A density functional approach to ferrogels
NASA Astrophysics Data System (ADS)
Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.
2017-07-01
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.
Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi
2011-05-21
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.
Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu
2011-02-01
The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.
Thermodynamic properties of water in confined environments: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Gladovic, Martin; Bren, Urban; Urbic, Tomaž
2018-05-01
Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.
NASA Technical Reports Server (NTRS)
Akhundova, E. A.; Dodonov, V. V.; Manko, V. I.
1993-01-01
The exact expressions for density matrix and Wigner functions of quantum systems are known only in special cases. Corresponding Hamiltonians are quadratic forms of Euclidean coordinates and momenta. In this paper we consider the problem of one-dimensional free particle movement in the bounded region 0 is less than x is less than a (including the case a = infinity).
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri
2015-09-08
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.
AFM-porosimetry: density and pore volume measurements of particulate materials.
Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C
2008-06-01
We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.
NASA Astrophysics Data System (ADS)
Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad
2018-05-01
This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.
High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion
NASA Astrophysics Data System (ADS)
Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven
2017-04-01
An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.
Gradient-based stochastic estimation of the density matrix
NASA Astrophysics Data System (ADS)
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.
2007-12-01
Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-01-01
We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-28
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
NASA Astrophysics Data System (ADS)
Živković, Tomislav P.
1984-09-01
The configuration interaction (CI) space Xn built upon n electrons moving over 2n orthonormalized orbitals χi is considered. It is shown that the space Xn splits into two complementary subspaces X+n and X-n having special properties: each state Ψ+∈X+n and Ψ-∈X-n is ``alternantlike'' in the sense that it has a uniform charge density distribution over all orbitals χi and vanishing bond-orders between all orbitals of the same parity. In addition, matrix elements Γ(ij;kl) of a two-particle density matrix vanish whenever four distinct orbitals are involved and there is an odd number of orbitals of the same parity. Further, Γ(ij;lj)=γ(il)/4 ( j≠i,l), whenever (i) and (l) are of different parity. This last relation shows the connection between a two-particle (Γ) and a one-particle (γ) density matrix. ``Elementary'' alternant and antialternant operators are identified. These operators connect either only the states in the same subspace, or only the states in different subspaces, and each one- and two-particle symmetric operator can be represented by their linear combination. Alternant Hamiltonians, which can be represented as linear combinations of elementary alternant operators, have alternantlike eigenstates. It is also shown that each symmetric Hamiltonian possessing alternantlike eigenstates can be represented as such a linear combination. In particular, the PPP Hamiltonian describing an alternant hydrocarbon system is such a case. Complementary subspaces X+n and X-n can be explicitly constructed using the so-called regular resonance structures (RRS's) which are normalized determinants containing mutually disjunct bond orbitals. Expressions for the derivation of matrix elements of one- and two-particle operators between different RRS's are also derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Siqi; Senses, Erkan; Jiao, Yang
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less
Polymer Grafted Nanoparticles for Designed Interfaces in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mohammadkhani, Mohammad
This dissertation presents the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement from this interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of nanocomposites by controlling the interface between the particles and the polymer matrix. In the first part of this work, compatibility of 15 nm silica nanoparticles grafted with different alkyl methacrylates with linear low density polyethylene was investigated. SI-RAFT polymerization of hexyl, lauryl, and stearyl methacrylate on silica NPs was studied in detail and revealed living character for all these polymerizations. Composites of linear low density polyethylene filled with PHMA, PLMA, and PSMA-g-SiO2 NPs were prepared and analyzed to find the effects of side chain length on the dispersibility of particles throughout the matrix. PSMA brushes were the most "olefin-like" of the series and thus showed the highest compatibility with polyethylene. The effects of PSMA brush molecular weight and chain density on the dispersion of silica particles were investigated. Multiple characterizations such as DSC, WAXS, and SAXS were applied to study the interaction between PSMA-g-SiO2 NPs and the polyethylene matrix. In the next part, the compatibility of PSMA-g-SiO2 NPs with different molecular variables with isotactic polypropylene was investigated. Anthracene was used as a conjugated ligand to introduce to the surface of PSMA-g-SiO2 NPs to develop bimodal architecture on nanoparticles and use them in polypropylene dielectric nanocomposites. The dispersion of particles was investigated and showed that for both monomodal and bimodal particles where PSMA chains are medium density and relatively high molecular weight, they maintain an acceptable level of dispersion throughout of the matrix. Furthermore, the effects of anthracene surface modification and also level of dispersion towards improving the dielectric breakdown strength under AC and DC conditions were studied. Finally, the RAFT polymerizations of isoprene in solution and, for the first time, on the surface of silica particles using a high temperature stable trithiocarbonate RAFT agent were studied. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI-RAFT polymerization were also investigated. Kinetic studies revealed that the rate of SI-RAFT polymerization increased with an increase in the density of grafted RAFT agent. Well-defined polyisoprene-grafted silica NPs (PIP-g-SiO2 NPs) were synthesized and mixed with a polyisoprene matrix to determine the compatibility and dispersion of these particles with the matrix. Hydrogenation of PIP-g-SiO2 NPs were performed using p-toluenesulfonyl hydrazide at high temperature to obtain hydrogenated (HPIP)-g-SiO2 NPs. A bimodal octadecylsilane (C18)-HPIP-g-SiO2 NPs sample was synthesized and mixed with isotactic PP matrix analyzed for the compatibility with polypropylene.
Random acoustic metamaterial with a subwavelength dipolar resonance.
Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis
2016-06-01
The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.
Natural occupation numbers: when do they vanish?
Giesbertz, K J H; van Leeuwen, R
2013-09-14
The non-vanishing of the natural orbital (NO) occupation numbers of the one-particle density matrix of many-body systems has important consequences for the existence of a density matrix-potential mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of the extended Koopmans' theorem. On the basis of Weyl's theorem we give a connection between the differentiability properties of the ground state wavefunction and the rate at which the natural occupations approach zero when ordered as a descending series. We show, in particular, that the presence of a Coulomb cusp in the wavefunction leads, in general, to a power law decay of the natural occupations, whereas infinitely differentiable wavefunctions typically have natural occupations that decay exponentially. We analyze for a number of explicit examples of two-particle systems that in case the wavefunction is non-analytic at its spatial diagonal (for instance, due to the presence of a Coulomb cusp) the natural orbital occupations are non-vanishing. We further derive a more general criterium for the non-vanishing of NO occupations for two-particle wavefunctions with a certain separability structure. On the basis of this criterium we show that for a two-particle system of harmonically confined electrons with a Coulombic interaction (the so-called Hookium) the natural orbital occupations never vanish.
Rupture in cemented granular media: application to wheat endosperm
NASA Astrophysics Data System (ADS)
Topin, V.; Delenne, J.-Y.; Radjai, F.
2009-06-01
The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.
2016-06-01
Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.
NASA Astrophysics Data System (ADS)
Sokołowski, Damian; Kamiński, Marcin
2018-01-01
This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).
Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles
Liu, Siqi; Senses, Erkan; Jiao, Yang; ...
2016-04-15
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less
Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly
NASA Astrophysics Data System (ADS)
Oliveira, Tiago J.; Stilck, Jürgen F.
2015-09-01
Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Modified Hartree-Fock-Bogoliubov theory at finite temperature
NASA Astrophysics Data System (ADS)
Dinh Dang, Nguyen; Arima, Akito
2003-07-01
The modified Hartree-Fock-Bogoliubov (MHFB) theory at finite temperature is derived, which conserves the unitarity relation of the particle-density matrix. This is achieved by constructing a modified-quasiparticle-density matrix, where the fluctuation of the quasiparticle number is microscopically built in. This matrix can be directly obtained from the usual quasiparticle-density matrix by applying the secondary Bogoliubov transformation, which includes the quasiparticle-occupation number. It is shown that, in the limit of constant pairing parameter, the MHFB theory yields the previously obtained modified BCS (MBCS) equations. It is also proved that the modified quasiparticle-random-phase approximation, which is based on the MBCS quasiparticle excitations, conserves the Ikeda sum rule. The numerical calculations of the pairing gap, heat capacity, level density, and level-density parameter within the MBCS theory are carried out for 120Sn. The results show that the superfluid-normal phase transition is completely washed out. The applicability of the MBCS up to a temperature as high as T˜5 MeV is analyzed in detail.
TEM characterization of irradiated U-7Mo/Mg dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, J.; Keiser, D. D.; Miller, B. D.
This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less
TEM characterization of irradiated U-7Mo/Mg dispersion fuel
Gan, J.; Keiser, D. D.; Miller, B. D.; ...
2017-07-15
This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less
Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.
Ragot, Sébastien; Ruiz, María Belén
2008-09-28
The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.
Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). ...
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, L.; Kim, B. K.; Was, G. S.
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
Tan, L.; Kim, B. K.; Was, G. S.
2017-09-06
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
Water in the presence of inert Lennard-Jones obstacles
NASA Astrophysics Data System (ADS)
Kurtjak, Mario; Urbic, Tomaz
2014-04-01
Water confined by the presence of a 'sea' of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and 'hydrogen bonding' of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good 'hydrogen-bonding' networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.
Asghari, Fateme; Jahanshahi, Mohsen
2012-09-28
Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced with the increasing of matrix density. It was found that flow rate was the most essential factor to effect on the hydrodynamic characteristics in the bed. For all the prepared matrices, the values of axial mixing coefficients (D(axl)) were smaller than 1.0 × 10⁻⁵ m²/s when flow velocities in expanded bed were less than 700 cm/h. All the results indicate that the prepared matrix show good expansion and stability in expanded bed; and it is suitable for expanded bed processes as an economical adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Micromechanics effects in creep of metal-matrix composites
NASA Astrophysics Data System (ADS)
Davis, L. C.; Allison, J. E.
1995-12-01
The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.
Bose-Einstein correlations: A study of an invariance group
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2005-08-01
A group of transformations changing the phases of the elements of the single-particle density matrix, but leaving unchanged the predictions for identical particles concerning the momentum distributions, momentum correlations etc., is identified. Its implications for the determinations of the interaction regions from studies of Bose-Einstein correlations are discussed.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
The impact of various scaffold components on vascularized bone constructs.
Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila
2017-06-01
Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Perturbation theory corrections to the two-particle reduced density matrix variational method.
Juhasz, Tamas; Mazziotti, David A
2004-07-15
In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.
2008-11-01
The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.
Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead
2007-01-01
Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-07-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-01-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang
2017-11-30
Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.
The Scattering of Particles with Spin from Targets with Spin
ERIC Educational Resources Information Center
Stewart, Noel M.
1978-01-01
The density matrix is used to obtain an expression for the mean value of any spin operator in the scattering of particles with arbitrary spin. The example of spin-1/2-spin-1 scattering is developed and physical information obtained by establishing connections with the polarization tensor and Wolfenstein observables. (Author/GA)
Fragile entanglement statistics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.; Hughston, Lane P.; Meier, David M.
2015-10-01
If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entangled states. The explicit construction of such states, along with the specification of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated measurement outcomes are independent for any choice of 2,3,\\ldots ,N-1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable.
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
NASA Astrophysics Data System (ADS)
Li, Yonghui; Ullrich, Carsten
2013-03-01
The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
Quantum entropy and special relativity.
Peres, Asher; Scudo, Petra F; Terno, Daniel R
2002-06-10
We consider a single free spin- 1 / 2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.
Elevated temperature slow plastic deformation of NiAl/TiB2 particulate composites
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Mannan, S. K.; Sprissler, B.; Viswanadham, R. K.
1988-01-01
The 'XD' process for production of discontinuously-reinforced metal-matrix composites has been used to enhance the high-temperature strength of NiAl-TiB2 composites with particulate densities of up to 30 vol pct. SEM, TEM, and optical characterizations of the resulting microstructures showed the average TiB2 particle size to be about 1 micron, while the average grain of the NiAl matrix was of the order of 10 microns. Elevated temperature compression tests conducted at 1200 and 1300 K indicated flow strengths to increase with TiB2 content, so that the 20 vol pct TiB2-reinforced composite was three times stronger than the unreinforced NiAl; this is ascribed to the very high density of microstructural tangled dislocations, loops, and subgrain boundaries connecting the particles.
Fluids in porous media. IV. Quench effect on chemical potential.
Qiao, C Z; Zhao, S L; Liu, H L; Dong, W
2017-06-21
It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.
Quasi-particle energy spectra in local reduced density matrix functional theory.
Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
Kussmann, Jörg; Ochsenfeld, Christian
2007-11-28
A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-11-01
Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less
Mineralogy of interplanetary dust particles from the 'olivine' infrared class
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Buseck, P. R.
1986-01-01
Analytical electron microscopy observations establish that olivine is abundant and the predominant silicate phase in three interplanetary dust particles (IDPs) from the 'olivine' infrared spectra category. Two of the particles have microstructures resembling those of most nonhydrous chondritic IDPs, consisting of micron to submicron grains together with a matrix composed of amorphous carbonaceous material and sub-500 A grains. In addition to olivine these particles respectively contain enstatite and magnetite, and pentlandite plus Ca-rich clinopyroxene. The third IDP consists mostly of olivine and pyrrhotite with little or no matrix material. Olivine grains in this particle contain prominent solar-flare ion tracks with densities corresponding to a space-exposure age between 1000 to 100,000 years. Although the three particles have olivine-rich mineralogies in common, other aspects of their mineralogies and microstructures suggest that they experienced different formation histories. The differences between the particles indicate that the olivine infrared spectral category is a diverse collection of IDPs that probably incorporates several genetic groups.
NASA Astrophysics Data System (ADS)
Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael
2012-07-01
Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely, porosity and localized WC particle grouping.
Prucker, V; Bockstedte, M; Thoss, M; Coto, P B
2018-03-28
A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides.
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F
2014-10-28
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K.; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F. Ralf; Breitling, Frank; Loeffler, Felix F.
2014-01-01
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches. PMID:27600347
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2017-01-01
Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.
NASA Astrophysics Data System (ADS)
Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.
2016-04-01
Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David
2013-08-07
Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).
Processing and properties of SiC whisker reinforced Si sub 3 N sub 4 ceramic matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, S.D.
1991-01-01
Silicon carbide whiskers reinforced silicon nitride ceramic matrix composites were pressureless sintered to high density by liquid phase sintering. Important processing parameters included: whisker dispersion by ultrasonic shear homogenization, particle refinement by attrition milling, pressure slip casting to obtain high greed densities, and sintering in a protective powder bed to limit decomposition. Composites with a {beta}20-Si{sub 3}N{sub 4} solid solution matrix containing 20 vol.% SiC whiskers were sintered to 98-100% theoretical density; composites having a Si{sub 3}N{sub 4} matrix containing YAG sintering aid were sintered to 98% of the theoretical density with 20 vol.% SiC whiskers, and 94% density withmore » 30 vol.% SiC whiskers. Analysis of the pressureless sintered composites revealed orientation of the SiC whiskers and the Si{sub 3}N{sub 4} matrix grains. The mechanical properties of hot pressed Si{sub 3}N{sub 4} composites reinforced with 20 vol.% SiC whiskers were shown to depend on the characteristics of the intergranular phase. Variations in the properties of the composites were analyzed in terms of the amount and morphology of the secondary phase, and the development of internal residual stresses due to the thermal expansion mismatch between the sintering aid phase at the grain boundaries.« less
Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiegs, T.N.; Thoms, K.R.
1979-03-01
Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less
Positron accumulation effect in particles embedded in a low-density matrix
NASA Astrophysics Data System (ADS)
Dryzek, Jerzy; Siemek, Krzysztof
2015-02-01
Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.
The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy
NASA Astrophysics Data System (ADS)
Vani, Vemula Vijaya; Chak, Sanjay Kumar
2018-06-01
Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.
Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser
2014-09-19
Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.
Time-Dependent Density Functional Theory for Open Systems and Its Applications.
Chen, Shuguang; Kwok, YanHo; Chen, GuanHua
2018-02-20
Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, K., E-mail: khushbudash@gmail.com; Chaira, D.; Ray, B.C.
Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al{sub 2}O{sub 3} system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) reinforced in aluminium matrix were fabricated by powder metallurgy route using spark plasma sintering technique technique at a temperature of 773 K and pressure of 50 MPa. Another set of specimensmore » having composition 1, 5, 20 vol.% of alumina (average size ∼ 10 μm) had been fabricated to compare the physical as well as mechanical attributes of the microcomposite as well as the nanocomposites. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation measurements. The alumina nanoparticles revealed an interface showing appreciable physical intimacy with the aluminium matrix compared to that of the alumina microparticles. The interfacial integrity in case of nanocomposites is better than in the microcomposite which has been studied using microscopic techniques. Spark plasma sintering imparts enhanced densification as well as matrix-reinforcement proximity which has been corroborated with the experimental results. - Highlights: • The Al–Al{sub 2}O{sub 3} micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al{sub 2}O{sub 3} composites. - Abstract: In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) and microcomposites of 1, 5, 20 volume % of alumina (average size ∼ 10 μm) reinforced in aluminium matrix were fabricated by spark plasma sintering technique at a temperature of 773 K and pressure of 50 MPa. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation hardness measurements. The alumina nanoparticles revealed appreciable physical intimacy with the aluminium matrix than that of alumina microparticles. The highest nanohardness recorded 0.85 GPa and 99% densification for 7 and 1 vol.% Al–Al{sub 2}O{sub 3} nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results.« less
Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity
NASA Astrophysics Data System (ADS)
de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.
2018-02-01
A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.
NASA Astrophysics Data System (ADS)
Verstichel, Brecht; van Aggelen, Helen; Poelmans, Ward; Van Neck, Dimitri
2012-05-01
The variational determination of the two-particle density matrix is an interesting, but not yet fully explored technique that allows us to obtain ground-state properties of a quantum many-body system without reference to an N-particle wave function. The one-dimensional fermionic Hubbard model has been studied before with this method, using standard two- and three-index conditions on the density matrix [J. R. Hammond , Phys. Rev. A 73, 062505 (2006)PLRAAN1050-294710.1103/PhysRevA.73.062505], while a more recent study explored so-called subsystem constraints [N. Shenvi , Phys. Rev. Lett. 105, 213003 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.213003]. These studies reported good results even with only standard two-index conditions, but have always been limited to the half-filled lattice. In this Letter, we establish the fact that the two-index approach fails for other fillings. In this case, a subset of three-index conditions is absolutely needed to describe the correct physics in the strong-repulsion limit. We show that applying lifting conditions [J. R. Hammond , Phys. Rev. APLRAAN1050-2947 71, 062503 (2005)10.1103/PhysRevA.71.062503] is the most economical way to achieve this, while still avoiding the computationally much heavier three-index conditions. A further extension to spin-adapted lifting conditions leads to increased accuracy in the intermediate repulsion regime. At the same time, we establish the feasibility of such studies to the more complicated phase diagram in two-dimensional Hubbard models.
NASA Astrophysics Data System (ADS)
Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash
2017-06-01
The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.
NASA Astrophysics Data System (ADS)
Zhao, Shuming; Shen, Xianfeng; Yang, Jialin; Teng, Wenhua; Wang, Yingying
2018-07-01
Metal matrix composite parts produced using selective laser melting have superior mechanical properties to those produced using traditional powder metallurgy. In this study, nanocrystalline TiC reinforced 316L stainless steel composite parts were fabricated using selective laser melting, and the effects of the TiC mass fraction, particle size, and processing parameters on the relative density, microhardness, and mechanical properties of the TiC/316L composites were investigated. The results show that the relative density of the fabricated parts is related to the laser power and exposure time, and increases when these parameters are increased. The greater the mass fraction of nano-TiC added, the more severe the degree of spheroidization and the lower the density of the resulting material. The microhardness of the 316L stainless steel parts is enhanced by the nano-TiC particles, and increases with increasing nano-TiC mass fraction. The tensile strength is improved with longer exposure time and with the addition of 2 wt% nano-TiC particles. Compared with pure 316L, the microhardness of the TiC/316L composite parts fabricated with 2 wt% 40 nm TiC enhanced from HV0.3 = 219.1 to 277.6, and the ultimate tensile strength significantly increased from 627.5 to 748.6 MPa. The strengthening mechanism of TiC particles is the refinement of the grain size of the 316L matrix, and the greater amount of TiC particles added, the better the grain refinement of 316L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beau, Mathieu, E-mail: mbeau@stp.dias.ie; Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com
2014-05-15
In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. Formore » such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.« less
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
NASA Astrophysics Data System (ADS)
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Effects of SiC on Properties of Cu-SiC Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Efe, G. Celebi; Altinsoy, I.; Ipek, M.; Zeytin, S.; Bindal, C.
2011-12-01
This paper was focused on the effects of particle size and distribution on some properties of the SiC particle reinforced Cu composites. Copper powder produced by cementation method was reinforced with SiC particles having 1 and 30 μm particle size and sintered at 700 °C. SEM studies showed that SiC particles dispersed in copper matrix homogenously. The presence of Cu and SiC components in composites were verified by XRD analysis technique. The relative densities of Cu-SiC composites determined by Archimedes' principle are ranged from 96.2% to 90.9% for SiC with 1 μm particle size, 97.0 to 95.0 for SiC with 30 μm particle size. Measured hardness of sintered compacts varied from 130 to 155 HVN for SiC having 1 μm particle size, 188 to 229 HVN for SiC having 1 μm particle size. Maximum electrical conductivity of test materials was obtained as 80.0% IACS (International annealed copper standard) for SiC with 1 μm particle size and 83.0% IACS for SiC with 30 μm particle size.
