Sample records for particle dynamic behavior

  1. Improved Boron for Enhanced Combustion

    DTIC Science & Technology

    1990-06-01

    elements scanned. - 11 - C. Particle Dynamics Ultrafine particles on the order of 0.01 to 0.1 micron diameter are known to exhibit dynamic behavior...very short relaxation times after perturbations [7]. Of the four major regimes of particle dynamic behavior, these ultrafine particles are classified in...modeling. Ultrafine particles up to approximately 0.1 micron in diameter tend to have unequilibrated surface energy [7,8,9,101. This is particularly

  2. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  3. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium.

    PubMed

    Zakhari, Monica E A; Anderson, Patrick D; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012)1359-664010.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  4. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    NASA Astrophysics Data System (ADS)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  5. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.

  6. Dynamic heterogeneities and non-Gaussian behavior in two-dimensional randomly confined colloidal fluids

    NASA Astrophysics Data System (ADS)

    Schnyder, Simon K.; Skinner, Thomas O. E.; Thorneywork, Alice L.; Aarts, Dirk G. A. L.; Horbach, Jürgen; Dullens, Roel P. A.

    2017-03-01

    A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013), 10.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.

  7. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  8. Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map

    NASA Astrophysics Data System (ADS)

    Krueger, Wesley

    2007-10-01

    Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.

  9. A quasi-molecular dynamics simulation study on the effect of particles collisions in pulsed-laser desorption

    NASA Astrophysics Data System (ADS)

    Xinyu-Tan; Duanming-Zhang; Shengqin-Feng; Li, Zhi-hua; Li, Guan; Li, Li; Dan, Liu

    2006-05-01

    The dynamics characteristic and effect of atoms and particulates ejected from the surface generated by nanosecond pulsed-laser ablation are very important. In this work, based on the consideration of the inelasticity and non-uniformity of the plasma particles thermally desorbed from a plane surface into vacuum induced by nanosecond laser ablation, the one-dimensional particles flow is studied on the basis of a quasi-molecular dynamics (QMD) simulation. It is assumed that atoms and particulates ejected from the surface of a target have a Maxwell velocity distribution corresponding to the surface temperature. Particles collisions in the ablation plume. The particles mass is continuous and satisfies fractal theory distribution. Meanwhile, the particles are inelastic. Our results show that inelasticity and non-uniformity strongly affect the dynamics behavior of the particles flow. Along with the decrease of restitution coefficient e and increase of fractional dimension D, velocity distributions of plasma particles system all deviate from the initial Gaussian distribution. The increasing of dissipation energy ΔE leads to density distribution clusterized and closed up to the center mass. Predictions of the particles action based on the proposed fractal and inelasticity model are found to be in agreement with the experimental observation. This verifies the validity of the present model for the dynamics behavior of pulsed-laser-induced particles flow.

  10. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  11. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881

  12. Dissipative gravitational bouncer on a vibrating surface

    NASA Astrophysics Data System (ADS)

    Espinoza Ortiz, J. S.; Lagos, R. E.

    2017-12-01

    We study the dynamical behavior of a particle flying under the influence of a gravitational field, with dissipation constant λ (Stokes-like), colliding successive times against a rigid surface vibrating harmonically with restitution coefficient α. We define re-scaled dimensionless dynamical variables, such as the relative particle velocity Ω with respect to the surface’s velocity; and the real parameter τ accounting for the temporal evolution of the system. At the particle-surface contact point and for the k‧th collision, we construct the mapping described by (τk ; Ω k ) in order to analyze the system’s nonlinear dynamical behavior. From the dynamical mapping, the fixed point trajectory is computed and its stability is analyzed. We find the dynamical behavior of the fixed point trajectory to be stable or unstable, depending on the values of the re-scaled vibrating surface amplitude Γ, the restitution coefficient α and the damping constant λ. Other important dynamical aspects such as the phase space volume and the one cycle vibrating surface (decomposed into absorbing and transmitting regions) are also discussed. Furthermore, the model rescues well known results in the limit λ = 0.

  13. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  14. Dynamical heterogeneity in a glass-forming ideal gas.

    PubMed

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  15. Experimental studies of tuned particle damper: Design and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao

    2018-01-01

    To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.

  16. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  17. Investigation of electric charge on inertial particle dynamics in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Shaw, Raymond

    2014-11-01

    The behavior of electrically charged, inertial particles in homogeneous, isotropic turbulence is investigated. Both like-charged and oppositely-charged particle interactions are considered. Direct numerical simulations (DNS) of turbulence in a periodic box using the pseudospectral numerical method are performed, with Lagrangian tracking of the particles. We study effects of mutual electrostatic repulsion and attraction on the particle dynamics, as quantified by the radial distribution function (RDF) and the radial relative velocity. For the like-charged particle case, the Coulomb force leads to a short range repulsion behavior and an RDF reminiscent of that for a dilute gas. For the oppositely-charged particle case, the Coulomb force increases the RDF beyond that already occurring for neutral inertial particles. For both cases, the relative velocities are calculated as a function of particle separation distance and show distinct deviations from the expected scaling within the dissipation range. This research was supported by NASA Grant NNX113AF90G.

  18. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  19. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory.

    PubMed

    Qi, Shuanhu; Schmid, Friederike

    2017-11-08

    We present a multiscale hybrid particle-field scheme for the simulation of relaxation and diffusion behavior of soft condensed matter systems. It combines particle-based Brownian dynamics and field-based local dynamics in an adaptive sense such that particles can switch their level of resolution on the fly. The switching of resolution is controlled by a tuning function which can be chosen at will according to the geometry of the system. As an application, the hybrid scheme is used to study the kinetics of interfacial broadening of a polymer blend, and is validated by comparing the results to the predictions from pure Brownian dynamics and pure local dynamics calculations.

  20. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  1. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE PAGES

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...

    2017-09-19

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  2. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less

  3. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  4. Quantum Tunneling and Chaos in Classical Scale Walkers

    NASA Astrophysics Data System (ADS)

    Su, Jenny; Dijksman, Joshua; Ward, Jeremy; Behringer, Robert

    2014-03-01

    We study the behavior of `walkers' small droplets bouncing on a fluid layer vibrated at amplitudes just below the onset of Faraday instability. It was shown recently that despite their macroscopic size, the droplet dynamics are stochastic in nature and reminiscent of the dual particle-wave dynamics in the realm of quantum mechanics (Couder PRL 2006). We use these walkers to study how chaos, which is macroscopically unpredictable, will manifest in a quantum setting. Pecora showed in 2011 that tunneling for particles that have a chaotic ground state is different from tunneling for particles with a regular ground state (PRE 2011). In the experiment we gather data that illustrates the particle trajectory and tunneling behavior as particles transition across the barrier in the double well system with both integrable and chaotic shapes.

  5. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  6. Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Dentz, M.; Willmann, M.; Holzner, M.

    2017-12-01

    A proper understanding of velocity dynamics is key for making transport predictions through porous media at any scale. We study the velocity evolution process from particle dynamics at the pore-scale with particular interest in preasymptotic (non-Fickian) behavior. Experimental measurements from 3-dimensional particle tracking velocimetry are used to obtain Lagrangian velocity statistics for three different types of media heterogeneity. Particle velocities are found to be intermittent in nature, log-normally distributed and non-stationary. We show that these velocity characteristics can be captured with a correlated Ornstein-Uhlenbeck process for a random walk in space that is parameterized from velocity distributions. Our simple model is rigorously tested for accurate reproduction of velocity variability in magnitude and frequency. We further show that it captures exceptionally well the preasymptotic mean and mean squared displacement in the ballistic and superdiffusive regimes, and can be extended to determine if and when Fickian behavior will be reached. Our approach reproduces both preasymptotic and asymptotic transport behavior with a single transport model, demonstrating correct description of the fundamental controls of anomalous transport.

  7. A MD simulation and analysis for aggregation behaviors of nanoscale zero-valent iron particles in water via MS.

    PubMed

    Zhao, Ying; Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi

    2014-01-01

    With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment.

  8. A MD Simulation and Analysis for Aggregation Behaviors of Nanoscale Zero-Valent Iron Particles in Water via MS

    PubMed Central

    Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi

    2014-01-01

    With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment. PMID:25250388

  9. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  11. Snakes on a plane: modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Selinger, Robin

    Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.

  12. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately. The results demonstrate that the cohesive behavior of silt in the settling process is attributed to both the cohesion among silt particles themselves and the particle polydispersity. To guide to the macro-scale modeling of cohesive silt sedimentation, the collision frequency functions obtained in the numerical simulations are also presented based on the micromechanics of particles. The results obtained by using CFD-DEM indicate that the binary collision theory over-estimated the particle collision frequency in the flocculation process at high solid volume fraction.

  13. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  14. Dynamic self-organization of side-propelling colloidal rods: experiments and simulations.

    PubMed

    Vutukuri, Hanumantha Rao; Preisler, Zdeněk; Besseling, Thijs H; van Blaaderen, Alfons; Dijkstra, Marjolein; Huck, Wilhelm T S

    2016-12-06

    In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H 2 O 2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.

  15. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  16. Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jennifer M.; Bell, David M.; Imre, D.

    2016-08-02

    Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less

  17. A versatile model for soft patchy particles with various patch arrangements.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  18. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.

    PubMed

    Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai

    2011-09-02

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  19. Computing fluid-particle interaction forces for nano-suspension droplet spreading: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Weizhou; Shi, Baiou; Webb, Edmund

    2017-11-01

    Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.

  20. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  1. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  2. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  3. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Xiang, Yu; Wei, Zhengying; Wei, Pei; Lu, Bingheng; Zhang, Lijuan; Du, Jun

    2018-04-01

    During selective laser melting (SLM) of K418 powder, the influence of the process parameters, such as laser power P and scanning speed v, on the dynamic thermal behavior and morphology of the melted tracks was investigated numerically. A 3D finite difference method was established to predict the dynamic thermal behavior and flow mechanism of K418 powder irradiated by a Gaussian laser beam. A three-dimensional randomly packed powder bed composed of spherical particles was established by discrete element method. The powder particle information including particle size distribution and packing density were taken into account. The volume shrinkage and temperature-dependent thermophysical parameters such as thermal conductivity, specific heat, and other physical properties were also considered. The volume of fluid method was applied to reconstruct the free surface of the molten pool during SLM. The geometrical features, continuity boundaries, and irregularities of the molten pool were proved to be largely determined by the laser energy density. The numerical results are in good agreement with the experiments, which prove to be reasonable and effective. The results provide us some in-depth insight into the complex physical behavior during SLM and guide the optimization of process parameters.

  4. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization.

    PubMed

    O'Brien, Matthew N; Girard, Martin; Lin, Hai-Xin; Millan, Jaime A; Olvera de la Cruz, Monica; Lee, Byeongdu; Mirkin, Chad A

    2016-09-20

    In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.

  5. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  6. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Galindo-Torres, S. A.; Tang, Hongwu; Jin, Guangqiu; Scheuermann, A.; Li, Ling

    2016-06-01

    We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide range of conditions with Reynolds numbers Re varying between 1 and 2000, sphericity ϕ and circularity c both greater than 0.5, and Corey shape factor (CSF) less than 1. To simulate the particle settling process, a modified lattice Boltzmann model combined with a turbulence module was adopted. This model was first validated using experimental data for particles of spherical and cubic shapes. For irregularly shaped particles, two different types of settling behaviors were observed prior to particles reaching a steady state: accelerating and accelerating-decelerating, which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics were analyzed with a focus on the projected areas and angular velocities of particles. It was found that a minor change in the starting projected area, an indicator of the initial particle orientation, would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all simulated particles when Re>100 . The amplitude of these oscillations increased with Re. However, the periods were not sensitive to Re. The critical Re that defined the transition between the steady and periodically oscillating behaviors depended on the inertia tensor. In particular, the maximum eigenvalue of the inertia tensor played a major role in signaling this transition in comparison to the intermediate and minimum eigenvalues.

  7. Collective Behavior of Camphor Floats Migrating on the Water Surface

    NASA Astrophysics Data System (ADS)

    Nishimori, Hiraku; Suematsu, Nobuhiko J.; Nakata, Satoshi

    2017-10-01

    As simple and easily controllable objects among various self-propelled particles, camphor floats on the water surface have been widely recognized. In this paper, we introduce characteristic behaviors and discuss the background mechanism of camphor floats on water, both in isolated and non-isolated conditions. In particular, we focus on: (i) the transition of dynamical characters through bifurcations exhibited by systems with small number of camphor floats and (ii) the emergence of a rich variety of complex dynamics observed in systems with large number camphor floats, and attempt to elucidate these phenomena through mathematical modeling as well as experimental analysis. Finally, we discuss the connection of the dynamics of camphor floats to that of a wider class of complex and sophisticated dynamics exhibited by various types of self-propelled particles.

  8. Experimental determination of the dynamics of an acoustically levitated sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy; Andrade, Marco A. B.; Canetti, Rafael

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents amore » damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.« less

  9. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  10. Motion of dust particles in nonuniform magnetic field and applicability of smoothed particle hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Saitou, Y.

    2018-01-01

    An SPH (Smoothed Particle Hydrodynamics) simulation code is developed to reproduce our findings on behavior of dust particles, which were obtained in our previous experiments (Phys. Plasmas, 23, 013709 (2016) and Abst. 18th Intern. Cong. Plasma Phys. (Kaohsiung, 2016)). Usually, in an SPH simulation, a smoothed particle is interpreted as a discretized fluid element. Here we regard the particles as dust particles because it is known that behavior of dust particles in complex plasmas can be described using fluid dynamics equations in many cases. Various rotation velocities that are difficult to achieve in the experiment are given to particles at boundaries in the newly developed simulation and motion of particles is investigated. Preliminary results obtained by the simulation are shown.

  11. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  12. Dynamic behavior of particles in spacecraft

    NASA Technical Reports Server (NTRS)

    Perrine, B. S.

    1981-01-01

    The behavior of particles relative to a spacecraft frame of reference was examined. Significant spatial excursions of particles in space can occur relative to the spacecraft frame of reference as a result of drag deceleration of the vehicle. These vehicle excursions tend to be large as time increases. Thus, if the particle is required to remain in a specified volume, constraints may be required. Thus, for example, in levitation experiments it may be extremely difficult to turn off the forces of constraint which keep the particles in a specified region. This means experiments which are sensitive to disturbances may be very difficult to perform if perturbation forces are required to be absent.

  13. Fluid and particle transport of a hairy structure

    NASA Astrophysics Data System (ADS)

    Lee, Hongki; Lahooti, Mohsen; Kim, Daegyoum; Jung, Seyeong

    2017-11-01

    Hairy appendages of animals are used to capture particles, sense surrounding flow, and generate propulsive force. Due to the small size of the hairy structures, their hydrodynamics have been studied mostly in very low Reynolds number. In this work, in a broad range of Reynolds number, O(1) - O(100), flow structure and inertial particle dynamics around an array of two-dimensional cylinders are investigated numerically by using an immersed boundary method. Given flow fields, Maxey-Riley equation is adopted to examine particle dynamics. Here, we discuss the effects of Reynolds number, density ratio of inertial particles and fluid, and distance between cylinders on particle behaviors around a moving structure. In addition, drift volume of inertial particles is correlated with the model parameters.

  14. Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites

    NASA Astrophysics Data System (ADS)

    Choi, Jong Han; Lee, Sangmook; Lee, Jae Wook

    2017-02-01

    The rheological properties of polymer composites highly filled with different filler materials were examined using a stress-controlled rheometer with a parallel-plate configuration, for particle characterization of the filler materials in plastic (polymer) bonded explosive (PBX). Ethylene vinyl acetate (EVA) with dioctyl adipate (DOA) was used as the matrix phase, which was shown to exhibit Newtonian-like behavior. The dispersed phase consisted of one of two energetic materials, i.e., explosive cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX), or a simulant (Dechlorane) in a bimodal size distribution. Before the test, preshearing was conducted to identify the initial condition of each sample. All examined filled polymer specimens exhibited yield stress and shear-thinning behavior over the investigated frequency range. The complex viscosity dependence on the dynamic oscillation frequency was also fitted using an appropriate rheological model, suggesting the model parameters. Furthermore, the temperature dependency of the different filler particle types was determined for different filler volume fractions. These comparative studies revealed the influence of the particle characteristics on the rheological properties of the filled polymer.

