion batteries have been synthesized by a simple one-step microwave-assisted solvothermal process using an array of water/ethylene glycol (EG) solvent mixtures. Particle size control was achieved by altering the concentration of the EG co-solvent in the mixture between 0 and 100 vol%, with amounts of 0-80 vol% EG producing single phase, olivine-type LiCoPO4. The particle sizes of the olivine materials were significantly reduced from about 1.2 μm × 1.2 μm × 500 nm (0 vol% EG) to 200 nm × 100 nm × 50 nm (80 vol% EG) with increasing EG content, while specific surface areas increased from 2 to 13 m2 g-1. The particle size reduction could mainly be attributed to the modified viscosities of the solvent blends. Owing to the soft template effect of EG, the crystals exhibited the smallest dimensions along the [010] direction of the Li diffusion pathways in the olivine crystal structure, resulting in enhanced lithium diffusion properties. The relationship between the synthesis, crystal properties and electrochemical performance was further elucidated, indicating that the electrochemical performances of the as-prepared materials mainly depend on the solvent composition and the respective particle size range. LiCoPO4 products obtained from reaction media with low and high EG contents exhibited good electrochemical performances (initial discharge capacities of 87-124 mAh g-1 at 0.1 C), whereas materials made from medium EG concentrations (40-60 vol% EG) showed the highest capacities and gravimetric energy densities (up to 137 mAh g-1 and 658 Wh kg-1 at 0.1 C), excellent rate capabilities, and cycle life.
Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.
Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju
2012-02-01
Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate.
Electrically recharged battery employing a packed/spouted bed metal particle electrode
Siu, S.C.; Evans, J.W.; Salas-Morales, J.
1995-08-15
A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.
Ramirez-Dorronsoro, Juan-Carlos; Jacko, Robert B; Kildsig, Dane O
2006-01-01
The purpose of this study was to develop an instrument (the Purdue instrument) and the corresponding methodologies to measure the electrostatic charge development (chargeability) of dry powders when they are in dynamic contact with stainless steel surfaces. The system used an inductive noncontact sensor located inside an aluminum Faraday cage and was optimized to measure the charging capabilities of a fixed volume of powder (0.5 cc). The chargeability of 5,5-diphenyl-hydantoin, calcium sulfate dihydrate, cimetidine, 3 grades of colloidal silicon dioxide, magnesium stearate, 4 grades of microcrystalline cellulose, salicylic acid, sodium carbonate, sodium salicylate, spray-dried lactose, and sulfinpyrazone were tested at 4 linear velocities, and the particle size distribution effect was assessed for 3 different grades of colloidal silicon dioxide and 4 different grades of microcrystalline cellulose. The chargeability values exhibited a linear relationship for the range of velocities studied, with colloidal silicon dioxide exhibiting the maximum negative chargeability and with spray-dried lactose being the only compound to exhibit positive chargeability. The instrument sensitivity was improved by a factor of 2 over the first generation version, and the electrostatic charge measurements were reproducible with relative standard deviations ranging from nondetectable to 33.7% (minimum of 3 replicates). These results demonstrate the feasibility of using the Purdue instrument to measure the electrostatic charge control capabilities of pharmaceutical dry powders with a reasonable level of precision.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
NASA Astrophysics Data System (ADS)
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-03-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-01-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587
FET charge sensor and voltage probe
NASA Technical Reports Server (NTRS)
Robinson, P. A., Jr. (Inventor)
1986-01-01
A MOSFET structure having a biased gate covered with an insulator is described. The insulator is of such a thickness as to render the structure capable of giving a measure of accumulated charge. The structure is also capable of being used in a stacked structure as a particle spectrometer.
A Comprehensive Program for Measurements of Military Aircraft Emissions
2009-11-30
gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated...emission measurement. Furthermore, ultrafine particles (defined as the diameter less than or equal to 100 nm or 0.1 µm) are the dominant...instruments that are capable of real-time or continuous measurement of various properties of ultrafine particles in laboratory and field conditions. Some of
Lincoln, Don
2018-01-16
The Large Hadron Collider or LHC is the worldâs biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilabâs Dr. Don Lincoln introduces us to these detectors and gives us an idea of each oneâs capabilities.
Technologies for delivery of proton and ion beams for radiotherapy
NASA Astrophysics Data System (ADS)
Owen, Hywel; Holder, David; Alonso, Jose; Mackay, Ranald
2014-05-01
Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong
2017-01-01
Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus-liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation.
Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong
2017-01-01
Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus–liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation. PMID:29070949
NASA Astrophysics Data System (ADS)
Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin
2018-04-01
Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.
Short-range contacts govern the performance of industry-relevant battery cathodes
NASA Astrophysics Data System (ADS)
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with <5.5 wt% inactive material. Dry-mixing carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingfeng; Han, Lili; Jing, Hao
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
Soley, Micheline B; Markmann, Andreas; Batista, Victor S
2018-06-12
We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.
The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here, we present the design, testing, and analysis of data collected through the first instrument capable of measuring ...
ANNULAR IMPACTOR SAMPLING DEVICE
Tait, G.W.C.
1959-03-31
A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles
Huber, Dale L [Albuquerque, NM
2011-07-05
A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
Wei, Cai-Jie; Xie, Yue-Feng; Wang, Xiao-Mao; Li, Xiao-Yan
2018-05-23
Nano scale zero-valent iron (nZVI), a promising engineering technology for in situ remediation, has been greatly limited by quick self-corrosion and low mobility in porous media. Highly reactive nZVI particles produced from the borohydride reduction method were enclosed in a releasable Ca(OH) 2 layer by the chemical deposition method. The amount of Ca(OH) 2 coated on nZVI surface were well controlled by the precursor dosage. At moderate Ca(OH) 2 dosage (R Ca/TFe = 0.25) condition, the increment of Fe 0 content for the obtained nZVI/Ca-0.25 sample was observed. The interfacial reactions between the iron oxide shell and the Ca(OH) 2 saturated environment were delicately elucidated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectrum. And the coverage of Ca(OH) 2 shell on spherical nZVI surface was found more complete and uniform for the nZVI/Ca sample obtained from the moderate precursor dosage condition (R Ca/TFe = 0.25). The Ca(OH) 2 shell before dissolution was demonstrated owning the anti-corrosion capability to slow down the oxidation of Fe 0 core in air, during ethanol storage and in aqueous environment. The mechanism of anti-corrosion capability for nZVI/Ca-0.25 particle was interestingly found to be attributed to the Ca(OH) 2 shell isolation and also be potentially due to the iron oxide shell phase transformation mediated by the outer Ca(OH) 2 shell. An improved trichloroethylene reduction performance was observed for nZVI/Ca-0.25 than bare nZVI. The mobility of nZVI/Ca particles in water-saturated porous media was moderately improved before shell dissolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
Single exposure three-dimensional imaging of dusty plasma clusters.
Hartmann, Peter; Donkó, István; Donkó, Zoltán
2013-02-01
We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer. The reconstruction of the third coordinate (depth) is found to be accurate and even shadowing particles can be identified.
Fluidized bed deposition of diamond
Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.
1998-01-01
A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.
2012-04-01
We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.
Long range alpha particle detector
MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.
1993-01-01
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
Virus-Like Particles That Can Deliver Proteins and RNA | NCI Technology Transfer Center | TTC
The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.
Long range alpha particle detector
MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.
1993-02-02
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
Facet control of gold nanorods
Zhang, Qingfeng; Han, Lili; Jing, Hao; ...
2016-01-21
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
NASA Technical Reports Server (NTRS)
Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.
1993-01-01
The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.
Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting
NASA Astrophysics Data System (ADS)
Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu
2014-09-01
We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.
NASA Astrophysics Data System (ADS)
Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin
2016-03-01
Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.
Fuel spray data with LDV. [solar laser morphokinetomer capabilities in combustion research
NASA Technical Reports Server (NTRS)
Rohy, D. A.; Meier, J. G.
1979-01-01
Droplet size and two component velocities in the severe environment of an operating gas turbine combustor system can be measured simultaneously using the solar laser morphokinetomer (SLM) which incorporates the following capabilities: (1) measurement of a true two-dimensional velocity vector with a range of + or - (0.01-200 m/sec); (2) measurement of particle size (range 5 to 300 micron m) simultaneously with the measurement of velocity; (3) specification of probe volume position coordinates with a high degree of accuracy (+ or - 0.5 mm); (4) immediate on-line data checks; and (5) rapid computer storage of acquired data. The optical system of the SLM incorporates an ultrasonic beam splitter to allow the measurement of a two-dimensional velocity vector simultaneously with particle size. A microprocessor with a limited storage capability permits immediate analysis of test data in the test cell.
Turning Mechanics During Swimming by Oblate Hydromedusae
NASA Astrophysics Data System (ADS)
Costello, J.; Colin, S.; Sutherland, K.; Gemmell, B. J.
2016-02-01
Maneuverability is critical to the success of many species. Selective forces acting over millions of years have resulted in a range of capabilities currently unmatched by machines. Thus, understanding animal control of fluids for maneuvering has both biological and engineering applications. Medusae are radially symmetrical swimmers that must use asymmetric body motions to change direction during turning maneuvers. But what types of asymmetric motions are useful and how do they interact with surrounding fluids to generate rotational forces? We used high speed digital particle image velocimetry (DPIV) to investigate comparative swimming patterns of three hydromedusan species (Aequorea victoria, Clytia gregaria and Mitrocoma cellularia). We provide evidence for consistent animal-fluid interactions that underlie turning mechanics of oblate hydromedusae and provide new insights into the modulation and control of vorticity for low-speed animal maneuvering.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Optimizing phase to enhance optical trap stiffness.
Taylor, Michael A
2017-04-03
Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
Optimal control of hybrid qubits: Implementing the quantum permutation algorithm
NASA Astrophysics Data System (ADS)
Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.
2018-03-01
The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.
Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.
Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel
2018-06-27
The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.
A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheres
NASA Astrophysics Data System (ADS)
1988-04-01
Scientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 106 g to 7 x 10-12 g in size. Using long averaging times, particles as small as 0.7 to 4 x 1011 g were weighted to resolutions in the 5 to 9 x 10-13 g range. The drive circuit and optics systems were developed beyond what was anticipated in the contract, and are now virtually flight prototypes. There is already commercial interest in the developed capability of measuring picogram mass losses and gains. One area is contamination and outgassing research, both measuring picogram losses from samples and collecting products of outgassing.
Injectable nanocomposite cryogels for versatile protein drug delivery.
Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J
2018-01-01
Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of proteins. This strategy greatly simplifies the design of hydrogel systems for therapeutic protein release applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Indirect Charged Particle Detection: Concepts and a Classroom Demonstration
ERIC Educational Resources Information Center
Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew
2013-01-01
We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…
NASA Technical Reports Server (NTRS)
Simpson, J. A.; Tuzzolino, A. J.
1989-01-01
The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.
The Role of Substorms in Storm-time Particle Acceleration
NASA Astrophysics Data System (ADS)
Daglis, Ioannis A.; Kamide, Yohsuke
The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.
Direct Laser Writing of Single-Material Sheets with Programmable Self-Rolling Capability
NASA Astrophysics Data System (ADS)
Bauhofer, Anton; KröDel, Sebastian; Bilal, Osama; Daraio, Chiara; Constantinescu, Andrei
Direct laser writing, a sub-class of two-photon polymerization, facilitates 3D-printing of single-material microstructures with inherent residual stresses. Here we show that controlled distribution of these stresses allows for fast and cost-effective fabrication of structures with programmable self-rolling capability. We investigate 2D sheets that evolve into versatile 3D structures. Precise control over the shape morphing potential is acquired through variations in geometry and writing parameters. Effects of capillary action and gravity were shown to be relevant for very thin sheets (thickness <1.5um) and have been analytically and experimentally quantified. In contrast to that, the deformations of sheets with larger thickness (>1.5um) are dominated by residual stresses and adhesion forces. The presented structures create local tensions up to 180MPa, causing rolling curvatures of 25E3m-1. A comprehensive analytical model that captures the relevant influence factors was developed based on laminate plate theory. The predicted curvature and directionality correspond well with the experimentally obtained data. Potential applications are found in drug encapsulation and particle traps for emulsions with differing surface energies. This work was supported by the Swiss National Science Foundation.
Robotic Assisted Microsurgery - RAMS FY'97
NASA Technical Reports Server (NTRS)
1997-01-01
JPL and Microdexterity Systems collaborated to develop new surgical capabilities. They developed a Robot Assisted Microsurgery (RAM) tool for surgeons to use for operating on the eye, ear, brain, and blood vessels with unprecedented dexterity. A surgeon can hold the surgical instrument with motions of 6 degrees of freedom with an accuracy of 25 microns in a 70 cu cm workspace. In 1996 a demonstration was performed to remove a microscopic particle from a simulated eyeball. In 1997, tests were performed at UCLA to compare telerobotics with mechanical operations. In 5 out of 7 tests, the RAM tool performed with a significant improvement of preciseness over mechanical operation. New design features include: (1) amplified forced feedback; (2) simultaneous slave robot instrumentation; (3) index control switch on master handle; and (4) tool control switches. Upgrades include: (1) increase in computational power; and (2) installation of hard disk memory storage device for independent operation and independent operation of forceps. In 1997 a final demonstration was performed using 2 telerobotics simultaneously in a microsurgery suture procedure to close a slit in a thin sheet of latex rubber which extended the capabilities of microsurgery procedures. After completing trials and demonstrations for the FDA the potential benefits for thousands of operations will be exposed.