Role of small-norm components in extended random-phase approximation
NASA Astrophysics Data System (ADS)
Tohyama, Mitsuru
2017-09-01
The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.
NASA Astrophysics Data System (ADS)
Terao, Takamichi
2018-04-01
Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.
Electrodeposition and codeposition under low gravity/nonconvecting conditions
NASA Technical Reports Server (NTRS)
Riley, Clyde; Coble, H. Dwain; Loo, Boon; Benson, Brian; Abi-Akar, Hind
1987-01-01
An experimental electrodeposition system was developed for modeling the behavior of inert particles codepositing in an electroplating matrix under low-gravity conditions. The device consists of a Co-electrodeposition cell operating in a convectionless mode (cathode over anode) and containing polystyrene particles with density approximating that of the electroplating solution. Data were obtained in shielded cells at 1 g, and the experiment was duplicated at 0.01 g on a KC-135 flight. No difference was found between convection-free bench experiments and the 0.01 g KC-135 experiments with 0.0900 M CuSO4. Codeposition experiments using 11.8-micron matched-density polystyrene spheres in 1 M CoSO4 have revealed that a noticeable particle gradient is created as the solution density mismatches in the vicinity of the cathode; gentle stirring was required to maintain a homogeneous particle suspension. Cr3C2 dust, which readily disperses at 1 g, tended to coagulate into spherical globules at 0.01 g, when stirred.
Behavior of high-performance concrete in structural applications.
DOT National Transportation Integrated Search
2007-10-01
High Performance Concrete (HPC) with improved properties has been developed by obtaining the maximum density of the matrix. Mathematical models developed by J.E. Funk and D.R. Dinger, are used to determine the particle size distribution to achieve th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, Fionn D., E-mail: f.malone13@imperial.ac.uk; Lee, D. K. K.; Foulkes, W. M. C.
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing ourmore » results to previous work where possible.« less
Nonharmonicity in vibrated granular solids
NASA Astrophysics Data System (ADS)
Schreck, Carl
2012-02-01
We have shown that granular packings composed of frictionless particles with repulsive contact interactions are strongly nonharmonic. When infinitesimally perturbed along linear response eigenmodes of the static packing, energy leaks from the original mode of vibration to a continuum of frequencies due solely to contact breaking even when the system is under significant compression. Further, vibrated packings possess well-defined equilibrium positions that are different than those of the unperturbed packing. The vibrational density of states obtained using the displacement matrix and velocity autocorrelation function methods exhibit an increase in the number of low-frequency modes over that obtained from linear response of the static packing. The form of the density of states in vibrated granular packings is reminiscent of the low-frequency behavior of the vibrational density of states in fluid systems. We also investigate the effects of inter-particle friction, dissipation, particle shape, and degree of positional order on the density of states and thermal transport properties in driven granular packings.
Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.
2002-08-01
Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeep Rohatgi
2002-12-31
In this research, the effects of casting foundry, testing laboratory, surface conditions, and casting processes on the mechanical properties of A359-SiC composites were identified. To observe the effects, A359-SiC composites with 20 and 305 SiC particles were cast at three different foundries and tested at three different laboratories. The composites were cast in sand and permanent molds and tested as-cast and machined conditions. To identify the effect of the volume fraction and distribution of particles on the properties of the composites, particle distribution was determined using Clemex Image analysis systems, and particle volume fraction was determined using wet chemical analysismore » and Clemex Image analysis systems. The microstructure and fractured surfaces of the samples were analyzed using SEM, and EDX analysis was done to analyze chemical reaction between the particles and the matrix. The results of the tensile strengths exhibited that the tensile strengths depend on the density and porosity of the composites; in general the higher tensile strength is associated with lower porosity and higher density. In some cases, composites with lower density were higher than these with higher density. In the Al-20% SiC samples, the composites with more inclusions exhibited a lower tensile strength than the ones with fewer inclusions. This suggests that macroscopic casting defects such as micro-porosity, shrinkage porosity and inclusions appear to strongly influence the tensile strength more than the microstructure and particle distribution. The fatigue properties of A359/20 vol.% SiC composites were investigated under strain controlled conditions. Hysteresis loops obtained from strain controlled cyclic loading of 20% SiCp reinforced material did not exhibit any measurable softening or hardening. The fatigue life of Al-20% SiC heat treated alloy at a given total strain showed wide variation in fatigue life, which appeared to be related to factors such as inclusions, porosity, and particle distribution. The inclusions and porosity on the fracture surfaces seem to have a more significant influence on the fatigue life of cast Al-20% SiC as compared to other variables, including SiC particle volume percentage and its distribution. Striations were generally not visible on the fracture surface of the composites. In many specimens, SiC particle fracture was also observed. Fracture was more severe around pores and inclusions than in the matrix away from them. Inclusions and porosity seem to have a much stronger influence on fatigue behavior than the particle distribution. The analysis suggests that the enhancement of fatigue behavior of cast MMCs requires a decrease in the size of defects, porosity, and inclusions. The particle volume fraction determined using wet chemical analysis gives values of SiC vol.% which are closer to the nominal Sic % than the values of SiC% obtained by ultrasonic and Clemex Image Analysis system. In view of ALCAN's recommendation one must use wet chemical analysis for determining the volume percent SiC.« less
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
NASA Astrophysics Data System (ADS)
Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-Li; Gallagher, Michael
2006-09-01
Methylsilsesquioxane (MSQ) based porous low-k dielectric films are characterized by x-ray porosimetry (XRP) to determine their pore size distribution, average density, wall density, and porosity. By varying the porogen content from 1% to 30% by mass, the porosity changes from 12% to 34% by volume, indicating that the base MSQ matrix material contains approximately 10% by volume inherent microporosity. The wall density of this matrix material is measured to be 1.33-1.35g/cm3, independent of porosity. The average pore radii determined from the XRP adsorption isotherms increase from 6to27Å with increased porogen loadings. Small angle neutron scattering measurements confirm these XRP average pore radii for the films with porogen loading higher than 10% by mass.
NASA Astrophysics Data System (ADS)
Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.
2018-02-01
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.
NASA Astrophysics Data System (ADS)
Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto
2017-12-01
Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.
Methodology for Producing a Uniform Distribution of UO2 in a Tungsten Matrix
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; O'Conner, Andrew; Hickman, Rickman; Broadway, Jeramie; Belancik, Grace
2015-01-01
Current work at NASA's Marshall Space Flight Center (MSFC) is focused on the development CERMET fuel materials for Nuclear Thermal Propulsion (NTP). The CERMETs consist of uranium dioxide (UO2) fuel particles embedded in a tungsten (W) metal matrix. Initial testing of W-UO2 samples fabricated from fine angular powders performed reasonably well, but suffered from significant fuel loss during repeated thermal cycling due to agglomeration of the UO2 (1). The blended powder mixtures resulted in a non-uniform dispersion of the UO2 particles in the tungsten matrix, which allows rapid vaporization of the interconnected UO2 from the sample edges into the bulk material. Also, the angular powders create areas of stress concentrations due to thermal expansion mismatch, which eventually cracks the tungsten matrix. Evenly coating spherical UO2 particles with chemical vapor deposited (CVD) tungsten prior to consolidation was previously demonstrated to provide improved performance. However, the CVD processing technology is expensive and not currently available. In order to reduce cost and enhance performance, a powder coating process has been developed at MSFC to produce a uniform distribution of the spherical UO2 particles in a tungsten matrix. The method involves utilization of a polyethylene binder during mixing which leads to fine tungsten powders clinging to the larger UO2 spherical particles. This process was developed using HfO2 as a surrogate for UO2. Enough powder was mixed to make 8 discs (2cm diameter x 8mm thickness) using spark plasma sintering. A uniaxial pressure of 50 MPa was used at four different temperatures (2 samples at each temperature). The first two samples were heated to 1400C and 1500C respectively for 5 minutes. Densities for these samples were less than 85% of theoretical, so the time at temperature was increased to 20 minutes for the remaining samples. The highest densities were achieved for the two samples sintered at 1700C (approx. 92% of theoretical). Scanning electron microscopy (SEM) of the mixed powders and the sintered samples along with energy dispersive x-ray analysis was obtained. The SEM of the powders clearly show the fine W powder adhered to the larger HfO2 particles and a uniform distribution of HfO2 particles in a tungsten matrix upon densification. Vicker's Microhardness testing was also performed on all samples using 0.5, 1.0 and 2.0 kg loads. Five indents were made at each load level. All indents were placed in the tungsten matrix to assist as a proxy in measuring densification. The highest hardness value was obtained for the 1700C specimens. The hardness average for these samples was 312.14 MPa. This powder processing method has been applied to W/UO2 powders with the SEM of the powders appearing similar to the W/HfO2 powder images.
NASA Astrophysics Data System (ADS)
Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Mariotto, Gino; Kalita, Patricia E.; Ohki, Yoshimichi
2005-09-01
The precipitation and growth of copper nanoparticles in an optically transparent aluminosilicate glass matrix was investigated. The size of particles in this heterophase glass-based composite was modified in a controlled manner by isothermal heat treatments. A multitechnique approach, consisting of Raman scattering spectroscopy, high-resolution transmission electron microscopy, x-ray diffraction technique, and optical absorption spectroscopy, has been used to study the nucleation and crystallization processes. Optical absorption spectroscopy revealed the presence of intense absorption bands attributed to oscillations of free electrons, known as the surface-plasmon resonance band of copper particles, and confirmed a gradual increase of the particles' mean size and density with annealing time. The Raman scattering on acoustical phonons from Cu quantum dots in the glass matrix measured for off-resonance conditions demonstrated the presence of intense, inhomogeneously broadened peaks that have been assigned to the confined acoustic eigenmodes of copper nanoparticles. The particle-size dependence of the acoustic peak energies and the relation between the size distribution and bandwidths of these peaks were derived. High-resolution transmission electron microscopy was used to monitor the nucleation of the nanoparticles and to estimate their mean size.
Abouali, Sara; Garakani, Mohammad Akbari; Zhang, Biao; Xu, Zheng-Long; Heidari, Elham Kamali; Huang, Jian-qiu; Huang, Jiaqiang; Kim, Jang-Kyo
2015-06-24
A facile electrospinning method with subsequent heat treatments is employed to prepare carbon nanofibers (CNFs) containing uniformly dispersed Co3O4 nanoparticles as electrodes for supercapacitors. The Co3O4/CNF electrodes with ∼68 wt % active particles deliver a remarkable capacitance of 586 F g(-1) at a current density of 1 A g(-1). When the current density is increased to 50 A g(-1), ∼66% of the original capacitance is retained. The electrodes also present excellent cyclic stability of 74% capacity retention after 2000 cycles at 2 A g(-1). These superior electrochemical properties are attributed to the uniform dispersion of active particles in the CNF matrix, which functions as a conductive support. The onionlike graphitic layers formed around the Co3O4 nanoparticles not only improve the electrical conductivity of the electrode but also prevent the separation of the nanoparticles from the carbon matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Helmreich, Grant; Cooley, Kevin M.
In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO 2 microspheres as the kernel.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Anomalous dynamics of intruders in a crowded environment of mobile obstacles
Sentjabrskaja, Tatjana; Zaccarelli, Emanuela; De Michele, Cristiano; Sciortino, Francesco; Tartaglia, Piero; Voigtmann, Thomas; Egelhaaf, Stefan U.; Laurati, Marco
2016-01-01
Many natural and industrial processes rely on constrained transport, such as proteins moving through cells, particles confined in nanocomposite materials or gels, individuals in highly dense collectives and vehicular traffic conditions. These are examples of motion through crowded environments, in which the host matrix may retain some glass-like dynamics. Here we investigate constrained transport in a colloidal model system, in which dilute small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal differential dynamic microscopy and simulations, here we discover a critical size asymmetry, at which anomalous collective transport of the small particles appears, manifested as a logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix mobility is central for the observed anomalous behaviour. These results, crucially depending on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology. PMID:27041068
A study of scandia and rhenium doped tungsten matrix dispenser cathode
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling
2007-10-01
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.
Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles
NASA Astrophysics Data System (ADS)
Anastopoulos, C.; Hu, B. L.
2018-02-01
We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.
Kota, V K B; Chavda, N D; Sahu, R
2006-04-01
Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
2003-07-01
Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.
Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy
NASA Technical Reports Server (NTRS)
Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason
2015-01-01
Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.
NASA Astrophysics Data System (ADS)
Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko
2015-10-01
Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.
NASA Astrophysics Data System (ADS)
Serene, J. W.; Deisz, J. J.; Hess, D. W.
1997-03-01
Calculations performed in the fluctuation exchange approximation for the single-band 2D Hubbard model on a cylinder and threaded by a flux, show the appearance of a finite superfluid density below T ~ 0.13t, for U=-4t and at three-eighths filling.(J.J. Deisz, D.W. Hess, Bull. Am. Phys. Soc. 41, 239 (1996); J.J. Deisz, D.W. Hess, and J.W. Serene, in preparation.) We show the evolution, with decreasing temperature, of the single-particle spectral function, the self-energy, the particle-particle T-matrix, and thermodynamic properties as the superfluid state is approached and entered.
Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.
2005-01-01
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
NASA Astrophysics Data System (ADS)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U–Mo dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less
NASA Astrophysics Data System (ADS)
Piris, Mario; Pernal, Katarzyna
2017-10-01
van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] claims that the one-particle reduced density matrix (1RDM) of an interacting system can be represented by means of a single-determinant wave function of fictitious noninteracting particles. van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] introduced orbitals within a mean-field framework that produce energy levels similar to Hartree-Fock orbital energies, therefore he also claims that conventional analyses based on Koopmans' theorem are possible in 1RDM functional theory. In this Comment, we demonstrate that both claims are unfounded.
Atomistic Simulation of High-Density Uranium Fuels
Garcés, Jorge Eduardo; Bozzolo, Guillermo
2011-01-01
We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less
Naimi, Ladan J.; Sokhansanj, Shahabaddine; Bi, Xiaotao; ...
2015-11-25
Size reduction is an essential but energy-intensive process for preparing biomass for conversion processes. Three well-known scaling equations (Bond, Kick, and Rittinger) are used to estimate energy input for grinding minerals and food particles. Previous studies have shown that the Rittinger equation has the best fit to predict energy input for grinding cellulosic biomass. In the Rittinger equation, Rittinger's constant (k R) is independent of the size of ground particles, yet we noted large variations in k R among similar particle size ranges. In this research, the dependence of k R on the physical structure and chemical composition of amore » number of woody materials was explored. Branches from two softwood species (Douglas fir and pine) and two hardwood species (aspen and poplar) were ground in a laboratory knife mill. The recorded data included power input, mass flow rate, and particle size before and after grinding. Nine material properties were determined: particle density, solid density (pycnometer and x-ray diffraction methods), microfibril angle, fiber coarseness, fiber length, and composition (lignin and cellulose glucan contents). The correlation matrix among the nine properties revealed high degrees of interdependence between properties. The k R value had the largest positive correlation (+0.60) with particle porosity across the species tested. As a result, particle density was strongly correlated with lignin content (0.85), microfibril angle (0.71), fiber length (0.87), and fiber coarseness (0.78). An empirical model relating k R to particle density was developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naimi, Ladan J.; Sokhansanj, Shahabaddine; Bi, Xiaotao
Size reduction is an essential but energy-intensive process for preparing biomass for conversion processes. Three well-known scaling equations (Bond, Kick, and Rittinger) are used to estimate energy input for grinding minerals and food particles. Previous studies have shown that the Rittinger equation has the best fit to predict energy input for grinding cellulosic biomass. In the Rittinger equation, Rittinger's constant (k R) is independent of the size of ground particles, yet we noted large variations in k R among similar particle size ranges. In this research, the dependence of k R on the physical structure and chemical composition of amore » number of woody materials was explored. Branches from two softwood species (Douglas fir and pine) and two hardwood species (aspen and poplar) were ground in a laboratory knife mill. The recorded data included power input, mass flow rate, and particle size before and after grinding. Nine material properties were determined: particle density, solid density (pycnometer and x-ray diffraction methods), microfibril angle, fiber coarseness, fiber length, and composition (lignin and cellulose glucan contents). The correlation matrix among the nine properties revealed high degrees of interdependence between properties. The k R value had the largest positive correlation (+0.60) with particle porosity across the species tested. As a result, particle density was strongly correlated with lignin content (0.85), microfibril angle (0.71), fiber length (0.87), and fiber coarseness (0.78). An empirical model relating k R to particle density was developed.« less
Becker, Wolfgang; Guschin, Viktor; Mikonsaari, Irma; Teipel, Ulrich; Kölle, Sabine; Weiss, Patrick
2017-01-01
Nanocomposites with polypropylene as matrix material and nanoclay as filler were produced in a double twin screw extruder. The extrusion was monitored with a spectrometer in the visible and near-infrared spectral region with a diode array spectrometer. Two probes were installed at the end at the extruder die and the transmission spectra were measured during the extrusion. After measuring the transmission spectra and converting into turbidity units, the particle distribution density was calculated via numerical linear equation system. The distribution density function shows either a bimodal or mono modal shape in dependence of the processing parameters like screw speed, dosage, and concentration of the nanoclays. The method was verified with SEM measurements which yield comparable results. The method is suitable for industrial in-line processing monitoring of particle radii and dispersion process, respectively.
Symmetry properties of the electron density and following from it limits on the KS-DFT applications
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.
2018-03-01
At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.
Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime
NASA Astrophysics Data System (ADS)
Saini, Anshul; Stojkovic, Dejan
2018-01-01
In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.
Dynamics of many-body localization in the presence of particle loss
NASA Astrophysics Data System (ADS)
van Nieuwenburg, EPL; Yago Malo, J.; Daley, AJ; Fischer, MH
2018-01-01
At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the ‘non-local’ nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.
Preparation and characterization of aluminium-silica metal matrix composite
NASA Astrophysics Data System (ADS)
Mallikarjuna, G. B.; Basavaraj, E.
2018-04-01
Aluminum alloys are widely used in aerospace and automobile industries due to their low density and good mechanical properties, better corrosion resistance and wear, low thermal coefficient of expansion as compared to conventional metals and alloys. The excellent properties of these materials and relatively low production cost make them a very attractive for a variety of applications. In this present work, Al alloy LM13-SiO2 composites were produced by stir casting method. The reinforcement SiO2 particle size used for preparation of composites are 106 µm, 150 µm, 250 µm and 355 µm with varying amount of 3 to 12 wt% in steps of 3. The prepared composite specimens were machined as per test standards. Effects of weight percentage of SiO2 particles on wear, tensile strength of Al alloy LM13-SiO2 composites have been investigated. The microstructures of the composites were studied to know the dispersion of the SiO2 particles in matrix. Experimental results shows that there is enhanced mechanical properties, when silica weighing 9% was added to the base aluminium alloy and also similar trend exists in all four different micron size of silica and also it has been observed that addition of SiO2 particles significantly improves wear resistance properties as compared with that of unreinforced matrix.
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Creation and Evolution of Particle Number Asymmetry in an Expanding Universe
NASA Astrophysics Data System (ADS)
Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.
2017-03-01
We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.
2018-03-01
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
NASA Astrophysics Data System (ADS)
Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR
2018-02-01
Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.
2012-08-01
Molecular Dynamics Simulations Coarse-Grain Particle Dynamics Simulations Local structure; Force field parameterization Extended structure...K) C8H18 C12H26 C16H34 Adhesive forces can cause local density gradients and defects " Pronounced layering of polymer near interfaces...reactive end groups (CnH2n+1S) on Cu Gap SubPc on C60 Pentacene on a-SiO2 Cyclopentene on Au Crystalline CuPc on Al Polyimide on Si
NASA Astrophysics Data System (ADS)
Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.
2017-10-01
The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.
Polymer Based Thin Film Screen Preparation Technique
NASA Astrophysics Data System (ADS)
Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.
2017-11-01
Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.
NASA Astrophysics Data System (ADS)
Hatzoglou, C.; Radiguet, B.; Pareige, P.
2017-08-01
Oxide Dispersion Strengthened (ODS) steels are promising candidates for future nuclear reactors, partly due to the fine dispersion of the nanoparticles they contain. Until now, there was no consensus as to the nature of the nanoparticles because their analysis pushed the techniques to their limits and in consequence, introduced some artefacts. In this study, the artefacts that occur during atom probe tomography analysis are quantified. The artefacts quantification reveals that the particles morphology, chemical composition and atomic density are biased. A model is suggested to correct these artefacts in order to obtain a fine and accurate characterization of the nanoparticles. This model is based on volume fraction calculation and an analytical expression of the atomic density. Then, the studied ODS steel reveals nanoparticles, pure in Y, Ti and O, with a core/shell structure. The shell is rich in Cr. The Cr content of the shell is dependent on that of the matrix by a factor of 1.5. This study also shows that 15% of the atoms that were initially in the particles are not detected during the analysis. This only affects O atoms. The particle stoichiometry evolves from YTiO2 for the smallest observed (<2 nm) to Y2TiO5 for the biggest (>8 nm).
Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite
NASA Astrophysics Data System (ADS)
Flores-Valenzuela, J.; Cortez-Valadez, M.; Ramírez-Bon, R.; Arizpe-Chavez, H.; Román-Zamorano, J. F.; Flores-Acosta, M.