  15. Early Dynamics and Stabilization Mechanisms of Oil-in-Water Emulsions Containing Colloidal Particles Modified with Short Amphiphiles: A Numerical Study.

    PubMed

    Cerbelaud, Manuella; Videcoq, Arnaud; Alison, Lauriane; Tervoort, Elena; Studart, André R

    2017-12-19

    Emulsions stabilized by mixtures of particles and amphiphilic molecules are relevant for a wide range of applications, but their dynamics and stabilization mechanisms on the colloidal level are poorly understood. Given the challenges to experimentally probe the early dynamics and mechanisms of droplet stabilization, Brownian dynamics simulations are developed here to study the behavior of oil-in-water emulsions stabilized by colloidal particles modified with short amphiphiles. Simulation parameters are based on an experimental system that consists of emulsions obtained with octane as the oil phase and a suspension of alumina colloidal particles modified with short carboxylic acids as the continuous aqueous medium. The numerical results show that attractive forces between the colloidal particles favor the formation of closely packed clusters on the droplet surface or of a percolating network of particles throughout the continuous phase, depending on the amphiphile concentration. Simulations also reveal the importance of a strong adsorption of particles at the liquid interface to prevent their depletion from the droplet surface when another droplet approaches. Strongly adsorbed particles remain immobile on the droplet surface, generating an effective steric barrier against droplet coalescence. These findings provide new insights into the early dynamics and mechanisms of stabilization of emulsions using particles and amphiphilic molecules.

  16. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  17. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  18. Managing lifelike behavior in a dynamic self-assembled system

    NASA Astrophysics Data System (ADS)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  19. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  20. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  1. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  2. Quincke rotation of an ellipsoid

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Brosseau, Quentin

    2016-11-01

    The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.

  3. Swarming behavior of gradient-responsive Brownian particles in a porous medium.

    PubMed

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  4. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  5. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  6. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  7. Capillary trapping of particles in thin-film flows

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Gomez, Michael; Colnet, Benedicte; Sauret, Alban

    2017-11-01

    When a thin layer of suspension flows over a substrate, some particles remain trapped on the solid surface. When the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and the dynamics of the liquid films. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films and the resulting loss of transported material. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the drainage dynamics exhibits behavior that cannot be captured with a continuum model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 & CNRS-PICS-07242 & ACS-PRF 55845-ND9.

  8. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu

    2014-09-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamicmore » yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within the framework of dynamic localization theory and that suspension mechanics can be understood in terms of a dynamical potential barrier, the magnitude of which governs the zero shear rate viscosity, and onset of a dynamic yield stress plateau as volume fraction or strength of interaction is raised.« less

  9. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  10. Real-time dynamics of high-velocity micro-particle impact

    NASA Astrophysics Data System (ADS)

    Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.

    High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.

  11. From strings to coils: Rotational dynamics of DNA-linked colloidal chains

    NASA Astrophysics Data System (ADS)

    Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa

    2017-10-01

    We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.

  12. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  13. Impact of anticipation in dynamical systems

    NASA Astrophysics Data System (ADS)

    Gerlee, P.; Tunstrøm, K.; Lundh, T.; Wennberg, B.

    2017-12-01

    Many animals, including humans, have predictive capabilities and, presumably, base their behavioral decisions—at least partially—upon an anticipated state of their environment. We explore a minimal version of this idea in the context of particles that interact according to a pairwise potential. Anticipation enters the picture by calculating the interparticle forces from linear extrapolations of the particle positions some time τ in the future. Simulations show that for intermediate values of τ , compared to a transient time scale defined by the potential and the initial conditions, the particles form rotating clusters in which the particles are arranged in a hexagonal pattern. Analysis of the system shows that anticipation induces energy dissipation and we show that the kinetic energy asymptotically decays as 1 /t . Furthermore, we show that the angular momentum is not necessarily conserved for τ >0 , and that asymmetries in the initial condition therefore can cause rotational movement. These results suggest that anticipation could play an important role in collective behavior, since it may induce pattern formation and stabilizes the dynamics of the system.

  14. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films

    PubMed Central

    2017-01-01

    Polymer-tethered colloidal particles (aka “particle brush materials”) have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush–brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems. PMID:29755139

  15. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films.

    PubMed

    Cang, Yu; Reuss, Anna N; Lee, Jaejun; Yan, Jiajun; Zhang, Jianan; Alonso-Redondo, Elena; Sainidou, Rebecca; Rembert, Pascal; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2017-11-14

    Polymer-tethered colloidal particles (aka "particle brush materials") have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush-brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems.

  16. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Sullivan, Kyle; Reeves, Robert; Densmore, John; Willey, Trevor; van Buuren, Tony; Fezaa, Kamel

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. Funding provided by the LLNL LDRD program (PLS-16FS-028).

  17. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE PAGES

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...

    2017-02-24

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  18. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  19. Dynamics of solid lubrication as observed by optical microscopy

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1976-01-01

    A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.

  20. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  1. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.

    PubMed

    Takahashi, Kentaro; Kimura, Yasuyuki

    2014-07-01

    We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.

  2. Dynamics and density distribution of strongly confined noninteracting nonaligning self-propelled particles in a nonconvex boundary

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael F.

    2015-01-01

    We study the dynamics of nonaligning, noninteracting self-propelled particles confined to a box in two dimensions. In the strong confinement limit, when the persistence length of the active particles is much larger than the size of the box, particles stay on the boundary and align with the local boundary normal. It is then possible to derive the steady-state density on the boundary for arbitrary box shapes. In nonconvex boxes, the nonuniqueness of the boundary normal results in hysteretic dynamics and the density is nonlocal, i.e., it depends on the global geometry of the box. These findings establish a general connection between the geometry of a confining box and the behavior of an ideal active gas it confines, thus providing a powerful tool to understand and design such confinements.

  3. Magnetotail particle dynamics and transport

    NASA Technical Reports Server (NTRS)

    Speiser, Theodore W.

    1995-01-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  4. The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems

    NASA Astrophysics Data System (ADS)

    Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon

    Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  5. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  6. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  7. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan

    2017-03-21

    We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.

  8. Contagion Shocks in One Dimension

    NASA Astrophysics Data System (ADS)

    Bertozzi, Andrea L.; Rosado, Jesus; Short, Martin B.; Wang, Li

    2015-02-01

    We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a "fear" variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with "sticky" particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.

  9. Signatures of chaos in the Brillouin zone.

    PubMed

    Barr, Aaron; Barr, Ariel; Porter, Max D; Reichl, Linda E

    2017-10-01

    When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.

  10. Identification of viscous droplets' physical properties that determine droplet behaviors in inertial microfluidics

    NASA Astrophysics Data System (ADS)

    Hur, Soojung Claire

    2013-11-01

    Inertial effects in microfluidic systems have recently recognized as a robust and passive way of focusing and ordering microscale particles and cells continuously. Moreover, theoretical analysis has shown that there exists a force away from channel walls in Poiseuille flow that locates deformable particles closer to the channel center than rigid counterparts. Then, the particle deformability can be extrapolated from the positions of particles with known sizes in the channel. Here, behaviors of various viscous droplets in inertial flow were investigated to identify critical properties determining their dynamic lateral position. Fluorinated oil solutions (μ = 1.7 mPas and 5 mPas) containing droplets (1mPas< μ<1.3Pas) were injected into a microfluidic channel with a syringe pump (8 < Rc < 50). Interfacial tension between aqueous and oil phases were varied by adding controlled amount of a surfactant. The diameter, a, deformability, Def, and dynamic lateral position, Xeq, were determined using high-speed microscopy. Xeq, was found to correlate with the particle Capillary Number, CaP, regardless of droplet viscosities when CaP <0.02 or CaP >0.2, suggesting that the viscous drag from the continuous phase and the interfacial tension were competing factors determining Xeq. Experimental results suggested that (i) interplay among droplet's viscosity, interfacial tension and inertia of carrier fluid determines dynamic lateral position of droplets and (ii) the dominant property varies at a different regime.

  11. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  12. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  13. Complex collective dynamics of active torque-driven colloids at interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snezhko, Alexey

    Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less

  14. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  15. Understanding bulk behavior of particulate materials from particle scale simulations

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not least, numerical simulations, along with theoretical analysis, are performed to investigate the interparticle force of dry coated particles. A model is derived and can be used to predict the probabilities of hose-host (HH), host-guest (HG), and guest-guest (GG) contacts. The results indicate that there are three different regions dominated by HH, HG, and GG contacts, respectively. Moreover, the critical SAC for the transition of HG to GG contacts is lower than previously estimated value. In summary, particle packing, particle dynamics associated with various particle processing devices, and interparticle force of dry coated particles are investigated in this thesis. The results show that particle scale information such as coordination number, collision dynamics, and contact force between particles from simulation results can help better understand bulk properties of assembly of individual particles.

  16. Majorana modes in solid state systems and its dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  17. Symmetry breaking in clogging for oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  18. Dynamics and yielding of binary self-suspended nanoparticle fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Akanksha; Yu, Hsiu-Yu; Srivastava, Samanvaya

    Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. Wemore » discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.« less

  19. Accelerated transport and growth with symmetrized dynamics

    NASA Astrophysics Data System (ADS)

    Merikoski, Juha

    2013-12-01

    In this paper we consider a model of accelerated dynamics with the rules modified from those of the recently proposed [Dong et al., Phys. Rev. Lett. 109, 130602 (2012), 10.1103/PhysRevLett.109.130602] accelerated exclusion process (AEP) such that particle-vacancy symmetry is restored to facilitate a mapping to a solid-on-solid growth model in 1+1 dimensions. In addition to kicking a particle ahead of the moving particle, as in the AEP, in our model another particle from behind is drawn, provided it is within the "distance of interaction" denoted by ℓmax. We call our model the doubly accelerated exclusion process (DAEP). We observe accelerated transport and interface growth and widening of the cluster size distribution for cluster sizes above ℓmax, when compared with the ordinary totally asymmetric exclusion process (TASEP). We also characterize the difference between the TASEP, AEP, and DAEP by computing a "staggered" order parameter, which reveals the local order in the steady state. This order in part explains the behavior of the particle current as a function of density. The differences of the steady states are also reflected by the behavior of the temporal and spatial correlation functions in the interface picture.

  20. Dynamic Electrorheological Effects of Rotating Particles:

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.

    Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.

  1. Molecular dynamic simulation of weakly magnetized complex plasmas

    NASA Astrophysics Data System (ADS)

    Funk, Dylan; Konopka, Uwe; Thomas, Edward

    2017-10-01

    A complex plasma consists of the usual plasma components (electrons, ions and neutrals), as well as a heavier component made of solid, micrometer-sized particles. The particles are in general highly charged as a result of the interaction with the other plasma components. The static and dynamic properties of a complex plasma such as its crystal structure or wave properties are influenced by many forces acting on the individual particles such as the dust particle interaction (a screened Coulomb interaction), neutral (Epstein) drag, the particle inertia and various plasma drag or thermophoretic forces. To study the behavior of complex plasmas we setup an experiment accompanying molecular dynamic simulation. We will present the approach taken in our simulation and give an overview of experimental situations that we want to cover with our simulation such as the particle charge under microgravity condition as performed on the PK-4 space experiment, or to study the detailed influences of high magnetic fields. This work was supported by the US Dept. of Energy (DE-SC0016330), NSF (PHY-1613087) and JPL/NASA (JPL-RSA 1571699).

  2. Investigation of transient dynamics of capillary assisted particle assembly yield

    NASA Astrophysics Data System (ADS)

    Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.

    2017-06-01

    In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  3. Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.

    PubMed

    Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2012-06-01

    Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.

  4. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damagemore » and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.« less

  5. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    PubMed

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  6. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    PubMed

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  7. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  8. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  9. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE PAGES

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...

    2018-06-20

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  10. Dynamic self-organization of confined autophoretic particles

    NASA Astrophysics Data System (ADS)

    Medrano, Anthony; Michelin, Sébastien; Kanso, Eva

    2016-11-01

    We study the behavior of chemically-active Janus particles in microfluidic Hele-Shaw-type confinement. These micron-scale chemical motors, when immersed in a fuel-laden fluid, produce an ionic chemical field which leads to motility and consequently a local fluid flow. In unconfined settings, experimental and computational studies have shown these particles to spontaneously self-organize into crystal structures, and form into asters of two or more particles. Here, we show that geometric confinement alters both the chemical and hydrodynamic signature of the particles in such a way that their far-field effects can be modeled as source dipoles. Each particle moves according to its own self-propelled motion and in response to the chemical and hydrodynamic field created by other particles. Two interaction modes are observed: self-assembly into quasi-static crystals and into dynamically-evolving chains. We discuss the conditions that lead to these modes of interactions and the phase transitions between them for various Janus particle concentrations. The National GEM Consortium.

  11. Digital stereo-holographic microscopy for studying three-dimensional particle dynamics

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeokjun; Go, Taesik; Lee, Sang Joon

    2018-06-01

    A digital stereo-holographic microscopy (DsHM) with two viewing angles is proposed to measure 3D information of microscale particles. This approach includes two volumetric recordings and numerical reconstruction, and it involves the combination of separately reconstructed holograms. The 3D positional information of a particle was determined by searching the center of the overlapped reconstructed volume. After confirming the proposed technique using static spherical particles, the 3D information of moving particles suspended in a Hagen-Poiseiulle flow was successfully obtained. Moreover, the 3D information of nonspherical particles, including ellipsoidal particles and red blood cells, were measured using the proposed technique. In addition to 3D positional information, the orientation and shape of the test samples were obtained from the plane images by slicing the overlapped volume perpendicular to the directions of the image recordings. This DsHM technique will be useful in analyzing the 3D dynamic behavior of various nonspherical particles, which cannot be measured by conventional digital holographic microscopy.

  12. Transport in sheared stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Eijnden, E.; Balescu, R.

    1997-02-01

    The transport of test particles in a stochastic magnetic field with a sheared component is studied. Two stages in the particle dynamics are distinguished depending on whether the collisional effects perpendicular to the main field are negligible or not. Whenever the perpendicular collisions are unimportant, the particles show a subdiffusive behavior which is slower in the presence of shear. The particle dynamics is then inhomogeneous and non-Markovian and no diffusion coefficient may be properly defined. When the perpendicular collision frequency is small, this subdiffusive stage may be very long. In the truly asymptotic stage, however, the perpendicular collisions must bemore » accounted for and the particle motion eventually becomes diffusive. Here again, however, the shear is shown to reduce the anomalous diffusion coefficient of the system. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  14. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  15. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    NASA Astrophysics Data System (ADS)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  16. Universality and critical behavior of the dynamical Mott transition in a system with long-range interactions

    DOE PAGES

    Rademaker, Louk; Vinokur, Valerii M.; Galda, Alexey

    2017-03-16

    Here, we study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

  17. Universality and critical behavior of the dynamical Mott transition in a system with long-range interactions.

    PubMed

    Rademaker, Louk; Vinokur, Valerii M; Galda, Alexey

    2017-03-16

    We study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

  18. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    NASA Astrophysics Data System (ADS)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  19. Spatial correlation of the dynamic propensity of a glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Razul, M. Shajahan G.; Matharoo, Gurpreet S.; Poole, Peter H.

    2011-06-01

    We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T <= 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.