Non-Newtonian Aspects of Artificial Intelligence
NASA Astrophysics Data System (ADS)
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
A Study on New Composite Thermoplastic Propellant
NASA Astrophysics Data System (ADS)
Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro
Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.
Particle based vaccine formulations for transcutaneous immunization.
Mittal, Ankit; Raber, Anne S; Lehr, Claus-Michael; Hansen, Steffi
2013-09-01
Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.
Controlled release from a composite silicone/hydrogel membrane.
Hu, Z; Wang, C; Nelson, K D; Eberhart, R C
2000-01-01
To enhance the drug uptake and release capacity of silicone rubber (SR), N-isopropylacrylamide (NIPA) hydrogel particles have been incorporated into a SR membrane. The NIPA particles were thoroughly blended with uncured SR with a certain ratio at room temperature. The mixture was then cast in a Petri dish to 1 mm thickness and cured 10 hours at 90 degrees C. The SR/NIPA composite gel can absorb water approximately equal to its dry weight. Brilliant blue, used as a mock drug, was loaded into the composite gel. Drug release increased exponentially to a final value that is temperature dependent: low at T> =34 degrees C, and high at T< 34 degrees C. This finding is because the hydrophobicity of NIPA changes with temperature. Pulsed release in response to temperature switching between 20 and 39 degrees C has been achieved. Drug uptake and release capability strongly depends upon the structure of the composite gel. The optimal range of NIPA composition is between 75 and 87% by volume. In the cited range, the NIPA particles form an interconnected network that provides a channel for diffusion of drug solution. The SR/NIPA composite gel has promising attributes as a wound dressing and other uses.
Acoustic cavity transducers for the manipulation of cells and biomolecules
NASA Astrophysics Data System (ADS)
Tovar, Armando; Patel, Maulik; Lee, Abraham P.
2010-02-01
A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.
Wang, Jing; Pui, David Y H
2013-01-14
Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors.
The preparation of tantalum powder using a MR-EMR combination process
NASA Astrophysics Data System (ADS)
Yoon, Jae Sik; Kim, Byung Il
2007-04-01
In the conventional metallothermic reduction (MR) process used to obtain tantalum powder in batch-type operation, it is difficult to control the morphology and location of the tantalum deposits. In contrast, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. It has the advantage of being a continuous process, but has the disadvantage of a poor reduction yield. A process known as the MR-EMR combination process is able to overcome the shortcomings of the MR and EMR processes. In this study, an MR-EMR combination process is applied to the production of tantalum powder via sodium reduction of K2TaF7. In the MR-EMR combination process, the total charge passed through an external circuit and the average particle size (FSSS) increase as the reduction temperature increases. In addition, the proportion of fine particles (-325 mesh) decreases as the reduction temperature increasess. The tantalum yield improved from 65 to 74% as the reduction temperature increased. Taking into account the charge, impurities, morphology, particle size and yield, a reduction temperature of 1123 K was found to be optimum for the MR-EMR combination process.
High-Rate Capable Floating Strip Micromegas
NASA Astrophysics Data System (ADS)
Bortfeldt, Jonathan; Bender, Michael; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André
2016-04-01
We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60 MHz/cm2. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48 cm × 50 cm with 1920 copper anode strips exhibits in 120 GeV pion beams a spatial resolution of 50 μm at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below 5° are observed. Systematic deviations of this μTPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4 cm × 6.4 cm floating strip Micromegas under intense background irradiation of the whole active area with 20 MeV protons at a rate of 550 kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4 cm × 6.4 cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2 MHz and 2 GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.
Assessment of velocity/trajectory measurement technologies during a particle capture event
NASA Technical Reports Server (NTRS)
Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni
1994-01-01
Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.
Particle Tracing Modeling with SHIELDS
NASA Astrophysics Data System (ADS)
Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.
2017-12-01
The near-Earth inner magnetosphere, where most of the nation's civilian and military space assets operate, is an extremely hazardous region of the space environment which poses major risks to our space infrastructure. Failure of satellite subsystems or even total failure of a spacecraft can arise for a variety of reasons, some of which are related to the space environment: space weather events like single-event-upsets and deep dielectric charging caused by high energy particles, or surface charging caused by low to medium energy particles; other space hazards are collisions with natural or man-made space debris, or intentional hostile acts. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons on both macro- and microscale. These challenging problems are addressed using a team of world-class experts and state-of-the-art physics-based models and computational facilities. We present first results of a coupled BATS-R-US/RAM-SCB/Particle Tracing Model to evaluate particle fluxes in the inner magnetosphere. We demonstrate that this setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere.
Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.
Chen, Dong; Weavers, Linda K; Walker, Harold W
2006-02-01
In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
1999-01-01
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
The use of twin screw extruders for feeding coal against pressures of up to 1500 PSI
NASA Technical Reports Server (NTRS)
Wiedmann, W.; Mack, W. A.
1977-01-01
Recent tests with a twin-screw, co-rotating extruder which was successfully used to convey and feed coal against pressures of up to 1500 psi are described. Intermeshing and self-wiping, co-rotating twin-screws give greatly improved conveying and pressure built-up capabilities and avoid hangup and eventual decomposition of coal particles in the screw flights. The conveying action of intermeshing, self-wiping, co-rotating extruder systems approaches that of a positive displacement pump. With this feature, it is possible to maintain very accurate control over all aspects of product conveyance in the extruder, i.e., intake, conveyance and pressure buildup.
Pulsed laser triggered high speed microfluidic switch
NASA Astrophysics Data System (ADS)
Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu
2008-10-01
We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.
NASA Astrophysics Data System (ADS)
Cigala, V.; Kueppers, U.; Dingwell, D. B.
2015-12-01
Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been informed by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments. However, the predictive capabilities for new coals and processes are limited. This work presents a Discrete Element Method based computational framework to predict particle size distribution resulting from the breakage of coal particles characterized by the coal’s physical properties. The effect ofmore » certain operating parameters on the breakage behavior of coal particles also is examined.« less
NASA Astrophysics Data System (ADS)
Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.
2013-04-01
Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zhang, Hongpeng; Wang, Man; Chen, Haiquan
2018-02-01
A method that measures the electrical conductivity of metal based on monitoring the inductance changes of coils via an inductive sensor is introduced in this work to differentiate metal particles in lubrication oil. Theoretical analysis coupled with experimentation is employed to differentiate varieties of nonferrous metal particles, including copper and aluminum particles, ranging from 860 μm to 880 μm in diameter. The results show that the inductive sensor is capable of the identification and differentiation of nonferrous metal particles in lubrication oil based on the electrical conductivity measurement. The concept demonstrated in this paper can be extended to inductive sensors in metal particle detection and other scientific and industrial applications.
H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps.
Vallicrosa, Guillem; Ridao, Pere
2018-05-01
Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping) framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM) is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles). These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.
Laser-induced volatilization and ionization of microparticles
NASA Technical Reports Server (NTRS)
Sinha, M. P.
1984-01-01
A method for the laser vaporization and ionization of individual micron-size particles is presented whereby a particle is ionized by a laser pulse while in flight in the beam. Ionization in the beam offers a real-time analytical capability and eliminates any possible substrate-sample interferences during an analysis. An experimental arrangement using a high-energy Nd-YAG laser is described, and results are presented for ions generated from potassium biphthalate particles (1.96 micron in diameter). The method proposed here is useful for the chemical analysis of aerosol particles by mass spectrometry and for other spectroscopic and chemical kinetic studies.
NASA Astrophysics Data System (ADS)
Chen, H. Y.; Chen, S. C.; Chao, W. A.
2015-12-01
Natural river's bedload often hard to measure, which leads numerous uncertainties for us to predict the landscape evolution. However, the measurement of bedload flux has its certain importance to estimate the river hazard. Thus, we use seismometer to receive the seismic signal induced by bedload for partially fill the gap of field measurement capabilities. Our research conducted a controlled dam breaking experiments at Landao River, Huisun Forest since it has advantage to well constraining the spatial and temporal variation of bedload transport. We set continuous bedload trap at downstream riverbed of dam to trap the transport bedload after dam breaking so as to analyze its grain size distribution and transport behavior. In the meantime we cooperate with two portable velocity seismometers (Guralp CMG6TD) along the river to explore the relationship between bedload transport and seismic signal. Bedload trap was divided into three layers, bottom, middle, and top respectively. After the experiment, we analyzed the grain size and found out the median particle size from bottom to top is 88.664mm, 129.601mm, and 214.801mm individually. The median particle size of top layer is similar with the upstream riverbed before the experiment which median particle size is 230.683mm. This phenomena indicated that as the river flow become stronger after dam breaking, the sediment size will thereupon become larger, which meant the sediment from upstream will be carried down by the water flow and turned into bedload. Furthermore, we may tell apart the seismic signal induced by water flow and bedload by means of two different position seismometers. Eventually, we may estimate the probable error band of bedload quantity via accurately control of water depth, time-lapse photography, 3D LiDAR and other hydrology parameters.
Quantification of DNA using the luminescent oxygen channeling assay.
Patel, R; Pollner, R; de Keczer, S; Pease, J; Pirio, M; DeChene, N; Dafforn, A; Rose, S
2000-09-01
Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics. Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats. The endpoint DNA quantification format utilized two sensitizer bead types that are sensitive to separate illumination wavelengths. These two bead types were uniquely annealed to target or control amplicons, and separate illuminations generated time-resolved chemiluminescence, which distinguished the two amplicon types. In the endpoint method, ratios of the two signals allowed determination of the target DNA concentration over a three-log range. The real-time format allowed quantification of the DNA target over a six-log range with a linear relationship between threshold cycle and log of the number of DNA targets. This is the first report of the use of an oligomer-labeled latex particle assay capable of producing DNA quantification and sequence-specific chemiluminescent signals in a homogeneous format. It is also the first report of the generation of two signals from a LOCI assay. The methods described here have been shown to be easily adaptable to new DNA targets because of the generic nature of the oligomer-labeled LOCI particles.
Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier
Tang, Benjamin C.; Dawson, Michelle; Lai, Samuel K.; Wang, Ying-Ying; Suk, Jung Soo; Yang, Ming; Zeitlin, Pamela; Boyle, Michael P.; Fu, Jie; Hanes, Justin
2009-01-01
Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces. PMID:19901335
NASA Astrophysics Data System (ADS)
Argan, A.; Piano, G.; Tavani, M.; Trois, A.
2016-04-01
We study the capability of the AGILE gamma ray space mission in detecting magnetospheric particles (mostly electrons) in the energy range 10-100 MeV. Our measurements focus on the inner magnetic shells with L ≲ 1.2 in the magnetic equator. The instrument characteristics and a quasi-equatorial orbit of ˜500 km altitude make it possible to address several important properties of the particle populations in the inner magnetosphere. We review the on board trigger logic and study the acceptance of the AGILE instrument for particle detection. We find that the AGILE effective geometric factor (acceptance) is R≃50 cm2 sr for particle energies in the range 10-100 MeV. Particle event reconstruction allows to determine the particle pitch angle with the local magnetic field with good accuracy. We obtain the pitch angle distributions for both the AGILE "pointing" phase (July 2007 to October 2009) and the "spinning" phase (November 2009 to present). In spinning mode, the whole range (0-180 degrees) is accessible every 7 min. We find a pitch angle distribution of the "dumbbell" type with a prominent depression near α = 90° which is typical of wave-particle resonant scattering and precipitation in the inner magnetosphere. Most importantly, we show that AGILE is not affected by solar particle precipitation events in the magnetosphere. The satellite trajectory intersects magnetic shells in a quite narrow range (1.0 ≲ L ≲ 1.2); AGILE then has a high exposure to a magnetospheric region potentially rich of interesting phenomena. The large particle acceptance in the 10-100 MeV range, the pitch angle determination capability, the L shell exposure, and the solar-free background make AGILE a unique instrument for measuring steady and transient particle events in the inner magnetosphere.
NASA Technical Reports Server (NTRS)
Moskovits, Martin; Allamandola, Lou; Becker, Christopher; Freund, Friedemann; Freund, M.; Haff, P.; Tarter, Jill; Walton, Otis; Weitz, David; Werner, Brad
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) rheology of assemblies of inelastic, frictional particles; (2) grain dynamics in zero gravity; (3) properties of tenuous fractal aggregates; (4) orientation of weakly ferroelectric dust grains; (5) supersonic nozzle beam; and (6) some astrophysical cluster experiments. The required capabilities and desired hardware for the facility are detailed.
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) biogenic elements in the interstellar medium; (2) organic material in the solar nebula; (3) volatiles in comets and icy planetesimals; (4) pre-biotic atmospheric chemistry; (5) analysis of cosmic dust particles; and (6) microbial exposure. The required capabilities and desired hardware for the facility are detailed.