2015-08-01
In this work, the optical and vibrational properties of composites based on PbSe semiconductor immersed in a zeolite matrix are reported. The natural zeolite, (clinoptilolite) was used as the host material of PbSe nanoparticles. The method for obtaining these particles is also reported here, which is based on ion exchange processes inside the natural zeolite in alkaline aqueous solution that contains the precursor ions Pb2+ and Se2-. The process of synthesis was conducted temperature, volume, concentration and reaction time of the precursors. The samples were studied by powder X-ray diffraction, TEM (transmission electron microscopy), diffuse reflectance and Raman spectroscopy. The experimental results demonstrate that with this method, the particles with nanometric PbSe sizes were synthesized in the zeolite matrix. Vibrational Raman bands at low wave numbers were detected in these particles by the presence of a shoulder located at 135 cm-1 and a band at around 149 cm-1. The vibrational calculations for small clusters of PbSe at LSDA (Local Spin Density Approximation) level combined with the basis set LANDL2DZ (Los Alamos National Laboratory 2 double ζ), were considered through DFT (Density Functionl Theory). The "breathing" Raman modes located at 119-152 cm-1 were detected for this level of theory.
X-ray tomography of powder injection moulded micro parts using synchrotron radiation
NASA Astrophysics Data System (ADS)
Heldele, R.; Rath, S.; Merz, L.; Butzbach, R.; Hagelstein, M.; Haußelt, J.
2006-05-01
Powder injection moulding is one of the most promising replication methods for the mass production of metal and ceramic micro parts. The material for injection moulding, a so-called feedstock, consists of thermoplastic binder components and inorganic filler with approximately equal volume fractions. Injection moulding of the feedstock leads to a green part that can be processed to a dense metal or ceramic micro part by debinding and sintering. During the injection moulding process extremely high shear rates are applied. This promotes the separation of powder and binder leading to a particle density variation in the green part causing anisotropic shrinkage during post-processing. The knowledge of introducing density gradients and defects would consequently allow the optimization of the feedstock, the moulding parameters and the validation of a simulation tool based on the Dissipative Particle Dynamics which is currently under development, as well. To determine the particle density and defect distribution in micro parts synchrotron radiation tomography in absorption mode was used. Due to its parallel and monochromatic character a quantitative reconstruction, free of beam hardening artifacts, is possible. For the measurement, bending bars consisting of dispersed fused silica particles in a polymeric matrix were used. The presented results using this set-up show that crucial defects and density variations can be detected.
Phase dilemma in natural orbital functional theory from the N-representability perspective
NASA Astrophysics Data System (ADS)
Mitxelena, Ion; Rodriguez-Mayorga, Mauricio; Piris, Mario
2018-06-01
Any rigorous approach to first-order reduced density matrix ( Γ) functional theory faces the phase dilemma, that is, having to deal with a large number of possible combinations of signs in terms of the electron-electron interaction energy. This problem was discovered by reducing a ground-state energy generated from an approximate N-particle wavefunction into a functional of Γ, known as the top-down method. Here, we show that the phase dilemma also appears in the bottom-up method, in which the functional E[ Γ] is generated by progressive inclusion of N-representability conditions on the reconstructed two-particle reduced density matrix. It is shown that an adequate choice of signs is essential to accurately describe model systems with strong non-dynamic (static) electron correlation, specifically, the one-dimensional Hubbard model with periodic boundary conditions and hydrogen rings. For the latter, the Piris natural orbital functional 7 (PNOF7), with phases equal to -1 for the inter-pair energy terms containing the exchange-time-inversion integrals, agrees with exact diagonalization results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staib, Michael
The GlueX experiment is a new experimental facility at Jefferson Lab in Newport News, VA. The experiment aims to map out the spectrum of hybrid mesons in the light quark sector. Measurements of the spin-density matrix elements in omega photoproduction are performed with a linear polarized photon beam on an unpolarized proton target, and presented in bins of Mandelstam t for beam energies of 8.4-9.0 GeV. The spin-density matrix elements are exclusively measured through two decays of the omega meson: omega -> pi^+ pi^- pi^0 and omega ->pi^0 gamma. A description of the experimental apparatus is presented. Several methods usedmore » in the calibration of the charged particle tracking system are described. These measurements greatly improve the world statistics in this energy range. These are the first results measured through the omega ->pi^0 gamma decay at this energy. Results are generally consistent with a theoretical model based on diffractive production with Pomeron and pseudoscalar exchange in the t-channel.« less
Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.
Luong, Dung; Lehmhus, Dirk; Gupta, Nikhil; Weise, Joerg; Bayoumi, Mohamed
2016-02-18
The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it; Pellizzari, M.; Zadra, M.
2013-12-15
Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles.more » X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.« less
Liquid-gas phase transitions and C K symmetry in quantum field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Liquid-gas phase transitions and C K symmetry in quantum field theories
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
2017-04-04
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Kussmann, Jörg; Ochsenfeld, Christian
2007-08-07
Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.
NASA Astrophysics Data System (ADS)
Wright, Robyn; Thornberg, Steven M.
SEDIDAT is a series of compiled IBM-BASIC (version 2.0) programs that direct the collection, statistical calculation, and graphic presentation of particle settling velocity and equivalent spherical diameter for samples analyzed using the settling tube technique. The programs follow a menu-driven format that is understood easily by students and scientists with little previous computer experience. Settling velocity is measured directly (cm,sec) and also converted into Chi units. Equivalent spherical diameter (reported in Phi units) is calculated using a modified Gibbs equation for different particle densities. Input parameters, such as water temperature, settling distance, particle density, run time, and Phi;Chi interval are changed easily at operator discretion. Optional output to a dot-matrix printer includes a summary of moment and graphic statistical parameters, a tabulation of individual and cumulative weight percents, a listing of major distribution modes, and cumulative and histogram plots of a raw time, settling velocity. Chi and Phi data.
NASA Astrophysics Data System (ADS)
Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.
2000-08-01
In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.
Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties
NASA Astrophysics Data System (ADS)
Dukes, Douglas Michael
Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to demonstrate drastically different properties from their bulk polymer counterparts.
Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment
NASA Astrophysics Data System (ADS)
Prahl, Fredrick G.; Carpenter, Roy
1983-06-01
Polycyclic aromatic (PAH) and aliphatic hydrocarbon compositions, organic carbon, nitrogen and lignin contents were determined in whole, unfractionated sediment from the Washington continental shelf and in discrete sediment fractions separated by particle size and density. At least 20 to 25% of perylene and PAH derived from pyrolytic processes and 50% of the retene measured in whole sediment are contained within organic C- and lignin-rich panicles of density ≤ 1.9 g/cc. These particles, which include primarily vascular plant remains and bits of charcoal, comprise less than 1% of the total sediment weight. In contrast, a series of methylated phenanthrene homologs, possibly of fossil origin, are concentrated in some component of the more dense, lithic matrix of the sediment. Equilibrium models of PAH sorption/desorption from aqueous phase onto small particles of high surface area do not appear applicable to the behavior of the major PAH types identified in this aquatic environment.
Ghasali, Ehsan; Fazili, Ali; Alizadeh, Masoud; Shirvanimoghaddam, Kamyar; Ebadzadeh, Touradj
2017-01-01
In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS) technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density), bending strength (291 ± 12 MPa), and hardness (253 ± 23 HV). The X-ray diffraction (XRD) investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM) micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles. PMID:29088114
Grabowski, Christopher A.; Fillery, Scott P.; Koerner, Hilmar; ...
2016-09-22
Polymer nanocomposites are a promising concept to improve energy storage density of capacitors, but realizing their hypothetical gains has proved challenging. The introduction of high permittivity fillers often leads to reduction in breakdown strength due to field exclusion, which intensifies the applied electric field within the polymer matrix near nanoparticle interfaces. This has prompted research in developing new nanoparticle functionalization chemistries and processing concepts to maximize particle separation. Herein, we compare the dielectric performance of blended nanocomposites to matrix free assemblies of hairy (polymer-grafted) nanoparticles (HNPs) that exhibit comparable overall morphology. The dielectric breakdown strength of polystyrene-grafted BaTiO3 (PS@BaTiO3) systemsmore » was over 40% greater than a blended nanocomposite with similar loading (~25% v/v BaTiO3). Hairy nanoparticles with TiO2 cores followed similar trends in breakdown strength as a function of inorganic loading up to 40% v/v. Dielectric loss for PS@BaTiO3 HNPs was 2-5 times lower than analogous blended films for a wide frequency spectrum (1 Hz to 100 kHz). For BaTiO3 content above 7% v/v, grafting the polymer chains to the nanoparticle significantly improved energy storage density and efficiency, likely due to the polymer canopy mitigating interfacial transport and restricting particle-particle hot-spots by establishing a finite minimum particle separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, Christopher A.; Fillery, Scott P.; Koerner, Hilmar
Polymer nanocomposites are a promising concept to improve energy storage density of capacitors, but realizing their hypothetical gains has proved challenging. The introduction of high permittivity fillers often leads to reduction in breakdown strength due to field exclusion, which intensifies the applied electric field within the polymer matrix near nanoparticle interfaces. This has prompted research in developing new nanoparticle functionalization chemistries and processing concepts to maximize particle separation. Herein, we compare the dielectric performance of blended nanocomposites to matrix free assemblies of hairy (polymer-grafted) nanoparticles (HNPs) that exhibit comparable overall morphology. The dielectric breakdown strength of polystyrene-grafted BaTiO3 (PS@BaTiO3) systemsmore » was over 40% greater than a blended nanocomposite with similar loading (~25% v/v BaTiO3). Hairy nanoparticles with TiO2 cores followed similar trends in breakdown strength as a function of inorganic loading up to 40% v/v. Dielectric loss for PS@BaTiO3 HNPs was 2-5 times lower than analogous blended films for a wide frequency spectrum (1 Hz to 100 kHz). For BaTiO3 content above 7% v/v, grafting the polymer chains to the nanoparticle significantly improved energy storage density and efficiency, likely due to the polymer canopy mitigating interfacial transport and restricting particle-particle hot-spots by establishing a finite minimum particle separation.« less
Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss
NASA Astrophysics Data System (ADS)
Kiefer-Emmanouilidis, M.; Sirker, J.
2017-12-01
We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
Farooque, M.; Yuh, C.Y.
1996-12-03
A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.
Fine Structure Study of the Plasma Coatings B4C-Ni-P
NASA Astrophysics Data System (ADS)
Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.
2017-12-01
The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.
Single-particle spectral functions in the normal phase of a strongly attractive Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Fratini, E.; Pieri, P.
2013-07-01
We calculate the single-particle spectral functions and quasiparticle dispersions for a Bose-Fermi mixture when the boson-fermion attraction is sufficiently strong to suppress completely the condensation of bosons at zero temperature. Within a T-matrix diagrammatic approach, we vary the boson-fermion attraction from the critical value where the boson condensate first disappears to the strongly attractive (molecular) regime and study the effect of both mass and density imbalance on the spectral weights and dispersions. An interesting spectrum of particle-hole excitations mixing two different Fermi surfaces is found. These unconventional excitations could be produced and explored experimentally with radio-frequency spectroscopy.
Schiffter, Heiko; Condliffe, Jamie; Vonhoff, Sebastian
2010-01-01
The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 µm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (<10 mg ml−1) and subsequent ultra-turrax homogenization. To prepare particles for needle-free ballistic injection, the insulin nanoparticles were suspended in matrix formulations with a high excipient content (>300 mg ml−1) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature (Tprod) exceeded the glass transition temperature of the freeze concentrate (Tg′) of −29.4°C for TMDD (3∶3∶3∶1) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin loading, the d (v, 0.5) of the SFD powders increased and particle size distributions got wider. Insulin showed a good stability during the particle formation process with a maximum decrease in insulin monomer of only 0.123 per cent after SFD. In accordance with the SEC data, FTIR analysis showed only a small increase in the intermolecular β-sheet of 0.4 per cent after SFD. The good physical stability of the polydisperse particles made them suitable for ballistic injection into tissue-mimicking agar hydrogels, showing a mean penetration depth of 251.3 ± 114.7 µm. PMID:20519207
Study on the mechanism of liquid phase sintering (M-12)
NASA Technical Reports Server (NTRS)
Kohara, S.
1993-01-01
The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.
NASA Astrophysics Data System (ADS)
Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun
2013-10-01
The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David
2016-05-07
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less
NASA Astrophysics Data System (ADS)
Dang, Nguyen Dinh
2008-04-01
The modified Hartree-Fock-Bogoliubov (MHFB) theory at finite temperature is derived for finite nuclei.1 In the limit of constant pairing parameter, the MHFB theory yields the modified BCS (MBCS) theory.2 These are the microscopic theories that can describe the crossover region at temperature T around the critical value Tc of the BCS superfluid-normal (SN) phase transition. By requiring the unitarity conservation of the particle-density matrix, the derivation of these theories is achieved by constructing a modified quasiparticle density matrix, where the fluctuation of the quasiparticle number is microscopically built in. This matrix can be directly obtained from the usual quasiparticle-density matrix by applying the secondary Bogoliubov transformation, which includes the quasiparticle occupation number. The calculations of the thermal pairing gap, total energy, heat capacity, quasiparticle and pairing correlation functions were carried out within MBCS theory for the Richardson model3 as well as realistic single-particle spectra. The Richardson model under consideration has varying Ω equidistant levels and N particles with a level distant equal to 1 MeV. It is shown that the limitation of the configuration space sets a limiting temperature TM up to which the MBCS theory can be applied. Enlarging the space in the half-filled case (Ω = N) by one valence level (Ω = N + 1) extends TM to a much higher temperature so that the predictions by the MBCS theory can be compared directly with the exact results up to T ~ 4 - 5 MeV even for small N. The MBCS gap does not collapse, but decreases monotonously with increasing T. The total energy and heat capacity predicted by the MBCS theory are closer to the exact results than those predicted by the BCS theory, especially in the region of the SN phase transition predicted within the BCS theory. The discontinuity in the BCS heat capacity at the critical temperature Tc is smoothed out within the MBCS theory, especially for small N, showing the disappearance of SN phase transition in very light systems. With increasing N the peak at Tc in the heat capacity becomes more pronounced, showing a phase-transition-like behavior in heavy systems. The effect of approximated particle-number projection using the Lipkin-Nogami method is also discussed. An application of the MBCS theory to the description of the damping of giant dipole resonances (GDR) in hot nuclei shows that, because of the existence of the pseudo gap, the GDR width remains nearly constant at temperatures up to around 1 MeV in tin isotopes in good agreement with the recent experimental systematic.4
Mohsenkhani, Sadaf; Jahanshahi, Mohsen; Rahimpour, Ahmad
2015-08-21
Expanded bed adsorption (EBA) is a reliable separation technique for the purification of bioproducts from complex feedstocks. The specifically designed adsorbent is necessary to form a stable expanded bed. In the present work, a novel custom-designed composite matrix has been prepared through the method of water-in-oil emulsification. In order to develop an adsorbent with desirable qualities and reduce the costs, κ-carrageenan and zinc powder were used as the polymeric skeleton and the densifier, respectively. The prepared composite matrix was named as KC-Zn. Optical microscope (OM) and scanning electron microscope (SEM) were applied to characterize the morphology and structure of prepared composite matrix. These analyses approved good spherical shape and porous structure with nano-scale pores in the range of about 60-180nm. The results from the particle size analyzer (PSA) revealed that all the KC-Zn beads followed logarithmic normal size distribution with the range of 50-350μm and average diameter of 160-230μm, respectively. Main physical properties of KC-Zn matrices were measured as a function of zinc powder ratio to κ-carrageenan slurry, which showed an appropriate wet density in the range of 1.39-2.27g/ml, water content of 72.67-36.41% and porosity of 98.07-80.24%, respectively. The effects of matrix density and liquid phase viscosity on hydrodynamic behavior of prepared matrix have been investigated by residence time distribution (RTD) experiments in an expanded bed. The results indicated that in a constant liquid velocity as the matrix density was increased, the expansion factor of bed decreased and the axial mixing coefficient increased. Moreover, an enhancement in the fluid viscosity led to an increase in the bed expansion and a decrease in the stability of expanded bed. Therefore using a matrix with higher density seems necessary to face viscous feedstocks. All the results demonstrated that proper physical properties and hydrodynamic characteristics of KC-Zn matrix confirm good potential for possible use in high flow rate expanded bed operations. Copyright © 2015 Elsevier B.V. All rights reserved.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
Preparation of magnesium metal matrix composites by powder metallurgy process
NASA Astrophysics Data System (ADS)
Satish, J.; Satish, K. G., Dr.
2018-02-01
Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.
Random matrix theory for transition strengths: Applications and open questions
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
2017-12-01
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.
Numerical simulations of electromagnetic scattering by Solar system objects
NASA Astrophysics Data System (ADS)
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media
NASA Astrophysics Data System (ADS)
Ito, G.; Mishchenko, M. I.; Glotch, T. D.
2017-12-01
Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles sizes and polydispersed clusters in search for the most effective modeling of spectra of densely packed particulate media.
NASA Astrophysics Data System (ADS)
Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan
2017-11-01
A new kind composite particle which could be utilized as ultra-light weight proppant was prepared via suspension polymerization in this work. The composite particles were composed of polystyrene and modified silica fume. This study indicated the composite particles had a bulk density (around 0.65 g cm-3) that is even lower than most of the commercial proppants. The pure polystyrene particles had a glass transition temperature of 130.3 °C and a crushing rate of 5.0% under the pressure of 52 MPa for 3 min. While the heat-treated composite particles had a higher glass transition temperature of 146.1 °C and a lower crushing rate of 1.0% under the same testing condition. In addition, the processes of synthesizing composite particles, procedures of heat treatment, effects of different incorporation amount and dispersion of modified silica fume in polymer matrix were systematically investigated.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
Solvable Hydrodynamics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2017-12-01
The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudomomentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.
Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.
2018-05-01
A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.
Entanglement spectrum of random-singlet quantum critical points
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio; Calabrese, Pasquale; Moore, Joel E.
2011-01-01
The entanglement spectrum (i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix) contains more information than the conventional entanglement entropy and has been studied recently in several many-particle systems. We compute the disorder-averaged entanglement spectrum in the form of the disorder-averaged moments TrρAα̲ of the reduced density matrix ρA for a contiguous block of many spins at the random-singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model. Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on the geometry of the Hilbert space partition is quite different than for conformally invariant critical points.
Application of Semi-Definite Programming for Many-Fermion Systems
NASA Astrophysics Data System (ADS)
Zhao, Zhengji; Braams, Bastiaan; Fukuda, Mituhiro; Overton, Michael
2003-03-01
The ground state energy and other important observables of a many-fermion system with one- and two-body interactions only can all be obtained from the first order and second order Reduced Density Matrices (RDM's) of the system. Using these density matrices and a family of associated representability conditions one may obtain an approximation method for electronic structure theory that is in the mathematical form of Semi-Definite Programming (SDP): minimize a linear matrix functional over a space of positive semidefinite matrices subject to linear constraints. The representability conditions are some known necessary conditions, starting with the well-known P, Q, and G conditions [Claude Garrod and Jerome K. Percus, Reducation of the N-Particle Variational Problem, J. Math. Phys. 5 (1964) 1756-1776]. The RDM method with SDP has great potential advantages over the wave function method when the particle number N is large. The dimension of the full configuration space increases exponentially with N, but in RDM method with SDP the dimension of the objective matrix (which includes RDM's) increases only polynomially with N. We will report on the effect of adding the generalized three-index conditions proposed in [R. M. Erdahl, Representability, Int. J. Quantum Chem. 13 (1978) 697-718].
RT DDA: A hybrid method for predicting the scattering properties by densely packed media
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D.
2017-12-01
The most accurate approaches to predicting the scattering properties of particulate media are based on exact solutions of the Maxwell's equations (MEs), such as the T-matrix and discrete dipole methods. Applying these techniques for optically thick targets is challenging problem due to the large-scale computations and are usually substituted by phenomenological radiative transfer (RT) methods. On the other hand, the RT technique is of questionable validity in media with large particle packing densities. In recent works, we used numerically exact ME solvers to examine the effects of particle concentration on the polarized reflection properties of plane parallel random media. The simulations were performed for plane parallel layers of wavelength-sized spherical particles, and results were compared with RT predictions. We have shown that RTE results monotonically converge to the exact solution as the particle volume fraction becomes smaller and one can observe a nearly perfect fit for packing densities of 2%-5%. This study describes the hybrid technique composed of exact and numerical scalar RT methods. The exact methodology in this work is the plane parallel discrete dipole approximation whereas the numerical method is based on the adding and doubling method. This approach not only decreases the computational time owing to the RT method but also includes the interference and multiple scattering effects, so it may be applicable to large particle density conditions.
Exploring one-particle orbitals in large many-body localized systems
NASA Astrophysics Data System (ADS)
Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.
2018-03-01
Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.
Tensile strength and fracture of cemented granular aggregates.
Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V
2012-11-01
Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.
Fine structure of the entanglement entropy in the O(2) model.
Yang, Li-Ping; Liu, Yuzhi; Zou, Haiyuan; Xie, Z Y; Meurice, Y
2016-01-01
We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical potential μ in 1+1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase μ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate fermionic picture.