  20. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  1. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  2. Shear test on viscoelastic granular material using Contact Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  3. Particle Dynamics in the Sea: Processes of Production and Loss Governing the Abundance of Marine Snow

    DTIC Science & Technology

    1990-01-05

    pumping sys - tems. CARDER, STEWARD and BETZER (1982) describe a holographic device (HMV = "holographic microvelocimeter": COSTELLO, YOUNG, CARDER and BETZER...similar to aggregate porosities determined using collision calculations based on random particle trajectories in computer models (Tambo and Wata- nabe ...Similarly, sinking patterns of particles, behavior of zooplankton and processes occurring at boundary layers may be 202 obse’rved di rectly. I This sy

  4. Particle dynamics and pattern formation in a rotating suspension of positively buoyant particles

    NASA Astrophysics Data System (ADS)

    Konidena, Sudarshan; Lee, Jonghoon; Reddy, K. Anki; Singh, Anugrah

    2018-04-01

    Numerical simulations of positively buoyant suspension in a horizontally rotating cylinder were performed to study the formation of radial and axial patterns. The order parameter for the low-frequency segregated phase and dispersed phase is similar to that predicted for the settling suspension by Lee and Ladd [J. Fluid Mech. 577, 183 (2007), 10.1017/S002211200700465X], which is the average angular velocity of the particles. The particle density profiles for axial bands in the buoyancy-dominated phase shows an amplitude equivalent to the diameter of the cylinder. Axial density profiles show sinusoidal behavior for the drag-dominant phase and oscillating sinusoidal behavior for the centrifugal-force-dominant phase. Results also indicate that the traveling bands are formed as a consequence of the inhomogeneous distribution of particles arising from a certain imbalance of drag, buoyancy, and centrifugal forces. In the centrifugal limit, particles move towards the center of the cylinder, aggregating to form a dense core of particles with its axis coinciding with that of the rotating cylinder, a behavior which is in contrast to the sedimenting particles. The particle distribution patterns obtained from the simulations are found to be in good agreement with the experiments of Kalyankar et al. [Phys. Fluids 20, 083301 (2008), 10.1063/1.2970156].

  5. Development and applications of single particle orientation and rotational tracking in dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  6. Numerical study of impact erosion of multiple solid particle

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  7. Scaling behavior of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-06-01

    The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.

  8. Dynamical inversion of the energy landscape promotes non-equilibrium self-assembly of binary mixtures

    DOE PAGES

    Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen; ...

    2018-01-02

    When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less

  9. Dynamical inversion of the energy landscape promotes non-equilibrium self-assembly of binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen

    When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less

  10. Results from E ∥B Neutral Particle Analyzer and Calibration Ion Beam System on C-2U

    NASA Astrophysics Data System (ADS)

    Clary, Ryan; Roquemore, A.; Kolmogorov, A.; Ivanov, A.; Korepanov, S.; Magee, R.; Medley, S.; Smirnov, A.; Tiunov, M.; TAE Team

    2015-11-01

    C-2U is a a high-confinement, advanced beam driven FRC which aims to sustain the configuration for > 5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors, an electrostatic neutral particle analyzer, and neutral particle bolometers. To increase our understanding of fast particle behavior and supplement existing diagnostics an E ∥B NPA was acquired from PPPL which simultaneously measures H0 and D0 flux between 2 and 22 keV with high energy resolution. In addition, a small, high purity, ion beam system has been constructed and tested to calibrate absolutely fast particle detectors. Here we report results of measurements from the E ∥B analyzer on C-2U and inferred fast particle behavior, as well as the status of the calibration ion beam system.

  11. Diffusive real-time dynamics of a particle with Berry curvature

    NASA Astrophysics Data System (ADS)

    Misaki, Kou; Miyashita, Seiji; Nagaosa, Naoto

    2018-02-01

    We study theoretically the influence of Berry phase on the real-time dynamics of the single particle focusing on the diffusive dynamics, i.e., the time dependence of the distribution function. Our model can be applied to the real-time dynamics of intraband relaxation and diffusion of optically excited excitons, trions, or particle-hole pair. We found that the dynamics at the early stage is deeply influenced by the Berry curvature in real space (B ), momentum space (Ω ), and also the crossed space between these two (C ). For example, it is found that Ω induces the rotation of the wave packet and causes the time dependence of the mean square displacement of the particle to be linear in time t at the initial stage; it is qualitatively different from the t3 dependence in the absence of the Berry curvature. It is also found that Ω and C modify the characteristic time scale of the thermal equilibration of momentum distribution. Moreover, the dynamics under various combinations of B ,Ω , and C shows singular behaviors such as the critical slowing down or speeding up of the momentum equilibration and the reversals of the direction of rotations. The relevance of our model for time-resolved experiments in transition metal dichalcogenides is also discussed.

  12. Moisture dynamics in masticated fuelbeds: A preliminary analysis

    Treesearch

    Jesse Kreye; J. Morgan Varner

    2007-01-01

    Mastication has become a popular fuels treatment in the Western United States, but predicting subsequent fire behavior and effects has proven difficult. Fire behavior and effects in masticated fuelbeds have been more intense and erratic in comparison with model predictions. While various particle or fuelbed characteristics in these fuels may contribute to the...

  13. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    PubMed Central

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-01-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure. PMID:28382948

  14. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    NASA Astrophysics Data System (ADS)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  15. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  16. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    NASA Astrophysics Data System (ADS)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  17. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Reeves, Robert; Densmore, John; Fezzaa, Kamel; van Buuren, Tony; Willey, Trevor; Sullivan, Kyle

    2017-06-01

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-691140.

  18. Scaling in the aggregation dynamics of a magnetorheological fluid.

    PubMed

    Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A

    2007-11-01

    We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent.

  19. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  20. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  1. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.

    PubMed

    Tan, Sin-Ying; Ata, Seher; Wanless, Erica J

    2013-07-18

    The interactions between two individual particle-stabilized bubbles were investigated, in the absence of surfactant, using a combination of coalescence rig and high-speed video camera. This combination allows the visualization of bubble coalescence dynamics which provide information on bubble stability. Experimental data suggested that bubble stability is enhanced by both the adsorption of particles at the interface as indicated by the long induction time and the increase in damping coefficient at high surface coverage. The interaction between an armored bubble and a bare bubble (asymmetric interaction) can be destabilized through the addition of a small amount of salt, which suggested that electrostatic interactions play a significant role in bubble stability. Interestingly, the DLVO theory cannot be used to describe the bubble stability in the case of a symmetric interaction as coalescence was inhibited at 0.1 M KCl in both the absence and presence of particles at the interfaces. Furthermore, bubbles can also be destabilized by increasing the particle hydrophobicity. This behavior is due to thinner liquid films between bubbles and an increase in film drainage rate. The fraction of particles detached from the bubble surface after film rupture was found to be very similar within the range of solution ionic strength, surface coverage, and particle hydrophobicity studied. This lack of dependence implies that the kinetic energy generated by the coalescing bubbles is larger than the attachment energy of the particles and dominates the detachment process. This study illuminates the stability behavior of individual particle-stabilized bubbles and has potential impact on processes which involve their interaction.

  2. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan; ...

    2018-02-28

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  3. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  4. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  5. Nanoparticle motion on the surface of drying droplets

    NASA Astrophysics Data System (ADS)

    Zhao, Mingfei; Yong, Xin

    2018-03-01

    Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement could offer a new route to deposition control when combined with Marangoni effects.

  6. Weak correlations between local density and dynamics near the glass transition.

    PubMed

    Conrad, J C; Starr, F W; Weitz, D A

    2005-11-17

    We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.

  7. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles

    PubMed Central

    Wang, Wei; Duan, Wentao; Sen, Ayusman; Mallouk, Thomas E.

    2013-01-01

    Nano- and microscale motors powered by catalytic reactions exhibit collective behavior such as swarming, predator–prey interactions, and chemotaxis that resemble those of biological microorganisms. A quantitative understanding of the catalytically generated forces between particles that lead to these behaviors has so far been lacking. Observations and numerical simulations of pairwise interactions between gold-platinum nanorods in hydrogen peroxide solutions show that attractive and repulsive interactions arise from the catalytically generated electric field. Electrokinetic effects drive the assembly of staggered doublets and triplets of nanorods that are moving in the same direction. None of these behaviors are observed with nanorods composed of a single metal. The motors also collect tracer microparticles at their head or tail, depending on the charge of the particles, actively assembling them into close-packed rafts and aggregates of rafts. These motor–tracer particle interactions can also be understood in terms of the catalytically generated electric field around the ends of the nanorod motors. PMID:24127603

  8. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles.

    PubMed

    Wang, Wei; Duan, Wentao; Sen, Ayusman; Mallouk, Thomas E

    2013-10-29

    Nano- and microscale motors powered by catalytic reactions exhibit collective behavior such as swarming, predator-prey interactions, and chemotaxis that resemble those of biological microorganisms. A quantitative understanding of the catalytically generated forces between particles that lead to these behaviors has so far been lacking. Observations and numerical simulations of pairwise interactions between gold-platinum nanorods in hydrogen peroxide solutions show that attractive and repulsive interactions arise from the catalytically generated electric field. Electrokinetic effects drive the assembly of staggered doublets and triplets of nanorods that are moving in the same direction. None of these behaviors are observed with nanorods composed of a single metal. The motors also collect tracer microparticles at their head or tail, depending on the charge of the particles, actively assembling them into close-packed rafts and aggregates of rafts. These motor-tracer particle interactions can also be understood in terms of the catalytically generated electric field around the ends of the nanorod motors.

  9. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  10. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  11. Investigations of charged particle motion on the surfaces of dusty, airless solar system bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.

    2013-12-01

    Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.

  12. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  13. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  14. Flocking ferromagnetic colloids

    PubMed Central

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-01-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633

  15. Flocking ferromagnetic colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less

  16. Flocking ferromagnetic colloids

    DOE PAGES

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-02-15

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less

  17. Simulation of quantum dynamics with integrated photonics

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  18. Variational Algorithms for Test Particle Trajectories

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2015-11-01

    The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.

  19. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    PubMed

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  20. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  1. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    PubMed

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach.

    PubMed

    Leonel, Edson D; Galia, Marcus Vinícius Camillo; Barreiro, Luiz Antonio; Oliveira, Diego F M

    2016-12-01

    We study some statistical properties for the behavior of the average squared velocity-hence the temperature-for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic, leading the average squared velocity to reach a steady-state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and (ii) billiard dynamics using either numerical simulations and theoretical description.

  3. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  4. Stochastic driven systems far from equilibrium

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk

    We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.

  5. Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Anxu; Liu, Feng; Shi, Liang

    2016-09-20

    The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, whichmore » can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.« less

  6. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    PubMed

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  7. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  8. Probing the magnetic behavior of single nanodots.

    PubMed

    Neumann, Alexander; Thönnissen, Carsten; Frauen, Axel; Hesse, Simon; Meyer, Andreas; Oepen, Hans Peter

    2013-05-08

    In this paper, a method is presented that has the sensitivity to measure magnetization behavior of single nanostructures. It is demonstrated that the technique gives the ability to separate different signals of single nanodots from a small ensemble of structures. Our method is based on the anomalous Hall-Effect and allows for resolving signals from spherical nanoparticles with diameter down to 3.5 nm. The method gives access to magnetic properties of particles in a wide thermal and dynamical range. The potential of the technique is demonstrated utilizing particles that are created from Co films sandwiched by Pt layers.

  9. The behavior of a macroscopic granular material in vortex flow

    NASA Astrophysics Data System (ADS)

    Nishikawa, Asami

    A granular material is defined as a collection of discrete particles such as powder and grain. Granular materials display a large number of complex behaviors. In this project, the behavior of macroscopic granular materials under tornado-like vortex airflow, with varying airflow velocity, was observed and studied. The experimental system was composed of a 9.20-cm inner diameter acrylic pipe with a metal mesh bottom holding the particles, a PVC duct, and an airflow source controlled by a variable auto-transformer, and a power-meter. A fixed fan blade was attached to the duct's inner wall to create a tornado-like vortex airflow from straight flow. As the airflow velocity was increased gradually, the behavior of a set of same-diameter granular materials was observed. The observed behaviors were classified into six phases based on the macroscopic mechanical dynamics. Through this project, we gained insights on the significant parameters for a computer simulation of a similar system by Heath Rice [5]. Comparing computationally and experimentally observed phase diagrams, we can see similar structure. The experimental observations showed the effect of initial arrangement of particles on the phase transitions.

  10. Short-time dynamics of monomers and dimers in quasi-two-dimensional colloidal mixtures.

    PubMed

    Sarmiento-Gómez, Erick; Villanueva-Valencia, José Ramón; Herrera-Velarde, Salvador; Ruiz-Santoyo, José Arturo; Santana-Solano, Jesús; Arauz-Lara, José Luis; Castañeda-Priego, Ramón

    2016-07-01

    We report on the short-time dynamics in colloidal mixtures made up of monomers and dimers highly confined between two glass plates. At low concentrations, the experimental measurements of colloidal motion agree well with the solution of the Navier-Stokes equation at low Reynolds numbers; the latter takes into account the increase in the drag force on a colloidal particle due to wall-particle hydrodynamic forces. More importantly, we find that the ratio of the short-time diffusion coefficient of the monomer and that of the center of mass of the dimmer is almost independent of both the dimer molar fraction, x_{d}, and the total packing fraction, ϕ, up to ϕ≈0.5. At higher concentrations, this ratio displays a small but systematic increase. A similar physical scenario is observed for the ratio between the parallel and the perpendicular components of the short-time diffusion coefficients of the dimer. This dynamical behavior is corroborated by means of molecular dynamics computer simulations that include explicitly the particle-particle hydrodynamic forces induced by the solvent. Our results suggest that the effects of colloid-colloid hydrodynamic interactions on the short-time diffusion coefficients are almost identical and factorable in both species.

  11. Aspects of jamming in two-dimensional athermal frictionless systems.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2014-05-07

    In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.

  12. Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle based complex fluids

    NASA Astrophysics Data System (ADS)

    Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.

    2018-04-01

    Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.

  13. Tracking control of colloidal particles through non-homogeneous stationary flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Híjar, Humberto, E-mail: humberto.hijar@lasallistas.org.mx

    2013-12-21

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can bemore » mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.« less

  14. Brownian self-propelled particles on a sphere

    NASA Astrophysics Data System (ADS)

    Apaza-Pilco, Leonardo Felix; Sandoval, Mario

    We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.

  15. Significant difference in the dynamics between strong and fragile glass formers.

    PubMed

    Furukawa, Akira; Tanaka, Hajime

    2016-11-01

    Glass-forming liquids are often classified into strong glass formers with nearly Arrhenius behavior and fragile ones with super-Arrhenius behavior. We reveal a significant difference in the dynamics between these two types of glass formers through molecular dynamics simulations: In strong glass formers, the relaxation dynamics of density fluctuations is nondiffusive, whereas in fragile glass formers it exhibits diffusive behavior. We demonstrate that this distinction is a direct consequence of the fundamental difference in the underlying elementary relaxation process between these two dynamical classes of glass formers. For fragile glass formers, a density-exchange process proceeds the density relaxation, which takes place locally at the particle level in normal states but is increasingly cooperative and nonlocal as the temperature is lowered in supercooled states. On the other hand, in strong glass formers, such an exchange process is not necessary for density relaxation due to the presence of other local relaxation channels. Our finding provides a novel insight into Angell's classification scheme from a hydrodynamic perspective.

  16. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  17. DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Zhang, Liangqi; Luo, Kun; Chew, Jia Wei

    2017-12-01

    Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes.

  18. Modeling the C. elegans nematode and its environment using a particle system.

    PubMed

    Rönkkö, Mauno; Wong, Garry

    2008-07-21

    A particle system, as understood in computer science, is a novel technique for modeling living organisms in their environment. Such particle systems have traditionally been used for modeling the complex dynamics of fluids and gases. In the present study, a particle system was devised to model the movement and feeding behavior of the nematode Caenorhabditis elegans in three different virtual environments: gel, liquid, and soil. The results demonstrate that distinct movements of the nematode can be attributed to its mechanical interactions with the virtual environment. These results also revealed emergent properties associated with modeling organisms within environment-based systems.

