Sample records for particle diffusion model

  1. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.

    PubMed

    Wang, J; Flanagan, D R

    1999-07-01

    Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.

  2. Anomalous diffusion for bed load transport with a physically-based model

    NASA Astrophysics Data System (ADS)

    Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.

    2013-12-01

    Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.

  3. Simulation tools for particle-based reaction-diffusion dynamics in continuous space

    PubMed Central

    2014-01-01

    Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics. PMID:25737778

  4. General Model of Hindered Diffusion.

    PubMed

    Eloul, Shaltiel; Compton, Richard G

    2016-11-03

    The diffusion of a particle from bulk solution is slowed as it moves close to an adsorbing surface. A general model is reported that is easily applied by theoreticians and experimentalists. Specifically, it is shown here that in general and regardless of the space size, the magnitude of the effect of hindered diffusion on the flux is a property of the diffusion layer thickness. We explain and approximate the effect. Predictions of concentration profiles show that a "hindered diffusion layer" is formed near the adsorbing surface within the diffusion layer, observed even when the particle radius is just a 0.1% of the diffusion layer thickness. In particular, we focus on modern electrochemistry processes involving with impact of particles with either ultrasmall electrodes or particles in convective systems. The concept of the "hindered diffusion layer" is generally important for example in recent biophysical models of particles diffusion to small targets.

  5. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  6. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    NASA Astrophysics Data System (ADS)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  7. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  8. Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Ao, Xianzhi; Zank, Gary P.; Verkhoglyadova, Olga

    2017-11-01

    We extend our earlier Particle Acceleration and Transport in the Heliosphere (PATH) model to study particle acceleration and transport at a coronal mass ejection (CME)-driven shock. We model the propagation of a CME-driven shock in the ecliptic plane using the ZEUS-3D code from 20 solar radii to 2 AU. As in the previous PATH model, the initiation of the CME-driven shock is simplified and modeled as a disturbance at the inner boundary. Different from the earlier PATH model, the disturbance is now longitudinally dependent. Particles are accelerated at the 2-D shock via the diffusive shock acceleration mechanism. The acceleration depends on both the parallel and perpendicular diffusion coefficients κ|| and κ⊥ and is therefore shock-obliquity dependent. Following the procedure used in Li, Shalchi, et al. (k href="#jgra53857-bib-0045"/>), we obtain the particle injection energy, the maximum energy, and the accelerated particle spectra at the shock front. Once accelerated, particles diffuse and convect in the shock complex. The diffusion and convection of these particles are treated using a refined 2-D shell model in an approach similar to Zank et al. (k href="#jgra53857-bib-0089"/>). When particles escape from the shock, they propagate along and across the interplanetary magnetic field. The propagation is modeled using a focused transport equation with the addition of perpendicular diffusion. We solve the transport equation using a backward stochastic differential equation method where adiabatic cooling, focusing, pitch angle scattering, and cross-field diffusion effects are all included. Time intensity profiles and instantaneous particle spectra as well as particle pitch angle distributions are shown for two example CME shocks.

  9. An efficient approach for treating composition-dependent diffusion within organic particles

    DOE PAGES

    O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...

    2017-09-07

    Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less

  10. An efficient approach for treating composition-dependent diffusion within organic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.

    Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less

  11. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.

    PubMed

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  12. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    NASA Astrophysics Data System (ADS)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  13. Analysis of Particle Transport in DIII-D H-mode Plasma with a Generalized Pinch-Diffusion Model

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Stacey, W. M.; Groebner, R. J.; Callen, J. D.; Bonnin, X.

    2009-11-01

    Interpretative analyses of particle transport in the pedestal region of H-mode plasmas typically yield diffusion coefficients that are very small (<0.1 m^2/s) in the steep gradient region when a purely diffusive particle flux is fitted to the experimental density gradients. Previous evaluation of the particle and momentum balance equations using the experimental data indicated that the pedestal profiles are consistent with transport described by a pinch-diffusion particle flux relation [1]. This type of model is used to calculate the diffusion coefficient and pinch velocity in the core for an inter-ELM H-mode plasma in the DIII-D discharge 98889. Full-plasma SOPLS simulations using neutral beam particle and energy sources from ONETWO calculations and the model transport coefficients show good agreement with the measured density pedestal profile. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 12, 042504 (2005).

  14. A Computational Approach to Increase Time Scales in Brownian Dynamics–Based Reaction-Diffusion Modeling

    PubMed Central

    Frazier, Zachary

    2012-01-01

    Abstract Particle-based Brownian dynamics simulations offer the opportunity to not only simulate diffusion of particles but also the reactions between them. They therefore provide an opportunity to integrate varied biological data into spatially explicit models of biological processes, such as signal transduction or mitosis. However, particle based reaction-diffusion methods often are hampered by the relatively small time step needed for accurate description of the reaction-diffusion framework. Such small time steps often prevent simulation times that are relevant for biological processes. It is therefore of great importance to develop reaction-diffusion methods that tolerate larger time steps while maintaining relatively high accuracy. Here, we provide an algorithm, which detects potential particle collisions prior to a BD-based particle displacement and at the same time rigorously obeys the detailed balance rule of equilibrium reactions. We can show that for reaction-diffusion processes of particles mimicking proteins, the method can increase the typical BD time step by an order of magnitude while maintaining similar accuracy in the reaction diffusion modelling. PMID:22697237

  15. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  16. Lévy flight with absorption: A model for diffusing diffusivity with long tails

    NASA Astrophysics Data System (ADS)

    Jain, Rohit; Sebastian, K. L.

    2017-03-01

    We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.

  17. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  18. Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mishra, Vishal

    2017-10-01

    The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.

  19. The rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David O.; McFiggans, Gordon

    2016-04-01

    The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1 × 10-25 m2 s-1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.

  20. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  1. Measuring and Overcoming Limits of the Saffman-Delbrück Model for Soap Film Viscosities

    PubMed Central

    Vivek, Skanda; Weeks, Eric R.

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness. PMID:25822262

  2. Measuring and overcoming limits of the Saffman-Delbrück model for soap film viscosities.

    PubMed

    Vivek, Skanda; Weeks, Eric R

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.

  3. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  4. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  5. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem. Phys., 13,3514-3526, 2011

  6. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  7. Modeling the migration of platinum nanoparticles on surfaces using a kinetic Monte Carlo approach

    DOE PAGES

    Li, Lin; Plessow, Philipp N.; Rieger, Michael; ...

    2017-02-15

    We propose a kinetic Monte Carlo (kMC) model for simulating the movement of platinum particles on supports, based on atom-by-atom diffusion on the surface of the particle. The proposed model was able to reproduce equilibrium cluster shapes predicted using Wulff-construction. The diffusivity of platinum particles was simulated both purely based on random motion and assisted using an external field that causes a drift velocity. The overall particle diffusivity increases with temperature; however, the extracted activation barrier appears to be temperature independent. Additionally, this barrier was found to increase with particle size, as well as, with the adhesion between the particlemore » and the support.« less

  8. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  9. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  10. Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-11-01

    Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.

  11. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-04-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  12. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  13. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  14. Diffusion and mobility of atomic particles in a liquid

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.

    2017-11-01

    The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.

  15. Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, M.; Shalchi, A., E-mail: m_hussein@physics.umanitoba.ca, E-mail: andreasm4@yahoo.com

    2014-04-10

    A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit ofmore » the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.« less

  16. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    NASA Astrophysics Data System (ADS)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  17. Diffusion of multiple species with excluded-volume effects.

    PubMed

    Bruna, Maria; Chapman, S Jonathan

    2012-11-28

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.

  18. Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments

    NASA Astrophysics Data System (ADS)

    Zhang, Yunxin

    2009-07-01

    In this research, diffusion of an overdamped Brownian particle in the tilted periodic potential is investigated. Using the one-dimensional hopping model, the formulations of the mean velocity V and effective diffusion coefficient D of the Brownian particle have been obtained [B. Derrida, J. Stat. Phys. 31 (1983) 433]. Based on the relation between the effective diffusion coefficient and the moments of the mean first passage time, the formulation of effective diffusion coefficient D of the Brownian particle also has been obtained [P. Reimann, et al., Phys. Rev. E 65 (2002) 031104]. In this research, we'll give another analytical expression of the effective diffusion coefficient D from the moments of the particle's coordinate.

  19. Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels

    PubMed Central

    Pieprzyk, S.; Heyes, D. M.; Brańka, A. C.

    2016-01-01

    Solute transport and intermixing in microfluidic devices is strongly dependent on diffusional processes. Brownian Dynamics simulations of pressure-driven flow of model microgel particles in microchannels have been carried out to explore these processes and the factors that influence them. The effects of a pH-field that induces a spatial dependence of particle size and consequently the self-diffusion coefficient and system thermodynamic state were focused on. Simulations were carried out in 1D to represent some of the cross flow dependencies, and in 2D and 3D to include the effects of flow and particle concentration, with typical stripe-like diffusion coefficient spatial variations. In 1D, the mean square displacement and particle displacement probability distribution function agreed well with an analytically solvable model consisting of infinitely repulsive walls and a discontinuous pH-profile in the middle of the channel. Skew category Brownian motion and non-Gaussian dynamics were observed, which follows from correlations of step lengths in the system, and can be considered to be an example of so-called “diffusing diffusivity.” In Poiseuille flow simulations, the particles accumulated in regions of larger diffusivity and the largest particle concentration throughput was found when this region was in the middle of the channel. The trends in the calculated cross-channel diffusional behavior were found to be very similar in 2D and 3D. PMID:27795750

  20. Bounded diffusion impedance characterization of battery electrodes using fractional modeling

    NASA Astrophysics Data System (ADS)

    Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît

    2017-06-01

    This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.

  1. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  2. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  3. Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.

    Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.

  4. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  5. Particle Diffusion in an Inhomogeneous Medium

    ERIC Educational Resources Information Center

    Bringuier, E.

    2011-01-01

    This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain…

  6. Dissipation of ionospheric irregularities by wave-particle and collisional interactions

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.

    1982-01-01

    The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.

  7. Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion

    NASA Astrophysics Data System (ADS)

    Sposini, Vittoria; Chechkin, Aleksei V.; Seno, Flavio; Pagnini, Gianni; Metzler, Ralf

    2018-04-01

    A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

  8. Exits in order: How crowding affects particle lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penington, Catherine J.; Simpson, Matthew J.; Baker, Ruth E.

    2016-06-28

    Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents inmore » a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.« less

  9. Reactive multi-particle collision dynamics with reactive boundary conditions

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Rohlf, Katrin

    2018-07-01

    In the present study, an off-lattice particle-based method called the reactive multi-particle collision (RMPC) dynamics is extended to model reaction-diffusion systems with reactive boundary conditions in which the a priori diffusion coefficient of the particles needs to be maintained throughout the simulation. To this end, the authors have made use of the so-called bath particles whose purpose is only to ensure proper diffusion of the main particles in the system. In order to model partial adsorption by a reactive boundary in the RMPC, the probability of a particle being adsorbed, once it hits the boundary, is calculated by drawing an analogy between the RMPC and Brownian Dynamics. The main advantages of the RMPC compared to other molecular based methods are less computational cost as well as conservation of mass, energy and momentum in the collision and free streaming steps. The proposed approach is tested on three reaction-diffusion systems and very good agreement with the solutions to their corresponding partial differential equations is observed.

  10. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  11. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  12. Comparison and analysis of theoretical models for diffusion-controlled dissolution.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2012-05-07

    Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.

  13. Lagrangian particles with mixing. I. Simulating scalar transport

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2009-06-01

    The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.

  14. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  15. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  16. Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry

    NASA Astrophysics Data System (ADS)

    Akridis, Petros; Rigopoulos, Stelios

    2017-01-01

    A discretised population balance equation (PBE) is coupled with an in-house computational fluid dynamics (CFD) code in order to model soot formation in laminar diffusion flames. The unsteady Navier-Stokes, species and enthalpy transport equations and the spatially-distributed discretised PBE for the soot particles are solved in a coupled manner, together with comprehensive gas-phase chemistry and an optically thin radiation model, thus yielding the complete particle size distribution of the soot particles. Nucleation, surface growth and oxidation are incorporated into the PBE using an acetylene-based soot model. The potential of the proposed methodology is investigated by comparing with experimental results from the Santoro jet burner [Santoro, Semerjian and Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, Vol. 51 (1983), pp. 203-218; Santoro, Yeh, Horvath and Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combustion Science and Technology, Vol. 53 (1987), pp. 89-115] for three laminar axisymmetric non-premixed ethylene flames: a non-smoking, an incipient smoking and a smoking flame. Overall, good agreement is observed between the numerical and the experimental results.

  17. Universality-class crossover by a nonorder field introduced to the pair contact process with diffusion

    NASA Astrophysics Data System (ADS)

    Park, Su-Chan

    2017-09-01

    The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006), 10.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.

  18. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less

  19. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  20. Computing diffusivities from particle models out of equilibrium

    NASA Astrophysics Data System (ADS)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  1. Energetic Particle Transport across the Mean Magnetic Field: Before Diffusion

    NASA Astrophysics Data System (ADS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  2. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    NASA Astrophysics Data System (ADS)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  3. Two species drag/diffusion model for energetic particle driven modes

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Sharapov, S. E.; Spong, D. A.; Porkolab, M.

    2017-12-01

    A nonlinear bump-on-tail model for the growth and saturation of energetic particle driven plasma waves has been extended to include two populations of fast particles—one dominated by dynamical friction at the resonance and the other by velocity space diffusion. The resulting temporal evolution of the wave amplitude and frequency depends on the relative weight of the two populations. The two species model is applied to burning plasma with drag-dominated alpha particles and diffusion-dominated ICRH accelerated minority ions, showing the stabilization of bursting modes. The model also suggests an explanation for the recent observations on the TJ-II stellarator, where Alfvén Eigenmodes transition between steady state and bursting as the magnetic configuration varied.

  4. Diffusion of Small Solute Particles in Viscous Liquids: Cage Diffusion, a Result of Decoupling of Solute-Solvent Dynamics, Leads to Amplification of Solute Diffusion.

    PubMed

    Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra

    2015-08-27

    We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.

  5. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.

    PubMed

    Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng

    2016-08-01

    We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Continuum modelling of segregating tridisperse granular chute flow

    NASA Astrophysics Data System (ADS)

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  7. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  8. A minimally-resolved immersed boundary model for reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar

    2013-12-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.

  9. Collision Models for Particle Orbit Code on SSX

    NASA Astrophysics Data System (ADS)

    Fisher, M. W.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.

    2011-10-01

    Coulomb collision models are being developed and incorporated into the Hamiltonian particle pushing code (PPC) for applications to the Swarthmore Spheromak eXperiment (SSX). A Monte Carlo model based on that of Takizuka and Abe [JCP 25, 205 (1977)] performs binary collisions between test particles and thermal plasma field particles randomly drawn from a stationary Maxwellian distribution. A field-based electrostatic fluctuation model scatters particles from a spatially uniform random distribution of positive and negative spherical potentials generated throughout the plasma volume. The number, radii, and amplitude of these potentials are chosen to mimic the correct particle diffusion statistics without the use of random particle draws or collision frequencies. An electromagnetic fluctuating field model will be presented, if available. These numerical collision models will be benchmarked against known analytical solutions, including beam diffusion rates and Spitzer resistivity, as well as each other. The resulting collisional particle orbit models will be used to simulate particle collection with electrostatic probes in the SSX wind tunnel, as well as particle confinement in typical SSX fields. This work has been supported by US DOE, NSF and ONR.

  10. Colloidal diffusion over a quasicrystalline-patterned substrate

    NASA Astrophysics Data System (ADS)

    Su, Yun; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    We report a systematic study of colloidal diffusion over a quasicrystalline-patterned substrate. The sample substrate is made of a flat thin layer of photoresist and contains identical cylindrical holes of diameter dh, which are arranged on a quasicrystal lattice. A monolayer of silica spheres of diameter comparable to dh diffuse over the rugged quasicrystalline-patterned substrate and experience a gravitational potential U (x , y) . With optical microscopy and the particle tracking method, we measure U (x , y) and particle's diffusion trajectories, which are found to undergo two distinct states: a trapped state when the particles are inside the holes and a free diffusion state when they are over the flat portion of the substrate. The dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL are obtained from the particle trajectories. The measured DL is found to be in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed colloidal potential landscape. This work was supported by the Research Grants Council of Hong Kong SAR.

  11. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  12. Simulation of moving flat plate with unsteady translational motion using vortex method

    NASA Astrophysics Data System (ADS)

    Widodo, A. F.; Zuhal, L. R.

    2013-10-01

    This paper presents simulation of moving flate plate with unsteady translational motion using Lagrangianmeshless numerical simulation named vortex method. The method solves Navier-Stokes equations in term of vorticity. The solving strategy is splitting the equation into diffusion and convection term to be solved separately. The diffusion term is modeled by particles strength exchange(PSE) which is the most accurate of diffusion modeling in vortex method. The convection term that represents transport of particles is calculated by time step integration of velocity. Velocity of particles is natively calculated using Biot-Savart relation but for acceleration, fastmultiple method(FMM) is employed. The simulation is validated experimentally using digital particle image velocimetry(DPIV) and the results give good agreement.