Characteristics of Submicron Aerosols in 2013 summer of Beijing
NASA Astrophysics Data System (ADS)
Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi
2016-04-01
To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m-3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (<20 μg m-3), since the air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (<30 nm) at this stage, which can be explained by the new particle formation. In the succeeding days, both the particle mass and size continuously increased. The PM2.5concentration increased rapidly by >60 μg day-1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm-3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm-3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm-3, which is considered as external mixed organic particles or aged soot particles. The particle hygroscopic growth factor for all the measured sizes at RH of 90% showed bimodal distribution, attributing to external mixed organics (or aged soot) and internal mixed organics and sulfate. Both the density and HGF were higher than Tijuana, but similar to Houston. PMF (Positive Matrix Factorization) model was deployed to quantify the contributions of different mixing state particles. Internal mixed organics and sulfate were dominant in the ambient particles in Beijing.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite
NASA Astrophysics Data System (ADS)
Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.
2018-04-01
The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.
Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions
NASA Astrophysics Data System (ADS)
Nagy, I.; Pipek, J.; Glasser, M. L.
2018-01-01
We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.
Molybdenum-base cermet fuel development
NASA Astrophysics Data System (ADS)
Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.
Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei
2017-11-22
Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.
Fracture behavior of 20% Nb particulate reinforced alumina composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, S.; Biner, S.B.; Buck, O.
1993-11-01
The composites consist of alumina matrix with 0.05 wt % MgO and 20 Vol % Nb with an average particle size of 30 to 100 microns produced by dry mixing and sintering to near their theoretical densities. Fracture toughness tests were carried out in three point bending on chevron notched samples. Results indicate that R-curve of the composites exhibited more than 300% increase in crack growth resistance compared to crack growth resistance of alumina produced with the identical procedures. Crack growth resistance curve of the composites increased with increasing Nb particle size. Metallorgraph indicated that failure of Nb particles inmore » crack path ranges from full interface separation without any significant deformation of Nb particles to cleavage failure without any evidence of interface separation.« less
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, Donald W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, D.W.
1990-11-27
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.
NASA Astrophysics Data System (ADS)
Arif, Sajjad; Tanwir Alam, Md; Aziz, Tariq; Ansari, Akhter H.
2018-04-01
In the present work, aluminium matrix composites reinforced with 10 wt% SiC micro particles along with x% SiC nano particles (x = 0, 1, 3, 5 and 7 wt%) were fabricated through powder metallurgy. The fabricated hybrid composites were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and elemental mapping. The relative density, hardness and wear behaviour of all hybrid nanocomposites were studied. The influence of various control factors like SiC reinforcement, sliding distance (300, 600, 900 and 1200 m) and applied load (20, 30 and 40 N) were explored using pin-on-disc wear apparatus. The uniform distribution of micro and nano SiC particles in aluminium matrix is confirmed by elemental maps. The hardness and wear test results showed that properties of the hybrid composite containing 5 wt% nano SiC was better than other hybrid composites. Additionally, the wear loss of all hybrid nanocomposites increases with increasing sliding distance and applied load. The identification of wear phenomenon were studied through the SEM images of worn surface.
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang
2016-11-01
TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.
Fabrication and Characterization of Surrogate Fuel Particles Using the Spark Erosion Method
NASA Astrophysics Data System (ADS)
Metzger, Kathryn E.
In light of the disaster at the Fukushima Daiichi Nuclear Plant, the Department of Energy's Advanced Fuels Program has shifted its interest from enhanced performance fuels to enhanced accident tolerance fuels. Dispersion fuels possess higher thermal conductivities than traditional light water reactor fuel and as a result, offer improved safety margins. The benefits of a dispersion fuel are due to the presence of the secondary non-fissile phase (matrix), which serves as a barrier to fission products and improves the overall thermal performance of the fuel. However, the presence of a matrix material reduces the fuel volume, which lowers the fissile content of dispersion. This issue can be remedied through the development of higher density fuel phases or through an optimization of fuel particle size and volume loading. The latter requirement necessitates the development of fabrication methods to produce small, micron-order fuel particles. This research examines the capabilities of the spark erosion process to fabricate particles on the order of 10 μm. A custom-built spark erosion device by CT Electromechanica was used to produce stainless steel surrogate fuel particles in a deionized water dielectric. Three arc intensities were evaluated to determine the effect on particle size. Particles were filtered from the dielectric using a polycarbonate membrane filter and vacuum filtration system. Fabricated particles were characterized via field emission scanning electron microscopy (FESEM), laser light particle size analysis, energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and gas pycnometry. FESEM images reveal that the spark erosion process produces highly spherical particles on the order of 10 microns. These findings are substantiated by the results of particle size analysis. Additionally, EDS and XRD results indicate the presence of oxide phases, which suggests the dielectric reacted with the molten debris during particle formation.
Schnyder, Simon K; Horbach, Jürgen
2018-02-16
Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.
Almost sure convergence in quantum spin glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzinski, David, E-mail: dab197@case.edu; Meckes, Elizabeth, E-mail: elizabeth.meckes@case.edu
2015-12-15
Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We alsomore » extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].« less
NASA Astrophysics Data System (ADS)
Schnyder, Simon K.; Horbach, Jürgen
2018-02-01
Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.
Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.
2013-01-01
Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Bai, V. Seshu
2017-02-01
In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.
Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.
Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith
2015-03-06
Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.
Kersey, Farrell R; Merkel, Timothy J; Perry, Jillian L; Napier, Mary E; DeSimone, Joseph M
2012-06-12
We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 μm pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt % PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery.
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
1999-01-01
A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
2001-01-01
A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.
The phonon-coupling model for Skyrme forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyutorovich, N.; Tselyaev, V.; Speth, J., E-mail: J.Speth@fz-juelich.de
2016-11-15
A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.
Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion
NASA Astrophysics Data System (ADS)
Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi
2018-04-01
FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.
Ising tricriticality in the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
CM-like Interplanetary Dust Particles in Lower Stratosphere During 1989 October and 1991 June/July
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1996-01-01
The stratospheric interplanetary dust particles L2005T12 and L2011O3 are linked to CM chondrite matrix. Particle L2005T12 is dominated by tabular grains of partially dehydrated greenalite-rich serpentine. Its amorphous matrix contains abundant smectite nanocrystals and annular Fe,Ni,S units. A uniquely stratified (partial) maghemite rim occurs only on S-rich parts of the matrix. Formation of this rim and Mg depletions in the matrix occurred during atmospheric entry heating of this particle. Particle L2011O3 has large iron sulfide and magnesiowustite grains in an amorphous low-Al, ferromagnesiosilica matrix. Hydrous crystallisation of this matrix produced ultrafine-grained smectites and disseminated iron sulfides. Atmospheric entry heating of both particles is indicated by the partial iron oxide rim, vesicular sulfides, and the scatter of matrix compositions due to loss of Mg. While many uncertainties remain, the high incidence of chondritic rough particles, which include an unknown amount of CM-like particles, in the lower stratosphere during 1984, 1989, and 1991 suggests annual variations in their abundances. The timing of lower stratospheric dust samplings is critical to collect these particles.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks
NASA Astrophysics Data System (ADS)
Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.
2011-11-01
Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.
NASA Astrophysics Data System (ADS)
Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan
2017-11-01
Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.
Engineering tubular bone using mesenchymal stem cell sheets and coral particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Wenxin; Ma, Dongyang; Yan, Xingrong
Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.D.
Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing {sup 137}Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect ofmore » the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength resistance up to 13.5% higher than ones prepared with PEHD granules, solely. Improved Mechanical strength resistance of tested samples accommodates trend that functionally depends on the percentage of PEHD powder added in formulation.« less
NASA Astrophysics Data System (ADS)
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
NASA Astrophysics Data System (ADS)
Farrokhzad, M. A.; Khan, T. I.
2014-09-01
New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time intervals. Statistical techniques as described in ASTM G16 were used to formulate the oxidation mass change as a function of time. The cross-section and surface of the oxidized coatings were examined for both visual and chemical analyses using wavelength dispersive x-ray spectroscopy (WDS) element mapping, X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS). The results showed that the volume fraction for each type of particle in the nickel matrix corresponded to its partial molar concentration in the electrolyte solutions. Increase in volume fraction of particles in the nickel matrix was correlated to lower oxidation rates. It was concluded that formation of Ni3TiO5 and NiTiO3 compounds can reduce the oxidation rate of cermet coatings by capturing some inward diffusing oxygen ions resulting in a lower number of nickel cations diffusing upward into the oxide layer.
Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.
Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong
2012-04-01
High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Hesam; Zbib, Hussein M.; Sun, Xin
In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD methodmore » is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.« less
Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki
2018-04-01
We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
NASA Astrophysics Data System (ADS)
Vogl, M.; Pankratov, O.; Shallcross, S.
2017-07-01
We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.
Slow plastic deformation of extruded NiAl-10TiB2 particulate composites at 1200 and 1300 K
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Kumar, S.; Mannan, S. K.; Viswanadham, R. K.
1990-01-01
A dispersion of 1-micron TiB2 particles in the B2 crystal structure NiAl intermetallic can effectively increase its elevated temperature strength, in association with increasing deformation resistance with TiB2 volume fraction. Attention is presently given to alternative densification methods, which may increase the initial as-fabricated dislocation density and lead to enhanced elevated-temperature strength. The 'XD' extrusion method was used to produce NiAl with 10 vol pct TiB2. Although apparent extrusion defects were occasionally found, neither grain-boundary cracking nor particle-matrix separation occurred.
NASA Technical Reports Server (NTRS)
Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.
2017-01-01
Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).
Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.
Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao
2015-09-14
Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.
Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System
NASA Astrophysics Data System (ADS)
Bianculli, Steven J.
In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.
Pairing of one-dimensional Bose-Fermi mixtures with unequal masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet
We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less
Universality of quantum information in chaotic CFTs
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong
2018-03-01
We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.
Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Dehkharghani, A. S.; Bellotti, F. F.; Zinner, N. T.
2017-07-01
In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Ryota; Tsuchiya, Shunji; CREST
2010-10-15
We investigate single-particle excitations and strong-coupling effects in the BCS-BEC crossover regime of a superfluid Fermi gas. Including phase and amplitude fluctuations of the superfluid order parameter within a T-matrix theory, we calculate the superfluid density of states (DOS), as well as single-particle spectral weight, over the entire BCS-BEC crossover region below the superfluid transition temperature T{sub c}. We clarify how the pseudogap in the normal state evolves into the superfluid gap, as one passes through T{sub c}. While the pseudogap in DOS continuously evolves into the superfluid gap in the weak-coupling BCS regime, the superfluid gap in the crossovermore » region is shown to appear in DOS after the pseudogap disappears below T{sub c}. In the phase diagram with respect to the temperature and interaction strength, we determine the region where strong pairing fluctuations dominate over single-particle properties of the system. Our results would be useful for the study of strong-coupling phenomena in the BCS-BEC crossover regime of a superfluid Fermi gas.« less
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Determination of the hydrodynamic friction matrix for various anisotropic particles
NASA Astrophysics Data System (ADS)
Kraft, Daniela; Wittkowksi, Raphael; Löwen, Hartmut; Pine, David
2013-03-01
The relationship between the shape of a colloidal particle and its Brownian motion can be captured by the hydrodynamic friction matrix. It fully describes the translational and rotational diffusion along the particle's main axes as well as the coupling between rotational and translational diffusion. We observed a wide variety of anisotropic colloidal particles with confocal microscopy and calculated the hydrodynamic friction matrix from the particle trajectories. We find that symmetries in the particle shape are reflected in the entries of the friction matrix. We compare our experimentally obtained results with numerical simulations and theoretical predictions. Financial support through a Rubicon grant by the Netherlands Organisation for Scientific Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less
NASA Astrophysics Data System (ADS)
Toma, G.; Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2010-11-01
Previous EAS investigations have shown that for a fixed primary energy the charged particle density becomes independent of the primary mass at certain (fixed) distances from the shower core. This feature can be used as an estimator for the primary energy. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable (the density of charged particles at 500 m distance to the shower core) using the KASCADE-Grande detector array. The KASCADE-Grande experiment is hosted by the Karlsruhe Institute for Technology-Campus North, Karlsruhe, Germany, and operated by an international collaboration. The constant intensity cut (CIC) method is applied to evaluate the attenuation of the S(500) observable with the zenith angle and is corrected for. A calibration of S(500) values with the primary energy has been worked out by simulations and was applied to the data to obtain the primary energy spectrum (in the energy range log10[E0/GeV]∈[7.5,9]). The systematic uncertainties induced by different sources are considered. In addition, a correction based on a response matrix is applied to account for the effects of shower-to-shower fluctuations on the spectral index of the reconstructed energy spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, E.K.H.; Funkenbusch, P.D.
1993-06-01
Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-03-30
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.
NASA Astrophysics Data System (ADS)
Sun, Chao; Shen, Rujuan; Song, Min
2012-03-01
This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.
Hintersteiner, Ingrid; Himmelsbach, Markus; Buchberger, Wolfgang W
2015-02-01
In recent years, the development of reliable methods for the quantitation of microplastics in different samples, including evaluating the particles' adverse effects in the marine environment, has become a great concern. Because polyolefins are the most prevalent type of polymer in personal-care products containing microplastics, this study presents a novel approach for their quantitation. The method is suitable for aqueous and hydrocarbon-based products, and includes a rapid sample clean-up involving twofold density separation and a subsequent quantitation with high-temperature gel-permeation chromatography. In contrast with previous procedures, both errors caused by weighing after insufficient separation of plastics and matrix and time-consuming visual sorting are avoided. In addition to reliable quantitative results, in this investigation a comprehensive characterization of the polymer particles isolated from the product matrix, covering size, shape, molecular weight distribution and stabilization, is provided. Results for seven different personal-care products are presented. Recoveries of this method were in the range of 92-96 %.
NASA Astrophysics Data System (ADS)
Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.
2015-11-01
Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.
Entanglement classification in the noninteracting Fermi gas
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3,1 and ρ2,2, so these classes do not exist in the total Fermi gas density matrix.
The half-filled Landau level: The case for Dirac composite fermions
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.
2016-04-01
In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.
Method for immobilizing particulate materials in a packed bed
Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.
1999-02-02
The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.
Method for immobilizing particulate materials in a packed bed
Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas
1999-01-01
The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.
NASA Astrophysics Data System (ADS)
Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.
2017-05-01
The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
NASA Astrophysics Data System (ADS)
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Does a Single Eigenstate Encode the Full Hamiltonian?
NASA Astrophysics Data System (ADS)
Garrison, James R.; Grover, Tarun
2018-04-01
The eigenstate thermalization hypothesis (ETH) posits that the reduced density matrix for a subsystem corresponding to an excited eigenstate is "thermal." Here we expound on this hypothesis by asking: For which class of operators, local or nonlocal, is ETH satisfied? We show that this question is directly related to a seemingly unrelated question: Is the Hamiltonian of a system encoded within a single eigenstate? We formulate a strong form of ETH where, in the thermodynamic limit, the reduced density matrix of a subsystem corresponding to a pure, finite energy density eigenstate asymptotically becomes equal to the thermal reduced density matrix, as long as the subsystem size is much less than the total system size, irrespective of how large the subsystem is compared to any intrinsic length scale of the system. This allows one to access the properties of the underlying Hamiltonian at arbitrary energy densities (or temperatures) using just a single eigenstate. We provide support for our conjecture by performing an exact diagonalization study of a nonintegrable 1D quantum lattice model with only energy conservation. In addition, we examine the case in which the subsystem size is a finite fraction of the total system size, and we find that, even in this case, many operators continue to match their canonical expectation values, at least approximately. In particular, the von Neumann entanglement entropy equals the thermal entropy as long as the subsystem is less than half the total system. Our results are consistent with the possibility that a single eigenstate correctly predicts the expectation values of all operators with support on less than half the total system, as long as one uses a microcanonical ensemble with vanishing energy width for comparison. We also study, both analytically and numerically, a particle-number conserving model at infinite temperature that substantiates our conjectures.
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Cheolwoong; Yan, Bo; Kang, Huixiao
2016-08-06
In order to investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO 2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO 2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were then quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and poremore » size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO 2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO 2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm 3 packing density and 4 C rate.« less
Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P
2010-03-09
A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1989-01-01
Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.
Ceramic superconductor/metal composite materials employing the superconducting proximity effect
Holcomb, Matthew J.
2002-01-01
Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.
2015-03-01
In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.
Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery
NASA Astrophysics Data System (ADS)
Jha, Amit Kumar
We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into the gels. Human MSCs were undifferentiated during the early time points of culture, however differentiated into osteoblast phenotype after 28 days of culture. In summary, the HA-based hydrogel matrices are hierarchically structured, mechanically robust and enzymatically stable, capable of mediating cellular functions through the spatial and temporal presentation of defined biological cues. These hydrogel systems are promising candidates for soft tissue regeneration.
Dexamethasone acetate encapsulation into Trojan particles.
Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas
2008-05-22
We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.
Klimiankou, M; Lindau, R; Möslang, A
2005-01-01
Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.
Nanophosphor composite scintillator with a liquid matrix
McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark
2010-03-16
An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.
High strength and density tungsten-uranium alloys
Sheinberg, Haskell
1993-01-01
Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.
Projected quasiparticle theory for molecular electronic structure
NASA Astrophysics Data System (ADS)
Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.
2011-09-01
We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.
Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders
NASA Astrophysics Data System (ADS)
Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU
2018-01-01
Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.
Kim, Chungseok
2018-03-01
The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
NASA Astrophysics Data System (ADS)
Zhang, Baicheng; Bi, Guijun; Nai, Sharon; Sun, Chen-nan; Wei, Jun
2016-06-01
In this study, micron-size TiB2 particles were utilized to reinforce Inconel 625 produced by selective laser melting. Exceptional microhardness 600-700 HV0.3 of the composite was obtained. In further investigation, the microstructure and mechanical properties of Inconel 625/TiB2 composite can be significantly influenced by addition of TiB2 particles during SLM. It was found that the long directional columnar grains observed from SLM-processed Inconel 625 were totally changed to fine dendritic matrix due to the addition of TiB2 particles. Moreover, with laser energy density (LED) of 1200 J/m, a Ti, Mo rich interface around TiB2 particles with fine thickness can be observed by FESEM and EDS. The microstructure evolution can be determined by different laser energy density (LED): under 1200 J/m, γ phase in dendrite grains; under 600 J/m, γ phase in combination of dendritic and acicular grains; under 400 J/m, γ phase acicular grains. Under optimized LED 1200 J/m, the dynamic nanohardness (8.62 GPa) and elastic modulus (167 GPa) of SLM-processed Inconel 625/TiB2 composite are higher compared with those of SLM-processed Inconel 625 (3.97 GPa and 135 GPa, respectively).
Lee, Jae Hoon; Kim, Jeoung Han
2013-09-01
Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.
Bath-induced correlations in an infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2017-09-01
Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.
NASA Astrophysics Data System (ADS)
Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.
2016-08-01
Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.
NASA Astrophysics Data System (ADS)
Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.
2016-09-01
Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.
NASA Astrophysics Data System (ADS)
Machrafi, Hatim; Lebon, Georgy
2014-11-01
The purpose of this work is to study heat conduction in systems that are composed out of spherical micro-and nanoparticles dispersed in a bulk matrix. Special emphasis will be put on the dependence of the effective heat conductivity on various selected parameters as dimension and density of particles, interface interaction with the matrix. This is achieved by combining the effective medium approximation and extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by three examples: Silicium-Germanium, Silica-epoxy-resin and Copper-Silicium systems. Predictions of our model are in good agreement with other theoretical models, Monte-Carlo simulations and experimental data.
Proceedings of the Tri-Service Conference on Corrosion (1987)
1987-05-01
designated S1 and S2 exhibited preferential local attack. The corrosion in these alloys occur between tungsten particles where matrix alloy precipitated ...surrounded by a matrix alloy of Fe-Ni-W. The EDAX examination of the precipitated matrix alloy between the tungsten particles in sample K1 showed the...the precipitated matrix alloy between the tungsten particles . For alloy Sl, the corrosion was observed at preferential local sites. The SEM
M, Bindu; G, Unnikrishnan
2017-09-27
We report the transport characteristics of silicone rubber/nano-hydroxylapatite (SR/n-HA) systems at room temperature with reference to the effects of n-HA loading, morphology and penetrant nature, using toluene, xylene, ethyl acetate and butyl acetate in the liquid phase and methanol, ethanol, 1-propanol, 2-propanol and butanol in the vapour phase as probe molecules. The interaction between the n-HA particles and SR matrix has been confirmed by FTIR analysis. As the n-HA content in the SR matrix increased, the penetrant uptake has been found to decrease. The observations have been correlated with the density and void content of the systems. Scanning electron microscopy images have been found to be complementary to the observed transport features. The reinforcement effect of n-HA particles on the SR matrix has been verified by Kraus equation. Molecular mass between the cross links has been observed to decrease with an increase in n-HA loading. The results have been compared with affine, phantom network, parallel, series and Maxwell models. The transport data have been complemented by observations on biological fluid uptake with urea, d-glucose, KI, saline water, phosphate buffer and artificial urine as the media.
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang
2018-03-01
In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.