  19. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  20. Hydrodynamic interactions in dense active suspensions: From polar order to dynamical clusters

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Liverpool, Tanniemola B.

    2017-08-01

    We study the role of hydrodynamic interactions in the collective behavior of collections of microscopic active particles suspended in a fluid. We introduce a calculational framework that allows us to separate the different contributions to their collective dynamics from hydrodynamic interactions on different length scales. Hence we are able to systematically show that lubrication forces when the particles are very close to each other play as important a role as long-range hydrodynamic interactions in determining their many-body behavior. We find that motility-induced phase separation is suppressed by near-field interactions, leading to open gel-like clusters rather than dense clusters. Interestingly, we find a globally polar ordered phase appears for neutral swimmers with no force dipole that is enhanced by near-field lubrication forces in which the collision process rather than long-range interaction dominates the alignment mechanism.

  1. Inertial focusing dynamics in spiral microchannels

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2012-01-01

    This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556

  2. Rheology of U-Shaped Granular Particles

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Franklin, Scott

    We study the response of cylindrical samples of U-shaped granular particles (staples) to extensional loads. Samples elongate in discrete bursts (events) corresponding to particles rearranging and re-entangling. Previous research on samples of constant cross-sectional area found a Weibullian weakest-link theory could explain the distribution of yield points. We now vary the cross-sectional area, and find that the maximum yield pressure (force/area) is a function of particle number density and independent of area. The probability distribution function of important event characteristics -- the stress increase before an event and stress released during an event -- both fall of inversely with magnitude, reminiscent of avalanche dynamics. Fourier transforms of the fluctuating force (or stress) scales inversely with frequency, suggesting dry friction plays a role in the rearrangements. Finally, there is some evidence that dynamics are sensitive to the stiffness of the tensile testing machine, although an explanation for this behavior is unknown.

  3. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  4. Modeling of electrochemical flow capacitors using Stokesian dynamics

    NASA Astrophysics Data System (ADS)

    Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey

    2017-11-01

    Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.

  5. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    NASA Astrophysics Data System (ADS)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  6. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  7. Cooperative particle motion in complex (dusty) plasmas

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  8. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando; Aranson, Igor S.

    2018-06-01

    Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to competition between neighbor alignment and noise-induced decoherence. However, very little is known of how the quenched (i.e., time-independent) disorder impacts active motion. Here we report on the effects of quenched disorder on the dynamics of self-propelled point particles. We identified three major types of quenched disorder relevant in the context of active matter: random torque, force, and stress. We demonstrate that even in the absence of external fluctuations ("cold active matter"), quenched disorder results in nontrivial dynamic phases not present in their "hot" counterpart. In particular, by analyzing when the equations of motion exhibit a Hamiltonian structure and when attractors may be present, we identify in which scenarios particle trapping, i.e., the asymptotic convergence of particle trajectories to bounded areas in space ("traps"), can and cannot occur. Our study provides new fundamental insights into active systems realized by self-propelled particles on natural and synthetic disordered substrates.

  9. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

    PubMed

    Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J

    2007-01-01

    Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.

  10. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  11. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    NASA Astrophysics Data System (ADS)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  12. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  13. Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Li, Xingang; Zhu, Nuo; Jia, Bin; Jiang, Rui

    2018-10-01

    This paper proposes an extended Floor-Field (FF) model to study the pedestrian evacuation dynamics under the influence of smoke diffusing in three-dimension (3D). In addition to static and dynamic fields, the extended model adopts the smoke and herding fields to reflect pedestrian's smoke-avoiding behavior and herding behavior. The impact of smoke on pedestrians' health is also considered. The smoke will reduce the pedestrians' health point and finally impact their moving ability. Numerical simulations were carried out to study the evacuation dynamics. The influence of the smoke particles producing rate, the initial health point, the critical smoke concentration value, and the herding field on evacuation dynamics were analyzed in detail. Those results could bring some guidance to make the evacuation strategy in the smoke diffusing environment.

  14. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  15. Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles

    PubMed Central

    Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.

    2014-01-01

    Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488

  16. Dynamic and rheological properties of soft biological cell suspensions

    PubMed Central

    Yazdani, Alireza; Li, Xuejin

    2016-01-01

    Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271

  17. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.R.

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  19. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  20. Shock Simulations of Single-Site Coarse-Grain RDX using the Dissipative Particle Dynamics Method with Reactivity

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Lisal, Martin; Schweigert, Igor; Larentzos, James; Brennan, John

    2015-06-01

    In discrete particle simulations, when an atomistic model is coarse-grained, a trade-off is made: a boost in computational speed for a reduction in accuracy. Dissipative Particle Dynamics (DPD) methods help to recover accuracy in viscous and thermal properties, while giving back a small amount of computational speed. One of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. Today, pairing the current evolution of DPD-RX with a coarse-grained potential and its chemical decomposition reactions allows for the simulation of the shock behavior of energetic materials at a timescale faster than an atomistic counterpart. In 2007, Maillet et al. introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We have recently extended the DPD-RX method and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its tranition to hot product gases within DPD-RX will be presented. Additionally, examples of the effect of microstructure on shock behavior will be shown. Approved for public release. Distribution is unlimited.

  1. Development of a specimen heating holder with an evaporator and gas injector and its application for catalyst.

    PubMed

    Takeo, Kamino; Toshie, Yaguchi; Mitsuru, Konno; Akira, Watabe; Yasuhira, Nagakubo

    2006-10-01

    A specimen heating holder equipped with a gas injector and an evaporator has been developed for use with conventional transmission electron microscopes (TEMs). The developed specimen holder allows both synthesis of metal oxide support and deposition of catalyst nano-particles in situ. Since the holder is designed to be used in small gapped high-resolution objective lens pole-piece, all the procedure from the synthesis of support material to the deposition of catalyst as well as the behavior of the catalyst nano-particles on the support can be observed at near atomic resolution. The developed specimen holder was applied to the study of AuPd catalyst. First, air was injected onto heated aluminum particles via a gas injector to synthesize Al(2)O(3) support. Then, nano-particles of AuPd were deposited on the Al(2)O(3) support. After the deposition, the synthesized Al(2)O(3) support was heated and air was injected again to observe behaviors of the deposited AuPd nano-particles at elevated temperatures in the aerial environment. Behaviors of the AuPd nano-particles such as coalescence, segmentation and diffusion to the Al(2)O(3) support were dynamically observed at atomic level high resolution.

  2. Curvature-induced microswarming and clustering of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac; Glotzer, Sharon

    Non-equilibrium active matter systems exhibit many unique phenomena, such as motility-induced phase separation and swarming. However, little is known about how these behaviors depend on the geometry of the environment. To answer this question, we use Brownian dynamics simulations to study the effects of Gaussian curvature on self-propelled particles by confining them to the surface of a sphere. We find that a modest amount of curvature promotes phase separation by altering the shape of a cluster's boundary. Alternatively, particles on surfaces of high curvature experience reduced phase separation and instead form microswarms, where particles share a common orbit. We show that this novel flocking behavior is distinct from other previously studied examples, in that it is not explicitly incorporated into our model through Vicsek-like alignment rules nor torques. Rather, we find that microswarms emerge solely due to the geometric link between orientation and velocity, a property exclusive to surfaces with non-zero Gaussian curvature. These findings reveal the important role of local environment on the global emergent behavior of non-equilibrium systems. Center for Bio-Inspired Engineering (DOE Award # DE-SC0000989).

  3. Thermal conduction in particle packs via finite elements

    NASA Astrophysics Data System (ADS)

    Lechman, Jeremy B.; Yarrington, Cole; Erikson, William; Noble, David R.

    2013-06-01

    Conductive transport in heterogeneous materials composed of discrete particles is a fundamental problem for a number of applications. While analytical results and rigorous bounds on effective conductivity in mono-sized particle dispersions are well established in the literature, the methods used to arrive at these results often fail when the average size of particle clusters becomes large (i.e., near the percolation transition where particle contact networks dominate the bulk conductivity). Our aim is to develop general, efficient numerical methods that would allow us to explore this behavior and compare to a recent microstructural description of conduction in this regime. To this end, we present a finite element analysis approach to modeling heat transfer in granular media with the goal of predicting effective bulk thermal conductivities of particle-based heterogeneous composites. Our approach is verified against theoretical predictions for random isotropic dispersions of mono-disperse particles at various volume fractions up to close packing. Finally, we present results for the probability distribution of the effective conductivity in particle dispersions generated by Brownian dynamics, and suggest how this might be useful in developing stochastic models of effective properties based on the dynamical process involved in creating heterogeneous dispersions.

  4. Extending self-organizing particle systems to problem solving.

    PubMed

    Rodríguez, Alejandro; Reggia, James A

    2004-01-01

    Self-organizing particle systems consist of numerous autonomous, purely reflexive agents ("particles") whose collective movements through space are determined primarily by local influences they exert upon one another. Inspired by biological phenomena (bird flocking, fish schooling, etc.), particle systems have been used not only for biological modeling, but also increasingly for applications requiring the simulation of collective movements such as computer-generated animation. In this research, we take some first steps in extending particle systems so that they not only move collectively, but also solve simple problems. This is done by giving the individual particles (agents) a rudimentary intelligence in the form of a very limited memory and a top-down, goal-directed control mechanism that, triggered by appropriate conditions, switches them between different behavioral states and thus different movement dynamics. Such enhanced particle systems are shown to be able to function effectively in performing simulated search-and-collect tasks. Further, computational experiments show that collectively moving agent teams are more effective than similar but independently moving ones in carrying out such tasks, and that agent teams of either type that split off members of the collective to protect previously acquired resources are most effective. This work shows that the reflexive agents of contemporary particle systems can readily be extended to support goal-directed problem solving while retaining their collective movement behaviors. These results may prove useful not only for future modeling of animal behavior, but also in computer animation, coordinated movement control in robotic teams, particle swarm optimization, and computer games.

  5. Microfluidic Examination of the "Hard" Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu.

    PubMed

    Weiss, Alessia C G; Kempe, Kristian; Förster, Stephan; Caruso, Frank

    2018-04-18

    The formation of a biomolecular corona around engineered particles determines, in large part, their biological behavior in vitro and in vivo. To gain a fundamental understanding of how particle design and the biological milieu influence the formation of the "hard" biomolecular corona, we conduct a series of in vitro studies using microfluidics. This setup allows the generation of a dynamic incubation environment with precise control over the applied flow rate, stream orientation, and channel dimensions, thus allowing accurate control of the fluid flow and the shear applied to the proteins and particles. We used mesoporous silica particles, poly(2-methacryloyloxyethylphosphorylcholine) (PMPC)-coated silica hybrid particles, and PMPC replica particles (obtained by removal of the silica particle templates), representing high-, intermediate-, and low-fouling particle systems, respectively. The protein source used in the experiments was either human serum or human full blood. The effects of flow, particle surface properties, incubation medium, and incubation time on the formation of the biomolecular corona formation are examined. Our data show that protein adhesion on particles is enhanced after incubation in human blood compared to human serum and that dynamic incubation leads to a more complex corona. By varying the incubation time from 2 s to 15 min, we demonstrate that the "hard" biomolecular corona is kinetically subdivided into two phases comprising a tightly bound layer of proteins interacting directly with the particle surface and a loosely associated protein layer. Understanding the influence of particle design parameters and biological factors on the corona composition, as well as its dynamic assembly, may facilitate more accurate prediction of corona formation and therefore assist in the design of advanced drug delivery vehicles.

  6. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  7. Drop formation in shear-thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; Louvet, Nicolas; Hennequin, Yves; Kellay, Hamid; Bonn, Daniel

    2015-11-01

    We study droplet formation in granular suspensions by systematically varying the volume fractions (φ) and particle diameters (d). For suspensions with water as the suspending liquid, we find three different regimes. For dilute suspensions (φ≤45%), drop formation follows the predictions for inertial breakup and exhibits identical dynamics to that of pure water. The breakup is strongly asymmetrical in this case. Only for more concentrated suspensions (φ>45%) does the presence of particles change the dynamics and two other regimes, a symmetrical inertial regime and a Bagnoldian regime, are uncovered. We construct and discuss a phase diagram that allows us to understand and predict the breakup behavior in granular suspensions.

  8. Active dynamics of colloidal particles in time-varying laser speckle patterns

    PubMed Central

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  9. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  10. Transition Behaviors of Configurations of Colloidal Particles at a Curved Oil-Water Interface

    PubMed Central

    Lee, Mina; Xia, Ming; Park, Bum Jun

    2016-01-01

    We studied the transition behaviors of colloidal arrangements confined at a centro-symmetrically curved oil-water interface. We found that assemblies composed of several colloidal particles at the curved interface exhibit at least two unique patterns that can be attributed to two factors: heterogeneity of single-colloid self-potential and assembly kinetics. The presence of the two assembly structures indicates that an essential energy barrier between the two structures exists and that one of the structures is kinetically stable. This energy barrier can be overcome via external stimuli (e.g., convection and an optical force), leading to dynamic transitions of the assembly patterns. PMID:28773263

  11. Disconnecting structure and dynamics in glassy thin films

    PubMed Central

    Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.

    2017-01-01

    Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147

  12. Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays.

    PubMed

    Kim, Sung-Cheol; Wunsch, Benjamin H; Hu, Huan; Smith, Joshua T; Austin, Robert H; Stolovitzky, Gustavo

    2017-06-27

    Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.

  13. A Theoretically Informed Model for the Rheology of Entangled Block Copolymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Su, Yongrui; Ramirez-Hernandez, Abelardo; Peters, Brandon; de Pablo, Juan J.

    2014-03-01

    The addition of nanoparticles to block copolymer systems has been shown to have important effects on their equilibrium structure and properties. Less is known about the non-equilibrium behavior of block polymer nanocomposites. A new particle-based, theoretically informed coarse-grained model for multicomponent nanocomposites is proposed to examine the effects of nanoparticles on the rheology of entangled block copolymer melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. The inclusion of slip-springs changes the polymer dynamics from unentangled to entangled. The nanoparticles are functionalized with short polymer chains that can entangle with the copolymers. We study the nonlinear rheology of the resulting nanocomposites under shear flow with a dissipative particle dynamics (DPD) thermostat.

  14. Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi

    2017-10-01

    Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that we have developed, allow us to better understand the complex hydrodynamic interactions in microswimmer dispersions.

  15. Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Eigen, Christoph; Glidden, Jake A. P.; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.

    2017-12-01

    We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N . In the degenerate and thermal regimes, the per-particle loss rate is ∝N2 /3 and N26 /9, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.

  16. Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas.

    PubMed

    Eigen, Christoph; Glidden, Jake A P; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P

    2017-12-22

    We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N. In the degenerate and thermal regimes, the per-particle loss rate is ∝N^{2/3} and N^{26/9}, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.

  17. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  18. Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.

  19. Rapid Self-healing Nanocomposite Hydrogel with Tunable Dynamic Mechanics

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Mishra, Sumeet; Chapman, Brian; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    The macroscopic healing rate and efficiency in self-repairing hydrogel materials are largely determined by the dissociation dynamics of their polymer network, which is hardly achieved in a controllable manner. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its rapid self-healing property without the need for external stimuli.

  20. Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.

    2018-06-01

    Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.

  1. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell’s equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubina, Sean Hyun, E-mail: sdubin2@uic.edu; Wedgewood, Lewis Edward, E-mail: wedge@uic.edu

    2016-07-15

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished bymore » allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.« less

  2. The Dynamical Classification of Centaurs which Evolve into Comets

    NASA Astrophysics Data System (ADS)

    Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology

    2016-10-01

    Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.