  13. Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation

    NASA Astrophysics Data System (ADS)

    Shelley, Michael; Masoud, Hassan

    2013-11-01

    Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.

  14. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicablemore » to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. Wemore » show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.« less

  17. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  18. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    PubMed

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  19. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  20. Particle deposition due to turbulent diffusion in the upper respiratory system

    NASA Technical Reports Server (NTRS)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  1. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less

  2. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  3. A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen

    2016-11-01

    We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.

  4. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less

  5. General solution of a fractional Parker diffusion-convection equation describing the superdiffusive transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Tawfik, Ashraf M.; Fichtner, Horst; Elhanbaly, A.; Schlickeiser, Reinhard

    2018-06-01

    Anomalous diffusion models of energetic particles in space plasmas are developed by introducing the fractional Parker diffusion-convection equation. Analytical solution of the space-time fractional equation is obtained by use of the Caputo and Riesz-Feller fractional derivatives with the Laplace-Fourier transforms. The solution is given in terms of the Fox H-function. Profiles of particle densities are illustrated for different values of the space fractional order and the so-called skewness parameter.

  6. Analysis of diffusion in curved surfaces and its application to tubular membranes

    PubMed Central

    Klaus, Colin James Stockdale; Raghunathan, Krishnan; DiBenedetto, Emmanuele; Kenworthy, Anne K.

    2016-01-01

    Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick’s law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry. PMID:27733625

  7. Comparison between the intra-particle diffusivity in the hydrophilic interaction chromatography and reversed phase liquid chromatography modes. Impact on the column efficiency.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2013-07-05

    The effective diffusion coefficients of five low molecular weigh compounds (naphthalene, uracil, uridine, adenosine, and cytosine) were measured at room temperature in a 4.6mm×100mm column packed with 3.5μm XBridge HILIC particles. The mobile phase was an acetonitrile-water mixture (92.5/7.5, v/v) containing 10mM ammonium acetate and 0.02% acetic acid. Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), accurate estimates of the intra-particle diffusivities in the HILIC particles were obtained as a function of the retention of these analytes. The HILIC diffusion coefficients were compared to those previously obtained for endcapped RPLC-C18 particles (5.0μm Gemini-C18). The experimental results confirm that adsorption sites are not localized in RPLC whereas they are so in the HILIC mode. In contrast to RPLC columns, HILIC columns provide longitudinal diffusion B/u terms that increase very little with increasing retention factors. This confirms the absence of surface diffusion in HILIC. The impact of intra-particle diffusivity on the column efficiency was projected in HILIC and RPLC on the basis of the measured intra-particle diffusivities and on the well established theory of band broadening in particulate columns. Accordingly, RPLC columns generate short-range eddy dispersion and solid-liquid mass transfer resistance Cu terms that increase less than do HILIC column with increasing retention factors. The HETP contribution caused by the trans-column structure heterogeneity is smaller in the HILIC than in the RPLC modes because the transverse excursion length is smaller in HILIC. Even though the overall column efficiencies are comparable in HILIC and RPLC, this study shows that the individual mass transfer phenomena are inherently different in the HILIC and the RPLC retention modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton

    PubMed Central

    Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel

    2009-01-01

    The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation. PMID:19893741

  9. Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries

    NASA Astrophysics Data System (ADS)

    Bonnecaze, Roger; Clements, Michael

    2014-11-01

    Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.

  10. Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments

    USGS Publications Warehouse

    Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.

    1993-01-01

    Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.

  11. Uncovering Implicit Assumptions: A Large-Scale Study on Students' Mental Models of Diffusion

    ERIC Educational Resources Information Center

    Stains, Marilyne; Sevian, Hannah

    2015-01-01

    Students' mental models of diffusion in a gas phase solution were studied through the use of the Structure and Motion of Matter (SAMM) survey. This survey permits identification of categories of ways students think about the structure of the gaseous solute and solvent, the origin of motion of gas particles, and trajectories of solute particles in…

  12. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  13. Efficient reactive Brownian dynamics

    DOE PAGES

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-21

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  14. Efficient reactive Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-01

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.

  15. Efficient reactive Brownian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently processmore » reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.« less

  16. Assessment of intra-particle diffusion in hydrophilic interaction liquid chromatography and reversed-phase liquid chromatography under conditions of identical packing structure.

    PubMed

    Song, Huiying; Desmet, Gert; Cabooter, Deirdre

    2017-11-10

    A recently developed stripping protocol to completely remove the stationary phase of reversed-phase liquid chromatography (RPLC) columns and turn them into hydrophilic interaction liquid chromatography (HILIC) columns with identical packing characteristics is used to study the underlying mechanisms of intra-particle diffusion in RPLC and HILIC. The protocol is applied to a column with a large geometrical volume (250×4.6mm, 5μm) to avoid extra-column effects and for compounds with a broad range in retention factors (k" from ∼0.6 to 8). Three types of behavior for the intra-particle diffusion (D part /D m ) in RPLC versus HILIC can be distinguished: for nearly unretained compounds (k"<0.6), intra-particle diffusion in HILIC is larger than in RPLC; for compounds with intermediate retention behavior (k"∼0.9-1.2), intra-particle diffusion in HILIC and RPLC are similar; and for well retained compounds (k">1.8), intra-particle diffusion in RPLC is larger than in HILIC. To explain these observations, diffusion in the stationary phase (γ s D s ) and in the stagnant mobile phase in the mesopore zone (γ mp D m ) are deduced from experimentally determined values of the intra-particle diffusion, using models derived from the Effective Medium Theory. It is demonstrated that the larger intra-particle diffusion obtained for slightly retained compounds under HILIC conditions is caused by the higher mesopore diffusion in HILIC (γ mp =0.474 for HILIC versus 0.435 for RPLC), while the larger intra-particle diffusion obtained for strongly retained compounds under RPLC conditions can be related to the much higher stationary phase diffusion in RPLC (γ s D s /D m =0.200 for RPLC versus 0.113 for HILIC). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Random walk, diffusion and mixing in simulations of scalar transport in fluid flows

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2008-12-01

    Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.

  18. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  19. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    PubMed Central

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  20. Brownian motion of a self-propelled particle.

    PubMed

    ten Hagen, B; van Teeffelen, S; Löwen, H

    2011-05-18

    Overdamped Brownian motion of a self-propelled particle is studied by solving the Langevin equation analytically. On top of translational and rotational diffusion, in the context of the presented model, the 'active' particle is driven along its internal orientation axis. We calculate the first four moments of the probability distribution function for displacements as a function of time for a spherical particle with isotropic translational diffusion, as well as for an anisotropic ellipsoidal particle. In both cases the translational and rotational motion is either unconfined or confined to one or two dimensions. A significant non-Gaussian behaviour at finite times t is signalled by a non-vanishing kurtosis γ(t). To delimit the super-diffusive regime, which occurs at intermediate times, two timescales are identified. For certain model situations a characteristic t(3) behaviour of the mean-square displacement is observed. Comparing the dynamics of real and artificial microswimmers, like bacteria or catalytically driven Janus particles, to our analytical expressions reveals whether their motion is Brownian or not.

  1. Modeling of long range frequency sweeping for energetic particle modes

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-01

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  2. Particle Transport through Scattering Regions with Clear Layers and Inclusions

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume

    2002-08-01

    This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.

  3. Attrition-enhanced sulfur capture by limestone particles in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saastamoinen, J.J.; Shimizu, T.

    2007-02-14

    Sulfur capture by limestone particles in fluidized beds is a well-established technology. The underlying chemical and physical phenomena of the process have been extensively studied and modeled. However, most of the studies have been focused on the relatively brief initial stage of the process, which extends from a few minutes to hours, yet the residence time of the particles in the boiler is much longer. Following the initial stage, a dense product layer will be formed on the particle surface, which decreases the rate of sulfur capture and the degree of utilization of the sorbent. Attrition can enhance sulfur capturemore » by removing this layer. A particle model for sulfur capture has been incorporated with an attrition model. After the initial stage, the rate of sulfur capture stabilizes, so that attrition removes the surface at the same rate as diffusion and chemical reaction produces new product in a thin surface layer of a particle. An analytical solution for the conversion of particles for this regime is presented. The solution includes the effects of the attrition rate, diffusion, chemical kinetics, pressure, and SO{sub 2} concentration, relative to conversion-dependent diffusivity and the rate of chemical reaction. The particle model results in models that describe the conversion of limestone in both fly ash and bottom ash. These are incorporated with the residence time (or reactor) models to calculate the average conversion of the limestone in fly ash and bottom ash, as well as the efficiency of sulfur capture. Data from a large-scale pressurized fluidized bed are compared with the model results.« less

  4. Lateral eddy diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas Current system

    NASA Astrophysics Data System (ADS)

    Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne

    2017-04-01

    The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.

  5. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  6. Hopping Diffusion of Nanoparticles in Polymer Matrices

    PubMed Central

    2016-01-01

    We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803

  7. Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

    PubMed

    Dickinson, Richard B; Purich, Daniel L

    2006-08-15

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

  8. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  9. Kinetic vaporization of heavy metals during fluidized bed thermal treatment of municipal solid waste.

    PubMed

    Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Heavy metals volatilization during thermal treatment of model solid waste was theoretically and experimentally investigated in a fluidized bed reactor. Lead, cadmium, zinc and copper, the most four conventional heavy metals were investigated. Particle temperature model and metal diffusion model were established to simulate the volatilization of CdCl(2) evaporation and investigate the possible influencing factors. The diffusion coefficient, porosity and particle size had significant effects on metal volatilization. The higher diffusion coefficient and porosity resulted in the higher metal evaporation. The influence of redox conditions, HCl, water and mineral matrice were also investigated experimentally. The metal volatilization can be promoted by the injection of HCl, while oxygen played a negative role. The diffusion process of heavy metals within particles also had a significant influence on kinetics of their vaporization. The interaction between heavy metals and mineral matter can decrease metal evaporation amount by forming stable metallic species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    PubMed

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  11. One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai

    2014-10-01

    Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.

  12. Brownian motion of arbitrarily shaped particles in two dimensions.

    PubMed

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo

    2014-11-25

    We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.

  13. Deposition of ultrafine (nano) particles in the human lung.

    PubMed

    Asgharian, Bahman; Price, Owen T

    2007-10-01

    Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.

  14. Osmotic propulsion: the osmotic motor.

    PubMed

    Córdova-Figueroa, Ubaldo M; Brady, John F

    2008-04-18

    A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  15. Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion

    NASA Technical Reports Server (NTRS)

    Baring, M. G.; Ellison, D. C.; Jones, F. C.

    1995-01-01

    The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.

  16. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  17. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.

    2012-09-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  18. Radial diffusion in magnetodiscs. [charged particle motion in planetary or stellar magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1985-01-01

    The orbits of charged particles in magnetodiscs are considered. The bounce motion is assumed adiabatic except for transits of a small equatorial region of weak magnetic field strength and high field curvature. Previous theory and modeling have shown that particles scatter randomly in pitch angle with each passage through the equator. A peaked distribution thus diffuses in pitch angle on the time scale of many bounces. It is argued in this paper that spatial diffusion is a further consequence when the magnetodisc has a longitudinal asymmetry. A general expression for DLL, the diffusion of equatorial crossing radii, is derived. DLL is evaluated explicitly for ions in Jupiter's 20-35 radii magnetodisc, assumed to be represented by Connerney et al.'s (1982) Voyager model plus a small image dipole asymmetry. Rates are energy, species, and space dependent but can average as much as a few tenths of a planetary radius per bounce period.

  19. Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian

    2017-05-01

    For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

  20. FRACTIONAL PEARSON DIFFUSIONS.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-07-15

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

  1. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  2. A 3D model for rain-induced landslides based on molecular dynamics with fractal and fractional water diffusion

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco; Guarino, Alessio

    2017-09-01

    We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.

  3. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Whitelam, Stephen

    2016-08-01

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011), 10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002), 10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984), 10.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.

  5. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely-driven particles

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes. I will describe some results on this phenomenon obtained by simple physical arguments and computer simulations. Laning results from rectification of diffusion on the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with Peclet number, a prediction confirmed by our numerics. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely-driven colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  6. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  7. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    DOE PAGES

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; ...

    2015-01-01

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less

  8. A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application

    NASA Astrophysics Data System (ADS)

    Lin, Xianke; Lu, Wei

    2017-07-01

    This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.

  9. Brownian Dynamics simulations of model colloids in channel geometries and external fields

    NASA Astrophysics Data System (ADS)

    Siems, Ullrich; Nielaba, Peter

    2018-04-01

    We review the results of Brownian Dynamics simulations of colloidal particles in external fields confined in channels. Super-paramagnetic Brownian particles are well suited two- dimensional model systems for a variety of problems on different length scales, ranging from pedestrian walking through a bottleneck to ions passing ion-channels in living cells. In such systems confinement into channels can have a great influence on the diffusion and transport properties. Especially we will discuss the crossover from single file diffusion in a narrow channel to the diffusion in the extended two-dimensional system. Therefore a new algorithm for computing the mean square displacement (MSD) on logarithmic time scales is presented. In a different study interacting colloidal particles were dragged over a washboard potential and are additionally confined in a two-dimensional micro-channel. In this system kink and anti-kink solitons determine the depinning process of the particles from the periodic potential.

  10. Transport of Solar Energetic Particles across the Parker field direction due to field line meandering

    NASA Astrophysics Data System (ADS)

    Laitinen, T. L.; Kopp, A.; Effenberger, F.; Dalla, S.; Marsh, M. S.

    2014-12-01

    Multi-spacecraft observations of Solar Energetic Particles (SEPs) show that the SEPs can spread large distances across the mean Parker spiral field. The SEPs accelerated during a solar eruption can be observed 360° around the Sun, and the dependence of SEP peak intensity on heliographic longitude at 1 AU has been fitted with Gaussian profiles with σ=30-50° for several events (e.g., Dresing et al 2014; Richardson et al 2014). SEP anisotropy measurements suggest that interplanetary transport is an important factor to the SEP cross-field extent (Dresing et al 2014). However, the currently used diffusive Fokker Planck (FP) description of SEP transport, with realistic diffusion coefficients, has been found insufficient to explain the SEP event cross-field extents. Recently Laitinen et al (2013) emphasised the importance of particle propagation along meandering field lines, which cannot be described as diffusion. They showed that early in an event field line meandering dominates particle cross-field transport and produces events wider than the FP description. They also introduced a new FP model that incorporates both field line meandering and SEP cross-field diffusion using stochastic differential equations and a constant background magnetic field. In this work, we implement the new FP model into Parker field geometry, to study the evolution of an SEP event in the interplanetary space. We compare the new model to the traditional FP approach by using particle and field line diffusion coefficients that are calculated consistently for both models using an assumed radial and spectral description of the turbulence evolution. We find that while the traditional SEP propagation modelling gives typically longitudinal extent with σ=10-20°, the new model results in values σ=30-50°, which is consistent with SEP observations. We conclude that field line meandering must be taken into account when modelling SEP propagation in the interplanetary space.

  11. Approximation of a radial diffusion model with a multiple-rate model for hetero-disperse particle mixtures

    PubMed Central

    Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.

    2012-01-01

    An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692

  12. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  13. Relativistic diffusion processes and random walk models

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-02-01

    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As is well known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (noncontinuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the nonrelativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.

  14. Kinetics of the reduction of bushveld complex chromite ore at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-12-01

    The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.

  15. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  16. Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2017-04-01

    Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.

  17. Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions

    NASA Astrophysics Data System (ADS)

    van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura

    2017-12-01

    Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.

  18. Diffusiophoresis in one-dimensional solute gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics.more » The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.« less

  19. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  20. Osmotic Propulsion: The Osmotic Motor

    NASA Astrophysics Data System (ADS)

    Córdova-Figueroa, Ubaldo M.; Brady, John F.

    2008-04-01

    A model for self-propulsion of a colloidal particle—the osmotic motor—immersed in a dispersion of “bath” particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  1. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    PubMed Central

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529

  2. Why Did the 2010 Eyjafjallajokull Volcanic Eruption Cloud Last So Long?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2013-12-01

    The global economic consequences of the relatively small Eyjafjallajokull eruption in the spring of 2010 caught the world off guard. That the eruption cloud lasted for several months rather than weeks, efficiently disrupting air travel and the holiday plans of thousands of tourists, drew arguably more attention and a certainly garnered a highly emotional response. The longevity of this eruption cloud was touted to be "an anomaly". However, this anomaly nearly repeated itself the following year in the form of the 2011 Puyehue-Cordon Caulle eruption cloud. A major reason that the behavior of the 2010 Eyjafjallajokul cloud was surprising is that "standard" models for ash sedimentation (i.e., heavy particles fall out of the cloud faster than light particles) are incomplete. Observations of the 2010 Eyjafjallajokull, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process in addition to particle settling is the production of internal layering. We use analog experiments on turbulent particle-laden umbrella clouds and simple models to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability leading to this layering. This 'particle diffusive convection' strongly influences cloud longevity where volcanic umbrella clouds are enriched in fine ash. More generally, volcanic cloud residence times will depend on ash fluxes related to both individual particle settling and diffusive convection. We discuss a new sedimentation model that includes both contributions to the particle flux and explains the the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. Examples of periodic layering in volcanic clouds compared with experiments in which periodic layering emerges as a result of buoyancy effects related to a particle-salt double diffusive instability.