1997-12-31
The rutile form of titanium dioxide and granules of high density polyethylene (PEHD) and low density polyethylene (PELD) were used to prepare mortar matrices for immobilization of radioactive waste materials containing {sup 137}Cs. PELD, PEHD and TiO{sub 2} were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide. One type of PELD and two types of PEHD were used to replace 50 wt.% of stone granules normally used in the matrix, in order to decrease the porosity and density of the mortar matrix andmore » to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. TiO{sub 2} was also added to the mortar formulation, replacing 5 and 8 wt.% of the total cement weight. Cured samples were investigated under temperature stress conditions, where the temperature extremes were: T{sub min} = {minus}20 C, T{sub max} = +70 C. Samples were periodically immersed in distilled water at the ambient room temperature, after each freezing and heating treatment. Results of accelerated leaching experiments for these samples and samples prepared exclusively with polyethylenes replacing 100% of the stone granules and TiO{sub 2}, treated in nonaccelerated leaching experiments, were compared. Even using an accelerated ageing leach test that overestimates {sup 137}Cs leach rates, it can be deduced, that radionuclide leach rates from the radioactive waste mortar mixture forms were improved. Leach rates decreased from 5%, for the material prepared with stone aggregate, to 3.1 to 4.0%, for the materials prepared solely with PEHD, PELD or TiO{sub 2}, and to about 3% for all six types of the TiO{sub 2}-PEHD and TiO{sub 2}-PELD mixtures tested.« less
Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun
2018-06-11
In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.
Analyzing forensic evidence based on density with magnetic levitation.
Lockett, Matthew R; Mirica, Katherine A; Mace, Charles R; Blackledge, Robert D; Whitesides, George M
2013-01-01
This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (± 0.0002 g/cm(3) ) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values--independent of the specific apparatus or analyst--that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix. © 2012 American Academy of Forensic Sciences.
Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces
NASA Astrophysics Data System (ADS)
Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.
2017-12-01
In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.
Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle
NASA Technical Reports Server (NTRS)
Caruso, John J.
1999-01-01
Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.
NASA Astrophysics Data System (ADS)
Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua
2012-07-01
Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.
Maradzike, Elvis; Gidofalvi, Gergely; Turney, Justin M; Schaefer, Henry F; DePrince, A Eugene
2017-09-12
Analytic energy gradients are presented for a variational two-electron reduced-density-matrix (2-RDM)-driven complete active space self-consistent field (CASSCF) method. The active-space 2-RDM is determined using a semidefinite programing (SDP) algorithm built upon an augmented Lagrangian formalism. Expressions for analytic gradients are simplified by the fact that the Lagrangian is stationary with respect to variations in both the primal and the dual solutions to the SDP problem. Orbital response contributions to the gradient are identical to those that arise in conventional CASSCF methods in which the electronic structure of the active space is described by a full configuration interaction (CI) wave function. We explore the relative performance of variational 2-RDM (v2RDM)- and CI-driven CASSCF for the equilibrium geometries of 20 small molecules. When enforcing two-particle N-representability conditions, full-valence v2RDM-CASSCF-optimized bond lengths display a mean unsigned error of 0.0060 Å and a maximum unsigned error of 0.0265 Å, relative to those obtained from full-valence CI-CASSCF. When enforcing partial three-particle N-representability conditions, the mean and maximum unsigned errors are reduced to only 0.0006 and 0.0054 Å, respectively. For these same molecules, full-valence v2RDM-CASSCF bond lengths computed in the cc-pVQZ basis set deviate from experimentally determined ones on average by 0.017 and 0.011 Å when enforcing two- and three-particle conditions, respectively, whereas CI-CASSCF displays an average deviation of 0.010 Å. The v2RDM-CASSCF approach with two-particle conditions is also applied to the equilibrium geometry of pentacene; optimized bond lengths deviate from those derived from experiment, on average, by 0.015 Å when using a cc-pVDZ basis set and a (22e,22o) active space.
NASA Technical Reports Server (NTRS)
Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.
1990-01-01
Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.
NASA Astrophysics Data System (ADS)
Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.
1990-01-01
Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.
On the role of particle cracking in flow and fracture of metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockenbrough, J.R.; Zok, F.W.
1995-01-01
The flow response of particle-reinforced metal matrix composites is studied using finite element methods. Unit cells containing either intact or cracked particles in a power law hardening matrix are used to determine the corresponding asymptotic flow strengths. The effects of the hardening exponent and the elastic mismatch between the particles and the matrix on the flow response are examined. For comparison, the flow response of power law hardening solids containing penny-shaped cracks is also evaluated. The latter results are found to be in reasonable agreement with those corresponding to composites that contain low volume fractions of cracked particles. The asymptoticmore » results are used to develop a one-dimensional constitutive law for composites which undergo progressive damage during tensile straining. This law is used to evaluate the strain at the onset of plastic instability. It is proposed that the instability strain be used as a measure of tensile ductility when the particle content is low and the particles are uniformly distributed through the matrix.« less
Emergence of a new pair-coherent phase in many-body quenches of repulsive bosons
NASA Astrophysics Data System (ADS)
Fischer, Uwe R.; Lee, Kang-Soo; Xiong, Bo
2011-07-01
We investigate the dynamical mode population statistics and associated first- and second-order coherence of an interacting bosonic two-mode model when the pair-exchange coupling is quenched from negative to positive values. It is shown that for moderately rapid second-order transitions, a new pair-coherent phase emerges on the positive coupling side in an excited state, which is not fragmented as the ground-state single-particle density matrix would prescribe it to be.
Post-processing of metal matrix composites by friction stir processing
NASA Astrophysics Data System (ADS)
Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra
2018-05-01
In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.
Choi, H Y; Kim, W J
2015-11-01
The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites
2015-01-01
The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable. PMID:26523245
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-01-01
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781
Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.
1990-01-01
Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.
Recent progress on RE2O3-Mo/W emission materials.
Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling
2012-08-01
RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.
NASA Astrophysics Data System (ADS)
V. R., Arun prakash; Rajadurai, A.
2016-10-01
In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.
Random matrix ensembles for many-body quantum systems
NASA Astrophysics Data System (ADS)
Vyas, Manan; Seligman, Thomas H.
2018-04-01
Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.
Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams
NASA Astrophysics Data System (ADS)
Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D.
2018-05-01
Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50-125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8-10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1-1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.
Trisi, Paolo; Rao, Walter; Rebaudi, Alberto; Fiore, Peter
2003-02-01
The effect of the pure-phase beta-tricalcium phosphate (beta-TCP) Cerasorb on bone regeneration was evaluated in hollow titanium cylinders implanted in the posterior jaws of five volunteers. Beta-TCP particles were inserted inside the cylinders and harvested 6 months after placement. The density of the newly formed bone inside the bone-growing chambers measured 27.84% +/- 24.67% in test and 17.90% +/- 4.28% in control subjects, without a statistically significant difference. Analysis of the histologic specimens revealed that the density of the regenerated bone was related to the density of the surrounding bone. The present study demonstrates the spontaneous healing of infrabony artificial defects, 2.5 mm diameter, in the jaw. The pure beta-TCP was resorbed simultaneously with new bone formation, without interference with the bone matrix formation.
Fu, Jing; Hou, Yudong; Zheng, Mupeng; Wei, Qiaoyi; Zhu, Mankang; Yan, Hui
2015-11-11
BaTiO3/polyvinylidene fluoride (BT/PVDF) is the extensive reported composite material for application in modern electric devices. However, there still exists some obstacles prohibiting the further improvement of dielectric performance, such as poor interfacial compatibility and low dielectric constant. Therefore, in depth study of the size dependent polarization and surface modification of BT particle is of technological importance in developing high performance BT/PVDF composites. Here, a facile molten-salt synthetic method has been applied to prepare different grain sized BT particles through tailoring the calcination temperature. The size dependent spontaneous polarizationof BT particle was thoroughly investigated by theoretical calculation based on powder X-ray diffraction Rietveld refinement data. The results revealed that 600 nm sized BT particles possess the strong polarization, ascribing to the ferroelectric size effect. Furthermore, the surface of optimal BT particles has been modified by water-soluble polyvinylprrolidone (PVP) agent, and the coated particles exhibited fine core-shell structure and homogeneous dispersion in the PVDF matrix. The dielectric constant of the resulted composites increased significantly, especially, the prepared composite with 40 vol % BT loading exhibited the largest dielectric constant (65, 25 °C, 1 kHz) compared with the literature values of BT/PVDF at the same concentration of filler. Moreover, the energy storage density of the composites with tailored structure was largely enhanced at the low electric field, showing promising application as dielectric material in energy storage device. Our work suggested that introduction of strong polarized ferroelectric particles with optimal size and construction of core-shell structured coated fillers by PVP in the PVDF matrix are efficacious in improving dielectric performance of composites. The demonstrated approach can also be applied to the design and preparation of other polymers-based nanocomposites filled with ferroelectric particles to achieve desirable dielectric properties.
Spin formalism and applications to new physics searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, H.E.
1994-12-01
An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less
EURITRACK tagged neutron inspection system design
NASA Astrophysics Data System (ADS)
Perret, G.; Perot, B.; Artaud, J.-L.; Mariani, A.
2006-05-01
The EURITRACK project aims at developing a non-destructive measurement system, using an associated particle sealed tube neutron generator, to detect explosives or other threat materials concealed in cargo containers. Chemical composition of the suspect item is determined by coincidence measurements between alpha particles and photons resulting from neutron interactions in the inspected voxel of the container. We present the design and the performances of the measurement system obtained by Monte Carlo calculations. Selected gamma detectors are clusters of 5''×5''×10'' and 5''×5'' sodium iodide scintillators, and a block of 100 kg of TNT located in a container filled with a metallic matrix having a density of 0.2 g/cm3 is shown to be detectable in 10 minutes.
Vibrational and vibronic coherences in the dynamics of the FMO complex
NASA Astrophysics Data System (ADS)
Liu, Xiaomeng; Kühn, Oliver
2016-12-01
The coupled exciton-vibrational dynamics of a seven site Frenkel exciton model of the Fenna-Matthews-Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton-vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Solidification of Magnesium (AM50A) / vol%. SiCp composite
NASA Astrophysics Data System (ADS)
Zhang, X.; Hu, H.
2012-01-01
Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiCp particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiCp) was prepared by stir casting. The solidification behavior of the cast AM50A/SiCp composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiCp particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.
Synchrotron x-ray microtomography of the interior microstructure of chocolate
NASA Astrophysics Data System (ADS)
Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2016-10-01
The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.
A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2
NASA Astrophysics Data System (ADS)
Dhabale, R.; Jatti, V. S.
2016-09-01
Polymer composites are prominent candidate for polymeric bio-composites due to its low cost, high strength and ease of manufacturing. However, they suffer from low mechanical properties such as high wear rate and low hardness. In view of this, present study focuses on the synthesis of hybrid bio polymer matrix composites using low density polyethylene as matrix material with reinforcing material namely, alumina and titanium oxide. The samples were fabricated as per ASTM standard by varying the percentage of reinforcing particles using injection moulding machine. Various tests namely, tensile, flexural, impact, hardness, wear, SEM and corrosion were conducted on the prepared samples. On the basis of the experimental results, it can be concluded that injection moulding process can fabricate defect free cast samples. Polymer matrix composites of 70%LDPE +10% TiO2 +20% Al2O3 composition is biocompatible and a good candidate for biomaterial. Thus based on the inference of this study the above polymer matrix composite is suitable for orthopaedic applications and can be applied on hard and soft tissues of implantable materials in a human body.
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Abduati Salem, A. E.
2017-06-01
Blending of linear low density polyethylene (LLDPE), thermoplastic starch (TPS) and banana fiber (BF) have been studied. Two types of systems were prepared; the matrix having different ratio of LLDPE/TPS and, the LLDPE/TPS composites having 5 - 30 wt% BF. Morphological changes using scanning electron microscope (SEM) were observed and its showed that TPS particle are homogenously dispersed in LLDPE matrix. On the other hand BF was found to be well embedded in TPS phase, showing the good interaction between BF and TPS phases. This observation show an agreement with the Young’s modulus value which is increased with the BF contents. The increment in Young’s modulus value was also attributed to the difficulties in LLDPE/TPS chains movement with the presence of BF.
Triso coating development progress for uranium nitride kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
2015-08-01
In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less
Joseph, Narcisse Ms; Ho, Kok Lian; Tey, Beng Ti; Tan, Chon Seng; Shafee, Norazizah; Tan, Wen Siang
2016-07-08
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016. © 2016 American Institute of Chemical Engineers.
New generation nuclear fuel structures: Dense particles in selectively soluble matrix
NASA Astrophysics Data System (ADS)
Devlin, Dave; Jarvinen, Gordon; Patterson, Brian; Pattillo, Steve; Valdez, James; Liu, X.-Y.; Phillips, Jonathan
2009-11-01
We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO 2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.
Ground-state properties of anyons in a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Tang, Guixin; Eggert, Sebastian; Pelster, Axel
2015-12-01
Using the Anyon-Hubbard Hamiltonian, we analyze the ground-state properties of anyons in a one-dimensional lattice. To this end we map the hopping dynamics of correlated anyons to an occupation-dependent hopping Bose-Hubbard model using the fractional Jordan-Wigner transformation. In particular, we calculate the quasi-momentum distribution of anyons, which interpolates between Bose-Einstein and Fermi-Dirac statistics. Analytically, we apply a modified Gutzwiller mean-field approach, which goes beyond a classical one by including the influence of the fractional phase of anyons within the many-body wavefunction. Numerically, we use the density-matrix renormalization group by relying on the ansatz of matrix product states. As a result it turns out that the anyonic quasi-momentum distribution reveals both a peak-shift and an asymmetry which mainly originates from the nonlocal string property. In addition, we determine the corresponding quasi-momentum distribution of the Jordan-Wigner transformed bosons, where, in contrast to the hard-core case, we also observe an asymmetry for the soft-core case, which strongly depends on the particle number density.
Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn
2007-07-01
Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature tomore » achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)« less
Tomographic PIV: particles versus blobs
NASA Astrophysics Data System (ADS)
Champagnat, Frédéric; Cornic, Philippe; Cheminet, Adam; Leclaire, Benjamin; Le Besnerais, Guy; Plyer, Aurélien
2014-08-01
We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels.
Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
NASA Astrophysics Data System (ADS)
Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Spasova, M.; Farle, M.; Wiedwald, U.; Angelakeris, M.
2016-11-01
In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).
Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C
2009-06-01
Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.
NASA Astrophysics Data System (ADS)
Schnyder, Simon K.; Skinner, Thomas O. E.; Thorneywork, Alice L.; Aarts, Dirk G. A. L.; Horbach, Jürgen; Dullens, Roel P. A.
2017-03-01
A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013), 10.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.
Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre
2014-12-19
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.
Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre
2014-01-01
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295
NASA Astrophysics Data System (ADS)
Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.
2000-12-01
The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.
A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys
NASA Astrophysics Data System (ADS)
Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.
2017-10-01
Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo
2000-01-01
In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.
NASA Astrophysics Data System (ADS)
Fan, Lili; Wang, Guoping; Wang, Wenju; Shi, Guanxin; Yang, Fufeng; Rui, Xiaoting
2018-04-01
Various anisotropic magnetorheological elastomers (MREs) were synthesized using the rubber mixing technique. Magnetic and temperature distributions of the experimental equipment and test instruments were analyzed by the ANSYS. NH4HCO3 was filled in the natural rubber matrix to modify properties of MREs. Microstructures and compositions of samples were studied by the scanning electron microscope (SEM), the energy dispersive x-ray spectroscopy (EDAX) analysis and x-ray powder diffraction (XRD). Via vibrating sample magnetometer (VSM) and density functional theory (DFT) method, the magnetic property of carbonyl iron (CI) was illuminated. The shear storage modulus and MR effect of MREs were investigated by the dynamic mechanical analyzer (DMA). It indicated that distributions of magnetic and temperature in the experimental and testing devices were uniform. Before vulcanization, CI particles were uniformly distributed in the matrix, while a CI chain structure was formed and embedded in the matrix after the vulcanization process. Moderate addition of NH4HCO3 accelerated the rubber vulcanization and enhanced the MR effect.
Copper-polydopamine composite derived from bioinspired polymer coating
Zhao, Yao; Wang, Hsin; Qian, Bosen; ...
2018-04-01
Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less
Copper-polydopamine composite derived from bioinspired polymer coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yao; Wang, Hsin; Qian, Bosen
Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.
2017-02-21
According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.
NASA Astrophysics Data System (ADS)
Emfietzoglou, D.; Moscovitch, M.
1999-01-01
A theoretical study was carried out to investigate the feasibility of using the radiation-induced colour decay of photochromic molecules embedded in a polymer matrix as a probe for studying the microscopic energy deposition of heavy charged particles (HCPs) in a tissue-equivalent solid. The theoretical treatment makes use of the radial dose distribution function as derived from gas-phase physics, together with the effects of the increase in temperature and of matrix degradation on the colour-decay kinetics of the photochromic molecules, according to empirical models derived for the solid state. Bearing in mind the non-stochastic nature of the model, the use of gas-phase physics at the level of radiation interaction, and the fact that some empirical quantities used have been established macroscopically, all factors which signify that extra caution is required in the interpretation of the results, it is shown that when the optimum information retrieval time (after track formation) is considered the technique may be able to resolve differences in the energy deposition pattern by different HCPs in the nanometre range (1-10 nm; material's mass density
) from the track axis. Most importantly, though, the present study aims to erect a theoretical framework for the possible application of the technique and to highlight those aspects which are likely to be critical to its practical usage, such as particle type and energy range, and spatial scale and magnitude of the expected effect together with its dependence on time, the physical characteristics of the matrix, and the kinetic behaviour of the type of photochromic molecule studied. Furthermore, it establishes a rationale for interpreting the experimentally observed (if available) colour changes in the HCP track in terms of the microscopic distribution of energy deposition in it.
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian; ...
2017-02-27
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch
2017-05-01
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.
NASA Astrophysics Data System (ADS)
Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.
2017-10-01
Aeolian rat-tails (ARTs) are a previously undocumented, regionally-ubiquitous aeolian abrasion feature observed on matrix-supported ignimbrite surfaces in the Puna Plateau of Northwest Argentina. ARTs consist of an abrasion-resistant lithic clast projecting above the surface with a lee tail or 'keel' in the more erodible matrix. Size is controlled by the dimensions of the windward lithic clast, ranging from centimetre to meter scale; spatial density varies with clast content, which may reflect variations in ignimbrite facies. Field observations suggest ARTs follow a definable evolutionary sequence. First, an abrasion-resistant lithic clast contained within the ignimbrite is exposed to abrasion at the surface. Impacts from abrading particles erode the softer ignimbrite matrix adjacent to the clast. The clast shelters the leeward surface under a unimodal abrasion direction, creating a tail that tapers downwind and elongates as the clast emerges. Clasts become dislodged from the matrix as the surrounding surface erodes, ultimately destroying the feature if the clast is small enough to be mobilized directly by wind or impacting particles. This evolutionary sequence explains the morphology of ARTs and the presence of loose clasts on the ignimbrite surface, which contributes to the development of other landforms in the region, such as periodic bedrock ridges, yardangs, and megaripples. Satellite and rover images suggest similar features also exist on Mars. Because the formation and preservation of ARTs is contingent on unimodal abrasion direction, their orientation can be used as an indicator of long-term aeolian sediment transport direction.
Lyophilic matrix method for dissolution and release studies of nanoscale particles.
Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko
2017-10-25
We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Andrew J
A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.
Dancy, Jimena G.; Wadajkar, Aniket S.; Schneider, Craig S.; Mauban, Joseph R.H.; Woodworth, Graeme F.; Winkles, Jeffrey A.; Kim, Anthony J.
2017-01-01
Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62 nm, but less than 110 nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110 nm PEG-PS NPs, as well as between PEG-coated and uncoated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration. PMID:27460683
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.
2012-01-01
Three terms, ''Waterman's T-matrix method'', ''extended boundary condition method (EBCM)'', and ''null field method'', have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIMþSOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIMþSOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIMþSOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIMþSOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging.
Generalized eigenstate typicality in translation-invariant quasifree fermionic models
NASA Astrophysics Data System (ADS)
Riddell, Jonathon; Müller, Markus P.
2018-01-01
We demonstrate a generalized notion of eigenstate thermalization for translation-invariant quasifree fermionic models: the vast majority of eigenstates satisfying a finite number of suitable constraints (e.g., fixed energy and particle number) have the property that their reduced density matrix on small subsystems approximates the corresponding generalized Gibbs ensemble. To this end, we generalize analytic results by H. Lai and K. Yang [Phys. Rev. B 91, 081110(R) (2015), 10.1103/PhysRevB.91.081110] and illustrate the claim numerically by example of the Jordan-Wigner transform of the XX spin chain.
Decoherence can relax cosmic acceleration: an example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markkanen, Tommi, E-mail: tommi.markkanen@kcl.ac.uk
We investigate back reaction in de Sitter space in an approach where only states that are observationally accessible are included in the density matrix. Using the Bunch-Davies vacuum as the initial condition we find for a conformal scalar field and a cosmological constant that tracing over the unobservable states beyond the cosmological horizon leads to a thermal spectrum of particles and that such a configuration is unstable under semi-classical back reaction. It is concluded that this prescription results in an instability of de Sitter space with a gradually increasing horizon size.
Composition for absorbing hydrogen
Heung, L.K.; Wicks, G.G.; Enz, G.L.
1995-05-02
A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Composition for absorbing hydrogen
Heung, Leung K.; Wicks, George G.; Enz, Glenn L.
1995-01-01
A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Pairing matrix elements and pairing gaps with bare, effective, and induced interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barranco, F.; Bortignon, P.F.; Colo, G.