  3. Model of Collective Fish Behavior with Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  4. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  5. A mathematical method for the turbulent behavior of crowds using agent particles

    NASA Astrophysics Data System (ADS)

    Ohnishi, Teruaki

    2016-08-01

    Among the people moving as a group there appear social and psychological forces together with physical forces such as friction and resistance. With the definition that the field of the crowd is the region of those forces continuously extending with varying strength, and with the pre-requisite that the spatial distribution of the crowd, i.e., the distribution of the field, varies according to the hydrodynamic rule by the Navier-Stokes equation, a methodology was proposed to describe the behavior of the crowd composed of many agent particles as the movement of a compressible, turbulent fluid. A numerical calculation was exemplified for the dynamic behavior and spatial distribution of crowds during movements when there appears a conflict between groups with different characters, imaging for instance the medieval battle of Breitenfeld.

  6. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less

  7. Flavivirus structural heterogeneity: implications for cell entry.

    PubMed

    Rey, Félix A; Stiasny, Karin; Heinz, Franz X

    2017-06-01

    The explosive spread of Zika virus is the most recent example of the threat imposed to human health by flaviviruses. High-resolution structures are available for several of these arthropod-borne viruses, revealing alternative icosahedral organizations of immature and mature virions. Incomplete proteolytic maturation, however, results in a cloud of highly heterogeneous mosaic particles. This heterogeneity is further expanded by a dynamic behavior of the viral envelope glycoproteins. The ensemble of heterogeneous and dynamic infectious particles circulating in infected hosts offers a range of alternative possible receptor interaction sites at their surfaces, potentially contributing to the broad flavivirus host-range and variation in tissue tropism. The potential synergy between heterogeneous particles in the circulating cloud thus provides an additional dimension to understand the unanticipated properties of Zika virus in its recent outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dynamic properties of micro-particles in ultrasonic transportation using phase-controllable standing waves

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji

    2014-10-01

    Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.

  9. Phase behavior of colloidal dimers and hydrodynamic instabilities in binary mixtures

    NASA Astrophysics Data System (ADS)

    Milinkovic, K.

    2013-05-01

    We use computer simulations to study colloidal suspensions comprised of either bidisperse spherical particles or monodisperse dimer particles. The two main simulation techniques employed are a hybrid between molecular dynamics and stochastic rotation dynamics (MD-SRD), and a Monte Carlo (MC) algorithm. MD-SRD allows us to take Brownian motion and hydrodynamic interactions into account, while we use MC simulations to study equilibrium phase behavior. The first part of this thesis is dedicated to studying the Rayleigh-Taylor-like hydrodynamic instabilities which form in binary colloidal mixtures. Configurations with initially inhomogeneous distributions of colloidal species let to sediment in confinement will undergo the instability, and here we have studied the formation, evolution and the structural organization of the colloids within the instability as a function of the properties of the binary mixture. We found that the distribution of the colloids within the instability does not depend significantly on the composition of the mixtures, but does depend greatly on the relative magnitudes of the particle Peclet numbers. To follow the time evolution of the instability formation we calculated the spatial colloid velocity correlation functions, observing alternating regions in which the particle sedimentation velocities are correlated and anticorrelated. These observations are consistent with the network-like structures which are characteristic for Rayleigh-Taylor instabilities. We also calculated the growth rates of the unstable modes both from our simulation data and theoretically, finding good agreement between the obtained results. The second part of this thesis focuses on the phase behavior of monodisperse dimer systems. We first studied the phase behavior of hard snowman-shaped particles which consist of tangential hard spheres with different diameters. We used Monte Carlo simulations and free energy calculations to obtain the phase diagram as a function of the sphere diameter ratio, predicting stable isotropic fluid, plastic crystal and aperiodic crystalline phases. The crystalline phases found to be stable for a given diameter ratio at high densities correspond to the close packed structures of equimolar binary hard-sphere mixtures with the same diameter ratio. However, we also predict several crystal-crystal phase transitions, such that the best packed structures are stable at higher densities, while those with a higher degree of degeneracy are stable at lower densities. To explore the effects of degeneracy entropy on the phase behavior of dimer particles, we calculated the phase diagram of hard asymmetric dumbbells. These particles consist of two spheres with fixed diameters and varying center-to-center separation. We predicted stable isotropic fluid, plastic crystal, and periodic NaCl-based and both periodic and aperiodic CrB-based crystalline phases, and found that reducing the sphere separation results in the aperiodic crystalline phases of snowman-shaped particles becoming destabilized. Finally, we have also studied the phase behavior of dumbbell particles interacting with hard-core repulsive Yukawa potentials. We found that dumbbells with sufficiently long-ranged interactions crystallize spontaneously into plastic crystals in which the particle centers of mass are located on average on a BCC crystal lattice. The auto- and spatial orientational correlation functions reveal no significant hindrance of the particle rotations even for the shortest ranged interactions studied.

  10. Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties.

    PubMed

    Ryabov, Artem; Berestneva, Ekaterina; Holubec, Viktor

    2015-09-21

    The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t)log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties) and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law times a slow function of time), and 3. the regime of enhanced absorption (decay faster than the power law, e.g., exponential). Results of the asymptotic theory show good agreement with numerical simulations.

  11. Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Qin, Shiyi; Yong, Xin

    We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).

  12. Investigate the complex process in particle-fluid based surface generation technology using reactive molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong; Li, Haiyan; Zhao, Fu

    2017-07-01

    Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.

  13. Extrusion and rheology of fine particulate ceramic pastes

    NASA Astrophysics Data System (ADS)

    Mazzeo, Fred Anthony

    A rheological study was conducted on an extruded blend of two alumina powders, Alcoa A-3500-SG and Reynolds ERC. These extruded blends were mixed in four compositions, varying in distribution modulus. This work focuses on the interaction of the composition components, mainly particle size distribution and amount of water at a constant binder amount. The rheological parameters of extruded pastes, Sigma, Tau, alpha and beta, were determined by using capillary rheometry modeling by the methodology set forth by Benbow and Bridgwater. This methodology makes use of capillary rheometer to determine extrusion parameters, which describe the flow behavior of a paste. The parameter values are indirectly determined by extrapolating high shear rate information obtained by the extrusion process. A goal of this research was to determine fundamental rheological properties directly from fundamental rheological equations of state. This was accomplished by assessing the material properties by using a dynamic stress rheometer. The rheological parameters used in this study to characterize the paste are elastic modulus, viscosity, tan delta, and relaxation time. This technique approaches a step closer in understanding the microstructural influence on flow behavior of a paste. This method directly determines rheological properties by using linear viscoelastic theory, giving a quantitative analysis of material properties. A strong correlation between the elastic modulus and sigma, and viscosity and alpha is shown to exist, indicating a relationship between these two techniques. Predictive process control methodology, based on particle packing modeling, quantitatively determined structural parameters useful in evaluating a composition. The determined parameters are: distribution modulus, interparticle separation distance, porosity, and particle crowding index, which are important to understand the extrudates packed state. A connection between the physical structure of the extrudate and its rheological behavior, can lead to a better understanding of what conditions and parameters are necessary to characterize the extrusion process. This study shows how particle packing and particle size influences the rheological behavior of the paste. Results showed that an optimally packed system was found to occur at a distribution modulus of 0.51. This system was determined both experimentally and quantitatively to exhibit the lowest porosity at any water content. The 0.51 system required a lower amount of water to extrude and the parameters of both rheological techniques agreed well, in which all parameters are influenced by the packing state of the paste, and a consistent trend was generally found. The capillary rheometry results can be explained by the strong interaction of particles that occurs at high shear rates. The dynamic stress rheometer results can be explained by the particle packing characteristics, interparticle separation distance and particle-crowding index, and the capillary forces between particles. The excess amount of liquid that is present in the structure decreases the role of the capillary attraction between particles and an increase in the particle size role on the rheological behavior of the pastes occurs.

  14. Static and dynamic properties of smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  15. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, L.B.; Li, X.; Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior.more » The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.« less

  16. Rearrangements and Yielding in Concentrated Suspensions of Hard and Soft Colloids

    NASA Astrophysics Data System (ADS)

    Petekidis, Georgios; Carrier, Vincent; Vlassoppoulos, Dimitris; Pusey, Peter; Ballauff, Matthias

    2004-03-01

    The rheology and microscopic particle rearrangements of concentrated colloidal suspensions were studied by a combination of conventional rheology and Light Scattering under shear (LS Echo). In particular we studied the rheological response and the microscopic particle dynamics under shear near and above the glass transitions concentration. Measurements were done in model hard and soft sphere particles (sterically stabilized PMMA and PS-PNIPA microgels respectively) to assess the effect of inter-particle interactions. Creep and recovery measurements and dynamic strain sweeps showed that glasses of hard particles can tolerate surprisingly large strains, up to at least 15probes the extent of irreversible particle rearrangement under oscillatory shear, verified that within their cage particles move reversibly at least up to such a strain. Such a behavior was attributed to 'cage elasticity', the ability of a particle and its neighbors to retain their relative positions within the cage under quite large distortion [1]. The onset of irreversible rearrangements measured by LS echo decreased with decreasing frequency revealing an interplay between shear and Brownian forces. The effects of interparticle interactions were studied using soft thermoreversible migrogel particles where a glass state may be reached either increasing the particle concentration or decreasing the temperature. Here, although particle rearrangements appear to be reversible up to strains as high as 100sweep is observed at much lower strains. [1] G. Petekidis, D. Vlassopoulos and P.N. Pusey, Faraday Discuss., 123, 287 (2003)

  17. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers.

    PubMed

    Morley, Sinéad T; Walsh, Michael T; Newport, David T

    2017-05-01

    The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100  μ m square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = d p /H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions ( Re <  1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo . This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.

  18. On the strong influence of molecular interactions over large distances

    NASA Astrophysics Data System (ADS)

    Pfennig, Andreas

    2018-03-01

    Molecular-dynamics simulations of liquid water show deterministic chaos, i.e. an intentionally introduced molecular position shift of an individual molecule increases exponentially by a factor of 10 in 0.23 ps. This is a Lyaponov instability. As soon as it reaches molecular scale, the direction of the resulting shift in molecular motions is unpredictable. The influence of any individual distant particle on an observed molecule will be minute, but the effect will quickly increase to molecular scale and beyond due to this exponential growth. Consequently, any individual particle in the universe will affect the behavior of any molecule within at most 33 ps after the interaction reaches it. A larger distance of the faraway particle does not decrease the influence on an observed molecule, but the effect reaches molecular scale only some ps later. Thus in evaluating the interactions, nearby and faraway molecules have to be equally accounted for. The consequences of this quickly reacting network of interactions on universal scale are fundamental. Even in a strictly deterministic view, molecular behavior is principally unpredictable, and thus has to be regarded random. Corresponding statements apply for any particles interacting. This result leads to a fundamental rethinking of the structure of interactions of molecules and particles as well as the behavior of reality.

  19. Capillary trapping in thin-film flows of particles

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Gomez, Michael; Dressaire, Emilie

    Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.

  20. Relationship between local structure and relaxation in out-of-equilibrium glassy systems

    DOE PAGES

    Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; ...

    2016-12-27

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field calledmore » “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. We first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.« less

  1. Relationship between local structure and relaxation in out-of-equilibrium glassy systems.

    PubMed

    Schoenholz, Samuel S; Cubuk, Ekin D; Kaxiras, Efthimios; Liu, Andrea J

    2017-01-10

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called "softness," a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.

  2. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  3. Transient Characterization of Type B Particles in a Transport Riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Monazam, E.R.; Mei, J.S.

    2007-01-01

    Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less

  4. Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow.

    PubMed

    Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M

    2017-05-17

    We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.

  5. Dynamical clustering of red blood cells in capillary vessels.

    PubMed

    Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A

    2003-02-01

    We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

  6. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  7. Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays

    PubMed Central

    Kim, Sung-Cheol; Wunsch, Benjamin H.; Hu, Huan; Smith, Joshua T.; Stolovitzky, Gustavo

    2017-01-01

    Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input. PMID:28607075

  8. Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A.

    2017-10-01

    A nonlocal continuum-based model is derived to simulate the dynamic behavior of bridged carbon nanotube-based nano-scale mass detectors. The carbon nanotube (CNT) is modeled as an elastic Euler-Bernoulli beam considering von-Kármán type geometric nonlinearity. In order to achieve better accuracy in characterization of the CNTs, the geometrical properties of an attached nano-scale particle are introduced into the model by its moment of inertia with respect to the central axis of the beam. The inter-atomic long-range interactions within the structure of the CNT are incorporated into the model using Eringen's nonlocal elastic field theory. In this model, the mass can be deposited along an arbitrary length of the CNT. After deriving the full nonlinear equations of motion, the natural frequencies and corresponding mode shapes are extracted based on a linear eigenvalue problem analysis. The results show that the geometry of the attached particle has a significant impact on the dynamic behavior of the CNT-based mechanical resonator, especially, for those with small aspect ratios. The developed model and analysis are beneficial for nano-scale mass identification when a CNT-based mechanical resonator is utilized as a small-scale bio-mass sensor and the deposited particles are those, such as proteins, enzymes, cancer cells, DNA and other nano-scale biological objects with different and complex shapes.

  9. Influence of repulsion zone in the directional alignment of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Cambui, Dorilson

    2014-04-01

    Collective behavior in animal groups such as schools of fish, swarms of insects or flocks of birds, although a phenomenon widely studied in biological systems, is subject of great interdisciplinary interest. An important tool to describe the dynamics of collective motion and ordered live organisms is the concept of self-propelled particles. Proposed by Vicsek and collaborators, it was considered in this model only as an (single) interaction rule, set as alignment, where particles align to motion the nearest neighbors. In this paper, we have considered a variant of this model by adding a second rule called repulsion zone, where particles repel each other at short distances, in order to investigate the influence of this zone on directional order of the particles.

  10. Granular Segregation Driven by Particle Interactions

    NASA Astrophysics Data System (ADS)

    Lozano, C.; Zuriguel, I.; Garcimartín, A.; Mullin, T.

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C . All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  11. Dynamic behavior of reactive aluminum nanoparticle-fluorinated acrylic (AlFA) polymer composites

    NASA Astrophysics Data System (ADS)

    Crouse, Christopher A.; White, Brad; Spowart, Jonathan E.

    2011-06-01

    The dynamic behavior of aluminum nanoparticle-fluorinated acrylic (AlFA) composite materials has been explored under high strain rates. Cylindrical pellets of the AlFA composite materials were mounted onto copper sabots and impacted against a rigid anvil at velocities between 100 and 400 m/s utilizing a Taylor gas gun apparatus to achieve strain rates on the order of 104 /s. A framing camera was used to record the compaction and reaction events that occurred upon contact of the pellet with the anvil. Under both open air and vacuum environments the AlFA composites demonstrated high reactivity suggesting that the particles are primarily reacting with the fluorinated matrix. We hypothesize, based upon the compaction history of these materials, that reaction is initiated when the oxide shells on the aluminum nanoparticles are broken due an interparticle contact deformation process. We have investigated this hypothesis through altering the particle loading in the AlFA composites as well as impact velocities. This data and the corresponding trends will be presented in detail.

  12. Compressed exponential relaxation in liquid silicon: Universal feature of the crossover from ballistic to diffusive behavior in single-particle dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2012-07-01

    We report a first-principles molecular-dynamics study of the relaxation dynamics in liquid silicon (l-Si) over a wide temperature range (1000-2200 K). We find that the intermediate scattering function for l-Si exhibits a compressed exponential decay above 1200 K including the supercooled regime, which is in stark contrast to that for normal "dense" liquids which typically show stretched exponential decay in the supercooled regime. The coexistence of particles having ballistic-like motion and those having diffusive-like motion is demonstrated, which accounts for the compressed exponential decay in l-Si. An attempt to elucidate the crossover from the ballistic to the diffusive regime in the "time-dependent" diffusion coefficient is made and the temperature-independent universal feature of the crossover is disclosed.