  3. A Diffusive-Particle Theory of Free Recall

    PubMed Central

    Fumarola, Francesco

    2017-01-01

    Diffusive models of free recall have been recently introduced in the memory literature, but their potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory is considered, in which the psychological state of the subject is encoded as the instantaneous position of a particle diffusing over a semantic graph. The model is particularly suitable for studying the dependence of free-recall observables on the semantic properties of the words to be recalled. Besides predicting some well-known experimental features (forward asymmetry, semantic clustering, word-length effect), a novel prediction is obtained on the relationship between the contiguity effect and the syllabic length of words; shorter words, by way of their wider semantic range, are predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall data allows to confirm this prediction. PMID:29085521

  4. Causal Set Phenomenology

    NASA Astrophysics Data System (ADS)

    Philpott, Lydia

    2010-09-01

    Central to the development of any new theory is the investigation of the observable consequences of the theory. In the search for quantum gravity, research in phenomenology has been dominated by models violating Lorentz invariance (LI) -- despite there being, at present, no evidence that LI is violated. Causal set theory is a LI candidate theory of QG that seeks not to quantise gravity as such, but rather to develop a new understanding of the universe from which both GR and QM could arise separately. The key hypothesis is that spacetime is a discrete partial order: a set of events where the partial ordering is the physical causal ordering between the events. This thesis investigates Lorentz invariant QG phenomenology motivated by the causal set approach. Massive particles propagating in a discrete spacetime will experience diffusion in both position and momentum in proper time. This thesis considers this idea in more depth, providing a rigorous derivation of the diffusion equation in terms of observable cosmic time. The diffusion behaviour does not depend on any particular underlying particle model. Simulations of three different models are conducted, revealing behaviour that matches the diffusion equation despite limitations on the size of causal set simulated. The effect of spacetime discreteness on the behaviour of massless particles is also investigated. Diffusion equations in both affine time and cosmic time are derived, and it is found that massless particles undergo diffusion and drift in energy. Constraints are placed on the magnitudes of the drift and diffusion parameters by considering the blackbody nature of the CMB. Spacetime discreteness also has a potentially observable effect on photon polarisation. For linearly polarised photons, underlying discreteness is found to cause a rotation in polarisation angle and a suppression in overall polarisation.

  5. Reconciling phase diffusion and Hartree-Fock approximation in condensate systems

    NASA Astrophysics Data System (ADS)

    Giorgi, Gian Luca; de Pasquale, Ferdinando

    2012-01-01

    Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.

  6. Localization and diffusion of tracer particles in viscoelastic media with active force dipoles

    NASA Astrophysics Data System (ADS)

    Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki; Mikhailov, Alexander S.

    2017-02-01

    Optical tracking in vivo experiments reveal that diffusion of particles in biological cells is strongly enhanced in the presence of ATP and the experimental data for animal cells could previously be reproduced within a phenomenological model of a gel with myosin motors acting within it (Fodor É. et al., EPL, 110 (2015) 48005). Here, the two-fluid model of a gel is considered where active macromolecules, described as force dipoles, cyclically operate both in the elastic and the fluid components. Through coarse-graining, effective equations of motions for idealized tracer particles displaying local deformations and local fluid flows are derived. The equation for deformation tracers coincides with the earlier phenomenological model and thus confirms it. For flow tracers, diffusion enhancement caused by active force dipoles in the fluid component, and thus due to metabolic activity, is found. The latter effect may explain why ATP-dependent diffusion enhancement could also be observed in bacteria that lack molecular motors in their skeleton or when the activity of myosin motors was chemically inhibited in eukaryotic cells.

  7. Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang

    2007-03-01

    We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

  8. Self-diffusion in a system of interacting Langevin particles

    NASA Astrophysics Data System (ADS)

    Dean, D. S.; Lefèvre, A.

    2004-06-01

    The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.

  9. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. F.; Ma, Q. M.; Song, T.

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less

  10. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  11. A novel mathematical model considering change of diffusion coefficient for predicting dissolution behavior of acetaminophen from wax matrix dosage form.

    PubMed

    Nitanai, Yuta; Agata, Yasuyoshi; Iwao, Yasunori; Itai, Shigeru

    2012-05-30

    From wax matrix dosage forms, drug and water-soluble polymer are released into the external solvent over time. As a consequence, the pore volume inside the wax matrix particles is increased and the diffusion coefficient of the drug is altered. In the present study, we attempted to derive a novel empirical mathematical model, namely, a time-dependent diffusivity (TDD) model, that assumes the change in the drug's diffusion coefficient can be used to predict the drug release from spherical wax matrix particles. Wax matrix particles were prepared by using acetaminophen (APAP), a model drug; glyceryl monostearate (GM), a wax base; and aminoalkyl methacrylate copolymer E (AMCE), a functional polymer that dissolves below pH 5.0 and swells over pH 5.0. A three-factor, three-level (3(3)) Box-Behnken design was used to evaluate the effects of several of the variables in the model formulation, and the release of APAP from wax matrix particles was evaluated by the paddle method at pH 4.0 and pH 6.5. When comparing the goodness of fit to the experimental data between the proposed TDD model and the conventional pure diffusion model, a better correspondence was observed for the TDD model in all cases. Multiple regression analysis revealed that an increase in AMCE loading enhanced the diffusion coefficient with time, and that this increase also had a significant effect on drug release behavior. Furthermore, from the results of the multiple regression analysis, a formulation with desired drug release behavior was found to satisfy the criteria of the bitter taste masking of APAP without lowering the bioavailability. That is to say, the amount of APAP released remains below 15% for 10 min at pH 6.5 and exceeds 90% within 30 min at pH 4.0. The predicted formulation was 15% APAP loading, 8.25% AMCE loading, and 400 μm mean particle diameter. When wax matrix dosage forms were prepared accordingly, the predicted drug release behavior agreed well with experimental values at each pH level. Therefore, the proposed model is feasible as a useful tool for predicting drug release behavior, as well as for designing the formulation of wax matrix dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  13. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    PubMed Central

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292

  14. Effect of particle- and specimen-level transport on product state in compacted-powder combustion synthesis and thermal debinding of polymers from molded powders

    NASA Astrophysics Data System (ADS)

    Oliveira, Amir Antonio Martins

    The existence of large gradients within particles and fast temporal variations in the temperature and species concentration prevents the use of asymptotic approximations for the closure of the volume-averaged, specimen-level formulations. In this case a solution of the particle-level transport problem is needed to complement the specimen-level volume-averaged equations. Here, the use of combined specimen-level and particle-level models for transport in reactive porous media is demonstrated with two examples. For the gasless compacted-powder combustion synthesis, a three-scale model is developed. The specimen-level model is based on the volume-averaged equations for species and temperature. Local thermal equilibrium is assumed and the macroscopic mass diffusion and convection fluxes are neglected. The particle-level model accounts for the interparticle diffusion (i.e., the liquid migration from liquid-rich to liquid-lean regions) and the intraparticle diffusion (i.e., the species mass diffusion within the product layer formed at the surface of the high melting temperature component). It is found that the interparticle diffusion controls the extent of conversion to the final product, the maximum temperature, and to a smaller degree the propagation velocity. The intraparticle diffusion controls the propagation velocity and to a smaller degree the maximum temperature. The initial stages of thermal degradation of EVA from molded specimens is modeled using volume-averaged equations for the species and empirical models for the kinetics of the thermal degradation, the vapor-liquid equilibrium, and the diffusion coefficient of acetic acid in the molten polymer. It is assumed that a bubble forms when the partial pressure of acetic acid exceeds the external ambient pressure. It is found that the removal of acetic acid is characterized by two regimes, a pre-charge dominated regime and a generation dominated regime. For the development of an optimum debinding schedule, the heating rate is modulated to avoid bubbling, while the concentration and temperature follow the bubble-point line for the mixture. The results show a strong dependence on the presence of a pre-charge. It is shown that isolation of the pre-charge effect by using temporary lower heating rates results in an optimum schedule for which the process time is reduced by over 70% when compared to a constant heating rate schedule.

  15. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    NASA Astrophysics Data System (ADS)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  16. Particle transport through hydrogels is charge asymmetric.

    PubMed

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E

    2015-02-03

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Evolution of the concentration PDF in random environments modeled by global random walk

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter

    2013-04-01

    The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and speeds up the computation by orders of magnitude. The approach is illustrated for the transport of passive scalars in heterogeneous aquifers, with hydraulic conductivity modeled as a random field.

  18. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.

  19. Shift in Mass Transfer of Wastewater Contaminants from Microplastics in the Presence of Dissolved Substances.

    PubMed

    Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter

    2017-11-07

    In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.

  20. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  1. Numerical modeling of sorption kinetics of organic compounds to soil and sediment particles

    NASA Astrophysics Data System (ADS)

    Wu, Shian-chee; Gschwend, Phillip M.

    1988-08-01

    A numerical model is developed to simulate hydrophobic organic compound sorption kinetics, based on a retarded intraaggregate diffusion conceptualization of this solid-water exchange process. This model was used to ascertain the sensitivity of the sorption process for various sorbates to nonsteady solution concentrations and to polydisperse soil or sediment aggregate particle size distributions. Common approaches to modeling sorption kinetics amount to simplifications of our model and appear justified only when (1) the concentration fluctuations occur on a time scale which matches the sorption timescale of interest and (2) the particle size distribution is relatively narrow. Finally, a means is provided to estimate the extent of approach of a sorbing system to equilibrium as a function of aggregate size, chemical diffusivity and hydrophobicity, and system solids concentration.

  2. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  3. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  4. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  5. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  6. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    PubMed

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Point-particle method to compute diffusion-limited cellular uptake.

    PubMed

    Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  8. Factors controlling the evaporation of secondary organic aerosol from α‐pinene ozonolysis

    PubMed Central

    Pajunoja, Aki; Tikkanen, Olli‐Pekka; Buchholz, Angela; Faiola, Celia; Väisänen, Olli; Hao, Liqing; Kari, Eetu; Peräkylä, Otso; Garmash, Olga; Shiraiwa, Manabu; Ehn, Mikael; Lehtinen, Kari; Virtanen, Annele

    2017-01-01

    Abstract Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α‐pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents. PMID:28503004

  9. Simultaneous Modeling of Gradual SEP Events at the Earth and the Mars

    NASA Astrophysics Data System (ADS)

    Hu, J.; Li, G.

    2017-12-01

    Solar Energetic Particles (SEP) event is the number one space hazard for spacecraft instruments and astronauts' safety. Recent studies have shown that both longitudinal and radial extent of SEP events can be very significant. In this work, we use the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to simulate gradual SEP events that have impacts upon both the Earth and the Mars. We follow the propagation of a 2D CME-driven shock. Particles are accelerated at the shock via the diffusive shock acceleration (DSA) mechanism. Transport of the escaped particles to the Earth and the Mars is then followed using a backward stochastic differential equation method. Perpendicular diffusion is considered in both the DSA and the transport process. Model results such as time intensity profile and energetic particle spectrum at the two locations are compared to understand the spatial extent of an SEP event. Observational data at the Earth and the Mars are also studied to validate the model.

  10. Space radiation test model study. Report for 20 May 1985-20 February 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nightingale, R.W.; Chiu, Y.T.; Davidson, G.T.

    1986-03-14

    Dynamic models of the energetic populations in the outer radiation belts are being developed to better understand the extreme variations of particle flux in response to magnetospheric and solar activity. The study utilizes the SCATHA SC3 high-energy electron data, covering energies from 47 keV to 5 MeV with fine pitch-angle measurements (3 deg field of view) over the L-shell range of 5.3 to 8.7. Butter-fly distributions in the dusk sector signify particle losses due to L shell splitting of the particle-drift orbits and the subsequent scattering of the particles from the orbits by the magnetopause. To model the temporal variationsmore » and diffusion procsses of the particle populations, the data were organized into phase-space distributions, binned according to altitude (L shell), energy, pitch angle, and time. These distributions can then be mapped to the equator and plotted for fixed first and second adiabatic invariants of the inherent particle motion. A new and efficient method for calculating the third adiabatic invariant using a line integral of the relevant magnetic potential at the particle mirror points has been developed and is undergoing testing. This method will provide a useful means of displaying the radial diffusion signatures of the outer radiation belts during the more-active periods when the L shell parameter is not a good concept due to severe drift-shell splitting. The first phase of fitting the energetic-electron phase-space distributions with a combined radial and pitch-angle diffusion formulation is well underway. Bessel functions are being fit to the data in an eigenmode expansion method to determine the diffusion coefficients.« less

  11. Electron and ion acceleration in relativistic shocks with applications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang

    2015-09-01

    We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.

  12. Assessing the potential of quartz crystal microbalance to estimate water vapor transfer in micrometric size cellulose particles.

    PubMed

    Thoury-Monbrun, Valentin; Gaucel, Sébastien; Rouessac, Vincent; Guillard, Valérie; Angellier-Coussy, Hélène

    2018-06-15

    This study aims at assessing the use of a quartz crystal microbalance (QCM) coupled with an adsorption system to measure water vapor transfer properties in micrometric size cellulose particles. This apparatus allows measuring successfully water vapor sorption kinetics at successive relative humidity (RH) steps on a dispersion of individual micrometric size cellulose particles (1 μg) with a total acquisition duration of the order of one hour. Apparent diffusivity and water uptake at equilibrium were estimated at each step of RH by considering two different particle geometries in mass transfer modeling, i.e. sphere or finite cylinder, based on the results obtained from image analysis. Water vapor diffusivity values varied from 2.4 × 10 -14  m 2  s -1 to 4.2 × 10 -12  m 2  s -1 over the tested RH range (0-80%) whatever the model used. A finite cylinder or spherical geometry could be used equally for diffusivity identification for a particle size aspect ratio lower than 2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  14. Neutral evolution in a biological population as diffusion in phenotype space: reproduction with local mutation but without selection.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-02

    The process of "evolutionary diffusion," i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  15. Effects of diffusion in competitive contact processes on bipartite lattices

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; Fiore, C. E.

    2017-05-01

    We investigate the influence of particle diffusion in the two-dimension contact process (CP) with a competitive dynamics in bipartite sublattices, proposed in de Oliveira and Dickman (2011 Phys. Rev. E 84 011125). The particle creation depends on its first and second neighbors and the extinction increases according to the local density. In contrast to the standard CP model, mean-field theory and numerical simulations predict three stable phases: inactive (absorbing), active symmetric and active asymmetric, signed by distinct sublattice particle occupations. Our results from MFT and Monte Carlo simulations reveal that low diffusion rates do not destroy sublattice ordering, ensuring the maintenance of the asymmetric phase. On the other hand, for diffusion larger than a threshold value D c , the sublattice ordering is suppressed and only the usual active (symmetric)-inactive transition is presented. We also show the critical behavior and universality classes are not affected by the diffusion.

  16. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  17. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  18. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.

    PubMed

    Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai

    2013-03-01

    A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  19. Predicting First Traversal Times for Virions and Nanoparticles in Mucus with Slowed Diffusion

    PubMed Central

    Erickson, Austen M.; Henry, Bruce I.; Murray, John M.; Klasse, Per Johan; Angstmann, Christopher N.

    2015-01-01

    Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data. PMID:26153713

  20. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  1. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  2. Analysis of diffusion in curved surfaces and its application to tubular membranes.

    PubMed

    Klaus, Colin James Stockdale; Raghunathan, Krishnan; DiBenedetto, Emmanuele; Kenworthy, Anne K

    2016-12-01

    Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick's law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry. © 2016 Klaus, Raghunathan, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Modelling Solar Energetic Particle Events Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, J.; Ao, X.; Zank, G. P.; Verkhoglyadova, O. P.

    2016-12-01

    Solar Energetic Particles (SEPs) is the No. 1 space weather hazard. Understanding how particles are energized and propagated in these events is of practical concerns to the manned space missions. In particular, both the radial evolution and the longitudinal extent of a gradual solarenergetic particle (SEP) event are central topics for space weather forecasting. In this talk, I discuss the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model. The iPATH model consists of three parts: (1) an updated ZEUS3D V3.5 MHD module that models thebackground solar wind and the initiation of a CME in a 2D domain; (2) an updated shock acceleration module where we investigate particle acceleration at different longitudinal locations along the surface of a CME-driven shock. Accelerated particle spectrum are obtained at the shock under the diffusive shock acceleration mechanism. Shock parameters and particle distributions are recorded and used as inputs for the later part. (3) an updated transport module where we follow the transport of accelerated particles from the shock to any destinations (Earth and/or Mars, e.g.) using a Monte-Carlo method. Both pitch angle scattering due to MHD turbulence and perpendicular diffusion across magnetic field are included. Our iPATH model is therefore intrinsically 2D in nature. The model is capable of generating time intensity profiles and instantaneous particle spectra atvarious locations and can greatly improve our current space weather forecasting capability.

  4. Characteristics of the mixing volume model with the interactions among spatially distributed particles for Lagrangian simulations of turbulent mixing

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2016-11-01

    The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.

  5. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating Li XFePO 4 electrode particles

    DOE PAGES

    Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.

    2015-04-08

    In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less

  7. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.

    PubMed

    Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf

    2016-07-27

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

  8. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for gas to particle partitioning and heterogeneous chemistry are discussed. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.