An Inexpensive Cosmic Ray Detector for the Classroom
ERIC Educational Resources Information Center
Goldader, Jeffrey D.; Choi, Seulah
2010-01-01
Finding ways to demonstrate--in a high school classroom--that subatomic particles from space produce other particles capable of reaching the Earth's surface is not a trivial task. In this paper, we describe a Geiger-Muller tube-based cosmic ray coincidence detector we produced at a total cost of less than $200, using two tubes purchased used…
NASA Technical Reports Server (NTRS)
Vanalstine, James M.
1992-01-01
Low gravity biotechnology experiments indicate a need to better understand and control a host of liquid-solid interfacial phenomena which reduce the efficiency of bioseparations methods on earth as well as in space. We have improved and utilized polymeric and silane derivatives, developed in association with MSFC, in order to control such phenomena. The objectives of the proposed research have been obtained. They were to improve NASA-patented coatings capable of controlling macromolecular adsorption, electroosmosis, and particle electrophoresis over a wide range of pH, and to further characterize the ability of polymeric coatings to control wall wetting interactions. To date this research has resulted in six publications and four abstracts. It has also aided researchers at MSFC with studies on the electrophoresis of large DNA molecules in free solution. It will continue to enhance NASA's efforts to exploit the space environment to enhance knowledge of phenomena relevant to biotechnology, and obtain bioseparations currently unobtainable on Earth. Abstracts from the 1994 ACS Meeting in Birmingham are attached.
Grain Structure Control of Additively Manufactured Metallic Materials
Faierson, Eric J.
2017-01-01
Grain structure control is challenging for metal additive manufacturing (AM). Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED) technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.
Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization
NASA Astrophysics Data System (ADS)
Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh
2017-08-01
Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.
Xu, Suyun; He, Chuanqiu; Luo, Liwen; Lü, Fan; He, Pinjing; Cui, Lifeng
2015-11-01
Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load. Copyright © 2015 Elsevier Ltd. All rights reserved.
Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer.
Cohen, Adam E; Moerner, W E
2008-05-12
We present an Anti-Brownian Electrokinetic trap (ABEL trap) capable of trapping individual fluorescently labeled protein molecules in aqueous buffer. The ABEL trap operates by tracking the Brownian motion of a single fluorescent particle in solution, and applying a time-dependent electric field designed to induce an electrokinetic drift that cancels the Brownian motion. The trapping strength of the ABEL trap is limited by the latency of the feedback loop. In previous versions of the trap, this latency was set by the finite frame rate of the camera used for video-tracking. In the present system, the motion of the particle is tracked entirely in hardware (without a camera or image-processing software) using a rapidly rotating laser focus and lock-in detection. The feedback latency is set by the finite rate of arrival of photons. We demonstrate trapping of individual molecules of the protein GroEL in buffer, and we show confinement of single fluorophores of the dye Cy3 in water.
Trains of electron micro-bunches in plasma wake-field acceleration
NASA Astrophysics Data System (ADS)
Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan
2018-07-01
Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.
Causal Modeling the Delayed-Choice Experiment
NASA Astrophysics Data System (ADS)
Chaves, Rafael; Lemos, Gabriela Barreto; Pienaar, Jacques
2018-05-01
Wave-particle duality has become one of the flagships of quantum mechanics. This counterintuitive concept is highlighted in a delayed-choice experiment, where the experimental setup that reveals either the particle or wave nature of a quantum system is decided after the system has entered the apparatus. Here we consider delayed-choice experiments from the perspective of device-independent causal models and show their equivalence to a prepare-and-measure scenario. Within this framework, we consider Wheeler's original proposal and its variant using a quantum control and show that a simple classical causal model is capable of reproducing the quantum mechanical predictions. Nonetheless, among other results, we show that, in a slight variant of Wheeler's gedanken experiment, a photon in an interferometer can indeed generate statistics incompatible with any nonretrocausal hidden variable model, whose dimensionality is the same as that of the quantum system it is supposed to mimic. Our proposal tolerates arbitrary losses and inefficiencies, making it specially suited to loophole-free experimental implementations.
Orrell, John; Hoppe, Eric
2018-01-26
Working as part of a collaborative team, PNNL is bringing its signature capability in ultra-low-level detection to help search for a rare form of radioactive decay-never before detected-called "neutrinoless double beta decay" in germanium. If observed, it would demonstrate neutrinos are Majorana-type particles. This discovery would show neutrinos are unique among fundamental particles, having a property whereby the matter and anti-matter version of this particle are indistinguishable. Physicist John L. Orrell explains how they rely on the Shallow Underground Laboratory to conduct the research.
Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere
NASA Technical Reports Server (NTRS)
Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.
2003-01-01
This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
A discrete element method-based approach to predict the breakage of coal
Gupta, Varun; Sun, Xin; Xu, Wei; ...
2017-08-05
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
al Mahbub, Asheque; Haque, Asadul
2016-01-01
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles. PMID:28774011
Al Mahbub, Asheque; Haque, Asadul
2016-11-03
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles.
Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M
2017-12-19
The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.
Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle
NASA Astrophysics Data System (ADS)
Shishodia, Manmohan Singh; Juneja, Soniya
2016-05-01
Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
NASA Technical Reports Server (NTRS)
Cepollina, F. J.
1982-01-01
The economic and technical aspects of the Solar Maximum Observatory Repair Mission at NASA are presented, in an effort to demonstrate the Space Shuttle capability to rendezvous with and repair on-orbit the Solar Maximum Observatory (SMM). A failure in the Attitude Control Subsystem (ACS) after 10 months of operation caused a loss in precision pointing capability. The Multimission Modular Spacecraft (MMS) used for the mission, was designed with on-orbit repairability, and to correct various instrument anomalies, repiar kits such as an electronics box, a thermal aperture closure, and a high energy particle reflection baffle will be used. In addition, a flight support system will be used to berth, electrically safe, and support all the repair activities. A two year effort is foreseen, and the economic return on SMM will be $176 M, in addition to two to three years of solar observation. The mission will eventually conduct studies on flare as a function of solar cycle.
Zhou, Quan; Zhao, Zongbin; Wang, Zhiyu; Dong, Yanfeng; Wang, Xuzhen; Gogotsi, Yury; Qiu, Jieshan
2014-02-21
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1).
Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio
2015-01-01
Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499
Development of a Multiple-Stage Differential Mobility Analyzer (MDMA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Da-Ren; Cheng, Mengdawn
2007-01-01
A new DMA column has been designed with the capability of simultaneously extracting monodisperse particles of different sizes in multiple stages. We call this design a multistage DMA, or MDMA. A prototype MDMA has been constructed and experimentally evaluated in this study. The new column enables the fast measurement of particles in a wide size range, while preserving the powerful particle classification function of a DMA. The prototype MDMA has three sampling stages, capable of classifying monodisperse particles of three different sizes simultaneously. The scanning voltage operation of a DMA can be applied to this new column. Each stage ofmore » MDMA column covers a fraction of the entire particle size range to be measured. The covered size fractions of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement leads to the reduction of scanning voltage range and thus the cycling time of the measurement. The modular sampling stage design of the MDMA allows the flexible configuration of desired particle classification lengths and variable number of stages in the MDMA. The design of our MDMA also permits operation at high sheath flow, enabling high-resolution particle size measurement and/or reduction of the lower sizing limit. Using the tandem DMA technique, the performance of the MDMA, i.e., sizing accuracy, resolution, and transmission efficiency, was evaluated at different ratios of aerosol and sheath flowrates. Two aerosol sampling schemes were investigated. One was to extract aerosol flows at an evenly partitioned flowrate at each stage, and the other was to extract aerosol at a rate the same as the polydisperse aerosol flowrate at each stage. We detail the prototype design of the MDMA and the evaluation result on the transfer functions of the MDMA at different particle sizes and operational conditions.« less
3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection
NASA Astrophysics Data System (ADS)
Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.
2018-02-01
Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).
Andreyev, Dmitry; Arriaga, Edgar A
2007-07-15
This technical note describes a detector capable of simultaneously monitoring scattering and fluorescence signals of individual particles separated by capillary electrophoresis. Due to its nonselective nature, scattering alone is not sufficient to identify analyte particles. However, when the analyte particles are fluorescent, the detector described here is able to identify simultaneously occurring scattering and fluorescent signals, even when contaminating particles (i.e., nonfluorescent) are present. Both fluorescent polystyrene particles and 10-nonyl acridine orange (NAO)-labeled mitochondria were used as models. Fluorescence versus scattering (FVS) plots made it possible to identify two types of particles and a contaminant in a mixture of polystyrene particles. We also analyzed NAO-labeled mitochondria before and after cryogenic storage; the mitochondria FVS plots changed with storage, which suggests that the detector reported here is suitable for monitoring subtle changes in mitochondrial morphology that would not be revealed by monitoring only fluorescence or scattering signals.
ParticleCall: A particle filter for base calling in next-generation sequencing systems
2012-01-01
Background Next-generation sequencing systems are capable of rapid and cost-effective DNA sequencing, thus enabling routine sequencing tasks and taking us one step closer to personalized medicine. Accuracy and lengths of their reads, however, are yet to surpass those provided by the conventional Sanger sequencing method. This motivates the search for computationally efficient algorithms capable of reliable and accurate detection of the order of nucleotides in short DNA fragments from the acquired data. Results In this paper, we consider Illumina’s sequencing-by-synthesis platform which relies on reversible terminator chemistry and describe the acquired signal by reformulating its mathematical model as a Hidden Markov Model. Relying on this model and sequential Monte Carlo methods, we develop a parameter estimation and base calling scheme called ParticleCall. ParticleCall is tested on a data set obtained by sequencing phiX174 bacteriophage using Illumina’s Genome Analyzer II. The results show that the developed base calling scheme is significantly more computationally efficient than the best performing unsupervised method currently available, while achieving the same accuracy. Conclusions The proposed ParticleCall provides more accurate calls than the Illumina’s base calling algorithm, Bustard. At the same time, ParticleCall is significantly more computationally efficient than other recent schemes with similar performance, rendering it more feasible for high-throughput sequencing data analysis. Improvement of base calling accuracy will have immediate beneficial effects on the performance of downstream applications such as SNP and genotype calling. ParticleCall is freely available at https://sourceforge.net/projects/particlecall. PMID:22776067
Development of a prototype sensor system for ultra-high-speed LDA-PIV
NASA Astrophysics Data System (ADS)
Griffiths, Jennifer A.; Royle, Gary J.; Bohndiek, Sarah E.; Turchetta, Renato; Chen, Daoyi
2008-04-01
Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) are commonly used in the analysis of particulates in fluid flows. Despite the successes of these techniques, current instrumentation has placed limitations on the size and shape of the particles undergoing measurement, thus restricting the available data for the many industrial processes now utilising nano/micro particles. Data for spherical and irregularly shaped particles down to the order of 0.1 µm is now urgently required. Therefore, an ultra-fast LDA-PIV system is being constructed for the acquisition of this data. A key component of this instrument is the PIV optical detection system. Both the size and speed of the particles under investigation place challenging constraints on the system specifications: magnification is required within the system in order to visualise particles of the size of interest, but this restricts the corresponding field of view in a linearly inverse manner. Thus, for several images of a single particle in a fast fluid flow to be obtained, the image capture rate and sensitivity of the system must be sufficiently high. In order to fulfil the instrumentation criteria, the optical detection system chosen is a high-speed, lensed, digital imaging system based on state-of-the-art CMOS technology - the 'Vanilla' sensor developed by the UK based MI3 consortium. This novel Active Pixel Sensor is capable of high frame rates and sparse readout. When coupled with an image intensifier, it will have single photon detection capabilities. An FPGA based DAQ will allow real-time operation with minimal data transfer.
NASA Astrophysics Data System (ADS)
Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika
2017-02-01
Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.
Fundamental Research Applied To Enable Hardware Performance in Microgravity
NASA Technical Reports Server (NTRS)
Sheredy, William A.
2005-01-01
NASA sponsors microgravity research to generate knowledge in physical sciences. In some cases, that knowledge must be applied to enable future research. This article describes one such example. The Dust and Aerosol measurement Feasibility Test (DAFT) is a risk-mitigation experiment developed at the NASA Glenn Research Center by NASA and ZIN Technologies, Inc., in support of the Smoke Aerosol Measurement Experiment (SAME). SAME is an investigation that is being designed for operation in the Microgravity Science Glovebox aboard the International Space Station (ISS). The purpose of DAFT is to evaluate the performance of P-Trak (TSI Incorporated, Shoreview, MN)--a commercially available condensation nuclei counter and a key SAME diagnostic- -in long-duration microgravity because of concerns about its ability to operate properly in that environment. If its microgravity performance is proven, this device will advance the state of the art in particle measurement capabilities for space vehicles and facilities, such as aboard the ISS. The P-Trak, a hand-held instrument, can count individual particles as small as 20 nm in diameter in an aerosol stream. Particles are drawn into the device by a built-in suction pump. Upon entering the instrument, these particles pass through a saturator tube where they mix with an alcohol vapor (see the following figure). This mixture then flows through a cooled condenser tube where some of the alcohol condenses onto the sample particles, and the droplets grow in a controlled fashion until they are large enough to be counted. These larger droplets pass through an internal nozzle and past a focused laser beam, producing flashes of light that are sensed by a photodetector and then counted to determine particle number concentration. The operation of the instrument depends on the proper internal flow and recycling of isopropyl alcohol in both the vapor and liquid phases.