  13. A numerical study of a long flexible fiber in shear flow: dynamics and rheology

    NASA Astrophysics Data System (ADS)

    Zuk, Pawel; Perazzo, Antonio; Nunes, Janine; Stone, Howard

    2017-11-01

    Long slender particles can span the whole spectrum of stiffness: from very flexible particles such as globular proteins to extremely rigid particles, e.g. carbon nanotubes or β-amyloid fibers. The behavior of rigid particles is well understood, however there are only few recent experimental reports about long fibers of moderate flexibility. We present a numerical study of a single long flexible fiber in a shear flow. The fiber is simulated as a bead-spring model including hydrodynamic interactions in the Rotne-Prager-Yamakawa approximation. We analyze fiber shape, motion and stress induced in the fluid under the shear flow. We find that all of these properties appear to be related to the characteristic length scale of the kinks formed in the fibers. We present a scaling law for the kink size as a function of shear rate and the fiber parameters and justify it using elastic theory. The study suggests that local properties of a single fiber may condition the behavior of concentrated suspensions.

  14. Thermal diffusion behavior of hard-sphere suspensions.

    PubMed

    Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone

    2006-11-28

    We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.

  15. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-04-15

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

  16. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  17. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  18. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow

    NASA Astrophysics Data System (ADS)

    Gerloff, Sascha; Klapp, Sabine H. L.

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  19. Internal dynamics of semiflexible polymers with active noise

    NASA Astrophysics Data System (ADS)

    Eisenstecken, Thomas; Gompper, Gerhard; Winkler, Roland G.

    2017-04-01

    The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is studied theoretically. The active noise may either originate from interactions of a passive polymer with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles. We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-to-end vector correlation function decays exponentially for times longer than the longest polymer relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is substantially enhanced by the activity. Three regimes can be identified in the mean square displacement for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again determined by the activity.

  20. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    NASA Astrophysics Data System (ADS)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  1. Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

    PubMed

    Dickinson, Richard B; Purich, Daniel L

    2006-08-15

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

  2. Stokesian dynamics of pill-shaped Janus particles with stick and slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo Cheong; Chan, Derek Y. C.

    2013-04-01

    We study the forces and torques experienced by pill-shaped Janus particles of different aspect ratios where half of the surface obeys the no-slip boundary condition and the other half obeys the Navier slip condition of varying slip lengths. Using a recently developed boundary integral formulation whereby the traditional singular behavior of this approach is removed analytically, we quantify the strength of the forces and torques experienced by such particles in a uniform flow field in the Stokes regime. Depending on the aspect ratio and the slip length, the force transverse to the flow direction can change sign. This is a novel property unique to the Janus nature of the particles.

  3. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  4. Relative locality and the soccer ball problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amelino-Camelia, Giovanni; Freidel, Laurent; Smolin, Lee

    We consider the behavior of macroscopic bodies within the framework of relative locality [G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1101.0931]. This is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets, and stars, with energies E{sub macro} much larger than M{sub P}.more » We show that this soccer ball problem does not arise within the framework of relative locality because the nonlinear effects for the dynamics of a composite system with N elementary particles appear at most of order E{sub macro}/N{center_dot}M{sub P}.« less

  5. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.

  6. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  7. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  8. Study of the Cumulative Number Distribution of Charged Particles Produced in d12C-Interactions at 4.2 A GeV/c

    NASA Astrophysics Data System (ADS)

    Aslam, S. M.; Suleymanov, M. K.; Wazir, Z.; Gilani, A. R.

    2018-06-01

    In this paper the behavior of the cumulative number and also with maximum values of cumulative number distribution of protons, π + and π --mesons, have been studied, produced in d12C-interctions at 4.2 A GeV/c. The experimental data has been compared with ones coming from the Dubna version of the cascade model. In the analysis we have observed; four different regions in the cumulative number distributions for all charged particle and protons and the last region is corresponding to values of cumulative number greater than 1; for pions number of regions decreased to 2 for π ±-mesons but cumulative area is absent for both mesons. Cascade cannot describe satisfactorily the distributions of the cumulative protons and cumulative π -+-mesons, it gives less number for the all produced particles. In case of particles with maximum values of cumulative number cascade can describe the behavior of cumulative number distribution well. There exist some events with two cumulative particles which could not describe by the cascade dynamics. May be collective nucleon effect could be reasons of the observation two cumulative particles events.

  9. Nonuniform flow in soft glasses of colloidal rods

    NASA Astrophysics Data System (ADS)

    Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.

    2017-04-01

    Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.

  10. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  11. Getting Things Sorted With Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Atis, Severine; Peacock, Thomas; Environmental Dynamics Laboratory Team

    2014-11-01

    The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements. Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring that rapidly redistributes a tracer throughout the domain. For flows with arbitrary time-dependence, the modern approach of Lagrangian Coherent Structures (LCSs) provide a method for identifying the key material lines that organize flow transport. When the advected tracer particles possess a finite size and nontrivial shape, however, their dynamics can differ markedly from passive tracers, thus affecting the dispersion phenomena. We present details of numerical simulations and laboratory experiments that investigate the behavior of finite size particles in 2-dimensional chaotic flows. We show that the shape and the size of the particles alter the underlying LCSs, facilitating segregation between tracers of different shape in the same flow field.

  12. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    NASA Astrophysics Data System (ADS)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of the detonation tube) accordingly to improve the operational performance of the PDE.

  13. Constraints and vibrations in static packings of ellipsoidal particles.

    PubMed

    Schreck, Carl F; Mailman, Mitch; Chakraborty, Bulbul; O'Hern, Corey S

    2012-06-01

    We numerically investigate the mechanical properties of static packings of frictionless ellipsoidal particles in two and three dimensions over a range of aspect ratio and compression Δφ. While amorphous packings of spherical particles at jamming onset (Δφ=0) are isostatic and possess the minimum contact number z_{iso} required for them to be collectively jammed, amorphous packings of ellipsoidal particles generally possess fewer contacts than expected for collective jamming (z

  14. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  15. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  16. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  17. Effect of friction stir processing on tribological properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Aktarer, S. M.; Sekban, D. M.; Yanar, H.; Purçek, G.

    2017-02-01

    As-cast Al-12Si alloy was processed by single-pass friction stir processing (FSP), and its effect on mainly friction and wear properties of processed alloy was studied in detail. The needle-shaped eutectic silicon particles were fragmented by intense plastic deformation and dynamic recrystallization during FSP. The fragmented and homogenously distributed Si particles throughout the improve the mechanical properties and wear behavior of Al-12Si alloy. The wear mechanisms for this improvement were examined and the possible reasons were discussed.

  18. Experimental investigation into the initiation and intensity of erosion in granular flows and its effect on flow dynamics with applications to pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2017-12-01

    The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.

  19. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  20. Molecular Dynamics Studies of Overbased Detergents on a Water Surface.

    PubMed

    Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S

    2017-07-25

    Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.

  1. Markovian robots: Minimal navigation strategies for active particles

    NASA Astrophysics Data System (ADS)

    Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando

    2018-04-01

    We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.

  2. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    NASA Astrophysics Data System (ADS)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  3. Model of lidar range-Doppler signatures of solid rocket fuel plumes

    NASA Astrophysics Data System (ADS)

    Bankman, Isaac N.; Giles, John W.; Chan, Stephen C.; Reed, Robert A.

    2004-09-01

    The analysis of particles produced by solid rocket motor fuels relates to two types of studies: the effect of these particles on the Earth's ozone layer, and the dynamic flight behavior of solid fuel boosters used by the NASA Space Shuttle. Since laser backscatter depends on the particle size and concentration, a lidar system can be used to analyze the particle distributions inside a solid rocket plume in flight. We present an analytical model that simulates the lidar returns from solid rocket plumes including effects of beam profile, spot size, polarization and sensing geometry. The backscatter and extinction coefficients of alumina particles are computed with the T-matrix method that can address non-spherical particles. The outputs of the model include time-resolved return pulses and range-Doppler signatures. Presented examples illustrate the effects of sensing geometry.

  4. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  5. a Study of Dynamic Powder Consolidation Based on a Particle-Level Mathematical Model.

    NASA Astrophysics Data System (ADS)

    Williamson, Richard L.

    A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation. Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior. A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.

  6. Relativistic Newtonian dynamics for objects and particles

    NASA Astrophysics Data System (ADS)

    Friedman, Y.

    2017-04-01

    Relativistic Newtonian Dynamics (RND) was introduced in a series of recent papers by the author, in partial cooperation with J. M. Steiner. RND was capable of describing non-classical behavior of motion under a central attracting force. RND incorporates the influence of potential energy on spacetime in Newtonian dynamics, treating gravity as a force in flat spacetime. It was shown that this dynamics predicts accurately gravitational time dilation, the anomalous precession of Mercury and the periastron advance of any binary. In this paper the model is further refined and extended to describe also the motion of both objects with non-zero mass and massless particles, under a conservative attracting force. It is shown that for any conservative force a properly defined energy is conserved on the trajectories and if this force is central, the angular momentum is also preserved. An RND equation of motion is derived for motion under a conservative force. As an application, it is shown that RND predicts accurately also the Shapiro time delay - the fourth test of GR.

  7. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel-Havar, A. H., E-mail: Amir.hushang.shirdel@gmail.com; Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shownmore » that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.« less

  8. Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Bolton, Kim; Rosén, Arne

    2004-07-01

    Molecular dynamics simulations have been used to study the thermal behavior of FeN-mCm clusters where N, the total number of atoms, extends up to 2400. Comparison of the computed results with experimental data shows that the simulations yield the correct trends for the liquid-solid region of the iron-carbide phase diagram as well as the correct dependence of cluster melting point as a function of cluster size. The calculation indicates that, when carbon nanotubes (CNTs) are grown on large (>3-4 nm) catalyst particles at low temperatures (<1200 K), the catalyst particles are not completely molten. It is argued that the mechanism of CNT growth under these conditions may be governed by the surface melting of the cluster. .

  9. Cluster dynamics and cluster size distributions in systems of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Schimansky-Geier, L.; Bär, M.

    2010-12-01

    Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.

  10. Granular segregation driven by particle interactions.

    PubMed

    Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  11. Anomalous mobility of a driven active particle in a steady laminar flow

    NASA Astrophysics Data System (ADS)

    Cecconi, F.; Puglisi, A.; Sarracino, A.; Vulpiani, A.

    2018-07-01

    We study, via extensive numerical simulations, the force–velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale . We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle () advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite a more complex force–velocity relation can be observed.

  12. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.

    PubMed

    Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E

    2012-11-07

    For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion.

  13. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    NASA Astrophysics Data System (ADS)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  14. Static and dynamic properties of two-dimensional Coulomb clusters.

    PubMed

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  15. Promoting smoke-free homes: a novel behavioral intervention using real-time audio-visual feedback on airborne particle levels.

    PubMed

    Klepeis, Neil E; Hughes, Suzanne C; Edwards, Rufus D; Allen, Tracy; Johnson, Michael; Chowdhury, Zohir; Smith, Kirk R; Boman-Davis, Marie; Bellettiere, John; Hovell, Melbourne F

    2013-01-01

    Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m(3), and low noise. A linear relationship (R(2) = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m(3). Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches.

  16. Promoting Smoke-Free Homes: A Novel Behavioral Intervention Using Real-Time Audio-Visual Feedback on Airborne Particle Levels

    PubMed Central

    Klepeis, Neil E.; Hughes, Suzanne C.; Edwards, Rufus D.; Allen, Tracy; Johnson, Michael; Chowdhury, Zohir; Smith, Kirk R.; Boman-Davis, Marie; Bellettiere, John; Hovell, Melbourne F.

    2013-01-01

    Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m3, and low noise. A linear relationship (R2 = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches. PMID:24009742

  17. Influence of the multilayer coating obtained by the HVOF method on behavior of the steel barrier at dynamic loading

    NASA Astrophysics Data System (ADS)

    Radchenko, Pavel; Radchenko, Andrey; Batuev, Stanislav

    2013-06-01

    The high velocity (supersonic) oxy-fuel (HVOF) thermal spray technology is a rather recent addition to family of thermal spray processes. This technique is considered most modern of technologies of spraying. The increase in velocity of the particles at lower temperatures allowed reducing level of oxidation of the particles and to increase the density of a powder coating. In HVOF dry dusting applicators of the first and second generations was used the cylindrical nozzle, whereas in the third generation expanding Laval nozzles are used. This method allows the velocity of a gas flow to exceed to 2000 m/sec, and the velocities of the powder particles 800 m/sec. Recently many results on elastic and strength properties of the multilayer coatings obtained by supersonic flame spraying method are received. But the main part of works on research of the coating obtained by the HVOF method is devoted to research of their stress-strain state at static loadings. In this work the behavior of the steel barrier with the multilayer coating applied by HVOF is researched, at dynamic loading of projectile structure at different velocities of interaction. The problem was solved numerically within Lagrangian approach, a finite element method with the use of the explicit finite difference scheme of G. Johnson.

  18. Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francois, Elizabeth Green; Morris, John S; Novak, Alan M

    2010-01-01

    Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to densitymore » gradients, pressing methods and geometry can be seen on the wave breakout behavior.« less

  19. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  20. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    PubMed

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  1. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions.

    PubMed

    Huang, Mu-Jie; Chen, Hsuan-Yi; Mikhailov, Alexander S

    2012-11-01

    Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

  2. Kinetic model for the mechanical response of suspensions of sponge-like particles.

    PubMed

    Hütter, Markus; Faber, Timo J; Wyss, Hans M

    2012-01-01

    A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.

  3. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy <+/- 0.05%). Active control of the relative positions of pairs of particles can allow studies of the coalescence of particles, providing a unique opportunity to investigate the bulk and surface properties that govern the hydrodynamic relaxation in particle shape. In particular, we will show how the viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  4. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  5. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.

    PubMed

    Liu, Heng; Dong, Chaoqing; Ren, Jicun

    2014-02-19

    In this study, a new tempo-spatially resolved fluctuation spectroscopy under dark-field illumination is described, named dark-field illumination-based scattering correlation spectroscopy (DFSCS). DFSCS is a single-particle method, whose principle is similar to that of fluorescence correlation spectroscopy (FCS). DFSCS correlates the fluctuations of the scattered light from single nanoparticle under dark-field illumination. We developed a theoretical model for translational diffusion of nanoparticles in DFSCS system. The results of computer simulations documented that this model was able to well describe the diffusion behaviors of nanoparticles in uniformly illuminated field. The experimental setup of DFSCS was achieved by introducing a dark-field condenser to the frequently used bright-field microscope and an electron multiplying charge-coupled device (EMCCD) as the array detector. In the optimal condition, a stack of 500 000 frames were collected simultaneously on 64 detection channels for a single measurement with acquisition rate of 0.5 ms per frame. We systematically investigated the effect of certain factors such as particle concentration, viscosity of the solution, and heterogeneity of gold nanoparticles (GNPs) samples on DFSCS measurements. The experiment data confirmed theoretical model proposed. Furthermore, this new method was successfully used for investigating dynamic behaviors of GNPs in live cells. Our preliminary results demonstrate that DFSCS is a practical and affordable tool for ordinary laboratories to investigate the dynamic information of nanoparticles in vitro as well as in vivo.

  6. A new insight into diffusional escape from a biased cylindrical trap

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Dagdug, Leonardo; Bezrukov, Sergey M.

    2017-09-01

    Recent experiments with single biological nanopores, as well as single-molecule fluorescence spectroscopy and pulling studies of protein and nucleic acid folding raised a number of questions that stimulated theoretical and computational investigations of barrier crossing dynamics. The present paper addresses a closely related problem focusing on trajectories of Brownian particles that escape from a cylindrical trap in the presence of a force F parallel to the cylinder axis. To gain new insights into the escape dynamics, we analyze the "fine structure" of these trajectories. Specifically, we divide trajectories into two segments: a looping segment, when a particle unsuccessfully tries to escape returning to the trap bottom again and again, and a direct-transit segment, when it finally escapes moving without touching the bottom. Analytical expressions are derived for the Laplace transforms of the probability densities of the durations of the two segments. These expressions are used to find the mean looping and direct-transit times as functions of the biasing force F. It turns out that the force-dependences of the two mean times are qualitatively different. The mean looping time monotonically increases as F decreases, approaching exponential F-dependence at large negative forces pushing the particle towards the trap bottom. In contrast to this intuitively appealing behavior, the mean direct-transit time shows rather counterintuitive behavior: it decreases as the force magnitude, |F|, increases independently of whether the force pushes the particles to the trap bottom or to the exit from the trap, having a maximum at F = 0.