  9. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  10. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle composition of SEP events, we address in some detail the injection problem. Although steady-state models can improve our understanding of the diffusive shock acceleration mechanism, SEP events are inherently time-dependent. We therefore review the time-dependent theory of DSA in some detail, including estimating possible maximum particle energies and particle escape from the shock complex. We also discuss generalizations of the diffusive transport approach to modeling particle acceleration by considering a more general description based on the focused transport equation. The escape of accelerated particles from the shock requires that their subsequent transport in the interplanetary medium be modeled and the consequence of interplanetary transport can lead to the complex spectra and compositional profiles that are observed frequently. The different approaches to particle transport in the inner heliosphere are reviewed. The various numerical models that have been developed to solve the gradual SEP problem are reviewed. Explicit comparisons of modeling results with observations of large SEP events are discussed. A summary of current progress and the outlook on the SEP problem and remaining open questions conclude the review.

  11. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  12. Phototransformation rate constants of PAHs associated with soot particles.

    PubMed

    Kim, Daekyun; Young, Thomas M; Anastasio, Cort

    2013-01-15

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    NASA Astrophysics Data System (ADS)

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  14. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less

  15. Reconciling transport models across scales: The role of volume exclusion

    NASA Astrophysics Data System (ADS)

    Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.

    2015-10-01

    Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.

  16. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  17. Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects.

    PubMed

    Vassal, J-P; Orgéas, L; Favier, D; Auriault, J-L; Le Corre, S

    2008-01-01

    Many analytical and numerical works have been devoted to the prediction of macroscopic effective transport properties in particulate media. Usually, structure and properties of macroscopic balance and constitutive equations are stated a priori. In this paper, the upscaling of the transient diffusion equations in concentrated particulate media with possible particle-particle interfacial barriers, highly conductive particles, poorly conductive matrix, and temperature-dependent physical properties is revisited using the homogenization method based on multiple scale asymptotic expansions. This method uses no a priori assumptions on the physics at the macroscale. For the considered physics and microstructures and depending on the order of magnitude of dimensionless Biot and Fourier numbers, it is shown that some situations cannot be homogenized. For other situations, three different macroscopic models are identified, depending on the quality of particle-particle contacts. They are one-phase media, following the standard heat equation and Fourier's law. Calculations of the effective conductivity tensor and heat capacity are proved to be uncoupled. Linear and steady state continuous localization problems must be solved on representative elementary volumes to compute the effective conductivity tensors for the two first models. For the third model, i.e., for highly resistive contacts, the localization problem becomes simpler and discrete whatever the shape of particles. In paper II [Vassal, Phys. Rev. E 77, 011303 (2008)], diffusion through networks of slender, wavy, entangled, and oriented fibers is considered. Discrete localization problems can then be obtained for all models, as well as semianalytical or fully analytical expressions of the corresponding effective conductivity tensors.

  18. Dissipative particle dynamics study of velocity autocorrelation function and self-diffusion coefficient in terms of interaction potential strength

    NASA Astrophysics Data System (ADS)

    Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein

    2018-07-01

    This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.

  19. Two-way coupled SPH and particle level set fluid simulation.

    PubMed

    Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald

    2008-01-01

    Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.

  20. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    PubMed

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  1. A Two Species Bump-On-Tail Model With Relaxation for Energetic Particle Driven Modes

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Porkolab, M.; Sharapov, S. E.; Spong, D. A.

    2017-10-01

    Energetic particle driven Alfvén Eigenmodes (AEs) observed in present day experiments exhibit various nonlinear behaviours varying from steady state amplitude at a fixed frequency to bursting amplitudes and sweeping frequency. Using the appropriate action-angle variables, the problem of resonant wave-particle interaction becomes effectively one-dimensional. Previously, a simple one-dimensional Bump-On-Tail (BOT) model has proven to be one of the most effective in describing characteristic nonlinear near-threshold wave evolution scenarios. In particular, dynamical friction causes bursting mode evolution, while diffusive relaxation may give steady-state, periodic or chaotic mode evolution. BOT has now been extended to include two populations of fast particles, with one dominated by dynamical friction at the resonance and the other by diffusion; the relative size of the populations determines the temporal evolution of the resulting wave. This suggests an explanation for recent observations on the TJ-II stellarator, where a transition between steady state and bursting occured as the magnetic configuration varied. The two species model is then applied to burning plasma with drag-dominated alpha particles and diffusion-dominated ICRH accelerated minority ions. This work was supported by the US DoE and the RCUK Energy Programme [Grant Number EP/P012450/1].

  2. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  3. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    DOE PAGES

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; ...

    2015-08-22

    Here, the PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compactsmore » and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Moreover, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.« less

  4. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.

  5. A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-08-26

    In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less

  6. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  7. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    PubMed

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Development of a numerical model for the electric current in burner-stabilised methane-air flames

    NASA Astrophysics Data System (ADS)

    Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.

    2015-03-01

    This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.

  9. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    PubMed Central

    Hummer, Gerhard

    2015-01-01

    We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592

  10. Noise and diffusion of a vibrated self-propelled granular particle

    NASA Astrophysics Data System (ADS)

    Walsh, Lee; Wagner, Caleb G.; Schlossberg, Sarah; Olson, Christopher; Baskaran, Aparna; Menon, Narayanan

    Granular materials are an important physical realization of active matter. In vibration-fluidized granular matter, both diffusion and self-propulsion derive from the same collisional forcing, unlike many other active systems where there is a clean separation between the origin of single-particle mobility and the coupling to noise. Here we present experimental studies of single-particle motion in a vibrated granular monolayer, along with theoretical analysis that compares grain motion at short and long time scales to the assumptions and predictions, respectively, of the active Brownian particle (ABP) model. The results demonstrate that despite the unique relation between noise and propulsion, granular media do show the generic features predicted by the ABP model and indicate that this is a valid framework to predict collective phenomena. Additionally, our scheme of analysis for validating the inputs and outputs of the model can be applied to other granular and non-granular systems.

  11. Interplanetary propagation of flare-associated energetic particles

    NASA Technical Reports Server (NTRS)

    Masung, L. L.; Earl, J. A.

    1978-01-01

    A propagation model which combines a Gaussian profile for particle release from the sun, with interplanetary particle densities predicted by focused diffusion, was proposed to explain the propagation history of flare associated energetic particles. This model, which depends on only two parameters, successfully describes the time-intensity profiles of 30 proton and electron events originating from the western hemisphere of the sun. Generally, particles are released from the sun over a finite interval. In almost all events, particle release begins at the time of flare acceleration.

  12. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  13. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    NASA Astrophysics Data System (ADS)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  14. Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Tawfik, Ashraf M.; Fichtner, Horst; Schlickeiser, Reinhard; Elhanbaly, A.

    2018-02-01

    The aim of this paper is to develop a fractional derivative model of energetic particle transport for both uniform and non-uniform large-scale magnetic field by studying the fractional Telegraph equation and the fractional advection-diffusion equation. Analytical solutions of the space-time fractional Telegraph equation and space-time fractional advection-diffusion equation are obtained by use of the Caputo fractional derivative and the Laplace-Fourier technique. The solutions are given in terms of Fox's H function. As an illustration they are applied to the case of solar energetic particles.

  15. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  16. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    PubMed

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.

  17. Correlated random walks induced by dynamical wavefunction collapse

    NASA Astrophysics Data System (ADS)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  18. Different approach to the modeling of nonfree particle diffusion

    NASA Astrophysics Data System (ADS)

    Buhl, Niels

    2018-03-01

    A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.

  19. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  20. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  1. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  2. Obstructed metabolite diffusion within skeletal muscle cells in silico.

    PubMed

    Aliev, Mayis K; Tikhonov, Alexander N

    2011-12-01

    Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).

  3. Suspension concentration distribution in turbulent flows: An analytical study using fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2018-09-01

    In this study vertical distribution of sediment particles in steady uniform turbulent open channel flow over erodible bed is investigated using fractional advection-diffusion equation (fADE). Unlike previous investigations on fADE to investigate the suspension distribution, in this study the modified Atangana-Baleanu-Caputo fractional derivative with a non-singular and non-local kernel is employed. The proposed fADE is solved and an analytical model for finding vertical suspension distribution is obtained. The model is validated against experimental as well as field measurements of Missouri River, Mississippi River and Rio Grande conveyance channel and is compared with the Rouse equation and other fractional model found in literature. A quantitative error analysis shows that the proposed model is able to predict the vertical distribution of particles more appropriately than previous models. The validation results shows that the fractional model can be equally applied to all size of particles with an appropriate choice of the order of the fractional derivative α. It is also found that besides particle diameter, parameter α depends on the mass density of particle and shear velocity of the flow. To predict this parameter, a multivariate regression is carried out and a relation is proposed for easy application of the model. From the results for sand and plastic particles, it is found that the parameter α is more sensitive to mass density than the particle diameter. The rationality of the dependence of α on particle and flow characteristics has been justified physically.

  4. Continuous-time random-walk model for anomalous diffusion in expanding media

    NASA Astrophysics Data System (ADS)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium. From this hierarchy, the full time evolution of the second-order moment is obtained for some specific types of expansion. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained, whence the long-time behavior of moments of arbitrary order is subsequently inferred. Our analytical and numerical results for both Lévy flights and subdiffusive CTRWs confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Lévy flights, we quantify this effect by means of the so-called "Lévy horizon."

  5. Continuous-time random-walk model for anomalous diffusion in expanding media.

    PubMed

    Le Vot, F; Abad, E; Yuste, S B

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium. From this hierarchy, the full time evolution of the second-order moment is obtained for some specific types of expansion. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained, whence the long-time behavior of moments of arbitrary order is subsequently inferred. Our analytical and numerical results for both Lévy flights and subdiffusive CTRWs confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Lévy flights, we quantify this effect by means of the so-called "Lévy horizon."

  6. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.

    PubMed

    Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2017-06-01

    Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Critical spreading dynamics of parity conserving annihilating random walks with power-law branching

    NASA Astrophysics Data System (ADS)

    Laise, T.; dos Anjos, F. C.; Argolo, C.; Lyra, M. L.

    2018-09-01

    We investigate the critical spreading of the parity conserving annihilating random walks model with Lévy-like branching. The random walks are considered to perform normal diffusion with probability p on the sites of a one-dimensional lattice, annihilating in pairs by contact. With probability 1 - p, each particle can also produce two offspring which are placed at a distance r from the original site following a power-law Lévy-like distribution P(r) ∝ 1 /rα. We perform numerical simulations starting from a single particle. A finite-time scaling analysis is employed to locate the critical diffusion probability pc below which a finite density of particles is developed in the long-time limit. Further, we estimate the spreading dynamical exponents related to the increase of the average number of particles at the critical point and its respective fluctuations. The critical exponents deviate from those of the counterpart model with short-range branching for small values of α. The numerical data suggest that continuously varying spreading exponents sets up while the branching process still results in a diffusive-like spreading.

  8. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  9. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  10. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  11. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment.

    PubMed

    Shit, Anindita; Ghosh, Pradipta; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2011-03-01

    We explore the issue of a quantum-noise-induced directed transport of an overdamped Brownian particle that is allowed to move in a spatially periodic potential. The established system-reservoir model has been employed here to study the quantum-noise-induced transport of a Brownian particle in a periodic potential, where the reservoir is being modulated externally by a Gaussian-colored noise. The mobility of the Brownian particle in the linear response regime has been calculated. Then, using Einstein's relation, the analytical expression for the diffusion rate is evaluated for any arbitrary periodic potential for the high-temperature quantum regime.

  12. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less

  13. Diffusivity Measurements of Volatile Organics in Levitated Viscous Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Luo, Beiping; Peter, Thomas

    2017-04-01

    Field measurements indicating that atmospheric secondary aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low water diffusivities in glassy aerosols, focusing on kinetic limitations to hygroscopic growth and the plasticizing effect of water. Less is known about diffusion limitations of organic molecules and oxidants in viscous matrices and how these might affect atmospheric chemistry and gas-particle phase partitioning of complex mixtures with constituents of different volatility. Often viscosity data has been used to infer diffusivity via the Stokes- Einstein relationship even though strong deviations from this relationship have been observed for matrices of high viscosity. In this study, we provide a quantitative estimate for the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and a small quantity of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature conditions, thereby varying the viscosity of the sucrose matrix. The evaporative loss of tetraethylene glycol as determined by Mie resonance spectroscopy is used in conjunction with a diffusion model to retrieve translational diffusion coefficients of tetraethylene glycol. The evaporation of PEG-4 shows a pronounced RH and temperature dependence and is severely depressed for RH 30% corresponding to diffusivities < 10-14 cm2/s at temperatures as high as 15 °C, implying that atmospheric volatile organic compounds (VOC) can be subject to severe diffusion limitations in glassy SOA. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship.

  14. Cosmic ray injection spectrum at the galactic sources

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  15. Theory and modeling of particles with DNA-mediated interactions

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.

    In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal systems. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. A key-lock model is proposed to describe the results of in-vitro experiments, and the situation in-vivo is discussed. The cooperative binding, and hence the specificity to cancerous cells, is kinetically limited. The implications for optimizing the design of nanoparticle based drug delivery platforms is discussed. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.

  16. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

    PubMed Central

    Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf

    2016-01-01

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. PMID:27462008

  17. Mixing of secondary organic aerosols versus relative humidity

    PubMed Central

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin

    2016-01-01

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066

  18. Mixing of secondary organic aerosols versus relative humidity.

    PubMed

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M

    2016-10-24

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

  19. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments

    NASA Astrophysics Data System (ADS)

    Bertrand, Thibault; Zhao, Yongfeng; Bénichou, Olivier; Tailleur, Julien; Voituriez, Raphaël

    2018-05-01

    We study the transport of self-propelled particles in dynamic complex environments. To obtain exact results, we introduce a model of run-and-tumble particles (RTPs) moving in discrete time on a d -dimensional cubic lattice in the presence of diffusing hard-core obstacles. We derive an explicit expression for the diffusivity of the RTP, which is exact in the limit of low density of fixed obstacles. To do so, we introduce a generalization of Kac's theorem on the mean return times of Markov processes, which we expect to be relevant for a large class of lattice gas problems. Our results show the diffusivity of RTPs to be nonmonotonic in the tumbling probability for low enough obstacle mobility. These results prove the potential for the optimization of the transport of RTPs in crowded and disordered environments with applications to motile artificial and biological systems.

  20. ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments

    PubMed Central

    Schöneberg, Johannes; Noé, Frank

    2013-01-01

    We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics. PMID:24040218

  1. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  2. Dynamical transition for a particle in a squared Gaussian potential

    NASA Astrophysics Data System (ADS)

    Touya, C.; Dean, D. S.

    2007-02-01

    We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.

  3. Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.

    2016-12-01

    Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.

  4. Phase transition in conservative diffusive contact processes

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; de Oliveira, Mário J.

    2004-10-01

    We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.

  5. Numerical Simulation of the Perrin-Like Experiments

    ERIC Educational Resources Information Center

    Mazur, Zygmunt; Grech, Dariusz

    2008-01-01

    A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…

  6. Experimental Investigation of Lagrangian Statistics of Motion of Diesel Oil Droplets and Fluid Particles in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2007-11-01

    Lagrangian motion in isotropic turbulence of slightly buoyant diesel oil droplets (specific gravity 0.85 and size 0.6-1.1 mm) and almost neutrally buoyant, 50 μm tracer particles are studied using high speed, in-line digital holographic cinematography. Droplets and particles are injected into a 50x50x70 mm^3 sample volume located at the center of a nearly isotropic turbulence facility, and data are obtained for Reλ of 190, 195 and 214. The turbulence is characterized by 2D PIV measurements at different planes. An automated tracking program has been used for measuring velocity time history of more than 22000 droplet tracks and 15000 particle tracks. Analysis compares probability density functions (PDF) of Lagrangian velocity and acceleration, spectra, as well as velocity and acceleration autocorrelation functions of droplets with those of particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. PDFs of droplet velocity have nearly Gaussian distributions, justifying use of Taylor's (1921) model to calculate diffusion parameters. The fluid particle diffusion coefficient exceeds that of the droplet primarily because the fluid diffusion timescale is higher than that of the droplet. For all droplet sizes and Reynolds numbers, the diffusion coefficient, calculated using Taylor's model, scaled by quiescent rise velocity and turbulence integral length scale, is a monotonically increasing function of the turbulence level normalized by droplet quiescent rise velocity.

  7. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  8. Recent Developments in the Radiation Belt Environment Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Glocer, A.; Zheng, Q.; Horne, R. B.; Meredith, N. P.; Albert, J. M.; Nagai, T.

    2010-01-01

    The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied.Weare able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.

  9. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    NASA Technical Reports Server (NTRS)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  10. Brownian motion of boomerang colloidal particles.

    PubMed

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo

    2013-10-18

    We investigate the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  11. Brownian Motion of Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Wei, Qi-Huo

    2013-10-01

    We investigate the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  12. Modeling the rate-controlled sorption of hexavalent chromium

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  13. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  14. Distribution of randomly diffusing particles in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-09-01

    Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.

  15. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. [Rayleigh-Gans-Debye

    NASA Technical Reports Server (NTRS)

    Kottarchyk, M.; Chen, S.-H.; Asano, S.