The effects of variations in the number and sequence of targeting signals on nuclear uptake
1988-01-01
To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
NASA Technical Reports Server (NTRS)
Parr, R. A.; Johnston, M. H.; Mcclure, J. C.
1980-01-01
Monotectic alloys having aligned spherical particles of rods of the minor component dispersed in a matrix of the major component are prepared by forming a melt containing predetermined amounts of the major and minor components of a chosen monotectic system, providing in the melt a dopant capable of breaking down the liquid solid interface for the chosen alloy, and directionally solidfying the melt at a selected temperature gradient and a selected rate of movement of the liquid-solid interface (growth rate). Shaping of the minor component into spheres or rods and the spacing between them are controlled by the amount of dopant and the temperature gradient and growth rate values. Specific alloy systems include Al Bi, Al Pb and Zn Bi, using a transition element such as iron.
Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald
2016-04-15
Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
CFD Modelling of Particle Mixtures in a 2D CFB
NASA Astrophysics Data System (ADS)
Seppälä, M.; Kallio, S.
The capability of Fluent 6.2.16 to simulate particle mixtures in a laboratory scale 2D circulating fluidized bed (CFB) unit has been tested. In the simulations, the solids were described as one or two particle phases. The loading ratio of small to large particles, particle diameters and the gas inflow velocity were varied. The 40 cm wide and 3 m high 2D CFB was modeled using a grid with 31080 cells. The outflow of particles at the top of the CFB was monitored and emanated particles were fed back to the riser through a return duct. The paper presents the segregation patterns of the particle phases obtained from the simulations. When the fraction of large particles was 50% or larger, large particles segregated, as expected, to the wall regions and to the bottom part of the riser. However, when the fraction of large particles was 10%, an excess of large particles was found in the upper half of the riser. The explanation for this unexpected phenomenon was found in the distribution of the large particles between the slow clusters and the faster moving lean suspension.
Role of L-Particles during Herpes Simplex Virus Infection.
Heilingloh, Christiane S; Krawczyk, Adalbert
2017-01-01
Infection of eukaryotic cells with α-herpesviruses results in the formation and secretion of infectious heavy particles (virions; H-particles) and non-infectious light particles (L-particles). Herpes simplex virus type 1 (HSV-1) H-particles consist of a genome-containing capsid surrounded by tegument proteins and a glycoprotein-rich lipid bilayer. Non-infectious L-particles are composed mainly of envelope and tegument proteins and are devoid of capsids and viral DNA. L-particles were first described in the early nineties and from then on investigated for their formation and role during virus infection. The development and secretion of L-particles occur simultaneously to the assembly of complete viral particles. HSV-1 L-particles are assembled by budding of condensed tegument into Golgi-delivered vesicles and are capable of delivering their functional content to non-infected cells. Thereby, HSV-1 L-particles contribute to viral pathogenesis within the infected host by enhancing virion infectivity and providing immune evasion functions. In this review we discuss the emergence of HSV-1 L-particles during virus replication and their biological functions described thus far.
ERIC Educational Resources Information Center
Li, Jackie P. W.; Law, Thomas; Lam, Gary Y. H.; To, Carol K. S.
2013-01-01
English-speaking children with Autism Spectrum Disorders (ASD) are less capable of using prosodic cues such as intonation for irony comprehension. Prosodic cues, in particular intonation, in Cantonese are relatively restricted while sentence-final particles (SFPs) may be used for this pragmatic function. This study investigated the use of prosodic…
Large-Scale Aerosol Modeling and Analysis
2008-09-30
novel method of simultaneous real- time measurements of ice-nucleating particle concentrations and size- resolved chemical composition of individual...is to develop a practical predictive capability for visibility and weather effects of aerosol particles for the entire globe for timely use in...prediction follows that used in numerical weather prediction, namely real- time assessment for initialization of first-principles models. The Naval
Environmental scanning electron microscope imaging examples related to particle analysis.
Wight, S A; Zeissler, C J
1993-08-01
This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.
Vectorization of a particle simulation method for hypersonic rarefied flow
NASA Technical Reports Server (NTRS)
Mcdonald, Jeffrey D.; Baganoff, Donald
1988-01-01
An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.
NASA Astrophysics Data System (ADS)
Dreifuss, Tamar; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela
2018-02-01
Theranostics is an emerging field, defined as combination of therapeutic and diagnostic capabilities in the same material. Nanoparticles are considered as an efficient platform for theranostics, particularly in cancer treatment, as they offer substantial advantages over both common imaging contrast agents and chemotherapeutic drugs. However, the development of theranostic nanoplatforms raises an important question: Is the optimal particle for imaging also optimal for therapy? Are the specific parameters required for maximal drug delivery, similar to those required for imaging applications? Herein, we examined this issue by investigating the effect of nanoparticle size on tumor uptake and imaging. Anti-epidermal growth factor receptor (EGFR)-conjugated gold nanoparticles (GNPs) in different sizes (diameter range: 20-120 nm) were injected to tumor bearing mice and their uptake by tumors was measured, as well as their tumor visualization capabilities as tumor-targeted CT contrast agent. Interestingly, the results showed that different particles led to highest tumor uptake or highest contrast enhancement, meaning that the optimal particle size for drug delivery is not necessarily optimal for tumor imaging. These results have important implications on the design of theranostic nanoplatforms.
Dual domain material point method for multiphase flows
NASA Astrophysics Data System (ADS)
Zhang, Duan
2017-11-01
Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.
Recent Upgrades at the Fermilab Test Beam Facility
NASA Astrophysics Data System (ADS)
Rominsky, Mandy
2016-03-01
The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.
Chavarria, Alvaro E.; Tiffenberg, Javier; Aguilar-Arevalo, Alexis; ...
2015-03-24
We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eV ee. We present results of energy calibrations from 0.3 keV ee to 60 ke Vee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operationmore » and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 μm thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.« less
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
Harrison, Richard; Markides, Hareklea; Morris, Robert H; Richards, Paula; El Haj, Alicia J; Sottile, Virginie
2017-08-01
Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.
Holographic microscopy studies of emulsions
NASA Technical Reports Server (NTRS)
Witherow, W. K.
1981-01-01
A holographic microscopy system that records and observes the dynamic properties of separation of dispersed immiscible fluids is described. The holographic construction system and reconstruction system that were used to obtain particle size and distribution information from the holograms are discussed. The holographic microscopy system is used to observed the phase separating processes in immiscible fluids that were isothermally cooled into the two phase region. Nucleation, growth rates, coalescence, and particle motion are successfully demonstrated with this system. Thus a holographic particle sizing system with a resolution of 2 micrometers and a field of view of 100 cu cm was developed that provides the capability of testing the theories of separating immiscible fluids for particle number densities in the range of 10 to 10 to the 7th power particles.
NASA Technical Reports Server (NTRS)
Mcalister, K. W.
1981-01-01
A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.
CNS effects of heavy particle irradiation in space: behavioral implications.
Joseph, J A; Erat, S; Rabin, B M
1998-01-01
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; Knopf, Daniel A.; China, Swarup
Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less
NASA Astrophysics Data System (ADS)
Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato
2013-05-01
The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.
Ormes, James D; Zhang, Dan; Chen, Alex M; Hou, Shirley; Krueger, Davida; Nelson, Todd; Templeton, Allen
2013-02-01
There has been a growing interest in amorphous solid dispersions for bioavailability enhancement in drug discovery. Spray drying, as shown in this study, is well suited to produce prototype amorphous dispersions in the Candidate Selection stage where drug supply is limited. This investigation mapped the processing window of a micro-spray dryer to achieve desired particle characteristics and optimize throughput/yield. Effects of processing variables on the properties of hypromellose acetate succinate were evaluated by a fractional factorial design of experiments. Parameters studied include solid loading, atomization, nozzle size, and spray rate. Response variables include particle size, morphology and yield. Unlike most other commercial small-scale spray dryers, the ProCepT was capable of producing particles with a relatively wide mean particle size, ca. 2-35 µm, allowing material properties to be tailored to support various applications. In addition, an optimized throughput of 35 g/hour with a yield of 75-95% was achieved, which affords to support studies from Lead-identification/Lead-optimization to early safety studies. A regression model was constructed to quantify the relationship between processing parameters and the response variables. The response surface curves provide a useful tool to design processing conditions, leading to a reduction in development time and drug usage to support drug discovery.
iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit
NASA Astrophysics Data System (ADS)
Huang, Li
2017-12-01
In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.
OSCAR: A new modular device for the identification and correlation of low energy particles
NASA Astrophysics Data System (ADS)
Dell'Aquila, D.; Lombardo, I.; Verde, G.; Vigilante, M.; Ausanio, G.; Ordine, A.; Miranda, M.; De Luca, M.; Alba, R.; Augey, L.; Barlini, S.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Camaiani, A.; Casini, G.; Chbihi, A.; Cicerchia, M.; Cinausero, M.; Fabris, D.; Faible, Q.; Francalanza, L.; Frankland, J. D.; Grassi, L.; Gramegna, F.; Gruyer, D.; Kordyasz, A. J.; Kozik, T.; LaTorre, R.; Le Neindre, N.; Lopez, O.; Marchi, T.; Morelli, L.; Ottanelli, P.; Parlog, M.; Pastore, G.; Pasquali, G.; Piantelli, S.; Santonocito, D.; Stefanini, A. A.; Tortone, G.; Valdrè, S.; Vient, E.
2018-01-01
A new modular and high versatility hodoscope, OSCAR, has been developed and characterized. The aim of this hodoscope is to work as an ancillary detector of present large acceptance heavy ion detectors in specific angular regions where low thresholds and high granularities are needed. We discuss the capabilities of OSCAR in the ΔE-E identification of very low energy light particles, providing a precise map of the thickness uniformity of the ΔE (SSSSD, 20 μm) stage and showing how the thickness gradient affects the identification of particles. Energy spectra of light identified particles produced in Ca+Ca collisions at 35AMeV are used to investigate isospin transport phenomena involving the emission of low energy particles from the quasi-target (QT) source in semi-peripheral nuclear collisions. The possibility to explore particle-particle correlations are also discussed.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1974-01-01
The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.
Single-particle dynamics of the Anderson model: a local moment approach
NASA Astrophysics Data System (ADS)
Glossop, Matthew T.; Logan, David E.
2002-07-01
A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.
Piezoelectric particle accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.
2017-08-29
A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Hydrogel Actuation by Electric Field Driven Effects
NASA Astrophysics Data System (ADS)
Morales, Daniel Humphrey
Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.
Effects of MHD instabilities on neutral beam current drive
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.
2015-05-01
Neutral beam injection (NBI) is one of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility. However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. A new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ∼50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.
Respiratory syncytial virus: its transmission in the hospital environment.
Hall, C B
1982-01-01
Respiratory syncytial virus (RSV) over the past two decades has been recognized as the most important cause of lower respiratory tract disease in infants and young children. Recently, it has also been identified as a major nosocomial hazard on pediatric wards. The potential for RSV to spread on such wards is underlined by several singular characteristics of RSV. It arrives in yearly epidemics and is highly contagious in all age groups. Immunity is of short duration, allowing repeated infections to occur. Thus, during an epidemic 20--40 percent of infants admitted for other conditions may acquire nosocomial RSV infection, as well as 50 percent of the ward personnel. The usual infection control procedures for respiratory illnesses have had limited success in controlling the spread of RSV. This may be due in part to the modes of transmission of RSV. Inoculation occurs mainly through the eye and nose, rather than the mouth. This may be via large-particle aerosols or droplets, requiring close contact. The virus, however, does not seem capable of traversing distances by small-particle aerosols. Nevertheless, it is able to remain infectious on various environmental surfaces, suggesting fomites as a source of spread. Indeed, inoculation after touching such contaminated surfaces can occur, and may be a major second means of spread, in hospitals as well as in families.
Effects of MHD instabilities on neutral beam current drive
Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...
2015-04-17
One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.
2013-09-01
Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles
2013-01-01
This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose. PMID:24225302
NASA Astrophysics Data System (ADS)
Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.
2008-06-01
A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.
Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour
NASA Astrophysics Data System (ADS)
Keremidarska, M.; Hikov, T.; Radeva, E.; Pramatarova, L.; Krasteva, N.
2014-12-01
Mesenchymal stem cells (MSCs) hold a great promise for use in many cell therapies and tissue engineering due to their remarkable potential to replicate indefinitely and differentiate into various cell types. Many efforts have been put to study the factors controlling stem cell differentiation. However, still little knowledge has been gained to what extent biomaterials properties influence stem cell adhesion, growth and differentiation. Research utilizing bone marrow-derived MSCs has concentrated on development of specific materials which can enhance specific differentiation of stem cells e.g. osteogenic and chondrogenic. In the present work we have modified an organosilane, hexamethyldisiloxane (HMDS) with detonation nanodiamond (DND) particles aiming to improve adhesion, growth and osteodifferentiation of rat mesenchymal stem cells. HMDS/DND films were deposited on cover glass using two approaches: premixing of both compounds, followed by plasma polymerization (PP) and PP of HMDS followed by plasma deposition of DND particles. We did not observe however an increase in rMSCs adhesion and growth on DND-modified PPHMDS surfaces compared to unmodified PPHMDS. When we studied alkaline phosphatase (ALP) activity, which is a major sign for early osteodifferentiation, we found the highest ALP activity on the PPHMDS/DND material, prepared by consequent deposition while on the other composite material ALP activity was the lowest. These results suggested that DND-modified materials were able to control osteodifferention in MSCs depending on the deposition approach. Modification of HMDS with DND particles by consequent plasma deposition seems to be a promising approach to produce biomaterials capable to guide stem cell differentiation toward osteoblasts and thus to be used in bone tissue engineering.