2005-11-01
The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the bare low-momentum nucleon-nucleon potential v{sub low-k}--designed so as to reproduce the low-energy observables avoiding the use of a repulsive core--is studied for a typical finite, superfluid nucleus ({sup 120}Sn). It is found that the matrix elements of v{sub low-k} follow closely those of v{sub Gogny} on a wide range of energy values around the Fermi energy e{sub F}, those associated with v{sub low-k} being less attractive. This result explains the fact that around e{sub F} the pairing gap {delta}{sub Gogny} associated withmore » the Gogny interaction (and with a density of single-particle levels corresponding to an effective k mass m{sub k}{approx_equal}0.7 m) is a factor of about 2 larger than {delta}{sub low-k}, being in agreement with {delta}{sub exp}=1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal states gives rise to an induced pairing interaction v{sub ind} peaked at e{sub F}. The interaction (v{sub low-k}+v{sub ind}) Z{sub {omega}} arising from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion ({omega}-mass and quasiparticle strength Z{sub {omega}}) associated with the particle-vibration coupling mechanism, leads to a value of the pairing gap at the Fermi energy {delta}{sub ren} that accounts for the experimental value. An important question that remains to be studied quantitatively is to what extent {delta}{sub Gogny}, which depends on average parameters, and {delta}{sub ren}, which explicitly depends on the parameters describing the (low-energy) nuclear structure, display or not a similar isotopic dependence and whether this dependence is borne out by the data.« less
Characterization of AA2024-T3 by scanning Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
Volta potential mapping of AA2024-T3 on surfaces was performed with an atomic force microscope. A linear relation was found between the Volta potential measured in air and the corrosion potential in aqueous solution for a range of pure metal samples, indicating that this potential is a measurement of the practical nobility of the surface. Large differences in the Volta potential of intermetallic particles in AA2024-T3 and the matrix phase resulted in a potential map with high contrast that clearly identifies the location of the particles. All intermetallic particles, including the Mg-containing S-phase particles, had a Volta potential noble to thatmore » of the matrix. Surface films on the particles and the matrix were found to have strong effects on the potential, and probably explain the noble nature of the Mg-containing particles, which have been reported to be active to the matrix in solution. The effect of these surface films was examined by refreshing the sample surface using different techniques. Lateral heterogeneities in certain intermetallic particles were also revealed.« less
Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...
Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4
NASA Technical Reports Server (NTRS)
Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.
1991-01-01
The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).
Shamloo, Amir; Mohammadaliha, Negar; Heilshorn, Sarah C; Bauer, Amy L
2016-04-01
A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell-matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding.
Gaylord, William H.; Melnick, Joseph L.
1953-01-01
The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls. PMID:13069658
Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.
2011-12-01
The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.
Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating
Mrówczyński, Radosław; Michalak, Natalia; Załęski, Karol; Matczak, Michał; Kempiński, Mateusz; Pietralik, Zuzanna; Lewandowski, Mikołaj; Jurga, Stefan; Stobiecki, Feliks
2018-01-01
Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications. PMID:29527434
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
Structure and properties of polymer nanocomposite coatings applied by the HVOF process
NASA Astrophysics Data System (ADS)
Petrovicova, Elena
1999-11-01
A high velocity oxy-fuel (HVOF) combustion spray process was used to produce coatings from nylon 11 powders with average starting particle diameters of 30 and 60 gin. Silica and carbon black were used as nanosized reinforcements, and their nominal content was varied from 0 to 15 vol. %. Optimization of the HVOF processing parameters was based on an assessment of the degree of splatting of polymer particles, and was accomplished by varying the jet temperature (via the hydrogen/oxygen ratio). Gas mixtures with low hydrogen contents minimized polymer particle degradation. Analytical modeling of particle temperature profiles confirmed the effect of the gas velocity and temperature on the particle heating and resulting coating properties. The morphology of the polymer and the microstructure of the coatings depended on the reinforcement surface chemistry and the volume fraction of the reinforcement, as well as the initial nylon 11 particle size. Although all reinforced coatings had higher crystallinities than pure nylon 11 coatings, coatings produced from a smaller starting polymer particle size (30 mum) exhibited improved spatial distribution of the silica in the matrix and lower crystallinity. In addition, coatings produced from the smaller polymer particles had a higher density and lower porosity due to a higher degree of melting and splatting compared to coatings produced from larger particles (60 mum). Nanoreinforced coatings exhibited increased scratch and sliding wear resistance and improved mechanical and barrier properties. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol. % contents of hydrophobic silica or carbon black, relative to nonreinforced coatings. Reinforcement of the polymer matrix resulted in increases of ca. 200% in the storage modulus both below and above the glass transition temperature. The increase in crystallinity seemed to further enhance the reinforcement provided by the nanoparticulates. Results also showed a decrease in the water vapor transmission rate through nanoreinforced coatings by up to 50% compared to pure polymer coatings. The aqueous permeability of coatings produced from 30 mum polymer particles was lower due to the decrease in porosity. Crystallinity seemed to have a strong influence on the mechanical properties, whereas permeability of thermally sprayed coatings was dominated by coating porosity.
NASA Astrophysics Data System (ADS)
Ghale, Purnima; Johnson, Harley T.
2018-06-01
We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.
Practical auxiliary basis implementation of Rung 3.5 functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.
2014-07-21
Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
The intrapair electron correlation in natural orbital functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piris, M.; Donostia International Physics Center; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao
2013-12-21
A previously proposed [M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 134, 164102 (2011)] formulation of the two-particle cumulant, based on an orbital-pairing scheme, is extended here for including more than two natural orbitals. This new approximation is used to reconstruct the two-particle reduced density matrix (2-RDM) constrained to the D, Q, and G positivity necessary conditions of the N-representable 2-RDM. In this way, we have derived an extended version of the Piris natural orbital functional 5 (PNOF5e). An antisymmetrized product of strongly orthogonal geminals with the expansion coefficients explicitly expressed bymore » the occupation numbers is also used to generate the PNOF5e. The theory is applied to the homolytic dissociation of selected diatomic molecules: H{sub 2}, LiH, and Li{sub 2}. The Bader's theory of atoms in molecules is used to analyze the electron density and the presence of non-nuclear maxima in the case of a set of light atomic clusters: Li{sub 2}, Li {sub 3}{sup +}, Li {sub 4}{sup 2+}, and H{sub 3}{sup +}. The improvement of PNOF5e over PNOF5 was observed by visualizing the electron densities.« less
Lightweight Aluminum/Nano composites for Automotive Drive Train Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.
2012-12-14
During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less
A comparison of new, old and future densiometic techniques as applied to volcanologic study.
NASA Astrophysics Data System (ADS)
Pankhurst, Matthew; Moreland, William; Dobson, Kate; Þórðarson, Þorvaldur; Fitton, Godfrey; Lee, Peter
2015-04-01
The density of any material imposes a primary control upon its potential or actual physical behaviour in relation to its surrounds. It follows that a thorough understanding of the physical behaviour of dynamic, multi-component systems, such as active volcanoes, requires knowledge of the density of each component. If we are to accurately predict the physical behaviour of synthesized or natural volcanic systems, quantitative densiometric measurements are vital. The theoretical density of melt, crystals and bubble phases may be calculated using composition, structure, temperature and pressure inputs. However, measuring the density of natural, non-ideal, poly-phase materials remains problematic, especially if phase specific measurement is important. Here we compare three methods; Archimedes principle, He-displacement pycnometry and X-ray micro computed tomography (XMT) and discuss the utility and drawbacks of each in the context of modern volcanologic study. We have measured tephra, ash and lava from the 934 AD Eldgjá eruption (Iceland), and the 2010 AD Eyjafjallajökull eruption (Iceland), using each technique. These samples exhibit a range of particle sizes, phases and textures. We find that while the Archimedes method remains a useful, low-cost technique to generate whole-rock density data, relative precision is problematic at small particles sizes. Pycnometry offers a more precise whole-rock density value, at a comparable cost-per-sample. However, this technique is based upon the assumption pore spaces within the sample are equally available for gas exchange, which may or may not be the case. XMT produces 3D images, at resolutions from nm to tens of µm per voxel where X-ray attenuation is a qualitative measure of relative electron density, expressed as greyscale number/brightness (usually 16-bit). Phases and individual particles can be digitally segmented according to their greyscale and other characteristics. This represents a distinct advantage over both Archimedes and pycnometry, since each phase, and its context, may be investigated. However, greyscale brightness is not solely determined by material density. Polychromatic beam characteristics, drift of these characteristics between scans, digital artifacts (both material- and instrument-induced) and absolute size of each particle all impose uncertainty. We demonstrate that by combining beam-characterisation and matrix-matched density standards (phantoms) these issues are largely overcome, and the results are quantifiable, phase-specific, 3D, densiometric measurements of the entire sample. With streamlined sample preparation and analysis workflows demonstrated here, we anticipate XMT will become as cost effective as conventional densiometic measurement in the near future.
Rotation of hard particles in a soft matrix
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing
Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Chang-Whan; Heo, Yoon-Uk, E-mail: yunuk01@postech.ac.kr; Heo, Nam-Hoe
2016-05-15
Precipitation of various particles and their growth during rupture test have been investigated in TP347H austenitic stainless steels using a transmission electron microscopy. Various precipitates of MnS, Nb-rich MC, and MnS + MC and MnS + M{sub 2}P complexes are observed in the γ matrix after rupture test at 750 °C. The MnS particles formed independently in the γ matrix show a coherency or semi-coherency with the γ matrix. The Nb-rich MC carbides show also a coherency with the γ matrix. The Nb-rich MC carbides showing a semi-coherency with the MnS also form on the surface of the coherent ormore » semi-coherent MnS particles, and they show a cube-cube orientation relationship with the MnS particles. The MnS + MC complex loses the initial coherency with the γ matrix, as the MC in the complex grows. The Nb-rich M{sub 2}P precipitates formed on the surface of the MnS particles do not show an orientation relationship with the MnS particles or the γ matrix. The MnS particles in the MnS + M{sub 2}P complex hold the initial coherency with the γ matrix. Effects of MnS precipitation followed by the formation of the complexes on rupture life of the TP347H austenitic stainless steels are discussed from the viewpoint of MnS precipitates acting as sinks of free sulfur segregating to the grain boundaries. - Highlights: • Coherent to incoherent transition of precipitates during rupture test in TP347H steels is clarified. • MnS precipitation actively retards the time to intergranular fracture. • Effect of the coherency of secondary precipitates on the coherency loss of the complex particle is compared.« less
Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, J.W.; Chen, T.M.
A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less
NASA Astrophysics Data System (ADS)
Liu, S.; Fang, Z. W.; Li, L. X.
2018-05-01
Uniform SiC(p)-GR(p)/Zn-35Al-1Mg composites were prepared by powder pressing and semisolidification stirring-casting process by adding submicron silicon carbide and graphite reinforcement particles in an aluminum-zinc alloy matrix. Micro Vickers hardness and microstructures of the novel composites were studied, and their wear properties and wear temperature were measured for different load and friction conditions. The results show that silicon carbide and graphite particles homogeneously mix in the matrix, while contained silicon carbide particles improve the matrix hardness to 8.4%, graphite improves the matrix hardness to 16.8%, but two of them, combined, reduce the matrix hardness to 7.6%; the rate of temperature rise of the zinc-aluminum matrix alloy is the highest than the other three composites and is up to 48.5° C/s at 1.69MPa. At 0.56MPa and sliding 26.4km, the graphite composite anti-wear effect is optimal, while at 1.13MPa, the wear resistance of silicon carbide and graphite compound particles is the best; in the other case of only silicon carbide particles, the wear resistance is increased to 35% at 1.69MPa and 26.4km, and its anti-wear effects are excellent.
Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor
2010-03-15
A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Todoroki, Akira; Omagari, Kazuomi
Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.
Crystallographic relationship of YTaO4 particles with matrix in Ta-containing 12Cr ODS steel
NASA Astrophysics Data System (ADS)
Mao, Xiaodong; Kim, Tae Kyu; Kim, Sung Soo; Han, Young Soo; Oh, Kyu Hwan; Jang, Jinsung
2015-06-01
The crystallography of monoclinic YTaO4 particles and the atomic structure at the particle/ferrite matrix interface in Ta-containing 12Cr ODS steel have been examined by means of SAD and HRTEM. Three different peaks in size distribution of oxide particles were detected by SANS, with the peak positions at 1.5 nm, 9 nm, and 100 nm in size. The results show that many YTaO4 particles are semi-coherent with the matrix, and the habit plane determined in most cases is { 0 5 1 } O / /{ 0 1 1 } M . Orientation relationships of (0 5 1) O / /(1 bar 1 bar 0) M , [ 7 1 5 bar ] O / /[ 1 bar 1 1 ] M ; (1 2 1) O / /(1 1 0) M , [ 2 bar 1 0 ] O / /[ 0 0 1 ] M ; (0 5 1) O / /(0 1 1) M , [ 7 1 5 bar ] O / /[ 0 1 bar 1 ] M and (0 5 bar 1) O / /(1 bar 1 bar 0) M , [ 3 bar 1 5 ] O / /[ 1 bar 1 3 ] M were found. These orientation relationships provide a very small misorientation between the specific planes of YTaO4 particles and {1 1 0} close packed planes of ferrite. Fine particles of around 4 nm in size exhibited incoherent relationship with the misfit angle of around 10° with the matrix. Observation on particles ranging from 7 to 50 nm in size revealed that the crystallographic relationship is semi-coherent between oxide particles and the matrix.
NASA Astrophysics Data System (ADS)
Hatton, Pierre-Joseph; Remusat, Laurent; Brewer, Elizabeth; Derrien, Delphine
2014-05-01
While soil microorganisms are increasingly seen as shaping stable soil organic matter (OM) formation, the mechanisms controlling the attachment of microbial metabolites to soil particles are not fully understood yet. We investigate the spatial distribution of freshly produced microbial products among density-isolated fractions of soil using stable C and N isotopes and Nano-scale secondary ion mass spectrometry (NanoSIMS). A surface forest soil was amended with uniformly 13C/15N labeled glycine and incubated for 8 hours in gamma-irradiated and non-sterile soils. Sequential density fractionation was then performed to isolate various classes of aggregates and of single mineral particles. Eight hours after the labeled glycine addition, 7 % of the 13C and 15N was tightly bound to soil assemblages. Comparison of sterile and non-sterile treatments revealed that microbial activity was almost completely responsible for this rapid association (>85 %). The distributions of glycine-derived 13C and 15N, considered as markers of new microbial products, were mapped on particles of the non-sterile treatment using NanoSIMS. New microbial products were heterogeneously distributed and spatially decoupled at the surface of on soil particles. 13C microbial products were scarce and presumably within or in the vicinity of microbial cells. In contrast, 15N microbial products seemed evenly spread at the surface of soil particles, likely as soluble exoenzymes diffusing away from their parent cell. Macroscopic measurements among density fractions suggested that the diffusion of such 15N microbial products was spatially limited yet, because of pore space architecture. NanoSIMS images further allowed gaining insight into the attachment of the new microbial products on particle surfaces already covered by OM, in a multilayer fashion. Using an internal calibration method to determine C/N ratios of NanoSIMS images, we showed the preferential attachment of soluble microbial N-metabolites to N-rich mineral-attached OM (C/N ratios mostly < 16). Exceptions were found in dense particles, supposed to contained aluminium and iron (hydr)oxides, with the microbial N-metabolites apparently preferentially attached to C-rich mineral-attached OM (C/N ratios > 80). This work provided visual evidences that the attachment of new microbial products to the soil matrix is mediated by distinct processes for N-rich and C-rich metabolites. It also demonstrated that the pore space architecture has impact on the formation of stable OM by limiting the diffusion of soluble microbial metabolites and their access to reactive and stabilising surfaces.
NASA Astrophysics Data System (ADS)
Kandrup, Henry E.
1988-06-01
This paper reexamines the statistical quantum field theory of a free, minimally coupled, real scalar field Φ in a statically bounded, classical Friedmann cosmology, where the time-dependent scale factor Ω(t) tends to constant values Ω1 and Ω2 for t
Effective thermal conductivity of isotropic polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavman, I.H.
1998-07-01
The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0 to 70 C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed inmore » the matrix material in this region, the thermal conductivity is best predicted by Maxwell`s model and Nielsen`s model with A = 1.5, {phi}{sub m} = 0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.« less
NASA Astrophysics Data System (ADS)
Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed
2017-02-01
This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.
Metal Matrix Composites Directionally Solidified
NASA Astrophysics Data System (ADS)
Ares, Alicia Esther; Schvezov, Carlos Enrique
The present work is focus on studying the dendritic solidification of metal matrix composites, MMCs, (using zinc-aluminum, ZA, alloys as matrix and the addition of SiC and Al2O3 particles). The compounds were obtained by as-cast solidification, under continuous stirring and in a second stage were directionally solidified in order to obtain different dendritic growth (columnar, equiaxed and columnar-to-equiaxed transition (CET)). The results in MMCs were compared with those obtained in directional solidification of ZA alloys, primarily with regard to structural parameters. The size and evolution of microstructure, according to the size of the MMCs particles and the variation of the thermal parameters was analyzing. In general it was found that the size of the microstructure (secondary dendritic spacing) decreases with the increase of particles in the matrix. When cooling rate increases, particle size decreases, and a higher cooling rate causes finer and more homogeneous dendrites Also, the segregation which was found in the matrix of the composites was significantly less than in the case of ZA alloys.
Particle Density Substitution Method for Trafficability of Soil in Different Gravity Environments
NASA Astrophysics Data System (ADS)
Huang, Chuan; Gao, Feng; Xie, Xiaolin; Jiang, Hui; Zeng, Wen
2017-12-01
By selecting metal powders with comparable particle size class, similar shape and material and almost the same void ratio but different particle densities, the influence of different gravity on the trafficability of soil under different states of gravitational fields is found to be equivalent to the change in particle density. This method is named particle density substitution. The shearing and bearing characteristics of simulated soil were studied. An influence of different factors on the experimental results was achieved, and a minimal influence of factors other than particle density on experimental results was obtained. Regression of shearing and bearing characteristics of the simulated soil was designed. The relationship between particle density and mechanical parameters of soil was fitted with curves. The formulation between particle density and maximal static thrust was established. By analyzing these data, the maximal static thrust slowly decreased with increasing particle density, reached the minimum when particle density was 3 g/cm3, and then sharply increased. This trend is consistent with the theoretical result. It can also certify that the particle density substitution method established here is reasonable.
Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha
2014-09-01
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste
NASA Astrophysics Data System (ADS)
Kismi, M.; Poullain, P.; Mounanga, P.
2012-07-01
The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.
Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission
NASA Technical Reports Server (NTRS)
Thanh, Phi Hung X.
2004-01-01
Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment. PFC2D is a program that allows the user to control the number of particle's characteristic, and the environment of the particle. With this I can run simulations that mimic the impulse test. This software uses a language called FISH, probably created by the creator of the software. This means that in order to model anything, one must use the command terminal instead of GUI's. I will also use this program to simulate the Moon/Mars simulate adhering to the fabric for the Dust Mitigation project. My goals for this summer are just to complete preliminary studies of the feasibility of the Shaking Fabric, learn the PFC-2D program, and to complete building and testing the wave propagation experiment.
Method of making molten carbonate fuel cell ceramic matrix tape
Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.
1984-10-23
A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.
Nanophosphor composite scintillators comprising a polymer matrix
Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David
2010-11-16
An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.
Tranpsort phenomena in solidification processing of functionally graded materials
NASA Astrophysics Data System (ADS)
Gao, Juwen
A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockstaller, Michael
The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivitymore » while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer-reviewed journals and one patent application. The grant stimulated a multi-investigator research collaborations among seven investigators at Carnegie Mellon University to address the challenge of encapsulants in pc-LED applications. The grant also catalyzed the future collaboration between researchers at Carnegie Mellon University and OSRAM Sylvania to address challenges associated with the use if polymers in LED applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki
2007-02-01
We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Travis W.
2010-01-31
The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less
Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong
2013-05-01
This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.
NASA Astrophysics Data System (ADS)
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites
NASA Astrophysics Data System (ADS)
Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren
2018-01-01
Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).
On regularizing the MCTDH equations of motion
NASA Astrophysics Data System (ADS)
Meyer, Hans-Dieter; Wang, Haobin
2018-03-01
The Multiconfiguration Time-Dependent Hartree (MCTDH) approach leads to equations of motion (EOM) which become singular when there are unoccupied so-called single-particle functions (SPFs). Starting from a Hartree product, all SPFs, except the first one, are unoccupied initially. To solve the MCTDH-EOMs numerically, one therefore has to remove the singularity by a regularization procedure. Usually the inverse of a density matrix is regularized. Here we argue and show that regularizing the coefficient tensor, which in turn regularizes the density matrix as well, leads to an improved performance of the EOMs. The initially unoccupied SPFs are rotated faster into their "correct direction" in Hilbert space and the final results are less sensitive to the choice of the value of the regularization parameter. For a particular example (a spin-boson system studied with a transformed Hamiltonian), we could even show that only with the new regularization scheme could one obtain correct results. Finally, in Appendix A, a new integration scheme for the MCTDH-EOMs developed by Lubich and co-workers is discussed. It is argued that this scheme does not solve the problem of the unoccupied natural orbitals because this scheme ignores the latter and does not propagate them at all.