    1979-01-01

    The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.

  16. Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation

    PubMed Central

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-01-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461

  17. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; ...

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  18. Efficient particle acceleration in shocks

    NASA Astrophysics Data System (ADS)

    Heavens, A. F.

    1984-10-01

    A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.

  19. Biomass drying in a pulsed fluidized bed without inert bed particles

    DOE PAGES

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less

  20. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Russian, Anna; Dentz, Marco; Gouze, Philippe

    2017-08-01

    Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  2. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE PAGES

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla; ...

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  3. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  4. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    NASA Astrophysics Data System (ADS)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  5. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  6. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates

    PubMed Central

    Lu, Benzhuo; Zhou, Y.C.

    2011-01-01

    The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582

  7. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    PubMed

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.

  8. Brownian aggregation rate of colloid particles with several active sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less

  9. Alpha particles diffusion due to charge changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R.

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processormore » unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.« less

  10. Can phoretic particles swim in two dimensions?

    NASA Astrophysics Data System (ADS)

    Sondak, David; Hawley, Cory; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-12-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.

  11. Magnetic monopole dynamics in spin ice.

    PubMed

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Andres

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less

  13. Diffusion of a Concentrated Lattice Gas in a Regular Comb Structure

    NASA Astrophysics Data System (ADS)

    Garcia, Paul; Wentworth, Christopher

    2008-10-01

    Understanding diffusion in constrained geometries is of interest in a variety of contexts as varied as mass transport in disordered solids, such as a percolation cluster, or intercellular transport of water molecules in biological tissue. In this investigation we explore diffusion in a very simple constrained geometry: a comb-like structure involving a one-dimensional backbone of lattice sites with regularly spaced teeth of fixed length. The model considered assumes a fixed concentration of diffusing particles can hop to nearest-neighbor sites only, and they do not interact with each other except that double occupancy is not allowed. The system is simulated using a Monte Carlo simulation procedure. The mean-square displacement of a tagged particle is calculated from the simulation as a function of time. The simulation shows normal diffusive behavior after a period of anomalous diffusion that increases as the tooth size increases.

  14. Crossover from anomalous to normal diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; di Caprio, Dung

    2014-06-01

    Random walks (RW) of particles adsorbed in the internal walls of porous deposits produced by ballistic-type growth models are studied. The particles start at the external surface of the deposits and enter their pores in order to simulate an external flux of a species towards a porous solid. For short times, the walker concentration decays as a stretched exponential of the depth z, but a crossover to long-time normal diffusion is observed in most samples. The anomalous concentration profile remains at long times in very porous solids if the walker steps are restricted to nearest neighbors and is accompanied with subdiffusion features. These findings are correlated with a decay of the explored area with z. The study of RW of tracer particles left at the internal part of the solid rules out an interpretation by diffusion equations with position-dependent coefficients. A model of RW in a tube of decreasing cross section explains those results by showing long crossovers from an effective subdiffusion regime to an asymptotic normal diffusion. The crossover position and density are analytically calculated for a tube with area decreasing exponentially with z and show good agreement with numerical data. The anomalous decay of the concentration profile is interpreted as a templating effect of the tube shape on the total number of diffusing particles at each depth, while the volumetric concentration in the actually explored porous region may not have significant decay. These results may explain the anomalous diffusion of metal atoms in porous deposits observed in recent works. They also confirm the difficulty in interpreting experimental or computational data on anomalous transport reported in recent works, particularly if only the concentration profiles are measured.

  15. Transport of Charged Particles in Turbulent Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.

    2017-12-01

    Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are discussed.

  16. Magnetic pumping of particles in the outer Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1980-01-01

    The mechanism of magnetic pumping consists of two processes, the adiabatic motion of charged particles in a time varying magnetic field and their pitch-angle diffusion. The result is a systematic increase in the energy of charged particles trapped in mirror (and particularly, magnetospheric) magnetic fields. A numerical model of the mechanism is constructed, compared with analytic theory where possible, and, through elementary exercises, is used to predict the consequences of the process for cases that are not tractable by analytical means. For energy dependent pitch angle diffusion rates, characteristic 'two temperature' distributions are produced. Application of the model to the outer Jovian magnetosphere shows that beyond 20 Jupiter radii in the outer magnetosphere, particles may be magnetically pumped to energies of the order of 1 - 2 MeV. Two temperature distribution functions with "break points" at 1 - 4 KeV for electrons and 8 - 35 KeV for ions are predicted.

  17. NMR signals within the generalized Langevin model for fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  18. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach

    NASA Astrophysics Data System (ADS)

    Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.

    2016-07-01

    Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.

  19. Interplay between inhibited transport and reaction in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David Michael

    2013-01-01

    This work presents a detailed formulation of reaction and diffusion dynamics of molecules in confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized hydrodynamic model is developed that accurately captures the interplay between reaction and restricted transport in these systems. This method incorporates the non-uniform chemical diffusion behavior present in finite pores with multi-component diffusion. Two methods of calculating these diffusion values are developed: a random walkmore » based approach and a driven diffusion model based on an extension of Fick's law. The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match a range of experimental systems. The connection between these experimental systems and model parameters is made through Langevin dynamics modeling of particles in confined pores.« less

  20. FAST TRACK COMMUNICATION: The origin of Bohm diffusion, investigated by a comparison of different modelling methods

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.

    2010-07-01

    'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.

  1. Memoryless control of boundary concentrations of diffusing particles.

    PubMed

    Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S

    2004-12-01

    Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing trajectories on the boundary (the so called albedo problem).

  2. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  3. Towards a bulk approach to local interactions of hydrometeors

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2018-02-01

    The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.

  4. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less

  5. Modelling the evolution of complex conductivity during calcite precipitation on glass beads

    NASA Astrophysics Data System (ADS)

    Leroy, Philippe; Li, Shuai; Jougnot, Damien; Revil, André; Wu, Yuxin

    2017-04-01

    When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is sensitive to the evolution of the mineralogy, pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern and diffuse layers surrounding calcite particles. Our complex conductivity model depends on the surface charge density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which are computed using a basic Stern model of the calcite/water interface. The complex conductivity measurements of Wu et al. on a column packed with glass beads where calcite precipitation occurs are reproduced by our surface complexation and complex conductivity models. The evolution of the size and shape of calcite particles during the calcite precipitation experiment is estimated by our complex conductivity model. At the early stage of the calcite precipitation experiment, modelled particles sizes increase and calcite particles flatten with time because calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the later stage of the calcite precipitation experiment, modelled sizes and cementation exponents of calcite particles decrease with time because large calcite grains aggregate over multiple glass beads and only small calcite crystals polarize.

  6. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  7. Diffusion of massive particles around an Abelian-Higgs string

    NASA Astrophysics Data System (ADS)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  8. Application of the method of images on electrostatic phenomena in aqueous Al2O3 and ZrO2 suspensions.

    PubMed

    Cordelair, Jens; Greil, Peter

    2003-09-15

    A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.

  9. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  10. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current rate (C-rate) during charging/discharging affects diffusion induced stresses inside electrode materials. For the experimental part we first conduct charging/discharging under different C-rates to observe the voltage responses for commercial LiFePO4 batteries. Then Time-of-Flight Secondary Ion Mass Spectrometry technique is applied to measure the lithium ion intensities in different C-rate charged/discharged samples. These experimental results could be used to support that a more significant voltage fluctuation under high C-rates is due to different lithium insertion mechanisms, rather than the amount of lithium ions intercalated into electrode materials. Thus the investigation of C-rate-dependent stress evolution is required for the development of a more durable lithium ion battery. In this dissertation, we extend the single particle finite element model to investigate the C-rate-dependent diffusion induced stresses in a multi-particle system. Concentration dependent anisotropic material properties, C-rate-dependent volume misfits and concentration dependent Li-ion diffusivity are incorporated in the model. The concentration gradients, diffusion induced stresses, and strain energies under different C-rates are discussed in this study. Particle fractures have been observed in many experimental results, in this study we further discuss the effect of the crack surface orientation on the lithium concentration profile and stress level in cathode materials. The results of this dissertation provide a better understanding of diffusion induced stresses in electrode materials and contribute to our fundamental knowledge of interplay between lithium intercalations, stress evolutions, particle fractures and the capacity fade in lithium-ion batteries.

  11. Brownian Motion of Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Chakrabarty, Ayan

    2014-03-01

    We present experimental and theoretical studies on the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  12. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  13. Two-particle diffusion and locality assumption

    NASA Astrophysics Data System (ADS)

    Nicolleau, F.; Yu, G.

    2004-07-01

    A three-dimensional kinematic simulation (KS) model is used to study one- and two-particle diffusion in turbulent flows. The energy spectrum E(k) takes a power law form E(k)˜k-p. The value of this power p is varied from 1.2 to 3, so that its effects on the diffusion of one and two particles can be studied. The two-particle diffusion behaves differently depending on whether the two-particle separation is larger or smaller than the smallest scale of turbulence (Kolmogorov length scale η). When the two-particle mean square separation <Δ2(t)> is smaller than η2 it experiences a time exponential growth <Δ2(t)>=Δ02eγ(t/tη) but for a very short time. For longer times, when η2<<Δ2(t)>. In this inertial range we observe that d/dt<Δ2(t)>={a ln(<Δ(t)2>1/2/η)+b}u'L(η/L)(p+1)/2(<Δ(t)2>1/2/η)(p+1)/2 for p⩽3. For Δ0/η≫1 a=0, but a≠0 for Δ0/η⩽1 and as a consequence the pair diffusion cannot have lost its dependence on the initial separation during the exponential growth, i.e., γ is a function of Δ0/η. Our modified Richardson law is compared with two other proposed modifications to Richardson's power law, namely the virtual time [G. K. Batchelor, Proc. Cambridge Philos. Soc. 48, 345 (1952)] and the correction factor [F. Nicolleau and J. C. Vassilicos, Phys. Rev. Lett. 90, 245003 (2003)]. Further investigations on two-particle diffusion when p=3 give an excellent agreement with the experimental results in P. Morel and M. Larchevêque, J. Atmos. Sci. 31 (1974) for atmospheric turbulent flows. Finally, using two different combined power law energy spectra in KS, the isotropic small scales are found to have no significant role when their largest scale lT is less than 10 times the Kolmogorov length scale η.

  14. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  16. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    PubMed

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  17. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  18. Mechanisms underlying anomalous diffusion in the plasma membrane.

    PubMed

    Krapf, Diego

    2015-01-01

    The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. Copyright © 2015. Published by Elsevier Inc.

  19. Development of Mouse Lung Deposition Models

    DTIC Science & Technology

    2015-07-01

    information on deposition of ultrafine particles in the URT of mice either by measurements or theoretical modeling. Comparison of the nasal structure of... ultrafine particles in rats to be extended to mice. Based on measurements in the nasal casts of rats, Cheng et al. [12] obtained the following...expression for losses of ultrafine particles in the nasal passages of rats by Brownian diffusion during inhalation and exhalation. γβα− − −=η QD

  20. Modeling Deuterium Release from Plasma Implanted Surfaces

    NASA Astrophysics Data System (ADS)

    Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.

    1997-11-01

    When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.

  1. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  2. Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1988-01-01

    The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.

  3. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-01

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  4. Lattice gas models for particle systems in an underdamped hopping regime

    NASA Astrophysics Data System (ADS)

    Gobron, Thierry

    A model in which the state of the particle is described by a multicomponent vector, each possible kinetic state for the particle being associated with one of the components is presented. A master equation describes the evolution of the probability distribution in an independent particle model. From the master equation and with the help of the symmetry group that leaves the state transition operator invariant, physical quantities such as the diffusion constant are explicitly calculated for several lattices in one, two, and three dimensions. A Boltzmann equation is established and compared to the Rice and Roth proposal.

  5. Dynamics of Solar Energetic Particles in the Presence of a Shock Wave

    NASA Astrophysics Data System (ADS)

    Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei

    2003-07-01

    From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in interplanetary space in the presence of a shock. Here we consider the second stage only which as believed to be began with the injection of the particle spectrum formed during the first stage.

  6. Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as the outer boundary

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M. K.; Chen, Y.

    2013-12-01

    The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.

  7. Theoretical investigation on nanoparticle concentrations in optoelectrofluidic chip based on diffusion, convection, and migration

    NASA Astrophysics Data System (ADS)

    Hu, Sheng; Lv, Jiangtao; Si, Guangyuan

    2016-10-01

    A numerical model and simulation relative to an optoelectrofluidic chip has been presented in this article. Both dielectrophoretic and electroosmotic force attracting the nano-sized particles could be studied by the diffusion, convection, and migration equations. For the nano-sized particles, the protein with radius 3.6 nm is considered as the objective particle. The electroosmosis dependent upon applied frequency is calculated, which range 102 Hz from 108 Hz, and provides the much stronger force to enrich proteins than dielectrophoresis (DEP). Meanwhile, the induced light pattern size significantly affecting the concentration distribution is simulated. In this end, the concentration curve has verified that the optoelectrofluidic chip can be capable of manipulating and assembling the suspended submicron particles.

  8. Release kinetics of volatile organic compounds from roasted and ground coffee: online measurements by PTR-MS and mathematical modeling.

    PubMed

    Mateus, Maria-L; Lindinger, Christian; Gumy, Jean-C; Liardon, Remy

    2007-12-12

    The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.

  9. CORSAIR Solar Energetic Particle Model

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-05-01

    Acceleration of particles in coronal mass ejection (CME) driven shock waves is the most commonly accepted and best developed theory of the genesis of gradual solar energetic particle (SEP) events. The underlying acceleration mechanism is the diffusive shock acceleration (DSA). According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. Currently STEREO and near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than reported in earlier studies. These findings have important consequences on SEP modeling. It is important to extend the present models into two or three spatial coordinates to properly take into account the effects of coronal and interplanetary (IP) magnetic geometry, and evolution of the CME and the associated shock, on the acceleration and transport of SEPs. We give a status update on CORSAIR project, which is an effort to develop a new self-consistent (total energy conserving) DSA acceleration model that is capable of modeling energetic particle acceleration and transport in IP space in two or three spatial dimensions. In the new model particles are propagated using guiding center approximation. Waves are modeled as (Lagrangian) wave packets propagating (anti)parallel to ambient magnetic field. Diffusion coefficients related to scattering from the waves are calculated using quasilinear theory. State of ambient plasma is obtained from an MHD simulation or by using idealized analytic models. CORSAIR is an extension to our earlier efforts to model the effects of magnetic geometry on SEP acceleration (Sandroos & Vainio, 2007,2009).

  10. Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts

    NASA Astrophysics Data System (ADS)

    Wilson, Bruce N.; Barfield, Billy J.

    1985-04-01

    An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.

  11. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  12. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  13. On the Stability of Shocks with Particle Pressure

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano; Vietri, Mario

    2008-11-01

    We perform a linear stability analysis for corrugations of a Newtonian shock, with particle pressure included, for an arbitrary diffusion coefficient. We study first the dispersion relation for homogeneous media, showing that, besides the conventional pressure waves and entropy/vorticity disturbances, two new perturbation modes exist, dominated by the particles' pressure and damped by diffusion. We show that, due to particle diffusion into the upstream region, the fluid will be perturbed also upstream; we treat these perturbation in the short-wavelength (WKBJ) regime. We then show how to construct a corrugational mode for the shock itself, one, that is, where the shock executes free oscillations (possibly damped or growing) and sheds perturbations away from itself; this global mode requires the new modes. Then, using the perturbed Rankine-Hugoniot conditions, we show that this leads to the determination of the corrugational eigenfrequency. We solve numerically the equations for the eigenfrequency in the WKBJ regime for the models of Amato & Blasi, showing that they are stable. We then discuss the differences between our treatment and previous work.

  14. Theory of diffusion of active particles that move at constant speed in two dimensions.

    PubMed

    Sevilla, Francisco J; Gómez Nava, Luis A

    2014-08-01

    Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.

  15. The effect of turbulence strength on meandering field lines and Solar Energetic Particle event extents

    NASA Astrophysics Data System (ADS)

    Laitinen, Timo; Effenberger, Frederic; Kopp, Andreas; Dalla, Silvia

    2018-02-01

    Insights into the processes of Solar Energetic Particle (SEP) propagation are essential for understanding how solar eruptions affect the radiation environment of near-Earth space. SEP propagation is influenced by turbulent magnetic fields in the solar wind, resulting in stochastic transport of the particles from their acceleration site to Earth. While the conventional approach for SEP modelling focuses mainly on the transport of particles along the mean Parker spiral magnetic field, multi-spacecraft observations suggest that the cross-field propagation shapes the SEP fluxes at Earth strongly. However, adding cross-field transport of SEPs as spatial diffusion has been shown to be insufficient in modelling the SEP events without use of unrealistically large cross-field diffusion coefficients. Recently, Laitinen et al. [ApJL 773 (2013b); A&A 591 (2016)] demonstrated that the early-time propagation of energetic particles across the mean field direction in turbulent fields is not diffusive, with the particles propagating along meandering field lines. This early-time transport mode results in fast access of the particles across the mean field direction, in agreement with the SEP observations. In this work, we study the propagation of SEPs within the new transport paradigm, and demonstrate the significance of turbulence strength on the evolution of the SEP radiation environment near Earth. We calculate the transport parameters consistently using a turbulence transport model, parametrised by the SEP parallel scattering mean free path at 1 AU, λ∥*, and show that the parallel and cross-field transport are connected, with conditions resulting in slow parallel transport corresponding to wider events. We find a scaling σφ,max∝(1/λ∥*)1/4 for the Gaussian fitting of the longitudinal distribution of maximum intensities. The longitudes with highest intensities are shifted towards the west for strong scattering conditions. Our results emphasise the importance of understanding both the SEP transport and the interplanetary turbulence conditions for modelling and predicting the SEP radiation environment at Earth.