This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...
Lopes, Cátia DF; Oliveira, Hugo; Estevão, Inês; Pires, Liliana Raquel; Pêgo, Ana Paula
2016-01-01
A major challenge in neuronal gene therapy is to achieve safe, efficient, and minimally invasive transgene delivery to neurons. In this study, we report the use of a nonviral neurotropic poly(ethylene imine)-based nanoparticle that is capable of mediating neuron-specific transfection upon a subcutaneous injection. Nanoparticles were targeted to peripheral neurons by using the nontoxic carboxylic fragment of tetanus toxin (HC), which, besides being neurotropic, is capable of being retrogradely transported from neuron terminals to the cell bodies. Nontargeted particles and naked plasmid DNA were used as control. Five days after treatment by subcutaneous injection in the footpad of Wistar rats, it was observed that 56% and 64% of L4 and L5 dorsal root ganglia neurons, respectively, were expressing the reporter protein. The delivery mediated by HC-functionalized nanoparticles spatially limited the transgene expression, in comparison with the controls. Histological examination revealed no significant adverse effects in the use of the proposed delivery system. These findings demonstrate the feasibility and safety of the developed neurotropic nanoparticles for the minimally invasive delivery of genes to the peripheral nervous system, opening new avenues for the application of gene therapy strategies in the treatment of peripheral neuropathies. PMID:27354797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Haiping; Zheng, Jianming; Song, Junhua
Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less
Mellema, M.; Stoller, M.; Queau, Y.; Ho, S. P.; Chi, T.; Larsen, J. A.; Passlack, N.; Fascetti, A. J.; Mohr, C.; Westropp, J. L.
2016-01-01
Urinary stone disease, particularly calcium oxalate, is common in both humans and cats. Calcifying nanoparticles (CNP) are spherical nanocrystallite material, and are composed of proteins (fetuin, albumin) and inorganic minerals. CNP are suggested to play a role in a wide array of pathologic mineralization syndromes including urolithiasis. We documented the development of a clinically relevant protocol to assess urinary CNP in 9 healthy cats consuming the same diet in a controlled environment using Nanoparticle Tracking Analysis (NTA®). NTA® is a novel method that allows for characterization of the CNP in an efficient, accurate method that can differentiate these particles from other urinary submicron particulates. The predominant nanoscale particles in feline urine are characteristic of CNP in terms of their size, their ability to spontaneously form under suitable conditions, and the presence of an outer layer that is rich in calcium and capable of binding to hydroxyapatite binders such as alendronate and osteopontin. The expansion of this particle population can be suppressed by the addition of citrate to urine samples. Further, compounds targeting exosomal surfaces do not label these particulates. As CNP have been associated with a number of significant urologic maladies, the method described herein may prove to be a useful adjunct in evaluating lithogenesis risk in mammals. PMID:28005930
Virus-like particles as nanovaccine candidates
NASA Astrophysics Data System (ADS)
Guillen, G.; Aguilar, J. C.; Dueñas, S.; Hermida, L.; Iglesias, E.; Penton, E.; Lobaina, Y.; Lopez, M.; Mussachio, A.; Falcon, V.; Alvarez, L.; Martinez, G.; Gil, L.; Valdes, I.; Izquierdo, A.; Lazo, L.; Marcos, E.; Guzman, G.; Muzio, V.; Herrera, L.
2013-03-01
The existing vaccines are mainly limited to the microorganisms we are able to culture and produce and/or to those whose killing is mediated by humoral response (antibody mediated). It has been more difficult to develop vaccines capable of inducing a functional cellular response needed to prevent or cure chronic diseases. New strategies should be taken into account in the improvement of cell-based immune responses in order to prevent and control the infections and eventually clear the virus. Preclinical and clinical results with vaccine candidates developed as a vaccine platform based on virus-like particles (VLPs) evidenced their ability to stimulate mucosal as well as systemic immunity. Particles based on envelope, membrane or nucleocapsid microbial proteins induce a strong immune response after nasal or parenteral administration in mice, non-human primates and humans. In addition, the immune response obtained was modulated in a Th1 sense. The VLPs were also able to immunoenhance the humoral and cellular immune responses against several viral pathogens. Studies in animals and humans with nasal and systemic formulations evidenced that it is possible to induce functional immune response against HBV, HCV, HIV and dengue virus. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October - 2 November 2012, Ha Long, Vietnam.
An optical apparatus for rotation and trapping
Gutiérrez-Medina, Braulio; Andreasson, Johan O. L.; Greenleaf, William J.; LaPorta, Arthur; Block, Steven M.
2010-01-01
We present details of the design, construction and testing of a single-beam optical tweezers apparatus capable of measuring and exerting torque, as well as force, on microfabricated, optically anisotropic particles (an ‘optical torque wrench’). The control of angular orientation is achieved by rotating the linear polarization of a trapping laser with an electro-optic modulator (EOM), which affords improved performance over previous designs. The torque imparted to the trapped particle is assessed by measuring the difference between left- and right-circular components of the transmitted light, and constant torque is maintained by feeding this difference signal back into a custom-designed electronic servo loop. The limited angular range of the EOM (±180°) is extended by rapidly reversing the polarization once a threshold angle is reached, enabling the torque clamp to function over unlimited, continuous rotations at high bandwidth. In addition, we developed particles suitable for rotation in this apparatus using microfabrication techniques. Altogether, the system allows for the simultaneous application of forces (~0.1–100 pN) and torques (~1–10,000 pN nm) in the study of biomolecules. As a proof of principle, we demonstrate how our instrument can be used to study the supercoiling of single DNA molecules. PMID:20627165
NASA Astrophysics Data System (ADS)
Poley, Jack; Dines, Michael
2011-04-01
Wind turbines are frequently located in remote, hard-to-reach locations, making it difficult to apply traditional oil analysis sampling of the machine's critical gearset at timely intervals. Metal detection sensors are excellent candidates for sensors designed to monitor machine condition in vivo. Remotely sited components, such as wind turbines, therefore, can be comfortably monitored from a distance. Online sensor technology has come of age with products now capable of identifying onset of wear in time to avoid or mitigate failure. Online oil analysis is now viable, and can be integrated with onsite testing to vet sensor alarms, as well as traditional oil analysis, as furnished by offsite laboratories. Controlled laboratory research data were gathered from tests conducted on a typical wind turbine gearbox, wherein total ferrous particle measurement and metallic particle counting were employed and monitored. The results were then compared with a physical inspection for wear experienced by the gearset. The efficacy of results discussed herein strongly suggests the viability of metallic wear debris sensors in today's wind turbine gearsets, as correlation between sensor data and machine trauma were very good. By extension, similar components and settings would also seem amenable to wear particle sensor monitoring. To our knowledge no experiments such as described herein, have previously been conducted and published.
Mellema, M; Stoller, M; Queau, Y; Ho, S P; Chi, T; Larsen, J A; Passlack, N; Fascetti, A J; Mohr, C; Westropp, J L
2016-01-01
Urinary stone disease, particularly calcium oxalate, is common in both humans and cats. Calcifying nanoparticles (CNP) are spherical nanocrystallite material, and are composed of proteins (fetuin, albumin) and inorganic minerals. CNP are suggested to play a role in a wide array of pathologic mineralization syndromes including urolithiasis. We documented the development of a clinically relevant protocol to assess urinary CNP in 9 healthy cats consuming the same diet in a controlled environment using Nanoparticle Tracking Analysis (NTA®). NTA® is a novel method that allows for characterization of the CNP in an efficient, accurate method that can differentiate these particles from other urinary submicron particulates. The predominant nanoscale particles in feline urine are characteristic of CNP in terms of their size, their ability to spontaneously form under suitable conditions, and the presence of an outer layer that is rich in calcium and capable of binding to hydroxyapatite binders such as alendronate and osteopontin. The expansion of this particle population can be suppressed by the addition of citrate to urine samples. Further, compounds targeting exosomal surfaces do not label these particulates. As CNP have been associated with a number of significant urologic maladies, the method described herein may prove to be a useful adjunct in evaluating lithogenesis risk in mammals.
Jia, Haiping; Zheng, Jianming; Song, Junhua; ...
2018-05-21
Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less
A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound.
Rao, K Jagajjanani; Li, Fei; Meng, Long; Zheng, Hairong; Cai, Feiyan; Wang, Wei
2015-06-24
Synthetic microswimmers are a class of artificial nano- or microscale particle capable of converting external energy into motion. They are similar to natural microswimmers such as bacteria in behavior and are, therefore, of great interest to the study of active matter. Additionally, microswimmers show promise in applications ranging from bioanalytics and environmental monitoring to particle separation and drug delivery. However, since their sizes are on the nano-/microscale and their speeds are in the μm s(-1) range, they fall into a low Reynolds number regime where viscosity dominates. Therefore, new propulsion schemes are needed for these microswimmers to be able to efficiently move. Furthermore, many of the hotly pursued applications call for innovations in the next phase of development of biocompatible microswimmers. In this review, the latest developments of microswimmers powered by ultrasound are presented. Ultrasound, especially at MHz frequencies, does little harm to biological samples and provides an advantageous and well-controlled means to efficiently power microswimmers. By critically reviewing the recent progress in this research field, an introduction of how ultrasound propels colloidal particles into autonomous motion is presented, as well as how this propulsion can be used to achieve preliminary but promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scalable Method to Produce Biodegradable Nanoparticles that Rapidly Penetrate Human Mucus
Xu, Qingguo; Boylan, Nicholas J.; Cai, Shutian; Miao, Bolong; Patel, Himatkumar; Hanes, Justin
2013-01-01
Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrohilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration. PMID:23751567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.T.; Bachalo, W.D.
1984-10-01
The feasibility of developing a particle-sizing instrument for in-situ measurements in industrial environments, based on the method of optical heterodyne or coherent detection, was investigated. The instrument, a coherent optical particle spectrometer, or COPS, is potentially capable of measuring several important particle parameters, such as particle size, number density, and speed, because of the versatility of the optical heterodyne method. Water droplets generated by an aerosol/particle generator were used to test the performance of the COPS. Study findings have shown that the optical setup of the COPS is extremely sensitive to even minute mechanical or acoustic vibrations. At the optimalmore » setup, the COPS performs satisfactorily and has more than adequate signal-to-noise even with a 0.5 mW He-Ne laser.« less
Novel application of DEM to modelling comminution processes
NASA Astrophysics Data System (ADS)
Delaney, Gary W.; Cleary, Paul W.; Sinnott, Matt D.; Morrison, Rob D.
2010-06-01
Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.
Barriuso, S; Chao, J; Jiménez, J A; García, S; González-Carrasco, J L
2014-02-01
Grit blasting is used as a cost-effective method to increase the surface roughness of metallic biomaterials, as Ti6Al4V and 316 LVM, to enhance the osteointegration, fixation and stability of implants. Samples of these two alloys were blasted by using alumina and zirconia particles, yielding rough (up to Ra~8μm) and nearly smooth (up to Ra~1μm) surfaces, respectively. In this work, we investigate the sub-surface induced microstructural effects and its correlation with the mechanical properties, with special emphasis in the fatigue behavior. Blasting with zirconia particles increases the fatigue resistance whereas the opposite effect is observed using alumina ones. As in a conventional shot penning process, the use of rounded zirconia particles for blasting led to the development of residual compressive stresses at the surface layer, without zones of stress concentrators. Alumina particles are harder and have an angular shape, which confers a higher capability to abrade the surface, but also a high rate of breaking down on impact. The higher roughness and the presence of a high amount of embedded alumina particles make the blasted alloy prone to crack nucleation. Interestingly, the beneficial or detrimental role of blasting is more intense for the Ti6Al4V alloy than for the 316 steel. It is proposed that this behavior is related to their different strain hardening exponents and the higher mass fraction of particles contaminating the surface. The low value of this exponent for the Ti6Al4V alloy justifies the expected low sub-surface hardening during the severe plastic deformation, enhancing its capability to soft during cyclic loading. © 2013 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.
2017-12-01
ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.
Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, M.; Han, J.; Feng, F.
1999-10-01
The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in themore » MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.« less
Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump
NASA Astrophysics Data System (ADS)
Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin
2017-07-01
In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheres
NASA Technical Reports Server (NTRS)
1988-01-01
Scientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 10(exp 6) g to 7 x 10(exp -12) g in size. Using long averaging times, particles as small as 0.7 to 4 x 10(exp 11) g were weighted to resolutions in the 5 to 9 x 10(exp -13) g range. The drive circuit and optics systems were developed beyond what was anticipated in the contract, and are now virtually flight prototypes. There is already commercial interest in the developed capability of measuring picogram mass losses and gains. One area is contamination and outgassing research, both measuring picogram losses from samples and collecting products of outgassing.