Tan, Yanli; Gao, Qiuming; Yang, Chunxiao; Yang, Kai; Tian, Weiqian; Zhu, Lihua
2015-01-01
One-dimensional (1D) hierarchical porous nanofibers of Co3O4 possessing of (220) facets on the carbon matrix from human hair (H2@Co3O4) with 20–30 nm in width and 3–5 μm in length are prepared by a facile solvothermal and calcination approach. The well crystallized small Co3O4 particles with the diameter of about 8–12 nm were closely aggregated together in the nanofibers. Electrochemical analyses show that the first discharge capacity of H2@Co3O4 electrode is 1368 mAh g−1 at the current density of 0.1 A g−1 based on the total mass of composite. A high reversible capacity of 916 mAh g −1 was obtained over 100 cycles at 0.1 A g−1, presenting a good cycling stability. When cycled at a high current density of 1 and 2 A g−1, the specific capacity of 659 and 573 mAh g−1 could be still achieved, respectively, indicating a superior power capability. PMID:26201874
Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng
2015-10-01
Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.
NASA Astrophysics Data System (ADS)
Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.
2018-05-01
Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.
Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S
2011-06-01
The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated.
NASA Astrophysics Data System (ADS)
Murthy, N. V.; Prasad Reddy, A.; Selvaraj, N.; Rao, C. S. P.
2016-09-01
Request augments on a worldwide scale for the new materials. The metal matrix nano composites can be used in numerous applications of helicopter structural parts, gas turbine exit guide vane's, space shuttle, and other structural applications. The key mailman to ameliorate performance of composite matrix in aluminium alloy metal reinforces nano particles in the matrix of alloy uniformly, which ameliorates composite properties without affecting limit of ductility. The ultrasonic assisted stir casting helped agitation was successfully used to fabricate Al 2219 metal matrix of alloy reinforced with (0.5, 1, 1.5 and 2) wt.% of nano silicon carbide (SiC) particles of different sizes 50nm and 150nm. The micrographs of scanning electron microscopy of nano composite were investigated it reveals that the uniform dispersion of nano particles silicon carbide in aluminium alloy 2219 matrix and with the low porosity. How the specific wear rate was vary with increasing weight percentage of nano particles at constant load and speed as shown in results and discussions. And the mechanical properties showed that the ultimate tensile strength and hardness of metal matrix nano composite AA 2219 / nano SiC of 50nm and 150nm lean to augment with increase weight percentage of silicon carbide content in the matrix alloy.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud
2017-07-14
We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).
Comprehensive T-Matrix Reference Database: A 2007-2009 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadia T.; Videen, Gorden; Khlebtsov, Nikolai G.; Wriedt, Thomas
2010-01-01
The T-matrix method is among the most versatile, efficient, and widely used theoretical techniques for the numerically exact computation of electromagnetic scattering by homogeneous and composite particles, clusters of particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of T-matrix publications compiled by us previously and includes the publications that appeared since 2007. It also lists several earlier publications not included in the original database.
Method of forming fluorine-bearing diamond layer on substrates, including tool substrates
Chang, R. P. H.; Grannen, Kevin J.
2002-01-01
A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.
Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films
NASA Astrophysics Data System (ADS)
Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.
2017-08-01
Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.
Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials
NASA Technical Reports Server (NTRS)
Mcgill, Preston B.; Mount, Angela R.
1992-01-01
The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.
Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo
2011-02-01
The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.
Exposure of cultured cells to particulate matter air pollution is usually accomplished by collecting particles on a solid matrix, extracting the particles from the matrix, suspending them in liquid, and applying the suspension to cells grown on plastic and submerged in medium. Th...
NASA Astrophysics Data System (ADS)
Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang
2015-05-01
Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.
2018-05-01
The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.
Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph
2013-01-01
Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061
Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.
2011-01-01
The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.
Direct Measurement of the Density Matrix of a Quantum System
NASA Astrophysics Data System (ADS)
Thekkadath, G. S.; Giner, L.; Chalich, Y.; Horton, M. J.; Banker, J.; Lundeen, J. S.
2016-09-01
One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.
Direct Measurement of the Density Matrix of a Quantum System.
Thekkadath, G S; Giner, L; Chalich, Y; Horton, M J; Banker, J; Lundeen, J S
2016-09-16
One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.
Linearized T-Matrix and Mie Scattering Computations
NASA Technical Reports Server (NTRS)
Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.
2011-01-01
We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.
Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.
2011-01-01
Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).
Radiation dosimetry using three-dimensional optical random access memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Phillips, G. W.
2001-01-01
Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.
Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai
2007-09-01
By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.
Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system
Shi, Donglu
1992-01-01
A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.
Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion
NASA Astrophysics Data System (ADS)
Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping
2016-09-01
In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.
NASA Astrophysics Data System (ADS)
Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul
2017-01-01
A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Moses; Qin, Hong; Davidson, Ronald C.
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix
NASA Astrophysics Data System (ADS)
Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore
2014-05-01
Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.
Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...
2016-11-23
In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less
NASA Astrophysics Data System (ADS)
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E; Rieken, Joel
2013-12-10
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942
Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.
NASA Astrophysics Data System (ADS)
Barbero, Ever J.; Bedard, Antoine Joseph
2018-04-01
Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.
Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.
Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X
2008-07-01
An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Excited states in polydiacetylene chains: A density matrix renormalization group study
NASA Astrophysics Data System (ADS)
Barcza, Gergely; Barford, William; Gebhard, Florian; Legeza, Örs
2013-06-01
We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix renormalization group method on finite chains to calculate the ground state and low-lying excitations of the corresponding Peierls-Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0 between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U, and by the long-range interaction V. We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap, and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state. The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set (t0*=2.4eV,α*=3.4eV/Å,U*=6eV,V*=3eV) from a fit of the experimental gap energies to the theoretical values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V). We identify dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the length of our unit cell is about 1% larger than its experimental value.
New Titan Saltation Threshold Experiments: Investigating Current and Past Climates
NASA Astrophysics Data System (ADS)
Bridges, N.; Burr, D. M.; Marshall, J.; Smith, J. K.; Emery, J. P.; Horst, S. M.; Nield, E.; Yu, X.
2015-12-01
Titan exhibits aeolian sand dunes that cover ~20% of its surface, attesting to significant sediment transport by the wind. Recent experiments in the Titan Wind Tunnel (TWT) at NASA Ames Research Center [1,2] found that the threshold friction speed needed to detach Titanian "sand" is about 50% higher than previous estimates based on theory alone [3], a result that might be explained by the low ratio of particle to fluid density on the body [1]. Following the successful completion of the initial Titan threshold tests, we are conducting new experiments that expand the pressure range above and below current Titan values. The basic experimental techniques are described in [1], with minor updates to the instrumentation as described in [2]. To reproduce the kinematic viscosity and particle friction Reynolds number equivalent to that expected for Titan's nitrogen atmosphere at 1.4 bars and 94 K requires that TWT be pressurized to 12.5 bars for air at 293K. In addition to running experiments at this pressure to reproduce previous results [1] and investigate low density (high density ratio) materials, TWT pressures of 3 and 8 bars are in the experimental matrix to understand threshold under past Titan conditions when the atmospheric pressure may have been lower [4]. Higher pressures, at 15 and 20 bars in TWT, are also being run to understand the putative effects of low density ratio conditions. Our experimental matrix for this follow-on work uses some of the same materials as previously used, including walnut shells, basalt, quartz, glass spheres, and various low density materials to better simulate the gravity-equivalent weight of Titan sand. For these experiments, the TWT is now equipped with a new high pressure Tavis transducer with sufficient sensitivity to measure freestream speeds of less than 0.5 m s-1 at 12.5 bars. New techniques include video documentation of the experiments. We are also investigating methods of measuring humidity of the wind tunnel environment and electrostatic forces to assess their effect on threshold. [1] Burr, D.M. et al. [2015], Nature, 517, 60-67. [2] Burr, D.M. et al. [2015], Aeolian Res., in press [3] Iversen, J.D. and B.R. White (1982), Sedimentology, 29, 111-119. [4] Charnay, B. et al. [2014], Icarus, 241, 269-279.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi
2013-07-01
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.
Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz
NASA Astrophysics Data System (ADS)
Vanicat, Matthieu
2018-04-01
We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.
NASA Astrophysics Data System (ADS)
Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad
2015-12-01
Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.
Interplay of Collective Excitations in Quantum Well Intersubband Resonances
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, C. Z.
2003-01-01
Intersubband resonances in a semiconductor quantum well (QW) display some of the most fascinating features involving various collective excitations such as Fermi-edge singularity (FES) and intersubband plasmon (ISP). Using a density matrix approach, we treated many-body effects such as depolarization, vertex correction, and self-energy consistently for a two-subband system. We found a systematic change in resonance spectra from FES-dominated to ISP-dominated features, as QW- width or electron density is varied. Such an interplay between FES and ISP significantly changes both line shape and peak position of the absorption spectrum. In particular, we found that a cancellation of FES and ISP undresses the resonant responses and recovers the single-particle features of absorption for semiconductors with a strong nonparabolicity such as InAs, leading to a dramatic broadening of the absorption spectrum.
Truncated Calogero-Sutherland models
NASA Astrophysics Data System (ADS)
Pittman, S. M.; Beau, M.; Olshanii, M.; del Campo, A.
2017-05-01
A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as an extension with truncated interactions. While the ground state wave function takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range r and the interaction strength.
Concepts of nuclear α-particle condensation
NASA Astrophysics Data System (ADS)
Funaki, Y.; Horiuchi, H.; von Oertzen, W.; Röpke, G.; Schuck, P.; Tohsaki, A.; Yamada, T.
2009-12-01
Certain aspects of the recently proposed antisymmetrized α-particle product state wave function, or THSR (Tohsaki-Horiuchi-Schuck-Röpke) α-cluster wave function, for the description of the ground state in Be8, the Hoyle state in C12, and analogous states in heavier nuclei are elaborated in detail. For instance, the influence of antisymmetrization in the Hoyle state on the bosonic character of the α particles is studied carefully. It is shown to be weak. Bosonic aspects in Hoyle and similar states in other self-conjugate nuclei are, therefore, predominant. Another issue is the de Broglie wavelength of α particles in the Hoyle state, which is shown to be much larger than the inter-α distance. It is pointed out that the bosonic features of low-density α gas states have measurable consequences, one of which, enhanced multi-α decay properties, has likely already been detected. Consistent with experiment, the width of the proposed analog to the Hoyle state in O16 at the excitation energy of Ex=15.1 MeV is estimated to be very small (34 keV), lending credit to the existence of heavier Hoyle-like states. The intrinsic single-boson density matrix of a self-bound Bose system can, under physically desirable boundary conditions, be defined unambiguously. One eigenvalue then separates out, being close to the number of α particles in the system. Differences between Brink and THSR α-cluster wave functions are worked out. No cluster model of the Brink type can describe the Hoyle state with a single configuration. On the contrary, many superpositions of the Brink type are necessary, implying delocalization toward an α-product state. It is shown that single α-particle orbits in condensates of different nuclei are almost the same. It is thus argued that α-particle (quartet) antisymmetrized product states of the THSR type are a very promising novel and useful concept in nuclear physics.
Lee, Kyong-Hwan
2016-05-01
Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.
Automated high-speed Mueller matrix scatterometer.
Delplancke, F
1997-08-01
A new scatterometer-polarimeter is described. It measures the angular distribution of intensity and of the complete Mueller matrix of light scattered by rough surfaces and particle suspensions. The measurement time is 1 s/scattering angle in the present configuration but can be reduced to a few milliseconds with modified electronics. The instrument uses polarization modulation and a Fourier analysis of four detected signals to obtain the 16 Mueller matrix elements. This method is particularly well suited to online, real time, industrial process control involving rough surfaces and large particle suspensions (an arithmetic roughness or particle diameter of >1 microm). Some results are given.
Finite-temperature dynamics of the Mott insulating Hubbard chain
NASA Astrophysics Data System (ADS)
Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.
2018-01-01
We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.
X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.
2015-12-15
X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less
In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
Kim, Choong Paul; Hays, Charles C.; Johnson, William L.
2004-03-23
A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.
In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning
Kim, Choong Paul [Northridge, CA; Hays, Charles C [Pasadena, CA; Johnson, William L [Pasadena, CA
2007-07-17
A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.
Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma
2014-11-18
The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.
CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break
NASA Astrophysics Data System (ADS)
Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il
2018-06-01
This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.
NASA Astrophysics Data System (ADS)
Kornilin, DV; Kudryavtsev, IA
2016-10-01
One of the most effective ways to diagnose the state of hydraulic system is an investigation of the particles in their liquids. The sizes of such particles range from 2 to 200 gm and their concentration and shape reveal important information about the current state of equipment and the necessity of maintenance. In-line automatic particle counters (APC), which are built into hydraulic system, are widely used for determination of particle size and concentration. These counters are based on a single photodiode and a light emitting diode (LED); however, samples of liquid are needed for analysis using microscope or industrial video camera in order to get information about particle shapes. The act of obtaining the sample leads to contamination by other particles from the air or from the sample tube, meaning that the results are usually corrupted. Using the CMOS or CCD matrix sensor without any lens for inline APC is the solution proposed by authors. In this case the matrix sensors are put into the liquid channel of the hydraulic system and illuminated by LED. This system could be stable in arduous conditions like high pressure and the vibration of the hydraulic system; however, the image or signal from that matrix sensor needs to be processed differently in comparison with the signal from microscope or industrial video camera because of relatively short distance between LED and sensor. This paper introduces mathematical model of a sensor with CMOS and LED, which can be built into hydraulic system. It is also provided a computational algorithm and results, which can be useful for calculation of particle sizes and shapes using the signal from the CMOS matrix sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shi'ang
Primary particles formed in as-cast Al-5Mg-0.6Sc alloy and their role in microstructure and mechanical properties of the alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and tensile testing. It was found that primary particles due to a close orientation to matrix could serve as the potent heterogeneous nucleation sites for α-Al during solidification and thus impose a remarkable grain refinement effect. Eutectic structure consisted of layer by layer of ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ and cellular-dendritic substructure were simultaneously observed at the particles inside, indicating that these particles couldmore » be identified as the eutectics rather than individual Al{sub 3}Sc phase. A calculating method, based on EBSD results, was introduced for the spatial distribution of these particles in matrix. The results showed that these eutectic particles randomly distributed in matrix. In addition, the formation of primary eutectic particles significant improved the strength of the Al-Mg alloy in as-cast condition, which is ascribed to the structural evolution from coarse dendrites to prefect fine equiaxed grains. On the other hand, these large-sized particles due to the tendency to act as the microcrack sources could cause a harmful effect in the ductility of Al-Mg-Sc alloy. - Highlights: •Primary particles exhibit an ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ multilayer feature with a cellular-dendritic mode of growth. •EBSD analyses the mechanism of grain refinement and the distribution of primary particles in α-Al matrix. •A computational method was presented to calculate the habit planes of primary particles.« less
NASA Astrophysics Data System (ADS)
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
One-dimensional anyons under three-body interactions.
NASA Astrophysics Data System (ADS)
Silva-Valencia, Jereson; Arcila-Forero, Julian; Franco, Roberto
Anyons are a third class of particles with nontrivial exchange statistics, particles carrying fractional statistics that interpolate between bosons and fermions. In the last years, it has been made some proposals to emulate an anyon gas by confining bosonic atoms in optical lattices [ Nat. Commun. 2, 361 (2011)]. In this work, we studied the ground state of anyons interacting through local three-body terms in one-dimension, motivated by recent experimental and theoretical studies about multi-body interactions in cold atoms setups. We used the density-matrix renormalization group method to find the phase diagram and the von Neumann block entropy to determinate the critical point position. The main quantum phases found are the superfluid and the Mott insulator ones. For the statistical angle θ = π /4, the phase diagram shows that the Mott lobes are surrounded by superfluid regions, the Mott lobes increase with the density and the first Mott lobe has two anyons per site. We found that a Mott lobe with one anyon per site, it is possible for larger statistical angles, a fact that it is impossible with bosons. DIBE- Universidad Nacional de Colombia and Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCAS) (Grant No. FP44842-057-2015).
Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode
NASA Astrophysics Data System (ADS)
Hussain, M. Z.; Khan, U.; Jangid, R.; Khan, S.
2018-02-01
Ceramic materials, like Aluminium Oxide (Al2O3), have high mechanical strength, high wear resistance, high temperature resistance and good chemical durability. Powder metallurgy processing is an adaptable method commonly used to fabricate composites because it is a simple method of composite preparation and has high efficiency in dispersing fine ceramic particles. In this research copper and novel material aluminium oxide/copper (Al2O3/Cu) composite has been fabricated for the application of electrode in Electro-Discharge Machine (EDM) using powder metallurgy technique. Al2O3 particles with different weight percentages (0, 1%, 3% and 5%) were reinforced into copper matrix using powder metallurgy technique. The powders were blended and compacted at a load of 100MPa to produce green compacts and sintered at a temperature of 574 °C. The effect of aluminium oxide content on mass density, Rockwell hardness and wear behaviour were investigated. Wear behaviour of the composites was investigated on Die-Sink EDM (Electro-Discharge Machine). It was found that wear rate is highly depending on hardness, mass density and green protective carbonate layer formation at the surface of the composite.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiangyu
The ordering transformation occurring in a model Ni-Cr-W superalloy during prolonged exposure to proper temperature has been investigated systematically. It is demonstrated that nanometer-sized precipitates with a DO{sub 22} structure can precipitate in the Ni-Cr-W alloy by means of simple aging treatment at 650–700 °C. The mechanism of transformation to DO{sub 22} superlattice has been determined to be continuous ordering based on the results of high resolution transmission electron microscopy investigation and variation trend in Vickers microhardness. Different variants of DO{sub 22} phase can coexist in the matrix with no signs of overaging as aging time increases, indicating it hasmore » a high thermal stability. The precipitates of DO{sub 22} superlattice has been found to be of ellipsoidal shape which results in the greatest reduction of strain energy. The interfaces between DO{sub 22} precipitates and matrix have been revealed to be coherent at the atomic scale, resulting in considerable coherency strain attributing to the lattice misfit between DO{sub 22} particle and matrix. Because of the high-density nanometer-sized DO{sub 22} phase, the microhardness of the alloy has been improved remarkably after aging treatment. - Graphical abstract: Different variants of the DO{sub 22} superlattice can coexist in the matrix, and the interface between precipitate and the matrix remain coherence at the atomic scale. The three dimensional form of the DO{sub 22} precipitates constructed from three mutually perpendicular projections is an ellipsoidal stick, and the directions of elongations are along the longest axis of the unit cell for DO{sub 22} phase. - Highlights: •The DO{sub 22} phase precipitated in the Ni-Cr-W alloy has a high thermal stability. •The morphology of DO{sub 22} superlattice has been determined to be ellipsoid. •The interface between DO{sub 22} phase and matrix are fully coherent at the atomic scale. •Different variants of DO{sub 22} phase occur equiprobably. •The alloy strength can be improved dramatically by the nanoscale DO{sub 22} particles.« less
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Atkins, E.; Chorin, A. J.
2011-12-01
The task in data assimilation is to identify the state of a system from an uncertain model supplemented by a stream of incomplete and noisy data. The model is typically given in form of a discretization of an Ito stochastic differential equation (SDE), x(n+1) = R(x(n))+ G W(n), where x is an m-dimensional vector and n=0,1,2,.... The m-dimensional vector function R and the m x m matrix G depend on the SDE as well as on the discretization scheme, and W is an m-dimensional vector whose elements are independent standard normal variates. The data are y(n) = h(x(n))+QV(n) where h is a k-dimensional vector function, Q is a k x k matrix and V is a vector whose components are independent standard normal variates. One can use statistics of the conditional probability density (pdf) of the state given the observations, p(n+1)=p(x(n+1)|y(1), ... , y(n+1)), to identify the state x(n+1). Particle filters approximate p(n+1) by sequential Monte Carlo and rely on the recursive formulation of the target pdf, p(n+1)∝p(x(n+1)|x(n)) p(y(n+1)|x(n+1)). The pdf p(x(n+1)|x(n)) can be read off of the model equations to be a Gaussian with mean R(x(n)) and covariance matrix Σ = GG^T, where the T denotes a transposed; the pdf p(y(n+1)|x(n+1)) is a Gaussian with mean h(x(n+1)) and covariance QQ^T. In a sampling-importance-resampling (SIR) filter one samples new values for the particles from a prior pdf and then one weighs these samples with weights determined by the observations, to yield an approximation to p(n+1). Such weighting schemes often yield small weights for many of the particles. Implicit particle filtering overcomes this problem by using the observations to generate the particles, thus focusing attention on regions of large probability. A suitable algebraic equation that depends on the model and the observations is constructed for each particle, and its solution yields high probability samples of p(n+1). In the current formulation of the implicit particle filter, the state covariance matrix Σ is assumed to be non-singular. In the present work we consider the case where the covariance Σ is singular. This happens in particular when the noise is spatially smooth and can be represented by a small number of Fourier coefficients, as is often the case in geophysical applications. We derive an implicit filter for this problem and show that it is very efficient, because the filter operates in a space whose dimension is the rank of Σ, rather than the full model dimension. We compare the implicit filter to SIR, to the Ensemble Kalman Filter and to variational methods, and also study how information from data is propagated from observed to unobserved variables. We illustrate the theory on two coupled nonlinear PDE's in one space dimension that have been used as a test-bed for geomagnetic data assimilation. We observe that the implicit filter gives good results with few (2-10) particles, while SIR requires thousands of particles for similar accuracy. We also find lower limits to the accuracy of the filter's reconstruction as a function of data availability.