  16. Diffusion of a particle in the spatially correlated exponential random energy landscape: Transition from normal to anomalous diffusion.

    PubMed

    Novikov, S V

    2018-01-14

    Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t 1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.

  17. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.

    PubMed

    Takahashi, Kentaro; Kimura, Yasuyuki

    2014-07-01

    We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.

  18. METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca

    2016-05-10

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less

  19. Finite Larmor radius effects on weak turbulence transport

    NASA Astrophysics Data System (ADS)

    Kryukov, N.; Martinell, J. J.

    2018-06-01

    Transport of test particles in two-dimensional weak turbulence with waves propagating along the poloidal direction is studied using a reduced model. Finite Larmor radius (FLR) effects are included by gyroaveraging over one particle orbit. For low wave amplitudes the motion is mostly regular with particles trapped in the potential wells. As the amplitude increases the trajectories become chaotic and the Larmor radius modifies the orbits. For a thermal distribution of Finite Larmor radii the particle distribution function (PDF) is Gaussian for small th$ (thermal gyroradius) but becomes non-Gaussian for large th$ . However, the time scaling of transport is diffusive, as characterized by a linear dependence of the variance of the PDF with time. An explanation for this behaviour is presented that provides an expression for an effective diffusion coefficient and reproduces the numerical results for large wave amplitudes which implies generalized chaos. When a shear flow is added in the direction of wave propagation, a modified model is obtained that produces free-streaming particle trajectories in addition to trapped ones; these contribute to ballistic transport for low wave amplitude but produce super-ballistic transport in the chaotic regime. As in the previous case, the PDF is Gaussian for low th$ becoming non-Gaussian as it increases. The perpendicular transport presents the same behaviour as in the case with no flow but the diffusion is faster in the presence of the flow.

  20. Generalized Langevin equation with a three parameter Mittag-Leffler noise

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Tomovski, Živorad; Dubbeldam, Johan L. A.

    2011-10-01

    The relaxation functions for a given generalized Langevin equation in the presence of a three parameter Mittag-Leffler noise are studied analytically. The results are represented by three parameter Mittag-Leffler functions. Exact results for the velocity and displacement correlation functions of a diffusing particle are obtained by using the Laplace transform method. The asymptotic behavior of the particle in the short and long time limits are found by using the Tauberian theorems. It is shown that for large times the particle motion is subdiffusive for β-1<αδ<β, and superdiffusive for β<αδ. Many previously obtained results are recovered. Due to the many parameters contained in the noise term, the model considered in this work may be used to improve the description of data and to model anomalous diffusive processes in complex media.

  1. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  2. A Lagrangian model for soil water dynamics: can we step beyond Richard's equation while preserving capillarity as first order control?

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Jackisch, Conrad

    2016-04-01

    Water storage in the unsaturated zone is controlled by capillary forces which increase nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil. The standard approach to represent capillary and gravity controlled soil water dynamics is the Darcy-Richards equation in combination with suitable soil water characteristics. This continuum model essentially assumes capillarity controlled diffusive fluxes to dominate soil water dynamics under local thermodynamic equilibrium conditions. Today we know that the assumptions of local equilibrium conditions e.g. and a mainly diffusive flow are often not appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, traveling in interconnected coarse pores or non-capillary macropores, and the slower diffusive flow in finer fractions of the pore space. Although various concepts have been proposed to overcome the inability of the Darcy - Richards concept to cope with not-well mixed preferential flow, we still lack an approach that is commonly accepted. Notwithstanding the listed short comings, one should not mistake the limitations of the Richards equation with non-importance of capillary forces in soil. Without capillarity infiltrating rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium state - there would be no soil water dynamics at all, probably even no terrestrial vegetation without capillary forces. Better alternatives for the Darcy-Richards approach are thus highly desirable, as long they preserve the grain of "truth" about capillarity as first order control. Here we propose such an alternative approach to simulate soil moisture dynamics in a stochastic and yet physical way. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver within three distinctly different soils. This is because soil water and hence the corresponding water particles in smaller pores size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed highly similar during simulated wetting and drying circles in three distinctly different soils. Alternatively, we tested a computational less approach, assuming only the 10 or 20% of the fastest particles as mobile, while treating the remaining particles located in smaller pores sizes as immobile. For instance in a sandy soil a mobile fraction of 20% revealed almost identical results as the full mobility model and performed even closer to the Richards solver. In this context we also compared the cases of perfect mixing and no mixing between mobile and immobile water particles between different time steps. The second option was clearly superior with respect to match simulations with the Richards' solver. The particle model is hence a suitable tool to "unmask" a) inherent implications of the Darcy-Richards concept on the fraction of soil water that actually contributes to soil water dynamics and b) the inherent very limited degrees of freedom for mixing between mobile and immobile water fractions. A main asset of the particle based approach is that the assumption of local equilibrium equation during infiltration may be easily released. We tested this idea in a straight forward manner, by treating infiltrating event water particles as second particle type which travel initially, mainly gravity driven, in the largest pore fraction at maximum drift, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. Simulations with the particle model in the non-equilibrium mode were a) rather sensitive to the coefficient describing mixing of event water particles and b) clearly outperformed the Richards model with respect to match observed soil dynamics in a real world benchmark. The proposed non-linear random walk of water particles is, hence, an easy to implement alternative for simulating soil moisture dynamics in the unsaturated, which preserves the influence of capillarity and makes use of established soil physics. The approach is particularly promising to deal with preferential flow and transport of solutes and to explore transit time distributions.

  3. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches

    PubMed Central

    Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.

    2016-01-01

    Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421

  4. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  5. Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.

    PubMed

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-11-01

    Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.

  6. Properties of grains derived from IRAS observations of dust

    NASA Technical Reports Server (NTRS)

    Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.

    1989-01-01

    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including catalytic H2 formation, for which iron grains could be the main site; differences in depletion patterns between iron and other refractory elements (Mg, Si); and superparamagnetic behavior of large grains with embedded iron clusters giving rise to the observed high degree of alignment by the galactic magnetic field.

  7. The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2015-05-01

    Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.

  8. Low-energy ion acceleration at quasi-perpendicular shocks: Transverse diffusion

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1995-01-01

    The problem of ion injection and acceleration at quasi perpendicular shocks has been the subject of some debate over the past two decades. It is widely known that these shocks efficiently accelerate particles that are well in the high-energy tail of the distribution. However, the issue of injection, or the acceleration of low-energy ions, has yet to reach a consensus. The fundamental issue is whether there is enough diffusion normal to the magnetic field for the particles to remain near the shock. Since transverse diffusion is a physical process that is not well understood in space plasmas, this is an important, and difficult issue to address. In this report, we will investigate the ion injection problem by performing test particle orbit integrations using synthesized turbulent fields. These fields are fully three-dimensional so that transverse diffusion is possible (cross-field diffusion is not possible in geometries where the electromagnetic fields are less than three dimensional). The synthesized fields are produced by superimposing a three-dimensional wave field on a background field. For completeness, we will compare the results from this model with the more well-established theories, such as the diffusive approximation and scatter-free shock drift acceleration. We will also compare these results with other numerical simulation techniques such as the well known hybrid simulation, and other test-particle calculations in which the shock fields are specified to have less than three dimensions. We will also discuss some recent relevant observations and how these compare with our results.

  9. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  10. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  11. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  12. Effect of Pore Clogging on Kinetics of Lead Uptake by Clinoptilolite.

    PubMed

    Inglezakis; Diamandis; Loizidou; Grigoropoulou

    1999-07-01

    The kinetics of lead-sodium ion exchange using pretreated natural clinoptilolite are investigated, more specifically the influence of agitation (0, 210, and 650 rpm) on the limiting step of the overall process, for particle sizes of 0.63-0.8 and 0.8-1 mm at ambient temperature and initial lead solutions of 500 mg l-1 without pH adjustment. The isotopic exchange model is found to fit the ion exchange process. Particle diffusion is shown to be the controlling step for both particle sizes under agitation, while in the absence of agitation film diffusion is shown to control. The ion exchange process effective diffusion coefficients are calculated and found to depend strongly on particle size in the case of agitation at 210 rpm and only slightly on particle size at 650 rpm. Lead uptake rates are higher for smaller particles only at rigorous agitation, while at mild agitation the results are reversed. These facts are due to partial clogging of the pores of the mineral during the grinding process. This is verified through comparison of lead uptake rates for two samples of the same particle size, one of which is rigorously washed for a certain time before being exposed to the ion exchange. Copyright 1999 Academic Press.

  13. Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.

    2017-12-01

    Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.

  14. Transition of multidiffusive states in a biased periodic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Ming; Bao, Jing-Dong

    2017-03-01

    We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.

  15. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less

  16. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less

  17. Numerical Modeling of Pulsed Electrical Discharges for High-Speed Flow Control

    DTIC Science & Technology

    2012-02-01

    dimensions , and later on more complex problems. Subsequent work compared different physical models for pulsed discharges: one-moment (drift-diffusion with...two dimensions , and later on more complex problems. Subsequent work compared different physical models for pulsed discharges: one-moment (drift...The state of a particle can be specified by its position and velocity. In principal, the motion of a large group of particles can be predicted from

  18. Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.

    2014-12-01

    Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.

  19. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media

    NASA Astrophysics Data System (ADS)

    Toner, John; Löwen, Hartmut; Wensink, Henricus H.

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.

  20. Sedimentation dynamics and diffusion of suspensions of swimming E. coli

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Patteson, Alison; Singh, Jaspreet; Purohit, Prashant

    2017-11-01

    Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and man-made environments. Here, we experimentally investigate sedimentation of passive particles in water containing various concentrations of the bacterium E. coli. Results show that the presence of live bacteria reduces the velocity of the sedimentation front even in the dilute regime, where constant sedimentation velocity is expected to be independent of particle concentration. The presence of live bacteria increases the effective diffusion coefficient, which determines the width of the sedimentation front. For higher bacteria concentration, we find the development of two sedimentation fronts due to bacterial death. A model in which the advection-diffusion equation describing the settling of particles under gravity is coupled to the population dynamics of the bacteria captures the experimental trends relatively well. This work is supported by NSF-CBET-1437482.

  1. Survival probability of diffusion with trapping in cellular neurobiology

    NASA Astrophysics Data System (ADS)

    Holcman, David; Marchewka, Avi; Schuss, Zeev

    2005-09-01

    The problem of diffusion with absorption and trapping sites arises in the theory of molecular signaling inside and on the membranes of biological cells. In particular, this problem arises in the case of spine-dendrite communication, where the number of calcium ions, modeled as random particles, is regulated across the spine microstructure by pumps, which play the role of killing sites, while the end of the dendritic shaft is an absorbing boundary. We develop a general mathematical framework for diffusion in the presence of absorption and killing sites and apply it to the computation of the time-dependent survival probability of ions. We also compute the ratio of the number of absorbed particles at a specific location to the number of killed particles. We show that the ratio depends on the distribution of killing sites. The biological consequence is that the position of the pumps regulates the fraction of calcium ions that reach the dendrite.

  2. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    NASA Astrophysics Data System (ADS)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  3. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  4. Diffusive real-time dynamics of a particle with Berry curvature

    NASA Astrophysics Data System (ADS)

    Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto

    2018-02-01

    We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.

  5. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  6. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    USGS Publications Warehouse

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  7. Boundary particle method for Laplace transformed time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian

    2013-02-01

    This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

  8. Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Lynn, Jacob William

    We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.

  9. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less

  10. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.

    PubMed

    Berezhkovskii, Alexander M; Shvartsman, Stanislav Y

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  11. Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi

    2017-10-01

    Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that we have developed, allow us to better understand the complex hydrodynamic interactions in microswimmer dispersions.

  12. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A.; Chen, C. P.

    1990-01-01

    Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.

  13. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    NASA Astrophysics Data System (ADS)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  14. Visualizing interactions between Sindbis virus and cells by single particle tracking

    NASA Astrophysics Data System (ADS)

    Williard, Mary

    2005-03-01

    Sindbis virus infects both mammalian and insect cells. Though not pathogenic in humans, Sindbis is a model for many mosquito- borne viruses that cause human disease, such as West Nile virus. We have used real-time single particle fluorescence microscopy to observe individual Sindbis virus particles as they infect living cells. Fluorescent labels were incorporated into both the viral coat proteins and the lipid envelope of the virus. Kinetics characteristic of free diffusion in solution, slower diffusion inside cells, attachment to spots on the cell surface, and motor protein transport inside cells have been observed. Dequenching of the membrane label is used to report membrane fusion events during the infection process. Tracking individual viral particles allows multiple pathways to be determined without the requirement of synchronicity.

  15. Quasilinear Line Broadened Model for Energetic Particle Transport

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  16. Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids.

    PubMed

    Park, Moongyu; Cushman, John Howard; O'Malley, Dan

    2014-09-30

    The collective molecular reorientations within a nematic liquid crystal fluid bathing a spherical colloid cause the colloid to diffuse anomalously on a short time scale (i.e., as a non-Brownian particle). The deformations and fluctuations of long-range orientational order in the liquid crystal profoundly influence the transient diffusive regimes. Here we show that an anisotropic fractional Brownian process run with a nonlinear multiscaling clock effectively mimics this collective and transient phenomenon. This novel process has memory, Gaussian increments, and a multiscale mean square displacement that can be chosen independently from the fractal dimension of a particle trajectory. The process is capable of modeling multiscale sub-, super-, or classical diffusion. The finite-size Lyapunov exponents for this multiscaling process are defined for future analysis of related mixing processes.

  17. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  19. Cs diffusion in SiC high-energy grain boundaries

    NASA Astrophysics Data System (ADS)

    Ko, Hyunseok; Szlufarska, Izabela; Morgan, Dane

    2017-09-01

    Cesium (Cs) is a radioactive fission product whose release is of concern for Tristructural-Isotropic fuel particles. In this work, Cs diffusion through high energy grain boundaries (HEGBs) of cubic-SiC is studied using an ab-initio based kinetic Monte Carlo (kMC) model. The HEGB environment was modeled as an amorphous SiC, and Cs defect energies were calculated using the density functional theory (DFT). From defect energies, it was suggested that the fastest diffusion mechanism is the diffusion of Cs interstitial in an amorphous SiC. The diffusion of Cs interstitial was simulated using a kMC model, based on the site and transition state energies sampled from the DFT. The Cs HEGB diffusion exhibited an Arrhenius type diffusion in the range of 1200-1600 °C. The comparison between HEGB results and the other studies suggests not only that the GB diffusion dominates the bulk diffusion but also that the HEGB is one of the fastest grain boundary paths for the Cs diffusion. The diffusion coefficients in HEGB are clearly a few orders of magnitude lower than the reported diffusion coefficients from in- and out-of-pile samples, suggesting that other contributions are responsible, such as radiation enhanced diffusion.

  20. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  1. Optimal recruitment strategies for groups of interacting walkers with leaders

    NASA Astrophysics Data System (ADS)

    Martínez-García, Ricardo; López, Cristóbal; Vazquez, Federico

    2015-02-01

    We introduce a model of interacting random walkers on a finite one-dimensional chain with absorbing boundaries or targets at the ends. Walkers are of two types: informed particles that move ballistically towards a given target and diffusing uninformed particles that are biased towards close informed individuals. This model mimics the dynamics of hierarchical groups of animals, where an informed individual tries to persuade and lead the movement of its conspecifics. We characterize the success of this persuasion by the first-passage probability of the uninformed particle to the target, and we interpret the speed of the informed particle as a strategic parameter that the particle can tune to maximize its success. We find that the success probability is nonmonotonic, reaching its maximum at an intermediate speed whose value increases with the diffusing rate of the uninformed particle. When two different groups of informed leaders traveling in opposite directions compete, usually the largest group is the most successful. However, the minority can reverse this situation and become the most probable winner by following two different strategies: increasing its attraction strength or adjusting its speed to an optimal value relative to the majority's speed.

  2. Diffusing diffusivity: Rotational diffusion in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Jain, Rohit; Sebastian, K. L.

    2017-06-01

    We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.

  3. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  4. Active colloidal propulsion over a crystalline surface

    NASA Astrophysics Data System (ADS)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  5. Correlated diffusion of colloidal particles near a liquid-liquid interface.

    PubMed

    Zhang, Wei; Chen, Song; Li, Na; Zhang, Jia Zheng; Chen, Wei

    2014-01-01

    Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter d and the distance z from particle center to the interface, respectively, for large particle separation z. The longitudinal and transverse correlated diffusion coefficient D||(r) and D[perpendicular](r) are independent of the colloidal area fraction n when n < 0.3, which indicates that the hydrodynamic interactions(HIs) among the particles are dominated by HIs through the surrounding fluid for small n. For high area fraction n > 0.4 the power law exponent for the spatial decay of [Formula: see text] begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large n.