NASA Astrophysics Data System (ADS)
Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo
2015-08-01
This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.
Ludwig, D Brett; Trotter, Joseph T; Gabrielson, John P; Carpenter, John F; Randolph, Theodore W
2011-03-15
Subvisible particles in formulations intended for parenteral administration are of concern in the biopharmaceutical industry. However, monitoring and control of subvisible particulates can be complicated by formulation components, such as the silicone oil used for the lubrication of prefilled syringes, and it is difficult to differentiate microdroplets of silicone oil from particles formed by aggregated protein. In this study, we demonstrate the ability of flow cytometry to resolve mixtures comprising subvisible bovine serum albumin (BSA) aggregate particles and silicone oil emulsion droplets with adsorbed BSA. Flow cytometry was also used to investigate the effects of silicone oil emulsions on the stability of BSA, lysozyme, abatacept, and trastuzumab formulations containing surfactant, sodium chloride, or sucrose. To aid in particle characterization, the fluorescence detection capabilities of flow cytometry were exploited by staining silicone oil with BODIPY 493/503 and model proteins with Alexa Fluor 647. Flow cytometric analyses revealed that silicone oil emulsions induced the loss of soluble protein via protein adsorption onto the silicone oil droplet surface. The addition of surfactant prevented protein from adsorbing onto the surface of silicone oil droplets. There was minimal formation of homogeneous protein aggregates due to exposure to silicone oil droplets, although oil droplets with surface-adsorbed trastuzumab exhibited flocculation. The results of this study demonstrate the utility of flow cytometry as an analytical tool for monitoring the effects of subvisible silicone oil droplets on the stability of protein formulations. Copyright © 2010 Elsevier Inc. All rights reserved.
Khan, Huda; Shukla, R N; Bajpai, A K
2016-04-01
The aim of the present investigation was to design biocompatible gelatin nanoparticles, capable of releasing the cytarabine drug in a controllable way by regulating the extent of swelling of nanoparticles. In order to achieve the proposed objectives, gelatin (Type A, derived from acid cured tissue) was modified by crosslinking with genipin and nanoparticles of crosslinked gelatin were prepared using single water in oil (W/O) emulsion technique. The nanoparticles were characterized by techniques like FTIR, SEM, TEM, particles size analysis, and surface potential measurements. The nanoparticle chemical architecture was found to influence drug-releasing capacity. The influence of experimental conditions such as pH and simulated physiological fluids as the release medium was also investigated on the release profiles of cytarabine. It is possible to fabricate high-performance materials, by designing of controlled size gelatin nanoparticles with good biocompatible properties along with desired drug release profiles. Copyright © 2015 Elsevier B.V. All rights reserved.
Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar
2018-04-01
Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.
Generalized transduction: new aspects of the events in the water column
NASA Astrophysics Data System (ADS)
Velimirov, B.; Chiura, H. X.; Kogure, K.
2003-04-01
Virus mediated transfer of genetic elements among bacteria in nature has become a major research topic in the last decade. Along with conjugation and transformation, transduction is a well-known mechanism resulting in horizontal gene transfer in procaryotic organisms. In the case of generalized transduction, all regions of the procaryotic chromosome or other genetic elements in the donor cell are transferred with nearly the same frequency to the recipient. The injection of this DNA induces the generation of stable transductants. Both virulent and temperate phages have the capability to induce general transduction.Within the frame of a study on intergeneric phage-mediated gene transfer between marine bacteria and enteric bacteria, namely an auxotrophic mutant of Escherichia coli (AB1157) we used virus like particles (VLPs) from an oligotrophic marine environment (Mediterranean Sea, West coast of Corsica) and obtained gene transfer frequencies ranging between 10-2 to 10-6 per viral particle. Consequently we had to assume that an important fraction of the VLPs obtained via ultrafiltration (Minitan Ultrafiltration System, Millipore, USA. 30 kDA cut-off filter) from surface seawater have the capability to induce general transduction. In the process of this investigation we made a number of new observations which were not compatible with the concept of general transduction. The obtained transductants were able to produce new VLPs, which had again the capability to induce transduction. In an attempt to characterize these particles we show that their appearance in the experiment was neither related to plaque formation nor to cell lysis and we discuss the concept of transduction in the light of new experimental evidence concerning transducing particles. Furthermore, a preliminary numerical model allowing an estimation of the transduction events, taking place in the water column within a year is presented.
Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.
Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo
2016-01-01
The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.
NASA Astrophysics Data System (ADS)
Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.
2016-12-01
Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.
Optical tracking of nanoscale particles in microscale environments
NASA Astrophysics Data System (ADS)
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-03-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.
Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection
Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo
2016-01-01
The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers
NASA Astrophysics Data System (ADS)
Fei, Chunlong; Li, Ying; Zhu, Benpeng; Chiu, Chi Tat; Chen, Zeyu; Li, Di; Yang, Yintang; Kirk Shung, K.; Zhou, Qifa
2016-10-01
This paper reports on contactless microparticle manipulation including single-particle controlled trapping, transportation, and patterning via single beam acoustic radiation forces. As the core component of single beam acoustic tweezers, a needle type ultrasonic transducer was designed and fabricated with center frequency higher than 300 MHz and -6 dB fractional bandwidth as large as 64%. The transducer was built for an f-number close to 1.0, and the desired focal depth was achieved by press-focusing technology. Its lateral resolution was measured to be better than 6.7 μm by scanning a 4 μm tungsten wire target. Tightly focused acoustic beam produced by the transducer was shown to be capable of manipulating individual microspheres as small as 3 μm. "USC" patterning with 15 μm microspheres was demonstrated without affecting nearby microspheres. These promising results may expand the applications in biomedical and biophysical research of single beam acoustic tweezers.
Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples
NASA Technical Reports Server (NTRS)
Kurk, Michael A. (Andy)
2015-01-01
Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.
Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows
NASA Astrophysics Data System (ADS)
Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro
2015-11-01
Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.
NASA Astrophysics Data System (ADS)
Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.
2014-12-01
A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting instrumentation includes a suite of aerosol generation and characterization techniques, a laser Doppler interferometer, and a holographic cloud particle imaging system.We will present detailed specifications, an overview of the supporting instrumentation, and initial characterization experiments from the Π chamber.
The microphysics of ash tribocharging: New insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Joshua, M. S.; Dufek, J.
2014-12-01
The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this device allows us to methodically to characterize charges on particles with diameters down to 100 microns. Employing this instrument, we quantify the effect of particle pre-charging, mineralogy, and impact energy on the charge exchange between two colliding particles.
Cole, E C; Cook, C E
1998-08-01
Assessment of strategies for engineering controls for the prevention of airborne infectious disease transmission to patients and to health care and related workers requires consideration of the factors relevant to aerosol characterization. These factors include aerosol generation, particle size and concentrations, organism viability, infectivity and virulence, airflow and climate, and environmental sampling and analysis. The major focus on attention to engineering controls comes from recent increases in tuberculosis, particularly the multidrug-resistant varieties in the general hospital population, the severely immunocompromised, and those in at-risk and confined environments such as prisons, long-term care facilities, and shelters for the homeless. Many workers are in close contact with persons who have active, undiagnosed, or insufficiently treated tuberculosis. Additionally, patients and health care workers may be exposed to a variety of pathogenic human viruses, opportunistic fungi, and bacteria. This report therefore focuses on the nature of infectious aerosol transmission in an attempt to determine which factors can be systematically addressed to result in proven, applied engineering approaches to the control of infectious aerosols in hospital and health care facility environments. The infectious aerosols of consideration are those that are generated as particles of respirable size by both human and environmental sources and that have the capability of remaining viable and airborne for extended periods in the indoor environment. This definition precludes skin and mucous membrane exposures occurring from splashes (rather than true aerosols) of blood or body fluids containing infectious disease agents. There are no epidemiologic or laboratory studies documenting the transmission of bloodborne virus by way of aerosols.
Collaborative Research: Equipment for and Running of the PSI MUSE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, Michael
The R&D funding from this award has been a significant tool to move the Muon Scattering Experiment (MUSE) at the Paul Scherrer Institute in Switzerland forward to the stage of realization. Specifically, this award has enabled Dr. Michael Kohl and his working group at Hampton University to achieve substantial progress toward the goal of providing beam particle tracking with Gas Electron Multiplier (GEM) detectors for MUSE experiment. Establishing a particle detection system that is capable of operating in a high-intensity environment, with a data acquisition system capable of running at several kHz, combined with robust tracking software providing high efficiencymore » for track reconstruction in the presence of noise and backgrounds will have immediate application in many other experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidheswaran, Meera A.; Destaillats, Hugo; Fisk, William J.
The present invention provides for a device for reducing a volatile organic compound (VOC) content of a gas comprising a manganese oxide (MnO.sub.x) catalyst. The manganese oxide (MnO.sub.x) catalyst is capable of catalyzing formaldehyde at room temperature, with complete conversion, to CO.sub.2 and water vapor. The manganese oxide (MnO.sub.x) catalyst itself is not consumed by the reaction of formaldehyde into CO.sub.2 and water vapor. The present invention also provides for a device for reducing or removing a particle, a VOC and/or ozone from a gas comprising an activated carbon filter (ACF) on a media that is capable of being periodicallymore » regenerated.« less
Model of Fluidized Bed Containing Reacting Solids and Gases
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.
Rong, Yi; Zhou, Ting; Cheng, Wenjuan; Guo, Jiali; Cui, Xiuqing; Liu, Yuewei; Chen, Weihong
2013-11-01
Epidemiological evidence reports silica dust exposure has been associated with increased risk of cardiovascular diseases, but the mechanisms are largely unknown. In this study, endothelial cells were exposed to increasing concentrations of two sizes silica particles and the soluble mediators released by macrophages treated with the same particles for 24 h. Expression and release of cytokines (IL-1β, TNF-α and IL-6) were measured by using ELISA. Cytotoxicity was measured by MTT assay and LDH release. We show that both ways induced increases in cell toxicity and cytokines in a dose-dependent manner. For smaller particles, the soluble mediators are more capable of increasing cytokines compared with the effect of particles directly. For larger particles, evaluating results of these two ways are similar. Either way, smaller particles make the increasing action of cell toxicity and cytokines more remarkable. Our results indicate both silica particle and macrophage-derived mediators can induce endothelial cell injury and inflammation and demonstrate the potential importance of the particle sizes in this effect. Copyright © 2013. Published by Elsevier B.V.
Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model
NASA Astrophysics Data System (ADS)
Zuo, P.; Zhang, M.; Rassoul, H.
2013-12-01
There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.
Activation of Latent HIV Using Drug-loaded Nanoparticles
NASA Astrophysics Data System (ADS)
Kovochich, Michael
Antiretroviral therapy is currently only capable of controlling human immunodeficiency virus (HIV) replication, rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T-cells, which persists even in the presence of highly active antiretroviral therapy (HAART). It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However, no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence, novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target, activate primary human CD4+ T-cells, and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the histone deacetylase inhibitor (HDACi) sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. LNP-Bry was further tested for its in vivo biodistribution in both wild type mice (C57 black 6), as well as humanized mice (SCID-hu Thy/Liv, and bone marrow-liver-thymus [BLT]). LNP-Bry accumulated in the spleen and induced the early activation marker CD69 in wild type mice. Taken together, these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy.
Cañada Martínez, A; García González, J V; Rodríguez Suárez, V; Fernández Noval, F; Fernández Rodríguez, C; Huerta González, I
1999-01-01
The studies conducted to date regarding the possibility that air pollutants, at levels considered safe to date, are capable of having impact are capable of having impact on human health have not led to homogeneous findings. This study is aimed at estimating the degrees of relationship between the daily levels of the pollutants and the death rate on a short-terms basis in the two most populated cities in Austria (Gijón and Oviedo), as well as contributing to increasing the statistical importance and the representative nature of the EMECAM Project, within which this study is comprised. Ecological time series study, Estimate of degrees of group exposure based on the readings taken at the pollution control stations. Modeling of the death rate series, including control variables, by means of Poisson regression. Estimating risks related to each pollutant for the death rate, controlling the series-based autocorrelation. Throughout the 1993-1996 period, the pollution by means of particles in suspension and CO was greater in Gijón, that involving SO2 and NO2 having been greater in Oviedo. In these two cities, the levels can be considered to be low and to fall within what is considered admissible under the laws currently in impact. Most of the relative risk forecasts neared the zero impact point, although significant positive (especially for NO2) as well as negative relationships have been found to exist. The significant relationships found were not proven to be consistent in these two cities for the periods studied. Based on the findings of this study, the conclusion cannot be drawn that a clear-cut relationship exists between the pollutants studied (particles, SO2, NO2, CO) and the death rate on a short-term basis, at least at the levels detected in Gijón and Oviedo.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration
2003-03-01
This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.
Ding, Yu; Li, Chunqiang
2016-01-01
Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Particle size distribution control of Pt particles used for particle gun
NASA Astrophysics Data System (ADS)
Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.
2017-07-01
The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
NASA Astrophysics Data System (ADS)
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; Walsh, Stuart D. C.