  7. Solid particle dynamic behavior through twisted blade rows

    NASA Technical Reports Server (NTRS)

    Hamed, A.

    1982-01-01

    The particle trajectory calculations provide the essential information which is required for predicting the pattern and intensity of turbomachinery erosion. Consequently, the evaluation of the machine performance deterioration due to erosion is extremely sensitive to the accuracy of the flow field and blade geometry representation in the trajectory computational model. A model is presented that is simple and efficient yet versatile and general to be applicable to axial, radial and mixed flow machines, and to inlets, nozzles, return passages and separators. The results of the computations are presented for the particle trajectories through a row of twisted vanes in the inlet flow field. The effect of the particle size on their trajectories, blade impacts, and on their redistribution and separation are discussed.

  8. a Truncated Spherical Shell Model for Nuclear Collective Excitations: Applications to the Odd Mass Systems, Neutron-Proton Systems and Other Topics.

    NASA Astrophysics Data System (ADS)

    Wu, Hua

    One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but "intelligent" truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated turncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, we find that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDU0 was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a al Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves "chaotically". This information is certainly crucial to understanding quantum "chaotic" behavior. Also, some of the primitive assumptions of the FDSM are investigated and we concluded that the assumption of the quasi-spin behavior for the so-called abnormal parity particles is inadequate and needs to be extended. Suggestions of extensions are made. Finally, the newly developed physical quantity, the collective spin, is explored in terms of dynamical symmetries in the FDSM.

  9. Electrorheological suspensions of laponite in oil: rheometry studies.

    PubMed

    Parmar, K P S; Méheust, Y; Schjelderupsen, Børge; Fossum, J O

    2008-03-04

    We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.

  10. On the mathematical modeling of soccer dynamics

    NASA Astrophysics Data System (ADS)

    Machado, J. A. Tenreiro; Lopes, António M.

    2017-12-01

    This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.

  11. Theory of activated glassy dynamics in randomly pinned fluids.

    PubMed

    Phan, Anh D; Schweizer, Kenneth S

    2018-02-07

    We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.

  12. Theory of activated glassy dynamics in randomly pinned fluids

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Schweizer, Kenneth S.

    2018-02-01

    We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.

  13. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    PubMed

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  15. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  16. Density Scaling of Glassy Dynamics and Dynamic Heterogeneities in Glass-forming Liquids.

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Yang, Yong; Wang, Wei-Hua

    The discovery of density scaling in strongly correlating systems is an important progress for understanding the dynamic behaviors of supercooled liquids. Here we found for a ternary metallic glass-forming liquid, it is not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities and static structure are still well described by density scaling with the same scaling exponent γ. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glass-formers. The supercooled dynamics and density scaling behaviors will also be discussed in model glass-forming liquids with tunable attractive potentials to further quantify the nonperturbative roles of attractive interactions. We acknowledge the support from ''Peter Ho Conference Scholarships'' of City University of Hong Kong.

  17. Dynamics of metastable breathers in nonlinear chains in acoustic vacuum

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Mohan, T. R. Krishna

    2009-03-01

    The study of the dynamics of one-dimensional chains with both harmonic and nonlinear interactions, as in the Fermi-Pasta-Ulam and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Nevertheless, little is known about the dynamical behavior of purely nonlinear chains where there is a complete absence of the harmonic term, and hence sound propagation is not admissible, i.e., under conditions of “acoustic vacuum.” Here we study the dynamics of highly localized excitations, or breathers, which are known to be initiated by the quasistatic stretching of the bonds between adjacent particles. We show via detailed particle-dynamics-based studies that many low-energy pulses also form in the vicinity of the perturbation, and the breathers that form are “fragile” in the sense that they can be easily delocalized by scattering events in the system. We show that the localized excitations eventually disperse, allowing the system to attain an equilibrium-like state that is realizable in acoustic vacuum. We conclude with a discussion of how the dynamics is affected by the presence of acoustic oscillations.

  18. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Copyright © 2015, American Association for the Advancement of Science.

  19. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.

    PubMed

    Yunker, Peter J; Chen, Ke; Gratale, Matthew D; Lohr, Matthew A; Still, Tim; Yodh, A G

    2014-05-01

    This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

  20. Behavior of a particle-laden flow in a spiral channel

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon; Stokes, Yvonne; Bertozzi, Andrea L.

    2014-04-01

    Spiral gravity separators are devices used in mineral processing to separate particles based on their specific gravity or size. The spiral geometry allows for the simultaneous application of gravitational and centripetal forces on the particles, which leads to segregation of particles. However, this segregation mechanism is not fundamentally understood, and the spiral separator literature does not tell a cohesive story either experimentally or theoretically. While experimental results vary depending on the specific spiral separator used, present theoretical works neglect the significant coupling between the particle dynamics and the flow field. Using work on gravity-driven monodisperse slurries on an incline that empirically accounts for this coupling, we consider a monodisperse particle slurry of small depth flowing down a rectangular channel that is helically wound around a vertical axis. We use a thin-film approximation to derive an equilibrium profile for the particle concentration and fluid depth and find that, in the steady state limit, the particles concentrate towards the vertical axis of the helix, leaving a region of clear fluid.

  1. Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels

    PubMed Central

    Pieprzyk, S.; Heyes, D. M.; Brańka, A. C.

    2016-01-01

    Solute transport and intermixing in microfluidic devices is strongly dependent on diffusional processes. Brownian Dynamics simulations of pressure-driven flow of model microgel particles in microchannels have been carried out to explore these processes and the factors that influence them. The effects of a pH-field that induces a spatial dependence of particle size and consequently the self-diffusion coefficient and system thermodynamic state were focused on. Simulations were carried out in 1D to represent some of the cross flow dependencies, and in 2D and 3D to include the effects of flow and particle concentration, with typical stripe-like diffusion coefficient spatial variations. In 1D, the mean square displacement and particle displacement probability distribution function agreed well with an analytically solvable model consisting of infinitely repulsive walls and a discontinuous pH-profile in the middle of the channel. Skew category Brownian motion and non-Gaussian dynamics were observed, which follows from correlations of step lengths in the system, and can be considered to be an example of so-called “diffusing diffusivity.” In Poiseuille flow simulations, the particles accumulated in regions of larger diffusivity and the largest particle concentration throughput was found when this region was in the middle of the channel. The trends in the calculated cross-channel diffusional behavior were found to be very similar in 2D and 3D. PMID:27795750

  2. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of lava dome growth with endogenous growth at high discharge rates followed by exogenous extrusion of rheologically stiffened lava due to degassing induced crystallization at low discharge rates. We couple conduit flow dynamics with surface growth of the evolving lava dome which is fueled by an overpressured reservoir undergoing constant replenishment. The periodic behavior between magma chamber pressure and discharge rate is reproduced as a result of the temporal and spatial change in magma viscosity controlled by crystallization kinetics. Dimensionless numbers are used to map the flow behaviors with the changing extrusion regime. A dimensionless plot identifying the flow transition region during the growth cycle of an evolving lava dome in its lava dome eruptive period is presented. The plot provides a the threshold value of a dimensionless strength parameter (pi 2 < 3.31 x 10-4) below which the transition in flow pattern occurs from endogenously evolving lava dome with a ductile core to the development of a shear lobe for short or long lived periodic episode of the extrusion of magma. (Abstract shortened by UMI.).

  3. Magnetic particle-scanning for ultrasensitive immunodetection on-chip.

    PubMed

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2014-08-19

    We describe the concept of magnetic particle-scanning for on-chip detection of biomolecules: a magnetic particle, carrying a low number of antigens (Ag's) (down to a single molecule), is transported by hydrodynamic forces and is subjected to successive stochastic reorientations in an engineered magnetic energy landscape. The latter consists of a pattern of substrate-bound small magnetic particles that are functionalized with antibodies (Ab's). Subsequationuent counting of the captured Ag-carrying particles provides the detection signal. The magnetic particle-scanning principle is investigated in a custom-built magneto-microfluidic chip and theoretically described by a random walk-based model, in which the trajectory of the contact point between an Ag-carrying particle and the small magnetic particle pattern is described by stochastic moves over the surface of the mobile particle, until this point coincides with the position of an Ag, resulting in the binding of the particle. This model explains the particular behavior of previously reported experimental dose-response curves obtained for two different ligand-receptor systems (biotin/streptavidin and TNF-α) over a wide range of concentrations. Our model shows that magnetic particle-scanning results in a very high probability of immunocomplex formation for very low Ag concentrations, leading to an extremely low limit of detection, down to the single molecule-per-particle level. When compared to other types of magnetic particle-based surface coverage assays, our strategy was found to offer a wider dynamic range (>8 orders of magnitude), as the system does not saturate for concentrations as high as 10(11) Ag molecules in a 5 μL drop. Furthermore, by emphasizing the importance of maximizing the encounter probability between the Ag and the Ab to improve sensitivity, our model also contributes to explaining the behavior of other particle-based heterogeneous immunoassays.

  4. Harnessing Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; He, Ximin; Aizenberg, Michael; Aizenberg, Joanna; Balazs, Anna

    We use computational modeling to design a device that can controllably trap and release particles in solution in response to variations in temperature. The system exploits the thermoresponsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the temperature-dependent behavior of biological aptamers, which form a hairpin structure at low temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel substrate exhibits a lower critical solution temperature and thus, expands at low tempertures and contracts at higher T. By developing a new dissipative particle dynamics simulation, we examine the behavior of this hybrid system in a flowing fluid that contains buoyant nanoparticles. Our findings provide guidelines for creating fluidic devices that are effective at purifying contaminated solutions or trapping cells for biological assays.

  5. Dynamical measurements of motion behavior of free fluorescent sphere using the wide field temporal focusing microscopy with astigmatism method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching

    2017-02-01

    A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.

  6. Transition from normal to ballistic diffusion in a one-dimensional impact system

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  7. Transition from normal to ballistic diffusion in a one-dimensional impact system.

    PubMed

    Livorati, André L P; Kroetz, Tiago; Dettmann, Carl P; Caldas, Iberê L; Leonel, Edson D

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  8. Simulations of a binary-sized mixture of inelastic grains in rapid shear flow.

    PubMed

    Clelland, R; Hrenya, C M

    2002-03-01

    In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.

  9. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  10. A study of sedimentation and aggregation of volcanic particles based on experiments carried out with a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Bagheri, G.; Bonadonna, C.; Manzella, I.; Pontelandolfo, P.; Haas, P.

    2012-12-01

    A complete understanding and parameterization of both particle sedimentation and particle aggregation require systematic and detailed laboratory investigations performed in controlled conditions. For this purpose, a dedicated 4-meter-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques (CMEFE). Final design is a result of Computational Fluid Dynamics simulations combined with laboratory tests. With its diverging test section, the tunnel is designed to suspend particles of different shapes and sizes in order to study the aero-dynamical behavior of volcanic particles and their collision and aggregation. In current set-up, velocities between 5.0 to 27 ms-1 can be obtained, which correspond to typical volcanic particles with diameters between 10 to 40 mm. A combination of Particle Tracking Velocimetry (PTV) and statistical methods is used to derive particle terminal velocity. The method is validated using smooth spherical particles with known drag coefficient. More than 120 particles of different shapes (i.e. spherical, regular and volcanic) and compositions are 3D-scanned and almost 1 million images of their suspension in the test section of wind tunnel are recorded by a high speed camera and analyzed by a PTV code specially developed for the wind tunnel. Measured values of terminal velocity for tested particles are between 3.6 and 24.9 ms-1 which corresponds to Reynolds numbers between 8×103 and 1×105. In addition to the vertical wind tunnel, an apparatus with height varying between 0.5 and 3.5 m has been built to measure terminal velocity of micrometric particles in Reynolds number between 4 and 100. In these experiments, particles are released individually in the air at top of the apparatus and their terminal velocities are measured at the bottom of apparatus by a combination of high-speed camera imaging and PTV post-analyzing. Effects of shape, porosity and orientation of the particles on their terminal velocity are studied. Various shape factors are measured based on different methods, such as 3D-scanning, 2D-image processing, SEM image analysis, caliper measurements, pycnometer and buoyancy tests. Our preliminary experiments on non-smooth spherical particles and irregular particles reveal some interesting aspects. First, the effect of surface roughness and porosity is more important for spherical particles than for regular non-spherical and irregular particles. Second, results underline how, the aero-dynamical behavior of individual irregular particles is better characterized by a range of values of drag coefficients instead of a single value. Finally, since all the shape factors are calculated precisely for each individual particle, the resulted database can provide important information to benchmark and improve existing terminal-velocity models. Modifications of the wind tunnel, i.e. very low air speed (0.03-5.0 ms-1) for suspension of micrometric particles, and of the PTV code, i.e. multiple particle tracking and collision counting, have also been performed in combination to the installation of a particle charging device, a controlled humidifier and a high-power chiller (to reach values down to -20 °C) in order to investigate both wet and dry aggregation of volcanic particles.

  11. The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Wang, P. K.

    2017-12-01

    The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  12. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  13. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  14. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  15. Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

    PubMed

    Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi

    2013-07-01

    Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.

  16. Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model.

    PubMed

    Du, Xin; Weeks, Eric R

    2016-06-01

    We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise close to the glass transition.

  17. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.

    2018-01-01

    We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533

  18. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    NASA Astrophysics Data System (ADS)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than for other glassy systems and it provides evidence in favor of a particular theory for the origin of dynamical heterogeneity.

  19. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    PubMed

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.

  20. Particle Based Simulations of Complex Systems with MP2C : Hydrodynamics and Electrostatics

    NASA Astrophysics Data System (ADS)

    Sutmann, Godehard; Westphal, Lidia; Bolten, Matthias

    2010-09-01

    Particle based simulation methods are well established paths to explore system behavior on microscopic to mesoscopic time and length scales. With the development of new computer architectures it becomes more and more important to concentrate on local algorithms which do not need global data transfer or reorganisation of large arrays of data across processors. This requirement strongly addresses long-range interactions in particle systems, i.e. mainly hydrodynamic and electrostatic contributions. In this article, emphasis is given to the implementation and parallelization of the Multi-Particle Collision Dynamics method for hydrodynamic contributions and a splitting scheme based on Multigrid for electrostatic contributions. Implementations are done for massively parallel architectures and are demonstrated for the IBM Blue Gene/P architecture Jugene in Jülich.

  1. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film

    PubMed Central

    Al Balushi, Ahmed A.; Zehtabi-Oskuie, Ana; Gordon, Reuven

    2013-01-01

    We experimentally demonstrate protein binding at the single particle level. A double nanohole (DNH) optical trap was used to hold onto a 20 nm biotin-coated polystyrene (PS) particle which subsequently is bound to streptavidin. Biotin-streptavidin binding has been detected by an increase in the optical transmission through the DNH. Similar optical transmission behavior was not observed when streptavidin binding sites where blocked by mixing streptavidin with excess biotin. Furthermore, interaction of non-functionalized PS particles with streptavidin did not induce a change in the optical transmission through the DNH. These results are promising as the DNH trap can make an excellent single molecule resolution sensor which would enable studying biomolecular interactions and dynamics at a single particle/molecule level. PMID:24049672

  2. Active colloids with collective mobility status and research opportunities.

    PubMed

    Zhang, Jie; Luijten, Erik; Grzybowski, Bartosz A; Granick, Steve

    2017-09-18

    The collective mobility of active matter (self-propelled objects that transduce energy into mechanical work to drive their motion, most commonly through fluids) constitutes a new frontier in science and achievable technology. This review surveys the current status of the research field, what kinds of new scientific problems can be tackled in the short term, and what long-term directions are envisioned. We focus on: (1) attempts to formulate design principles to tailor active particles; (2) attempts to design principles according to which active particles interact under circumstances where particle-particle interactions of traditional colloid science are augmented by a family of nonequilibrium effects discussed here; (3) attempts to design intended patterns of collective behavior and dynamic assembly; (4) speculative links to equilibrium thermodynamics. In each aspect, we assess achievements, limitations, and research opportunities.