  6. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  7. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  8. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  9. Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers

    NASA Astrophysics Data System (ADS)

    Newton, P. K.; Meiburg, Eckart

    1991-05-01

    The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.

  10. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  11. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Gas-particle interactions can significantly change the physical and chemical properties of aerosols such as toxicity, reactivity, hygroscopicity and radiative properties. Chemical reactions and mass transport lead to continuous transformation and changes in the composition of atmospheric aerosols ("chemical aging"). Resistor model formulations are widely used to describe and investigate heterogeneous reactions and multiphase processes in laboratory, field and model studies of atmospheric chemistry. The traditional resistor models, however, are usually based on simplifying assumptions such as steady state conditions, homogeneous mixing, and limited numbers of non-interacting species and processes. In order to overcome these limitations, Pöschl, Rudich and Ammann have developed a kinetic model framework (PRA framework) with a double-layer surface concept and universally applicable rate equations and parameters for mass transport and chemical reactions at the gas-particle interface of aerosols and clouds [1]. Based on the PRA framework, we present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB) [2]. The model includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical life-times of multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (~10-10 cm2 s-1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models. References [1] Pöschl et al., Atmos. Chem. and Phys., 7, 5989-6023 (2007). [2] Shiraiwa et al., Atmos. Chem. Phys. Discuss., 10, 281-326 (2010).

  12. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  13. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  14. Statistical mechanics of an ideal active fluid confined in a channel

    NASA Astrophysics Data System (ADS)

    Wagner, Caleb; Baskaran, Aparna; Hagan, Michael

    The statistical mechanics of ideal active Brownian particles (ABPs) confined in a channel is studied by obtaining the exact solution of the steady-state Smoluchowski equation for the 1-particle distribution function. The solution is derived using results from the theory of two-way diffusion equations, combined with an iterative procedure that is justified by numerical results. Using this solution, we quantify the effects of confinement on the spatial and orientational order of the ensemble. Moreover, we rigorously show that both the bulk density and the fraction of particles on the channel walls obey simple scaling relations as a function of channel width. By considering a constant-flux steady state, an effective diffusivity for ABPs is derived which shows signatures of the persistent motion that characterizes ABP trajectories. Finally, we discuss how our techniques generalize to other active models, including systems whose activity is modeled in terms of an Ornstein-Uhlenbeck process.

  15. Relative dispersion of clustered drifters in a small micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.

    2017-07-01

    Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d < 0.5 m) relative diffusivity followed the Richardson's 4/3 power law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.

  16. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles-a detailed investigation of the intra-particle diffusivity.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-08-15

    In a previous report, it was reported that columns packed with fully porous 1.9μm Titan-C18 particles provided a minimum reduced plate height as small as 1.7 for the most retained compound (n-octanophenone) under RPLC conditions. These particles are characterized by a relatively narrow size distribution with a relative standard deviation (RSD) of only 10%. A column packed with classical 5μm Symmetry-C18 particles, used as a reference RPLC column, generated a minimum reduced plate height of 2.1 for the same retained compound. This work demonstrates that this was due to an unusually low intra-particle diffusivity across these particles, which leads to a small longitudinal diffusion coefficient along the column. The demonstration is based on the combination of accurate measurements of the height equivalent to a theoretical plate (HETP), inverse size exclusion chromatography (ISEC), peak parking (PP), and minor disturbance method (MDM) experiments. The experimental results show that the reduced eddy dispersion HETP term (A=0.8 for a reduced velocity of 5), the internal particle porosity (ϵp=0.35), and the enrichment of acetonitrile in the pore volume (75% acetonitrile in the bulk, 85% inside the mesoporous volume) are identical on both the Titan-C18 and Symmetry-C18 columns. The difference between the internal structures of these two brands of RPLC-C18 fully porous particles lies in the values of the internal obstruction factor γp, which is 0.42 for the Symmetry-C18 but only 0.26 for the Titan-C18 particles. This is in part related to the diffusion hindrance due to the small average pore size of the Titan-C18 particles, around 59Å versus 77Å for Symmetry-C18 particles. A simple model of constriction along diffusion paths having the shape of a truncated cone suggests that the width of the pore size distribution (RSD of 30% and 20% for Titan-C18 and Symmetry-C18 particles) is mostly responsible for the difference in their obstruction factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.

    PubMed

    Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M

    2010-02-01

    A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Stochastic particle acceleration at shocks in the presence of braided magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1996-10-01

    The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.

  19. Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Nagata, K.

    2016-08-01

    We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.

  20. Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.

    We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less

  1. Mathematical modeling of the kinetics of deposition of particles during their pulse introduction through the free surface of a mixed-medium plane layer

    NASA Astrophysics Data System (ADS)

    Boger, A. A.; Ryazhskikh, V. I.; Slyusarev, M. I.

    2012-01-01

    Based on diffusion concepts of transfer of slightly concentrated polydisperse suspensions in the gravity field, we propose a mathematical model of the kinetics of deposition of such suspensions in a plane layer of a homogeneously mixed medium through the free surface of which Stokesian particles penetrate according to the rectangular pulse law.

  2. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.

  3. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  4. Universal shape evolution of particles by bed-load

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.

    2016-12-01

    River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.

  5. Lithium manganese oxide spinel electrodes

    NASA Astrophysics Data System (ADS)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The results compared favorably with those available in the literature. Dynamic Monte Carlo simulations were conducted to investigate the concentration dependence of the diffusion coefficient fundamentally. The dynamic Monte Carlo predictions compare favorably with the experimental data.

  6. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  7. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  8. Constraints on the Longevity of the 2010 Eyjaföll Eruption Cloud From Analog Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2010-12-01

    The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.

  9. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size.

    PubMed

    Kang, Seju; Jung, Jihyeun; Choe, Jong Kwon; Ok, Yong Sik; Choi, Yongju

    2018-04-01

    Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9days for the original biochars to <1-4.6days for the powdered biochars with <125μm in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  11. Effect of lost charged particles on the breakdown characteristics of the gaseous electrical discharge in non-uniform axial electric field

    NASA Astrophysics Data System (ADS)

    Noori, H.; Ranjbar, A. H.

    2017-10-01

    The secondary emission coefficient is a valuable parameter for numerical modeling of the discharge process in gaseous insulation. A theoretical model has been developed to consider the effects of the radial electric field, non-uniformity of the axial electric field, and radial diffusion of charged particles on the secondary emission coefficient. In the model, a modified breakdown criterion is employed to determine the effective secondary electron emission, γeff. Using the geometry factor gi which is introduced based on the effect of radial diffusion of charged particles on the fraction of ions which arrive at the cathode, the geometry-independent term of γeff (Δi) was obtained as a function of the energy of the incident ions on the cathode. The results show that Δi is approximately a unique function of the ion energy for the ratios of d/R = 39, 50, 77, 115, and 200. It means that the considered mechanisms in the model are responsible for the deviation from Paschen's law.

  12. A discrete model of Ostwald ripening based on multiple pairwise interactions

    NASA Astrophysics Data System (ADS)

    Di Nunzio, Paolo Emilio

    2018-06-01

    A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.

  13. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    PubMed

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  14. An experimental and theoretical investigation on torrefaction of a large wet wood particle.

    PubMed

    Basu, Prabir; Sadhukhan, Anup Kumar; Gupta, Parthapratim; Rao, Shailendra; Dhungana, Alok; Acharya, Bishnu

    2014-05-01

    A competitive kinetic scheme representing primary and secondary reactions is proposed for torrefaction of large wet wood particles. Drying and diffusive, convective and radiative mode of heat transfer is considered including particle shrinking during torrefaction. The model prediction compares well with the experimental results of both mass fraction residue and temperature profiles for biomass particles. The effect of temperature, residence time and particle size on torrefaction of cylindrical wood particles is investigated through model simulations. For large biomass particles heat transfer is identified as one of the controlling factor for torrefaction. The optimum torrefaction temperature, residence time and particle size are identified. The model may thus be integrated with CFD analysis to estimate the performance of an existing torrefier for a given feedstock. The performance analysis may also provide useful insight for design and development of an efficient torrefier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    PubMed

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  16. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    DOE PAGES

    Ackerman, David M.; Evans, James W.

    2017-01-19

    Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less

  17. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Evans, James W.

    2017-01-01

    We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.

  18. Effect of Polydispersity on Diffusion in Random Obstacle Matrices

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-01

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D˜(ϕc-ϕm)μ-β for all values of the polydispersity, where ϕm is the area fraction and ϕc is the value of ϕm at the percolation threshold.

  19. Effect of polydispersity on diffusion in random obstacle matrices.

    PubMed

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-12

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D~(φ(c)-φ(m))(μ-β) for all values of the polydispersity, where φ(m) is the area fraction and φ(c) is the value of φ(m) at the percolation threshold.

  20. Anatomy of particle diffusion

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2009-11-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.

  1. MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Dibak, Manuel; del Razo, Mauricio J.; De Sancho, David; Schütte, Christof; Noé, Frank

    2018-06-01

    Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.

  2. Optimization and design of pigments for heat-insulating coatings

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Hai; Zhang, Yue

    2010-12-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.

  3. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  4. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  5. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  6. Cellular automaton formulation of passive scalar dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.

  7. Airflow structures and nano-particle deposition in a human upper airway model

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.

  8. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population.

    PubMed

    Shotorban, Babak

    2010-04-01

    The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.

  9. Transport dynamics -- one particle at a time

    NASA Astrophysics Data System (ADS)

    Granick, Steve

    2010-03-01

    By watching particles and molecules diffuse, one-by-one, the full displacement probability distribution can be measured, enabling one to see experimentally how, how fast, and with what fidelity to classical assumptions, particles and molecules diffuse through complex environments. This allows us to measuring the confining tube potential through which thin actin filaments reptate, and also some of the amazing differences in diffusion rate between colloidal particles and phospholipid vesicles of the same size. Pervasively, we find that Brownian diffusion can be non-Gaussian.

  10. Infinite densities for Lévy walks.

    PubMed

    Rebenshtok, A; Denisov, S; Hänggi, P; Barkai, E

    2014-12-01

    Motion of particles in many systems exhibits a mixture between periods of random diffusive-like events and ballistic-like motion. In many cases, such systems exhibit strong anomalous diffusion, where low-order moments 〈|x(t)|(q)〉 with q below a critical value q(c) exhibit diffusive scaling while for q>q(c) a ballistic scaling emerges. The mixed dynamics constitutes a theoretical challenge since it does not fall into a unique category of motion, e.g., the known diffusion equations and central limit theorems fail to describe both aspects. In this paper we resolve this problem by resorting to the concept of infinite density. Using the widely applicable Lévy walk model, we find a general expression for the corresponding non-normalized density which is fully determined by the particles velocity distribution, the anomalous diffusion exponent α, and the diffusion coefficient K(α). We explain how infinite densities play a central role in the description of dynamics of a large class of physical processes and discuss how they can be evaluated from experimental or numerical data.

  11. Mesoscale Particle-Based Model of Electrophoresis

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2015-07-31

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  12. Mesoscale Particle-Based Model of Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  13. Is the kinetic equation for turbulent gas-particle flows ill posed?

    PubMed

    Reeks, M; Swailes, D C; Bragg, A D

    2018-02-01

    This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.

  14. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less

  15. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  16. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.

    PubMed Central

    Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W

    1996-01-01

    Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314

  17. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  18. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige

    2017-10-01

    There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.

  19. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes, E-mail: jkordil@gwdg.de; Pan, Wenxiao, E-mail: Wenxiao.Pan@pnnl.gov; Tartakovsky, Alexandre, E-mail: alexandre.tartakovsky@pnnl.gov

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formationmore » of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less

  20. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    PubMed

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  1. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less

  2. A new fundamental model of moving particle for reinterpreting Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, Muhamad Darwis

    2012-06-20

    The study of Schroedinger equation based on a hypothesis that every particle must move randomly in a quantum-sized volume has been done. In addition to random motion, every particle can do relative motion through the movement of its quantum-sized volume. On the other way these motions can coincide. In this proposed model, the random motion is one kind of intrinsic properties of the particle. The every change of both speed of randomly intrinsic motion and or the velocity of translational motion of a quantum-sized volume will represent a transition between two states, and the change of speed of randomly intrinsicmore » motion will generate diffusion process or Brownian motion perspectives. Diffusion process can take place in backward and forward processes and will represent a dissipative system. To derive Schroedinger equation from our hypothesis we use time operator introduced by Nelson. From a fundamental analysis, we find out that, naturally, we should view the means of Newton's Law F(vector sign) = ma(vector sign) as no an external force, but it is just to describe both the presence of intrinsic random motion and the change of the particle energy.« less

  3. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  4. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-03-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  5. Study on the adsorption of nitrogen and phosphorus from biogas slurry by NaCl-modified zeolite

    PubMed Central

    Cheng, Qunpeng; Li, Hongxia; Xu, Yilu; Chen, Song; Liao, Yuhua; Deng, Fang; Li, Jianfen

    2017-01-01

    A NaCl-modified zeolite was used to simultaneously remove nitrogen and phosphate from biogas slurry. The effect of pH, contact time and dosage of absorbants on the removal efficiency of nitrogen and phosphate were studied. The results showed that the highest removal efficiency of NH4+-N (92.13%) and PO43−-P (90.3%) were achieved at pH 8. While the zeolite doses ranged from 0.5 to 5 g/100 ml, NH4+-N and PO43−-P removal efficiencies ranged from 5.19% to 94.94% and 72.16% to 91.63% respectively. The adsorption isotherms of N and P removal with NaCl-modified zeolite were well described by Langmuir models, suggesting the homogeneous sorption mechanisms. While through intra-particle diffusion model to analyze the influence of contact time, it showed that the adsorption process of NH4+-N and PO43−-P followed the second step of intra-particle diffusion model. The surface diffusion adsorption step was very fast which was finished in a short time. PMID:28542420

  6. Computationally efficient approach for solving time dependent diffusion equation with discrete temporal convolution applied to granular particles of battery electrodes

    NASA Astrophysics Data System (ADS)

    Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž

    2015-03-01

    The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.

  7. Transport and mixing in strongly coupled dusty plasma medium

    NASA Astrophysics Data System (ADS)

    Dharodi, Vikram; Das, Amita; Patel, Bhavesh

    2016-10-01

    The generalized hydrodynamic (GHD) fluid model has been employed to study the transport and mixing properties of Dusty plasma medium in strong coupling limit. The response of lighter electron and ion species to the dust motion is taken to be instantaneous i.e. inertia-less. Thus the electron and ion density are presumed to follow the Boltzman relation. In the incompressible limit (i-GHD) the model supports Transverse Shear wave in contrast to the Hydrodynamic fluids. It has been shown that the presence of these waves leads to a better mixing of fluid in this case. Several cases of flow configuration have been considered for the study. The transport and mixing attributes have been quantified by studying the dynamical evolution of tracer particles in the system. The diffusion and clustering of these test particles are directly linked to the mixing characteristic of a medium. The displacement of these particles provides for a quantitative estimate of the diffusion coefficient of the medium. It is shown that these test particles often organize themselves in spatially inhomogeneous pattern leading to the phenomena of clustering.

  8. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  9. Simple Analytical Forms of the Perpendicular Diffusion Coefficient for Two-component Turbulence. III. Damping Model of Dynamical Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com

    2017-10-01

    In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less

  10. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  11. Relative distance between tracers as a measure of diffusivity within moving aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Zaburdaev, Vasily

    2018-02-01

    Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.

  12. Escape and finite-size scaling in diffusion-controlled annihilation

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul L.

    2016-12-16

    In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N 1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusionmore » time scale, T ~ N 2/3, and the escape time scale, τ ~ N 4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.« less

  13. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment

    NASA Astrophysics Data System (ADS)

    Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël

    2018-05-01

    We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.

  15. Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Zhang, M.; Rassoul, H.

    2013-12-01

    There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.

  16. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  17. Robust model-based analysis of single-particle tracking experiments with Spot-On

    PubMed Central

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  18. Robust model-based analysis of single-particle tracking experiments with Spot-On.

    PubMed

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier

    2018-01-04

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  19. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel-Havar, A. H., E-mail: Amir.hushang.shirdel@gmail.com; Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shownmore » that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.« less

  20. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter

    PubMed Central

    2018-01-01

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet–visible spectrophotometry, was kinetically inhibited for RH < 20% for exposure times of 6 min to 24 h. By comparison, from 20% to 60% RH organonitrogen production took place, implying ammonia uptake and reaction. Correspondingly, the absorption index k across 280 to 320 nm increased from 0.012 to 0.02, indicative of PM browning. The k value across 380 to 420 nm increased from 0.001 to 0.004. The observed RH-dependent behavior of ammonia uptake and browning was well captured by a model that considered the diffusivities of both the large organic molecules that made up the PM and the small reactant molecules taken up from the gas phase into the PM. Within the model, large-molecule diffusivity was calculated based on observed SOM viscosity and evaporation. Small-molecule diffusivity was represented by the water diffusivity measured by a quartz-crystal microbalance. The model showed that the browning reaction rates at RH < 60% could be controlled by the low diffusivity of the large organic molecules from the interior region of the particle to the reactive surface region. The results of this study have implications for accurate modeling of atmospheric brown carbon production and associated influences on energy balance. PMID:29532020

  1. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.