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Nasser, Ramadan A; Al-Mefarrej, H A; Abdel-Aal, M A; Alshahrani, T S
2014-09-01
This study investigated the possibility of using the prunings of six locally grown tree species in Saudi Arabia for cement-bonded particleboard (CBP) production. Panels were made using four different wood particle sizes and a constant wood/cement ratio (1/3 by weight) and target density (1200 kg/m3). The mechanical properties and dimensional stability of the produced panels were determined. The interfacial area and distribution of the wood particles in cement matrix were also investigated by scanning electron microscopy. The results revealed that the panels produced from these pruning materials at a target density of 1200 kg m(-3) meet the strength and dimensional stability requirements of the commercial CBP panels. The mean moduli of rupture and elasticity (MOR and MOE) ranged from 9.68 to 11.78 N mm2 and from 3952 to 5667 N mm2, respectively. The mean percent water absorption for twenty four hours (WA24) ranged from 12.93% to 23.39%. Thickness swelling values ranged from 0.62% to 1.53%. For CBP panels with high mechanical properties and good dimensional stability, mixed-size or coarse particles should be used. Using the tree prunings for CBPs production may help to solve the problem of getting rid of these residues by reducing their negative effects on environment, which are caused by poor disposal of such materials through direct combustion process and appearance of black cloud and then the impact on human health or the random accumulation and its indirect effects on the environment.
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.
Bio inspired Magnet-polymer (Magpol) actuators
NASA Astrophysics Data System (ADS)
Ahmed, Anansa S.; Ramanujan, R. V.
2014-03-01
Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.
Energy conversion in magneto-rheological elastomers
NASA Astrophysics Data System (ADS)
Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves
2017-12-01
Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.
Energy conversion in magneto-rheological elastomers
Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves
2017-01-01
Abstract Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed. PMID:29152013
Sprio, Simone; Guicciardi, Stefano; Dapporto, Massimiliano; Melandri, Cesare; Tampieri, Anna
2013-01-01
Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (β-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist. Copyright © 2012 Elsevier Ltd. All rights reserved.
3-Dimensional Microstructure of Al-Al3Ti Alloy Severely Deformed by ECAP
NASA Astrophysics Data System (ADS)
Sato, Hisashi; Hishikawa, Takahisa; Makino, Yuuki; Kunimine, Takahiro; Watanabe, Yoshimi
Microstructure of Al-Al3Ti alloy deformed by Equal-Channel-Angular Pressing (ECAP) is 3-dimensionally investigated. Especially, distribution of Al3Ti particles is focused in this study. The Al-Al3Ti alloy has coarse Al3Ti platelet particles in α-Al matrix. When the Al-Al3Ti alloy is deformed by ECAP under route A, fine Al3Ti platelet particles are observed. These Al3Ti platelet particles are aligned along to deformation axis, and its plane normal is perpendicular to the deformation axis. On the other hand, Al-Al3Ti alloy ECAPed under route Bc forms several groups consisted of fine Al3Ti platelet particles. Moreover, longitudinal size of the Al3Ti particle groups is close to that of initial Al3Ti particles with 4-pass ECAP specimen. These distribution behaviors of the Al3Ti particle can be explained by plastic flow of α-Al matrix. Finally, it is concluded that distribution of Al3Ti particle in Al-Al3Ti alloy by ECAP is controlled by plastic deformation of α-Al matrix.
Ultraviolet Spectroscopy of Matrix-isolated Amorphous Carbon Particles
NASA Astrophysics Data System (ADS)
Schnaiter, M.; Mutschke, H.; Henning, Th.; Lindackers, D.; Strecker, M.; Roth, P.
1996-06-01
In view of the interstellar 217.5 nm and the circumstellar 230--250 nm extinction features, the UV extinction behavior of small matrix-isolated amorphous carbon grains is investigated experimentally. The particles were produced in a flame by burning acetylene with oxygen at low pressure. To prevent coagulation, the condensing primary soot grains (average diameter ~6 nm) were extracted by a molecular beam technique into a high-vacuum chamber. There they were deposited into a layer of solid argon, isolated from each other. The particle mass and size were controlled using a particle mass spectrometer. The measured UV extinction of the matrix-isolated particles is compared with measurements on samples produced in the conventional way by collecting carbon smoke on substrate as well as with scattering calculations for small spheres and ellipsoides. The laboratory data give a good representation of the circumstellar extinction feature observed in the spectrum of V348 Sgr.
NASA Astrophysics Data System (ADS)
Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet
2018-02-01
Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.
Information loss in effective field theory: Entanglement and thermal entropies
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2018-03-01
Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.
Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A
2013-01-01
Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borah, Subasit; Bhattacharyya, Nidhi S.
2008-04-24
Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less
Frictional lubricity enhanced by quantum mechanics.
Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio
2018-04-03
The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.
Wright, Tod M; Rigol, Marcos; Davis, Matthew J; Kheruntsyan, Karén V
2014-08-01
We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.
Yao, Y. X.; Liu, J.; Liu, C.; ...
2015-08-28
We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We alsomore » show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.« less
Viscoplastic deformations and compressive damage in an A359/SiC{sub p} metal-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ramesh, K.T.; Chin, E.S.C.
2000-04-19
Recent work by the authors has examined the high-strain-rate compression of a metal-matrix composite consisting of an A359 Al alloy matrix reinforced by 20 vol.% of silicon carbide particulates (SiC{sub p}). The work-hardening that is observed in the experiments is much lower than that predicted by analytical and computational models which assume perfect particle-matrix interfaces and undamaged particles. In this work, the authors show that the discrepancy is a result of particle damage that develops within the A359/SiC{sub p} composite under compression. The evolution of particle damage has been characterized using quantitative microscopy, and is shown to be a functionmore » of the applied strain. A simple analytical model that incorporates evolving damage within the composite is proposed, and it is shown that the analytical predictions are consistent with the experimental observations over a wide range of strain rates.« less
Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas
Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...
2017-09-22
Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Improved Thermoplastic/Iron-Particle Transformer Cores
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min
2004-01-01
A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to the pores in the specimens. The maximum relative permeabilities of cores made without annealing ranged from 30 to 110, while those of cores made with annealing ranged from 900 to 1,400. However, the greater permeabilities of the annealed specimens were not associated with noticeably greater densities. The major practical result of the investigation was the discovery of an optimum distribution of iron-particle sizes: It was found that eddy-current losses in the molded cores were minimized by using 100 mesh (corresponding to particles with diameters less than or equal to 100 m) iron particles. The effect of optimization of particle sizes on eddy-current losses is depicted in the figure.
Ziegler, Christopher M; Eisenhauer, Philip; Bruce, Emily A; Beganovic, Vedran; King, Benjamin R; Weir, Marion E; Ballif, Bryan A; Botten, Jason
2016-09-01
We report that the lymphocytic choriomeningitis virus (LCMV) matrix protein, which drives viral budding, is phosphorylated at serine 41 (S41). A recombinant (r)LCMV bearing a phosphomimetic mutation (S41D) was impaired in infectious and defective interfering (DI) particle release, while a non-phosphorylatable mutant (S41A) was not. The S41D mutant was disproportionately impaired in its ability to release DI particles relative to infectious particles. Thus, DI particle production by LCMV may be dynamically regulated via phosphorylation of S41.
Microstructural control and superconducting properties of YBCO melt textured single crystals
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai
The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.
Refining Mechanism of 7075 Al Alloy by In-Situ TiB₂ Particles.
Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping
2017-02-04
The nucleation undercooling of TiB₂/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB₂ particles were investigated. The experimental results have shown that the grain sizes of TiB₂/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB₂ content. The nucleation undercooling of TiB₂/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB₂ content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB₂ content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB₂/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB₂ particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB₂ particles increased.
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
NASA Astrophysics Data System (ADS)
Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.
2018-04-01
Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.
NASA Astrophysics Data System (ADS)
Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo
2017-08-01
The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.
Reilly, Peter T. A. [Knoxville, TN; Harris, William A [Naperville, IL
2010-03-02
A matrix assisted laser desorption/ionization (MALDI) method and related system for analyzing high molecular weight analytes includes the steps of providing at least one matrix-containing particle inside an ion trap, wherein at least one high molecular weight analyte molecule is provided within the matrix-containing particle, and MALDI on the high molecular weight particle while within the ion trap. A laser power used for ionization is sufficient to completely vaporize the particle and form at least one high molecular weight analyte ion, but is low enough to avoid fragmenting the high molecular weight analyte ion. The high molecular weight analyte ion is extracted out from the ion trap, and is then analyzed using a detector. The detector is preferably a pyrolyzing and ionizing detector.
Abrasion resistant composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L
A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, S., E-mail: lathaselvam1963@gmail.com
Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization andmore » pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.« less
General classification of ``hot`` particles from the nearest Chernobyl contaminated areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.
1997-12-31
The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girand, C.; Lormand, G.; Fougeres, R.
In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's,more » stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.« less
Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann
2014-01-01
Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.
NASA Astrophysics Data System (ADS)
Derakhshandeh-Haghighi, Reza; Jenabali Jahromi, Seyed Ahmad
2016-02-01
The wear behavior of aluminum matrix composite powder with varying concentration of nano alumina particles, which was consolidated by equal-channel angular pressing (ECAP) at different passes, was determined by applying, 10 and 46 N loads, using a pin-on-disk machine. Optical and electronic microscopy, EDX analysis, and hardness measurement were performed in order to characterize the worn samples. The relative density of the samples after each pass of ECAP was determined using Archimedes principle. Within the studied range of loads, the wear loss decreased by increasing the number of ECAP passes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus
2016-03-11
A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less
Effects of particle packing on the sintered microstructure
NASA Astrophysics Data System (ADS)
Barringer, E. A.; Bowen, H. K.
1988-04-01
The sintering process is shown to be critically dependent on particle-packing density and porosity uniformity. Sintering experiments were conducted on compacts consisting of monodisperse, spherical TiO2 particles. Densification kinetics and microstructure evolution for two initial packing densities, 55% and 69% of theoretical, were investigated. The lower-density compacts sintered rapidly to theoretical density, yet improved particle-packing density and uniformity significantly enhanced densification.
Mechanical Properties of Steel Encapsulated Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying
This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.
Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.
2004-01-01
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, R.; Rohm, Ryan M.; Swank, C. M.
2011-02-15
There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer, in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion-theory Green's function. The results of both calculations were shown to agreemore » for a special case. In the present work, we show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green's function for the diffusion equation, thus showing the identity of this approach with that of the Redfield theory. The general solution can also be obtained directly from the Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed cell, extending the range of applicability of the theory.« less
Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, N.; Song, S.G.; Gray, G.T., III
1996-05-01
Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less
Surface functionalization of metal organic frameworks for mixed matrix membranes
Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.
2017-03-21
Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.
Effect of Heat Treatments on Microstructures and Tensile Properties of Cu-3 wt%Ag-0.5 wt%Zr Alloy
NASA Astrophysics Data System (ADS)
Chen, Gang; Wang, ChuanJie; Zhang, Ying; Yi, Cen; Zhang, Peng
2018-03-01
The microstructures and tensile properties of Cu-3 wt%Ag-0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.
2009-10-01
In a study of the reaction e - e +→ W - W + with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse ( TT), longitudinal-transverse plus transverse-longitudinal ( LT) and longitudinal-longitudinal ( LL) have been determined using the final states WW{rightarrow}lν qbar{q} ( l= e, μ). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements ρ TT , ρ LT , ρ LL , are measured as functions of the W - production angle, θ _{W-}, at an average reaction energy of 198.2 GeV. Averaged over all \\cosθ_{W-}, the following joint probabilities are obtained: bar{ρ}_{TT}=(67±8)%, bar{ρ}_{LT}=(30±8)%, bar{ρ}_{LL}=(3±7)%. These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections σ TT , σ LT and σ LL are also presented.
NASA Astrophysics Data System (ADS)
Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.
2014-08-01
Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.
Surface-peaked medium effects in the interaction of nucleons with finite nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, F. J.; Arellano, H. F.
We investigate the asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where the potential is split into a medium-independent term and another depending exclusively on the gradient of the density-dependent g matrix. This decomposition confines the medium sensitivity of the nucleon-nucleus coupling to the surface of the nucleus. We examine this feature in the context of proton-nucleus scattering at beam energies between 30 and 100 MeV and find that the pn coupling accounts for most of this sensitivity. Additionally, based on this general structure of the optical potential we are able to treat both, themore » medium dependence of the effective interaction and the full mixed density as described by single-particle shell models. The calculated scattering observables agree within 10% with those obtained by Arellano, Brieva, and Love in their momentum-space g-folding approach.« less
Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder
NASA Astrophysics Data System (ADS)
Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki
Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian
2016-07-28
Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g{sup (1)}(r) and an analogue of the Edwards-Anderson order parameter g{sup (2)}(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, O.; Karimi, F.; Knezevic, I.
2016-08-01
We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less
Microstructures and fatigue life of SnAgCu solder joints bearing Nano-Al particles in QFP devices
NASA Astrophysics Data System (ADS)
Zhang, Liang; Fan, Xi-ying; Guo, Yong-huan; He, Cheng-wen
2014-05-01
Microstructures and fatigue life of SnAgCu and SnAgCu bearing nano-Al particles in QFP (Quad flat package) devices were investigated, respectively. Results show that the addition of nano-Al particles into SnAgCu solder can refine the microstructures of matrix microstructure. Moreover, the nano-Al particles present in the solder matrix, act as obstacles which can create a back stress, resisting the motion of dislocations. In QFP device, it is found that the addition of nano-Al particles can increase the fatigue life by 32% compared with the SnAgCu solder joints during thermal cycling loading.
NASA Astrophysics Data System (ADS)
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Processing, microstructure evolution and properties of nanoscale aluminum alloys
NASA Astrophysics Data System (ADS)
Han, Jixiong
In this project, phase transformations and precipitation behavior in age-hardenable nanoscale materials systems, using Al-Cu alloys as model materials, were first studied. The Al-Cu nanoparticles were synthesized by a Plasma Ablation process and found to contain a 2˜5 nm thick adherent aluminum oxide scale, which prevented further oxidation. On aging of the particles, a precipitation sequence consisting of, nearly pure Cu precipitates to the metastable theta' to equilibrium theta was observed, with all three forming along the oxide-particle interface. The structure of theta' and its interface with the Al matrix has been characterized in detail. Ultrafine Al-Cu nanoparticles (5˜25 nm) were also synthesized by inert gas condensation (IGC) and their aging behavior was studied. These particles were found to be quite stable against precipitation. Secondly, pure Al nanoparticles were prepared by the Exploding Wire process and their sintering and consolidation behavior were studied. It was found that nanopowders of Al could be processed to bulk structures with high hardness and density. Sintering temperature was found to have a dominant effect on density, hardness and microstructure. Sintering at temperatures >600°C led to breakup of the oxide scale, leading to an interesting nanocomposite composed of 100˜200 nm Al oxide dispersed in a bimodal nanometer-micrometer size Al matrix grains. Although there was some grain growth, the randomly dispersed oxide fragments were quite effective in pinning the Al grain boundaries, preventing excessive grain growth and retaining high hardness. Cold rolling and hot rolling were effective methods for attaining full densification and high hardness. Thirdly, the microstructure evolution and mechanical behavior of Al-Al 2O3 nanocomposites were studied. The composites can retain high strength at elevated temperature and thermal soaking has practically no detrimental effect on strength. Although the ductility of the composite remains quite low, there was substantial evidence for high localized plasticity. The strengthening mechanisms of the composite include: Orowan strengthening, grain size strengthening and Forest strengthening. Finally, the microstructure evolution and mechanical behavior of 2024Al-Al 2O3 nanocomposites were studied. This 2024Al-Al2O 3 composite exhibits similar thermal stability and high strength at elevated temperature as Al-Al2O3. On aging, the matrix of 2024Al-Al2O3 composites revealed a precipitation sequence of: alphaAl → GP/GPB → theta'/S' → theta/S. The strengthening mechanisms of the 2024Al-Al2O3 composites include precipitation strengthening, Orowan strengthening, grain size strengthening and Forest strengthening.
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
USDA-ARS?s Scientific Manuscript database
Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...
Metal hydride composition and method of making
Congdon, James W.
1995-01-01
A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.
Investigations on composites reinforced with HEA particles
NASA Astrophysics Data System (ADS)
Carcea, I.; Chelariu, R.; Asavei, L.; Cimpoeşu, N.; Florea, R. M.
2017-08-01
This work reports the results of investigations on the fortification with high entropy alloys particles of aluminium matrix composite materials. The properties of these materials processed by Vortex techniques primarily depend on the matrix and the volume fraction of the constituent phase. The mechanical properties, toughening mechanisms and potential applications are briefly reviewed. Traditional methods were used for the basic characterization of the composite. The microstructure of the composites were investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the HEA particles content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix.
Refining Mechanism of 7075 Al Alloy by In-Situ TiB2 Particles
Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping
2017-01-01
The nucleation undercooling of TiB2/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB2 particles were investigated. The experimental results have shown that the grain sizes of TiB2/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB2 content. The nucleation undercooling of TiB2/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB2 content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB2 content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB2/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB2 particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB2 particles increased. PMID:28772492
The attitude inversion method of geostationary satellites based on unscented particle filter
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao
2018-04-01
The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
NASA Astrophysics Data System (ADS)
Nie, Xiaokai; Coca, Daniel
2018-01-01
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
Nie, Xiaokai; Coca, Daniel
2018-01-01
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
Studies of Al-Ti Alloys by SEM
NASA Astrophysics Data System (ADS)
Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.
2007-04-01
Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.
Comprehensive T-matrix Reference Database: A 2009-2011 Update
NASA Technical Reports Server (NTRS)
Zakharova, Nadezhda T.; Videen, G.; Khlebtsov, Nikolai G.
2012-01-01
The T-matrix method is one of the most versatile and efficient theoretical techniques widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of peer-reviewed T-matrix publications compiled by us previously and includes the publications that appeared since 2009. It also lists several earlier publications not included in the original database.
NASA Astrophysics Data System (ADS)
Odling, Noelle E.; Roden, Julie E.
1997-09-01
Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.
Ludeña, E V; Echevarría, L; Lopez, X; Ugalde, J M
2012-02-28
We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludena, E. V.; Echevarria, L.; Lopez, X.
2012-02-28
We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities canmore » be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.« less
Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF
McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...
2015-03-29
The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less
NASA Astrophysics Data System (ADS)
Shalaby, Essam A. M.; Churyumov, Alexander Yu
2017-11-01
In this study, microstructure analysis, yield strength at high temperatures and wear rate of hybrid A359/(SiC + Si3N4) composites were investigated. Different weight percent of (SiC + Si3N4) particles were introduced to synthesis the composites using stir/squeeze process. XRD, SEM, TEM and EDS were utilized to investigate the distribution of particles throughout the matrix, and the interfacial reaction at matrix/particle interface. It confirmed the existence of MgAl2O4 which enhances the wettability between the particles and the matrix, and the absence of particle agglomeration. The (SiC + Si3N4) addition not only enhances the hardness measurements but also leads to a reduction in the dendritic arm spacing (DAS). Moreover, it develops the wear performance and the yield strength at high temperatures. The developed composites provide a promising material suitable for automotive industries.
Modeling and simulation of the debonding process of composite solid propellants
NASA Astrophysics Data System (ADS)
Feng, Tao; Xu, Jin-sheng; Han, Long; Chen, Xiong
2017-07-01
In order to study the damage evolution law of composite solid propellants, the molecular dynamics particle filled algorithm was used to establish the mesoscopic structure model of HTPB(Hydroxyl-terminated polybutadiene) propellants. The cohesive element method was employed for the adhesion interface between AP(Ammonium perchlorate) particle and HTPB matrix and the bilinear cohesive zone model was used to describe the mechanical response of the interface elements. The inversion analysis method based on Hooke-Jeeves optimization algorithm was employed to identify the parameters of cohesive zone model(CZM) of the particle/binder interface. Then, the optimized parameters were applied to the commercial finite element software ABAQUS to simulate the damage evolution process for AP particle and HTPB matrix, including the initiation, development, gathering and macroscopic crack. Finally, the stress-strain simulation curve was compared with the experiment curves. The result shows that the bilinear cohesive zone model can accurately describe the debonding and fracture process between the AP particles and HTPB matrix under the uniaxial tension loading.
Parallel scalability of Hartree-Fock calculations
NASA Astrophysics Data System (ADS)
Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.
2015-03-01
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
RETRACTED ARTICLE: Precipitation behavior of B2-ordered aluminide
NASA Astrophysics Data System (ADS)
Han, Chang-Suk
2006-12-01
Fine dispersion of disordered phases is obtained in Ni-Al-Cr and Fe-Al-Co temary systems. A transmission electron microscope investigation has been performed on the precipitation of α-Cr in B2-ordered β-NiAl with different stoichiometry and α-Fe in B2-FeAl(Co) compound. Precipitation behavior and hardening were investigated by measuring the hardness variation. The hardness of NiAl and FeAl increases appreciably with the fine precipitation of α-Cr and α-Fe, and over-age softening occurs after prolonged aging. In the case of B2-NiAl(Cr), perfect lattice coherency is maintained at the interfaces between the α-Cr particles and the matrix during the initial stage of aging. After prolonged aging, a loss of coherency occurs by the attraction of matrix dislocations to the particle/matrix interface, followed by climbing around the particles. On the other hand, in the case of B2-FeAl(Co), the disordered α-Fe phase is present as a precipitate in the B2-FeAl(Co) matrix and has a cubic-cubic orientation with the matrix. At the early aging periods, prismatic dislocation loops formed in the B2-FeAl(Co) matrix. B2-FeAl(Co) matrix is typically hardened by the precipitation of α-Fe.