2016-11-01
Proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based on representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell. By recreating the surface in clear plastic resin, proppant movement within the fracture can be tracked directly in real time without the need for X-ray imaging. Particle tracking is further enhanced through the use of mixtures of transparent and opaque proppant analogues. The accompanying numerical studies employ a high-fidelity three-dimensional particle-flow model, capable of explicitly representing the particles, the fracture surface and the interstitial fluid flow. Both studies reveal large-scale vortex motion during particle settling. For the most part, this behavior is independent of the fracture topology, instead driven by interactions between the sinking particles and the upwelling interstitial fluid. This motion results in large amounts of particle dispersion, significantly greater than might be expected from traditional slurry models. The competition between the particles and the fluid also results in a redistribution of particles toward the fracture walls, which has significant implications for the transport of proppant along the fracture.
Gulf of Mexico Monitoring Via The Remotely Controlled CMR SailBuoy
NASA Astrophysics Data System (ADS)
Wienders, N.; Hole, L. R.; Peddie, D.
2013-12-01
The CMR SailBuoy is an unmanned ocean vessel capable of traveling the oceans for extended periods of time. It navigates the oceans autonomously - transmitting data at regular intervals using the Iridium network for two way communication. The SailBuoy can be used for a wide variety of ocean applications from measuring ocean and atmospheric parameters to tracking oil spills or acting as a communication relay station for subsea instrumentation. As part of the Deep-C project(Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico), a two month campaign was carried out from March to May 2013 with the purpose of collecting sea surface data (temperature, salinity and oxygen) during the spring bloom. The campaign was unique in that the SailBouy was remotely controlled from Norway after being deployed from the RV Apalachee. The SailBuoy was deployed approximately 11 nautical miles (nm) south of Cape San Blas. During its mission she sailed approximately 840nm on a cruise track across the Gulf coast, from the Florida Panhandle to Louisiana. The SailBuoy project is part of Deep-C's physical oceanography research which seeks to, among other things, understand how particles and dissolved substances (such as oil) travel from the deep sea to the Louisiana, Mississippi, Alabama and Florida shorelines. This involves cross-shelf transport and upwelling mechanisms, which the SailBuoy is capable of measuring. An other focus was the sampling of the Mississippi river plume, which has been shown to influence the distribution of particles, oil, dissolved substances in the water, at least at the surface level. Sea surface salinity measurement via satellite do not provide, at the moment, sufficient resolution and accuracy and instead, the SailBuoy seems to be a very convenient instrument to track river plumes. In this presentation we describe the collected data and include comparisons with high resolution ocean model outputs. We also present further plans for SailBuoy campaigns.
Standard Model of Particle Physics--a health physics perspective.
Bevelacqua, J J
2010-11-01
The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.
EMPHASIS/Nevada UTDEM user guide. Version 2.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less
Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.
2012-01-01
Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.
Modeling Giant Sawtooth Modes in DIII-D using the NIMROD code
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Held, Eric; King, Jacob; NIMROD Team
2014-10-01
Ongoing efforts to model giant sawtooth cycles in DIII-D shot 96043 using NIMROD are summarized. In this discharge, an energetic ion population induced by RF heating modifies the sawtooth stability boundary, supplanting the conventional sawtooth cycle with longer-period giant sawtooth oscillations of much larger amplitude. NIMROD has the unique capability of being able to use both continuum kinetic and particle-in-cell numerical schemes to model the RF-induced hot-particle distribution effects on the sawtooth stability. This capability is used to numerically investigate the role played by the form of the energetic particle distribution, including a possible high-energy tail drawn out by the RF, to study the sawtooth threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior (such as the plasma Lundquist number and hot-particle β-fraction) are also considered. Ultimately, we hope to assess the degree to which NIMROD's extended MHD model correctly simulates the observed linear onset and nonlinear behavior of the giant sawtooth, and to establish its reliability as a predictive modeling tool for these modes. This work was initiated by the late Dr. Dalton Schnack. Equilibria were provided by Dr. A. Turnbull of General Atomics.
Fluidization of spherocylindrical particles
NASA Astrophysics Data System (ADS)
Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.
2017-06-01
Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.
Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion
Wang, Zhen; Wang, Yapei
2016-01-01
Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials. PMID:28774029
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Teterina, I. V.; Volkov, K. N.; Garkushev, A. U.
2017-06-01
Metal particles are widely used in space engineering to increase specific impulse and to supress acoustic instability of intra-champber processes. A numerical analysis of the internal injection-driven turbulent gas-particle flows is performed to improve the current understanding and modeling capabilities of the complex flow characteristics in the combustion chambers of solid rocket motors (SRMs) in presence of forced pressure oscillations. The two-phase flow is simulated with a combined Eulerian-Lagrangian approach. The Reynolds-averaged Navier-Stokes equations and transport equations of k - ε model are solved numerically for the gas. The particulate phase is simulated through a Lagrangian deterministic and stochastic tracking models to provide particle trajectories and particle concentration. The results obtained highlight the crucial significance of the particle dispersion in turbulent flowfield and high potential of statistical methods. Strong coupling between acoustic oscillations, vortical motion, turbulent fluctuations and particle dynamics is observed.
Melvin, Elizabeth M; Moore, Brandon R; Gilchrist, Kristin H; Grego, Sonia; Velev, Orlin D
2011-09-01
The recent development of microfluidic "lab on a chip" devices requiring sample sizes <100 μL has given rise to the need to concentrate dilute samples and trap analytes, especially for surface-based detection techniques. We demonstrate a particle collection device capable of concentrating micron-sized particles in a predetermined area by combining AC electroosmosis (ACEO) and dielectrophoresis (DEP). The planar asymmetric electrode pattern uses ACEO pumping to induce equal, quadrilateral flow directed towards a stagnant region in the center of the device. A number of system parameters affecting particle collection efficiency were investigated including electrode and gap width, chamber height, applied potential and frequency, and number of repeating electrode pairs and electrode geometry. The robustness of the on-chip collection design was evaluated against varying electrolyte concentrations, particle types, and particle sizes. These devices are amenable to integration with a variety of detection techniques such as optical evanescent waveguide sensing.
A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations
NASA Astrophysics Data System (ADS)
Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.
2012-05-01
We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.
NASA Astrophysics Data System (ADS)
Sang, Ming-huang; Nie, Li-ping
2017-11-01
We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled quantum information transmission by performing only Bell-state measurement and two-particle projective measurement and single-particle measurement. In our protocol, Alice can teleport an arbitrary unknown single-particle state to Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice via the control of the supervisor Charlie.
Cytokeratin 8 in Association with sdLDL and ELISA Development
Ashmaig, Mohmed
2015-01-01
Background: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Cytokeratins (CKs) which may also be expressed in vascular smooth muscle cells (SMCs) are generally considered to be markers for the differentiation of epithelial cells. Small, dense, low-density lipoprotein (sdLDL) particles, also termed LDL-IV, independently predict risk of CVD. Aims: The aims of this study were to develop an analytical method, apart from ultracentrifugation capable of isolating sdLDL in order to study any associated proteins. Materials and Methods: Using modified gradient gel electrophoresis (GGE), de-identified sdLDL-enriched plasma was used to physically elute and isolate sdLDL particles. To validate the finding, additional plasma from 77 normal and 48 higher risk subjects were used to measure sdLDL particles and CK8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting method were used to identify the characteristics of proteins associated with sdLDL. An enzyme-linked immunosorbent assay (ELISA) method was developed and validated for the measurement of CK8 in plasma. Results: The validation of the CK8 ELISA method showed good analytical performance. The isolated sdLDL particles were verified with nondenaturing GGE with the apolipoprotein B component confirmed by Western immunoblotting. Confirmed by SDS-PAGE and Western immunoblotting, CK8 was associated with sdLDL. Two-tailed statistical analysis showed that CK8 and sdLDL particles were significantly higher in the high-risk CVD group compared to control group (P < 0.01 and P < 0.01, respectively). Conclusion: This study reports a novel association between CK8 and sdLDL in individuals with CVD who have a predominance of sdLDL. PMID:26713292
Particle damping applied research on mining dump truck vibration control
NASA Astrophysics Data System (ADS)
Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang
2018-05-01
Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.
Spin precession experiments for light axionic dark matter
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas
2018-03-01
Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.
Nano polypeptide particles reinforced polymer composite fibers.
Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng
2015-02-25
Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.
High-resolution imaging of the supercritical antisolvent process
NASA Astrophysics Data System (ADS)
Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.
2005-06-01
A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.
NASA Technical Reports Server (NTRS)
King, Michael C.; Bachalo, William; Kurek, Andrzej
2017-01-01
This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.
NASA Technical Reports Server (NTRS)
King, Michael C.; Bachalo, William; Kurek, Andrzej
2017-01-01
This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.
Impact of energetic-particle-driven geodesic acoustic modes on turbulence.
Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O
2013-03-22
The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel
2016-08-01
In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-09-01
In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-01-01
In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
Polariton devices and quantum fluids
NASA Astrophysics Data System (ADS)
Ballarini, D.; De Giorgi, M.; Lerario, G.; Cannavale, A.; Cancellieri, E.; Bramati, A.; Gigli, G.; Laussy, F.; Sanvitto, D.
2014-02-01
Exciton-polaritons, composite particles resulting from the strong coupling between excitons and photons, have shown the capability to undergo condensation into a macroscopically coherent quantum state, demonstrating strong non-linearities and unique propagation properties. These strongly-coupled light-matter particles are promising candidates for the realization of semiconductor all-optical devices with fast time response and small energy consumption. Recently, quantum fluids of polaritons have been used to demonstrate the possibility to implement optical functionalities as spin switches, transistors or memories, but also to provide a channel for the transmission of information inside integrated circuits. In this context, the possibility to extend the range of light-matter interaction up to room temperature becomes of crucial importance. One of the most intriguing promises is to use organic Frenkel excitons, which, thanks to their huge oscillator strength, not only sustain the polariton picture at room temperature, but also bring the system into the unexplored regime of ultra-strong coupling. The combination of these materials with ad-hoc designed structures may allow the control of the propagation properties of polaritons, paving the way towards their implementation of the polariton functionalities in actual devices for opto-electronic applications.
Monodisperse, Uniformly-Shaped Particles for Controlled Respiratory Vaccine Delivery
NASA Astrophysics Data System (ADS)
Fromen, Catherine Ann
The majority of the world's most infectious diseases occur at the air-tissue interface called the mucosa, including HIV/AIDS, tuberculosis, measles, and bacterial or viral gut and respiratory infections. Despite this, vaccines have generally been developed for the systemic immune system and fail to provide protection at the mucosal site. Vaccine delivery directly to the lung mucosa could provide superior lung protection for many infectious diseases, such as TB or influenza, as well as systemic and therapeutic vaccines for diseases such as Dengue fever, asthma, or cancer. Specifically, precision engineered biomaterials are believed to offer tremendous opportunities for a new generation of vaccines. The goal of this approach is to leverage naturally occurring processes of the immune system to produce memory responses capable of rapidly destroy virulent pathogens without harmful exposure. Considerable knowledge of biomaterial properties and their interaction with the immune system of the lung is required for successful translation. The overall goal of this work was to fabricate and characterize nano- and microparticles using the Particle Replication In Non-wetting Templates (PRINT) fabrication technique and optimize them as pulmonary vaccine carriers. (Abstract shortened by ProQuest.).
Tailoring plasmonic nanoparticles and fractal patterns
NASA Astrophysics Data System (ADS)
Rosa, Lorenzo; Juodkazis, Saulius
2011-12-01
We studied new three-dimensional tailoring of nano-particles by ion-beam and electron-beam lithographies, aiming for features and nano-gaps down to 10 nm size. Electron-beam patterning is demonstrated for 2D fabrication in combination with plasmonic metal deposition and lift-off, with full control of spectral features of plasmonic nano-particles and patterns on dielectric substrates. We present wide-angle bow-tie rounded nano-antennas whose plasmonic resonances achieve strong field enhancement at engineered wavelength range, and show how the addition of fractal patterns defined by standard electron beam lithography achieve light field enhancement from visible to far-IR spectral range and scalable up towards THz band. Field enhancement is evaluated by FDTD modeling on full-3D simulation domains using complex material models, showing the modeling method capabilities and the effect of staircase approximations on field enhancement and resonance conditions, especially at metal corners, where a minimum rounding radius of 2 nm is resolved and a five-fold reduction of spurious ringing at sharp corners is obtained by the use of conformal meshing.
Grassed swales for stormwater pollution control during rain and snowmelt.
Bäckström, M
2003-01-01
The retention of suspended solids, particles and heavy metals in different grassed swales during rain events and snowmelt is discussed. The experimental results derived from investigations performed in existing grassed swales in the Luleå region, Northern Sweden. During high pollutant loading rates, grassed swales retain significant amounts of pollutants, mainly due to sedimentation of particulate matter. Low to moderate removal efficiencies could be expected for heavy metals, especially metals in solution (i.e. the dissolved phase). When grassed swales receive urban runoff with low pollutant concentrations, they may release rather than retain pollutants. Swales are important snow deposit areas in the city and particle bound pollutants do to a large extent remain in the swale after snowmelt. However, dissolved pollutants (i.e. dissolved heavy metals) are likely to escape the swale with the melt water. Grassed swales may be regarded as facilities that even out the peaks in pollutant loads without being capable of producing consistent high removal rates. This suggests that swales should be considered as primary treatment devices. Possible design parameters for grassed swales are mean hydraulic detention time, surface loading rate or specific swale area.
Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin
2015-01-01
The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.
Laser micromachining of biofactory-on-a-chip devices
NASA Astrophysics Data System (ADS)
Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.
2002-06-01
Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.
2015-10-01
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the regionmore » of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.« less
STUDIES OF TWO KINDS OF VIRUS PARTICLES WHICH COMPRISE INFLUENZA A2 VIRUS STRAINS
Choppin, Purnell W.; Tamm, Igor
1960-01-01
Two kinds of virus particles have been found in varying proportions in influenza A2 strains isolated during the 1957 pandemic. Pure populations of the different particles were obtained, and these substrains were genetically stable on serial passage in the chick embryo. The two virus particles differ markedly in several biological properties though they are antigenically similar. One kind of particle, designated "+," is relatively sensitive to specific antibody, is highly sensitive to inhibition by serum inhibitors and urinary mucoprotein, fails to elute or elutes very slowly from human erythrocytes, and is capable of agglutinating erythrocytes treated extensively with V. cholerae filtrate. The other particle, designated "-," is relatively insensitive to antibodies and urinary mucoprotein, completely insensitive to serum inhibitors, elutes rapidly from erythrocytes, and can agglutinate erythrocytes treated extensively with V. cholerae filtrate. Both "+" and "-" particles destroy virus receptors on urinary mucoprotein. The relative proportions of these two particles determine the characteristics of parent strains in reactions with specific antibody, mucoprotein inhibitors, and erythrocytes. The "+" and "-" particles with several easily identifiable markers are well suited for genetic studies. PMID:19867182
PlasmaPy: initial development of a Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community
2017-10-01
We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.
1975-01-01
A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente
NASA Technical Reports Server (NTRS)
Rogers, Jan; Finckenor, Miria; Nehls, Mary
2016-01-01
The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.
Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya
2016-05-28
Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. Themore » theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept
NASA Astrophysics Data System (ADS)
Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.
2015-03-01
We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.
Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less
Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A
2016-01-19
The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.
Digital design of multimaterial photonic particles
Tao, Guangming; Kaufman, Joshua J.; Shabahang, Soroush; Rezvani Naraghi, Roxana; Sukhov, Sergey V.; Joannopoulos, John D.; Fink, Yoel; Dogariu, Aristide; Abouraddy, Ayman F.
2016-01-01
Scattering of light from dielectric particles whose size is on the order of an optical wavelength underlies a plethora of visual phenomena in nature and is a foundation for optical coatings and paints. Tailoring the internal nanoscale geometry of such “photonic particles” allows tuning their optical scattering characteristics beyond those afforded by their constitutive materials—however, flexible yet scalable processing approaches to produce such particles are lacking. Here, we show that a thermally induced in-fiber fluid instability permits the “digital design” of multimaterial photonic particles: the precise allocation of high refractive-index contrast materials at independently addressable radial and azimuthal coordinates within its 3D architecture. Exploiting this unique capability in all-dielectric systems, we tune the scattering cross-section of equisized particles via radial structuring and induce polarization-sensitive scattering from spherical particles with broken internal rotational symmetry. The scalability of this fabrication strategy promises a generation of optical coatings in which sophisticated functionality is realized at the level of the individual particles. PMID:27274070
Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles
NASA Astrophysics Data System (ADS)
Shah, Kruti; Choi, Seung-Bok
2014-10-01
In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.
Modeling Lost-Particle Backgrounds in PEP-II Using LPTURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieguth, T.; /SLAC; Barlow, R.
2005-05-17
Background studies during the design, construction, commissioning, operation and improvement of BaBar and PEP-II have been greatly influenced by results from a program referred to as LPTURTLE (Lost Particle TURTLE) which was originally conceived for the purpose of studying gas background for SLC. This venerable program is still in use today. We describe its use, capabilities and improvements and refer to current results now being applied to BaBar.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Particle Identification in the NIMROD-ISiS Detector Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuenschel, S.; Hagel, K.; May, L. W.
Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.
Tangential RIF turbine with particle removing means
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linhardt, H.D.
1980-12-02
A radial inflow turbine is disclosed utilizing a star wheel type of blade and wherein the inlet nozzles are located along the sides or lateral of the blade tips rather than located radially beyond the blade tips. The side approach enables the turbine to include an annular chamber outside of the moving blades and where small particles are centrifuged during operation and collected. The incoming hot gases, that propel the blades, pass through approximately a 90/sup 0/ turn and continue radially inwardly. The large particles hit the turbine blades and are projected outwardly into the annular chamber for collection andmore » subsequent removal while the smaller particles may be centrifuged in the stream of gas and immediately thrown outwardly. The turbine is capable of removing particles to as small as 2-3 microns (..mu..m).« less
Sadat, Umar; Usman, Ammara; Gillard, Jonathan H
2017-07-01
To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.
[Possibility and necessity of constructing new nanoformula systems of traditional Chinese medicine].
Ling, Chang-quan; Su, Yong-hua
2010-02-01
The past decade has witnessed the remarkable progress on nanotechnology and nanoherb. With the globally rapid development of nanotechnology, we are considering to construct new nanoformula systems of traditional Chinese medicine (TCM) by using porous materials, multilayered core-shell particles or nanoparticles containing various multifunctional parts. With the compatibility of sovereign, minister, assistant and courier in a formula, new nanoformula systems of TCM will have various advantages, such as containing multiple active species, controlled release, targeting function, and labeling and tracing capabilities. Using the latest breakthroughs of nanotechnology for the modern research of TCM will greatly help enhance the ability to investigate the principles of TCM, and to design, screen and utilize new nanoformula systems of TCM.
High energy density redox flow device
Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa
2015-10-06
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
NASA Astrophysics Data System (ADS)
Hu, Sheng; Lv, Jiangtao; Si, Guangyuan
2016-10-01
A numerical model and simulation relative to an optoelectrofluidic chip has been presented in this article. Both dielectrophoretic and electroosmotic force attracting the nano-sized particles could be studied by the diffusion, convection, and migration equations. For the nano-sized particles, the protein with radius 3.6 nm is considered as the objective particle. The electroosmosis dependent upon applied frequency is calculated, which range 102 Hz from 108 Hz, and provides the much stronger force to enrich proteins than dielectrophoresis (DEP). Meanwhile, the induced light pattern size significantly affecting the concentration distribution is simulated. In this end, the concentration curve has verified that the optoelectrofluidic chip can be capable of manipulating and assembling the suspended submicron particles.
High energy density redox flow device
Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
Alternating current long range alpha particle detector
MacArthur, Duncan W.; McAtee, James L.
1993-01-01
An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Alternating current long range alpha particle detector
MacArthur, D.W.; McAtee, J.L.
1993-02-16
An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
The Demonstration and Science Experiments (DSX) Mission
NASA Astrophysics Data System (ADS)
McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.
2015-12-01
In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.
NASA Astrophysics Data System (ADS)
Feng, W.; Wang, L.; Rack, M.; Liang, Y.; Guo, H. Y.; Xu, G. S.; Xu, J. C.; Liu, J. B.; Sun, Y. W.; Jia, M. N.; Yang, Q. Q.; Zhang, B.; Zou, X. L.; Liu, H.; Zhang, T.; Ding, F.; Chen, J. B.; Duan, Y. M.; Zheng, X. W.; Dai, S. Y.; Deng, G. Z.; Chen, R.; Hu, G. H.; Yan, N.; Si, H.; Liu, S. C.; Xu, S.; Wang, M.; Li, M. H.; Ding, B. J.; Wingen, A.; Huang, J.; Gao, X.; Luo, G. N.; Gong, X. Z.; Garofalo, A. M.; Li, J.; Wan, B. N.; the EAST Team
2017-12-01
Three dimensional (3D) divertor particle flux footprints induced by the lower hybrid wave (LHW) have been systematically investigated in the EAST superconducting tokamak during the recent experimental campaign. We find that the striated particle flux (SPF) peaks away from the strike point (SP) closely fit the pitch of the edge magnetic field line for different safety factors q 95, as predicted by a field line tracing code taking into account the helical current filaments (HCFs) in the scrape-off-layer (SOL). As LHW power increases, it requires the fuelling to be increased e.g. by super molecular beam injection (SMBI), to maintain a similar plasma density, which may be attributed to the pump-out effect due to LHW, and may thus be beneficial for EAST steady state operations. The 3D SPF structure is observed with a LHW power threshold (P LHW ~ 0.9 MW). The ratio of the particle fluxes between SPF and outer strike point (OSP), i.e. {{Γ }ion,SPF}/{{Γ }ion,OSP} , increases with the LHW power. Upon transition to divertor detachment, the particle flux at the main OSP decreases, as expected, however, the particle flux at SPF continues increasing, in contrast to the RMP-induced striations that vanish with increasing divertor density. In addition, we also find that the in-out asymmetry of the 3D particle flux footprint pattern exhibits a clear dependence on the toroidal field direction (B × ∇ B ↓ and B × ∇ B↑). Experiments using neon impurity seeding show a promising capability in 3D particle and heat flux control on EAST. LHW-induced particle and heat flux striations are also present in the H-mode plasmas, reducing the peak heat flux and erosion at the main strike point, thus facilitating long-pulse operation with a new steady-state H-mode over 60 s being recently achieved in EAST.
The Cosmic Dust Analyzer for Cassini
NASA Technical Reports Server (NTRS)
Bradley, James G.; Gruen, Eberhard; Srama, Ralf
1996-01-01
The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.
Jiang, Zhenqi; Tian, Yuchen; Shan, Dingying; Wang, Yinjie; Gerhard, Ethan; Xia, Jianbi; Huang, Rong; He, Yan; Li, Aiguo; Tang, Jianchao; Ruan, Huimin; Li, Yong; Li, Juan; Yang, Jian; Wu, Aiguo
2018-07-01
Nanoparticle-based tumor therapies are extensively studied; however, few are capable of improving patient survival time due to premature drug leakage, off target effects, and poor tissue penetration. Previously, we successfully synthesized a novel family of Y 1 receptor (Y 1 R) ligand modified, photoluminescent BPLP nanobubbles and nanoparticles for targeted breast cancer ultrasound imaging; however, increased accumulation could also be observed in the liver, kidney, and spleen, suggesting significant interaction of the particles with macrophages in vivo. Herein, for the first time, we imparted antiphagocytosis capability to Y 1 R ligand functionalized BPLP-WPU polymeric micelles through the incorporation of a CD47 human glycoprotein based self-peptide. Application of self-peptide modified, DOX loaded micelles in vivo resulted in a 100% survival rate and complete tumor necrosis over 100 days of treatment. In vivo imaging of SPION loaded, self-peptide modified micelles revealed effective targeting to the tumor site while analysis of iron content demonstrated reduced particle accumulation in the liver and kidney, demonstrating reduced macrophage interaction, as well as a 2-fold increase of particles in the tumor. As these results demonstrate, Y 1 R ligand, self-peptide modified BPLP-WPU micelles are capable of target specific cancer treatment and imaging, making them ideal candidates to improve survival rate and tumor reduction clinically. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, J.
2014-01-01
We outline a plan to develop a physics based predictive toolset RISCS to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 AU; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements.
Controlled Release of Dexamethasone from Peptide Nanofiber Gels to Modulate Inflammatory Response
Webber, Matthew J.; Matson, John B.; Tamboli, Vibha K.; Stupp, Samuel I.
2012-01-01
New biomaterials that have the ability to locally suppress an immune response could have broad therapeutic use in the treatment of diseases characterized by acute or chronic inflammation or as a strategy to facilitate improved efficacy in cell or tissue transplantation. We report here on the preparation of a modular peptide amphiphile (PA) capable of releasing an anti-inflammatory drug, dexamethasone (Dex), by conjugation via a labile hydrazone linkage. This molecule self-assembled in water into long supramolecular nanofibers when mixed with a similar PA lacking the drug conjugate, and the addition of calcium salt to screen electrostatic repulsion between nanofibers promoted gel formation. These nanofiber gels demonstrated sustained release of soluble Dex for over one month in physiologic media. The Dex released from these gels maintained its anti-inflammatory activity when evaluated in vitro using a human inflammatory reporter cell line and furthermore preserved cardiomyocytes viability upon induced oxidative stress. The ability of this gel to mitigate the inflammatory response in cell transplantation strategies was evaluated using cell-surrogate polystyrene microparticles suspended in the nanofiber gel that were then subcutaneously injected in a mouse. Live animal luminescence imaging using the chemiluminescent reporter molecule luminol showed a significant reduction in inflammation at the site where particles were injected with Dex-PA compared to the site of injection for particles within a control PA in the same animal. Histological evidence suggested a marked reduction in the number of infiltrating inflammatory cells when particles were delivered within Dex-PA nanofiber gels and very little inflammation was observed at either 3 days or 21 days post-implantation. The use of Dex-PA could facilitate localized anti-inflammatory activity as a component of biomaterials designed for various applications in regenerative medicine and could specifically be a useful module for PA-based therapies. More broadly, these studies define a versatile strategy for facile synthesis of self-assembling peptide-based materials with the ability to control drug release. PMID:22748768
Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory
NASA Astrophysics Data System (ADS)
Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.
The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.
Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A
2016-09-01
Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.