    PubMed

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K; Martin, Scot T

    2018-02-28

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet-visible spectrophotometry, was kinetically inhibited for RH < 20% for exposure times of 6 min to 24 h. By comparison, from 20% to 60% RH organonitrogen production took place, implying ammonia uptake and reaction. Correspondingly, the absorption index k across 280 to 320 nm increased from 0.012 to 0.02, indicative of PM browning. The k value across 380 to 420 nm increased from 0.001 to 0.004. The observed RH-dependent behavior of ammonia uptake and browning was well captured by a model that considered the diffusivities of both the large organic molecules that made up the PM and the small reactant molecules taken up from the gas phase into the PM. Within the model, large-molecule diffusivity was calculated based on observed SOM viscosity and evaporation. Small-molecule diffusivity was represented by the water diffusivity measured by a quartz-crystal microbalance. The model showed that the browning reaction rates at RH < 60% could be controlled by the low diffusivity of the large organic molecules from the interior region of the particle to the reactive surface region. The results of this study have implications for accurate modeling of atmospheric brown carbon production and associated influences on energy balance.

  2. Sustained currents in coupled diffusive systems

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Sanders, David P.

    2014-08-01

    Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.

  3. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  4. Howard Brenner's Legacy for Biological Transport Processes

    NASA Astrophysics Data System (ADS)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  5. Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.

    PubMed

    Robinson, Risa J; Snyder, Pam; Oldham, Michael J

    2007-05-01

    Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.

  6. Product layer development during sulfation and sulfidation of uncalcined limestone particles at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.

    1998-07-01

    Fluidized bed combustion or gasification allows for in-bed sulfur capture with a calcium-based sorbent such as limestone or dolomite. Sorbent particle size, porosity, internal surface, and their variation during conversion have great influence on the conversion of the sorbent. The uptake of SO{sub 2} and H{sub 2}S by five physically different limestones is discussed, for typical pressurized fluidized bed combustor or gasifier conditions: 850/950 C, 15/20 bar. Tests were done in a pressurized thermogravimetric apparatus (P-TGA), the size of the limestone particles was 250--300 {micro}m. It is stressed that the limestones remain uncalcined. A changing internal structure (CIS) model ismore » presented in which reaction kinetics and product layer diffusion are related to the intraparticle surface of reaction, instead of the outer particle surface as in unreacted shrinking core (USC)-type models. The random pore model was used for describing the changing internal pore and reaction surfaces. Rate parameters were extracted for all five limestones using the CIS model and a USC model with variable effective diffusivity. Differences in the sulfur capture performance of the limestones were evaluated. Plots of the CaSO{sub 4} or CaS product layer thickness as a function of conversion are given, and the relative importance of limestone porosity and internal surface is discussed.« less

  7. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  8. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  9. Time series analysis of particle tracking data for molecular motion on the cell membrane.

    PubMed

    Ying, Wenxia; Huerta, Gabriel; Steinberg, Stanly; Zúñiga, Martha

    2009-11-01

    Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that restrict lateral diffusion, supporting the notion that plasma membrane organization is highly structured. Our demonstration that membrane protein motion is autocorrelated and is characterized by an excess of both short and long jumps reinforces the concept that the membrane environment is heterogeneous and dynamic. Autocorrelation analysis and modeling of the jump distributions are powerful new techniques for the analysis of SPT data and the development of more refined models of membrane organization. The time series analysis also provides several methods of estimating the diffusion constant in addition to the constant provided by the mean squared displacement. The mean squared displacement for most of the biological data shows a power law behavior rather the linear behavior of Brownian motion. In this case, we introduce the notion of an instantaneous diffusion constant. All of the diffusion constants show a strong consistency for most of the biological data.

  10. An experimental study of the role of particle diffusive convection on the residence time of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Deal, E.; Carazzo, G.; Jellinek, M.

    2013-12-01

    The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.

  11. Application of a Snow Growth Model to Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Erfani, E.; Mitchell, D. L.

    2014-12-01

    Microphysical growth processes of diffusion, aggregation and riming are incorporated analytically in a steady-state snow growth model (SGM) to solve the zeroth- and second- moment conservation equations with respect to mass. The SGM is initiated by radar reflectivity (Zw), supersaturation, temperature, and a vertical profile of the liquid water content (LWC), and it uses a gamma size distribution (SD) to predict the vertical evolution of size spectra. Aggregation seems to play an important role in the evolution of snowfall rates and the snowfall rates produced by aggregation, diffusion and riming are considerably greater than those produced by diffusion and riming alone, demonstrating the strong interaction between aggregation and riming. The impact of ice particle shape on particle growth rates and fall speeds is represented in the SGM in terms of ice particle mass-dimension (m-D) power laws (m = αDβ). These growth rates are qualitatively consistent with empirical growth rates, with slower (faster) growth rates predicted for higher (lower) β values. In most models, β is treated constant for a given ice particle habit, but it is well known that β is larger for the smaller crystals. Our recent work quantitatively calculates β and α for cirrus clouds as a function of D where the m-D expression is a second-order polynomial in log-log space. By adapting this method to the SGM, the ice particle growth rates and fall speeds are predicted more accurately. Moreover, the size spectra predicted by the SGM are in good agreement with those from aircraft measurements during Lagrangian spiral descents through frontal clouds, indicating the successful modeling of microphysical processes. Since the lowest Zw over complex topography is often significantly above cloud base, the precipitation is often underestimated by radar quantitative precipitation estimates (QPE). Our SGM is capable of being initialized with Zw at the lowest reliable radar echo and consequently improves QPE at ground level.

  12. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.

    PubMed

    Schöneberg, Johannes; Heck, Martin; Hofmann, Klaus Peter; Noé, Frank

    2014-09-02

    Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  14. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles.

    PubMed

    Cooper, Justin T; Peterson, Eric M; Harris, Joel M

    2013-10-01

    Due to its high specific surface area and chemical stability, porous silica is used as a support structure in numerous applications, including heterogeneous catalysis, biomolecule immobilization, sensors, and liquid chromatography. Reversed-phase liquid chromatography (RPLC), which uses porous silica support particles, has become an indispensable separations tool in quality control, pharmaceutics, and environmental analysis requiring identification of compounds in mixtures. For complex samples, the need for higher resolution separations requires an understanding of the time scale of processes responsible for analyte retention in the stationary phase. In the present work, single-molecule fluorescence imaging is used to observe transport of individual molecules within RPLC porous silica particles. This technique allows direct measurement of intraparticle molecular residence times, intraparticle diffusion rates, and the spatial distribution of molecules within the particle. On the basis of the localization uncertainty and characteristic measured diffusion rates, statistical criteria were developed to resolve the frame-to-frame behavior of molecules into moving and stuck events. The measured diffusion coefficient of moving molecules was used in a Monte Carlo simulation of a random-walk model within the cylindrical geometry of the particle diameter and microscope depth-of-field. The simulated molecular transport is in good agreement with the experimental data, indicating transport of moving molecules in the porous particle is described by a random-walk. Histograms of stuck-molecule event times, locations, and their contributions to intraparticle residence times were also characterized.

  15. Single file diffusion into a semi-infinite tube.

    PubMed

    Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D

    2015-11-23

    We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.

  16. Hydrogen sulfide capture by limestone and dolomite at elevated pressure. 2: Sorbent particle conversion modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.

    1996-03-01

    The physical structure of a limestone or dolomite to be used in in-bed sulfur capture in fluidized bed gasifiers has a great impact on the efficiency of sulfur capture and sorbent use. In this study an unreacted shrinking core model with variable effective diffusivity is applied to sulfidation test data from a pressurized thermogravimetric apparatus (P-TGA) for a set of physically and chemically different limestone and dolomite samples. The particle size was 250--300 {micro}m for all sorbents, which were characterized by chemical composition analysis, particle density measurement, mercury porosimetry, and BET internal surface measurement. Tests were done under typical conditionsmore » for a pressurized fluidized-bed gasifier, i.e., 20% CO{sub 2}, 950 C, 20 bar. At these conditions the limestone remains uncalcined, while the dolomite is half-calcined. Additional tests were done at low CO{sub 2} partial pressures, yielding calcined limestone and fully calcined dolomite. The generalized model allows for determination of values for the initial reaction rate and product layer diffusivity.« less

  17. Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-12-01

    Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a limited number of particles.

  18. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model.

    PubMed

    Prokhorov, Alexander

    2012-05-01

    This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.

  19. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  20. Single-image diffusion coefficient measurements of proteins in free solution.

    PubMed

    Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M

    2012-04-04

    Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Transfer matrix method for four-flux radiative transfer.

    PubMed

    Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini

    2017-07-20

    We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

  2. Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.

    PubMed

    Hansing, Johann; Netz, Roland R

    2018-06-05

    Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Dissipative-particle-dynamics model of biofilm growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.

    2011-06-13

    A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.

  4. Traveling front solutions to directed diffusion-limited aggregation, digital search trees, and the Lempel-Ziv data compression algorithm.

    PubMed

    Majumdar, Satya N

    2003-08-01

    We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.

  5. Traveling front solutions to directed diffusion-limited aggregation, digital search trees, and the Lempel-Ziv data compression algorithm

    NASA Astrophysics Data System (ADS)

    Majumdar, Satya N.

    2003-08-01

    We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.

  6. A Bond-Fluctuation Model of Translational Dynamics of Chain-like Particles through Mucosal Scaffolds.

    PubMed

    Bajd, Franci; Serša, Igor

    2018-06-05

    Mucus scaffolds represent one of the most common barriers in targeted drug delivery and can remarkably reduce the outcome of pharmacological therapies. An efficient transport of drug particles through a mucus barrier is a precondition for an efficient drug delivery. Understanding the transport mechanism is particularly important for treatment of disorders such as cystic fibrosis. These are characterized by an onset of high-density mucus scaffolds imposing an increased steric filtering. In this study, we employed the bond-fluctuation model to analyze the effect of steric interactions on slowing the translational dynamics of compound chain-like particles traversing through scaffolds of different configurations (regular isotropic and anisotropic versus irregular random). The model, which accounts for both the geometry-imposed steric interaction as well as the intrachain steric interaction between the chain subunits, yields a transient subdiffusive motional pattern persists between the short-time and long-time Gaussian diffusion limits. The motion is analyzed in terms of a mean-squared displacement, diffusion coefficient, and radius of gyration. With higher levels of restriction or larger particles, the subdiffusive motional regime persists longer. The study also demonstrates that an important feature of the motion is also geometry-induced chain accommodation. The presented model is generic and could also be applied to studying the translational dynamics of other particles with more complex architecture such as dendrites or chain-decorated nanoparticles. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-05

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.

  8. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.

    PubMed

    Yates, Christian A; Flegg, Mark B

    2015-05-06

    Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  10. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  11. Transport of solar electrons in the turbulent interplanetary magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com; Dresing, N., E-mail: dresing@physik.uni-kiel.de

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profilesmore » can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.« less

  12. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less

  14. Dynamics of a magnetic active Brownian particle under a uniform magnetic field.

    PubMed

    Vidal-Urquiza, Glenn C; Córdova-Figueroa, Ubaldo M

    2017-11-01

    The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.

  15. Dynamics of a magnetic active Brownian particle under a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Vidal-Urquiza, Glenn C.; Córdova-Figueroa, Ubaldo M.

    2017-11-01

    The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α . In this work, the time-dependent active diffusivity and the crossover time (τcross)—from ballistic to diffusive regimes—are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α , the particle undergoes a directional (or ballistic) propulsive motion at very short times (t ≪τcross ). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t ≫τcross ), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α =0 ), the crossover time is equal to the characteristic time scale for rotational diffusion, τrot. In the presence of a magnetic field (α >0 ), the correlation function, the active diffusivity, and the crossover time decrease with increasing α . The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τcross≪τrot . In the limit of weak fields (α ≪1 ), the crossover time decreases quadratically with α , while in the limit of strong fields (α ≫1 ) it decays asymptotically as α-1. The results are in excellent agreement with those obtained by Brownian dynamics simulations.

  16. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June

    2014-12-01

    Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.

  17. A novel model for the chaotic dynamics of superdiffusion

    NASA Astrophysics Data System (ADS)

    Cushman, J. H.; Park, M.; O'Malley, D.

    2009-04-01

    Previously we've shown that by modeling the convective velocity in a turbulent flow field as Brownian, one obtains Richardson super diffusion where the expected distance between pairs of particles scales with time cubed. By proving generalized central limit type theorems it's possible to show that modeling the velocity or the acceleration as α-stable Levy gives rise to more general scaling laws that can easily explain other super diffusive regimes. The problem with this latter approach is that the mean square displacement of a particle is infinite. Here we provide an alternate approach that gives a power law mean square displacement of any desired order. We do so by constructing compressed and stretched extensions to Brownian motion. The finite size Lyapunov exponent, the underlying stochastic differential equation and its corresponding Fokker-Planck equations are derived. The fractal dimension of these processes turns out to be the same as that of classical Brownian motion.

  18. Monte Carlo simulation of the back-diffusion of electrons in nitrogen

    NASA Astrophysics Data System (ADS)

    Radmilović-Radjenović, M.; Nina, A.; Nikitović, Ž.

    2009-01-01

    In this paper, the process of back-diffusion in nitrogen is studied by means of Monte Carlo simulations. In particular we analyze the influence of different aspects of back-diffusion in order to simplify the models of plasma displays, low pressure gas breakdown and detectors of high energy particles. The obtained simulation results show that the escape coefficient depends strongly on the reflection coefficient and the initial energy of electrons. It was also found that the back-diffusion range and number of collisions before returning to the cathode in nitrogen are smaller than those in argon for similar conditions.

  19. Bubble Formation Modeling in IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2000-09-27

    The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.

  20. A theoretical model to determine the capacity performance of shape-specific electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  1. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  2. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  3. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  4. Diffusion Rates of Organic Molecules in Secondary Organic Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bertram, A. K.; Chenyakin, Y.; Song, M.; Grayson, J. W.; Ullmann, D.; Evoy, E.; Renbaum-Wolff, L.; Liu, P.; Zhang, Y.; Kamal, S.; Martin, S. T.

    2016-12-01

    Information on the diffusion rates of organic molecules in secondary organic aerosol (SOA) particles are needed when predicting their size distribution, growth rates, photochemistry and heterogeneous chemistry. We have used two approaches to determine diffusion rates of organic molecules in SOA particles and proxies of SOA. In the first approach, we measured viscosities and then predicted diffusion rates using the Stokes-Einstein relation. In the second approach, we measured diffusion rates directly using a technique referred to as fluorescence recovery after photobleaching. Results from these measurements, including diffusion coefficients as a function of water activity, will be presented and the implications discussed.

  5. Sorption Modeling and Verification for Off-Gas Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less

  6. Modeling fluid diffusion in cerebral white matter with random walks in complex environments

    NASA Astrophysics Data System (ADS)

    Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.

    2012-02-01

    Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.

  7. Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins.

    PubMed

    Kong, Muwen; Van Houten, Bennett

    2017-08-01

    Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.

    PubMed

    Jeon, Jae-Hyung; Chechkin, Aleksei V; Metzler, Ralf

    2014-08-14

    Anomalous diffusion is frequently described by scaled Brownian motion (SBM), a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is 〈x(2)(t)〉 ≃ 2K(t)t with K(t) ≃ t(α-1) for 0 < α < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion, for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely, we demonstrate that under confinement, the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments, in particular, under confinement inside cellular compartments or when optical tweezers tracking methods are used.

  9. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  10. Analytical study of fractional equations describing anomalous diffusion of energetic particles

    NASA Astrophysics Data System (ADS)

    Tawfik, A. M.; Fichtner, H.; Schlickeiser, R.; Elhanbaly, A.

    2017-06-01

    To present the main influence of anomalous diffusion on the energetic particle propagation, the fractional derivative model of transport is developed by deriving the fractional modified Telegraph and Rayleigh equations. Analytical solutions of the fractional modified Telegraph and the fractional Rayleigh equations, which are defined in terms of Caputo fractional derivatives, are obtained by using the Laplace transform and the Mittag-Leffler function method. The solutions of these fractional equations are given in terms of special functions like Fox’s H, Mittag-Leffler, Hermite and Hyper-geometric functions. The predicted travelling pulse solutions are discussed in each case for different values of fractional order.

  11. Enriched reproducing kernel particle method for fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam

    2018-06-01

    The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

  12. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated that this may be a characteristic special to the test combustor used.

  13. Non-universal tracer diffusion in crowded media of non-inert obstacles.

    PubMed

    Ghosh, Surya K; Cherstvy, Andrey G; Metzler, Ralf

    2015-01-21

    We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.

  14. IUTAM symposium on hydrodynamic diffusion of suspended particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.H.

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation,more » centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  15. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  16. Dynamic phase coexistence in glass-forming liquids.

    PubMed

    Pastore, Raffaele; Coniglio, Antonio; Ciamarra, Massimo Pica

    2015-07-09

    One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loyalka, Sudarshan

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less

  18. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  19. Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

    NASA Astrophysics Data System (ADS)

    Karthick, S.; Sen, A. K.

    2017-11-01

    We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.

  20. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

Top