  3. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.

    PubMed

    Yu, Hsiu-Yu; Eckmann, David M; Ayyaswamy, Portonovo S; Radhakrishnan, Ravi

    2015-05-01

    We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely, a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact the particle kinetics.

  4. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Frankie; Usatyuk, Mykhaylo; DeSalvo, B. J.; Chin, Cheng

    2017-01-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.

  5. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less

  6. Some Considerations on the Dynamics of Nanometric Suspensions in Fluid Media

    NASA Astrophysics Data System (ADS)

    Lungu, Mihai; Neculae, Adrian; Bunoiu, Madalin

    2009-05-01

    Nano-sized particles received considerable interest in the last decade. The manipulation of nanoparticles is becoming an important issue as they are more and more produced as a result of material synthesis and combustion emission. The nanometric particles represent a very important threat for human health because they can readily enter the human body through inhalation and their toxicity is relatively high due to the large specific surface area. The separation of the nano-sized particles into distinct bands, spatially separated one of each other had also brought recently considerable attention in many scientific areas; the usages of nanoparticles are very promising for the new technologies. The behavior of a suspension of sub-micronic particles under the action of dielectrophoretic force is numerically investigated and a theoretical model is proposed.

  7. Exclusion Process with Slow Boundary

    NASA Astrophysics Data System (ADS)

    Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.

    2017-06-01

    We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.

  8. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    NASA Astrophysics Data System (ADS)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  9. Thermal and athermal three-dimensional swarms of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen H. P.; Jankowski, Eric; Glotzer, Sharon C.

    2012-07-01

    Swarms of self-propelled particles exhibit complex behavior that can arise from simple models, with large changes in swarm behavior resulting from small changes in model parameters. We investigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using molecular dynamics simulations optimized for graphics processing units. We find a variety of swarms of different overall shape assemble spontaneously and that for certain Morse potential parameters at most two competing structures are observed. We report a rich “phase diagram” of athermal swarm structures observed across a broad range of interaction parameters. Unlike the structures formed in equilibrium self-assembly, we find that the probability of forming a self-propelled swarm can be biased by the choice of initial conditions. We investigate how thermal noise influences swarm formation and demonstrate ways it can be exploited to reconfigure one swarm into another. Our findings validate and extend previous observations of self-propelled Morse swarms and highlight open questions for predictive theories of nonequilibrium self-assembly.

  10. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel

    2004-02-01

    The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.

  11. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    NASA Astrophysics Data System (ADS)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  12. Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational

    DOE PAGES

    Ellison, C. L.; Burby, J. W.; Qin, H.

    2015-11-01

    One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less

  13. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    NASA Astrophysics Data System (ADS)

    Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.

    2017-04-01

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical model was shown to be capable of realistically predicting the dynamic nature of magnetic particle capture and accumulation around a wire in HGMS-type systems.

  14. Artificial biomembrane morphology: a dissipative particle dynamics study.

    PubMed

    Becton, Matthew; Averett, Rodney; Wang, Xianqiao

    2017-09-18

    Artificial membranes mimicking biological structures are rapidly breaking new ground in the areas of medicine and soft-matter physics. In this endeavor, we use dissipative particle dynamics simulation to investigate the morphology and behavior of lipid-based biomembranes under conditions of varied lipid density and self-interaction. Our results show that a less-than-normal initial lipid density does not create the traditional membrane; but instead results in the formation of a 'net', or at very low densities, a series of disparate 'clumps' similar to the micelles formed by lipids in nature. When the initial lipid density is high, a membrane forms, but due to the large number of lipids, the naturally formed membrane would be larger than the simulation box, leading to 'rippling' behavior as the excess repulsive force of the membrane interior overcomes the bending energy of the membrane. Once the density reaches a certain point however, 'bubbles' appear inside the membrane, reducing the rippling behavior and eventually generating a relatively flat, but thick, structure with micelles of water inside the membrane itself. Our simulations also demonstrate that the interaction parameter between individual lipids plays a significant role in the formation and behavior of lipid membrane assemblies, creating similar structures as the initial lipid density distribution. This work provides a comprehensive approach to the intricacies of lipid membranes, and offers a guideline to design biological or polymeric membranes through self-assembly processes as well as develop novel cellular manipulation and destruction techniques.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apel, V.M.; Curilef, S.; Plastino, A.R., E-mail: arplastino@unnoba.edu.ar

    We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computedmore » on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.« less

  16. Glass transition of soft colloids

    NASA Astrophysics Data System (ADS)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  17. A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Ghorbani, Najmeh; Pishevar, Ahmadreza

    2018-01-01

    A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.

  18. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  19. Constraints on the Longevity of the 2010 Eyjaföll Eruption Cloud From Analog Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2010-12-01

    The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.

  20. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation

    NASA Technical Reports Server (NTRS)

    Narici, L.; Belli, F.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Di Fino, L.; Furano, G.; Modena, I.; Morselli, A.; Picozza, P.; hide

    2004-01-01

    The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation.

    PubMed

    Narici, L; Belli, F; Bidoli, V; Casolino, M; De Pascale, M P; Di Fino, L; Furano, G; Modena, I; Morselli, A; Picozza, P; Reali, E; Rinaldi, A; Ruggieri, D; Sparvoli, R; Zaconte, V; Sannita, W G; Carozzo, S; Licoccia, S; Romagnoli, P; Traversa, E; Cotronei, V; Vazquez, M; Miller, J; Salnitskii, V P; Shevchenko, O I; Petrov, V P; Trukhanov, K A; Galper, A; Khodarovich, A; Korotkov, M G; Popov, A; Vavilov, N; Avdeev, S; Boezio, M; Bonvicini, W; Vacchi, A; Zampa, N; Mazzenga, G; Ricci, M; Spillantini, P; Castellini, G; Vittori, R; Carlson, P; Fuglesang, C; Schardt, D

    2004-01-01

    The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect

    NASA Astrophysics Data System (ADS)

    Majka, M.; Góra, P. F.

    2016-10-01

    While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.

  3. NASA Astrophysics Data System (ADS)

    Kadyrov, E.; Evdokimenko, Y.; Kisel, V.; Kadyrov, V.; Worzala, F.

    1994-12-01

    Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last decade. The most advanced systems are now producing coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysis of the interaction of dispersive particles with the carrying gas flow for three different HVOF systems, along with a method to calculate the parameters of sprayed particles that highlights the advantages and limitations of each design. The method includes gas dynamical calculations of the gas flow in an accelerating channel and calculations of the injected par-motion and thermal state (temperature and melted mass fraction). The calculations were performed for particles of tungsten carbide, aluminum oxide, and zirconium oxide with size distributions of 10 to 80 μm. Two conventional types of HVOF systems were considered: those with a supersonic accelerating channel and those with a subsonic accelerating channel (without a de Laval nozzle). A novel design is pro-posed that contains a combined gas dynamical path with functionally separated regions of heating and acceleration. The regularities and distinctions in the behavior of the metallic and ceramic oxide particles are discussed for different jet configurations. The results obtained indicate that it is possible to signifi-cantly affect particle parameters by using the new configuration solutions without creating construction complications.

  4. Rheological changes induced by clast fragmentation in debris flows

    NASA Astrophysics Data System (ADS)

    Caballero, Lizeth; Sarocchi, Damiano; Soto, Enrique; Borselli, Lorenzo

    2014-09-01

    On the basis of rotating drum analogue experiments, we describe a fragmentation process acting within debris flows during transport and its influence on rheologic behavior. Our hypothesis is based on a detailed textural analysis including granulometry, clast morphology, and rheologic properties of the fluid matrix. Results of the experiments point out that breakage of certain granulometric classes produces fine particles like fine sand and silt. The population growth of fine clasts with time leads to an increase in yield strength and viscosity that progressively modifies the rheologic behavior. From a textural point of view, this is reflected in a bimodal granulometric distribution. Up to now this characteristic has been explained as the effect of bulking and/or sedimentation processes during transport. Our experimental results show that the type of fragmentation depends on particle size and is the consequence of strong clast-clast interaction and clast-fluid interactions. Coarse particles develop small fractures which cause the loss of sharp edges and asperities. Medium-sized particles develop through-going fractures that cause them to break apart. The latter process explains why intermediate granulometric classes progressively diminish with time in debris flows. Analogue experiments enable us to study the efficacy of clast fragmentation in modifying the textural character and flow behavior of debris flows without the influence of external factors such as erosion and sedimentation. The obtained results constitute the base of a new approach for modeling debris flow dynamics.

  5. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  6. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  7. Macroscopic response to microscopic intrinsic noise in three-dimensional Fisher fronts.

    PubMed

    Nesic, S; Cuerno, R; Moro, E

    2014-10-31

    We study the dynamics of three-dimensional Fisher fronts in the presence of density fluctuations. To this end we simulate the Fisher equation subject to stochastic internal noise, and study how the front moves and roughens as a function of the number of particles in the system, N. Our results suggest that the macroscopic behavior of the system is driven by the microscopic dynamics at its leading edge where number fluctuations are dominated by rare events. Contrary to naive expectations, the strength of front fluctuations decays extremely slowly as 1/logN, inducing large-scale fluctuations which we find belong to the one-dimensional Kardar-Parisi-Zhang universality class of kinetically rough interfaces. Hence, we find that there is no weak-noise regime for Fisher fronts, even for realistic numbers of particles in macroscopic systems.

  8. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.

    PubMed

    Sastre, Judit; Mannelli, Ilaria; Reigada, Ramon

    2017-11-01

    The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid

    NASA Astrophysics Data System (ADS)

    Vinod, Sithara; John, Reji; Philip, John

    2017-02-01

    Magnetorheological fluids have numerous engineering applications due to their interesting field assisted rheological behavior. Most commonly used dispersed phase in MR fluids is carbonyl iron (CI). The relatively high cost of CI warrants the need to develop cheaper alternatives to CI, without compromising rheological properties. With the above goal in mind, we have synthesized sodium sulphonate capped electrolytic iron based MR fluid and studied their magnetorheological properties. The results are compared with that of CI based MR fluid. EI and CI particles of average particle size of ∼10 μm with fumed silica particles additives are used in the present study. The dynamic yield stress for EI and CI based MR fluid were found to vary with field strength with an exponent of roughly 1.2 and 1.24, respectively. The slightly lower static and dynamic yield stress values of EI based MR fluid is attributed to the lower magnetization and polydispersity values. The dynamic yield stress showed a decrease of 18.73% and 61.8% for field strengths of 177 mT and 531 mT, respectively as the temperature was increased from 293 to 323 K. The optorheological studies showed a peak in the loss moduli, close to the crossover point of the storage and loss moduli, due to freely moving large sized aggregates along the shear direction that are dislodged from the rheometer plates at higher strains. Our results suggests that EI based MR fluids have magnetorheological behavior comparable to that of CI based MR fluids. As EI is much cheaper than CI, our findings will have important commercial implications in producing cost effective EI based MR fluids.

  10. Dynamics of generalized sine-Gordon soliton in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Gharaati, A.; Khordad, R.

    2011-03-01

    In this paper we introduce a few novel generalized sine-Gordon equations and study the dynamics of its solitons in inhomogeneous media. We consider length, mass, gravitational acceleration and spring stiffness of a coupled pendulums chain as a function of position x. Then in the continuum limit we derive semi-analytical and numerical soliton solutions of the modified sine-Gordon equation in the inhomogeneous media. The obtained results confirm that the behavior of solitons in these media is similar to that of a classical point particle moved in an external potential.

  11. The stochastic dynamics of intermittent porescale particle motion

    NASA Astrophysics Data System (ADS)

    Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus

    2017-04-01

    Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).

  12. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos

    NASA Astrophysics Data System (ADS)

    Verjus, Romuald; Guillou, Sylvain; Ezersky, Alexander; Angilella, Jean-Régis

    2016-12-01

    The sedimentation of a pair of rigid circular particles in a two-dimensional vertical channel containing a Newtonian fluid is investigated numerically, for terminal particle Reynolds numbers (ReT) ranging from 1 to 10, and for a confinement ratio equal to 4. While it is widely admitted that sufficiently inertial pairs should sediment by performing a regular DKT oscillation (Drafting-Kissing-Tumbling), the present analysis shows in contrast that a chaotic regime can also exist for such particles, leading to a much slower sedimentation velocity. It consists of a nearly horizontal pair, corresponding to a maximum effective blockage ratio, and performing a quasiperiodic transition to chaos while increasing the particle weight. For less inertial regimes, the classical oblique doublet structure and its complex behavior (multiple stable states and hysteresis, period-doubling cascade and chaotic attractor) are recovered, in agreement with previous work [Aidun, C. K. and Ding, E.-J., "Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state," Phys. Fluids 15, 1612 (2003)]. As a consequence of these various behaviors, the link between the terminal Reynolds number and the non-dimensional driving force is complex: it contains several branches displaying hysteresis as well as various bifurcations. For the range of Reynolds number considered here, a global bifurcation diagram is given.

  13. A Mathematical Model for the Multiphase Transport and Reaction Kinetics in a Ladle with Bottom Powder Injection

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2017-12-01

    A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.

  14. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  15. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  16. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-07

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.

  17. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  18. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.

  19. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.

  20. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.

  1. N -tag probability law of the symmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Poncet, Alexis; Bénichou, Olivier; Démery, Vincent; Oshanin, Gleb

    2018-06-01

    The symmetric exclusion process (SEP), in which particles hop symmetrically on a discrete line with hard-core constraints, is a paradigmatic model of subdiffusion in confined systems. This anomalous behavior is a direct consequence of strong spatial correlations induced by the requirement that the particles cannot overtake each other. Even if this fact has been recognized qualitatively for a long time, up to now there has been no full quantitative determination of these correlations. Here we study the joint probability distribution of an arbitrary number of tagged particles in the SEP. We determine analytically its large-time limit for an arbitrary density of particles, and its full dynamics in the high-density limit. In this limit, we obtain the time-dependent large deviation function of the problem and unveil a universal scaling form shared by the cumulants.

  2. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  4. Quantitative nanoparticle tracking: applications to nanomedicine.

    PubMed

    Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae

    2011-06-01

    Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.

  5. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.

    PubMed

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-07

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  6. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  7. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. Here, we describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. We will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  8. Crystalline structures of particles interacting through the harmonic-repulsive pair potential

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2017-09-01

    The behavior of identical particles interacting through the harmonic-repulsive pair potential has been studied in 3D using molecular dynamics simulations at a number of different densities. We found that at many densities, as the temperature of the systems decreases, the particles crystallize into complex structures whose formation has not been anticipated in previous studies on the harmonic-repulsive pair potential. In particular, at certain densities, crystallization into the structure I a 3 ¯ d (space group #230) with 16 particles in the unit cell occupying Wyckoff special positions (16b) was observed. This crystal structure has not been observed previously in experiments or in computer simulations of single component atomic or soft matter systems. At another density, we observed a liquid which is rather stable against crystallization. Yet, we observed crystallization of this liquid into the monoclinic C2/c (space group #15) structure with 32 particles in the unit cell occupying four different non-special Wyckoff (8f) sites. In this structure particles located at different Wyckoff sites have different energies. From the perspective of the local atomic environment, the organization of particles in this structure resembles the structure of some columnar quasicrystals. At a different value of the density, we did not observe crystallization at all despite rather long molecular dynamics runs. At two other densities, we observed the formation of the β S n distorted diamond structures instead of the expected diamond structure. Possibly, we also observed the formation of the R 3 ¯ c hexagonal lattice with 24 particles per unit cell occupying non-equivalent positions.

  9. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to demonstrate drastically different properties from their bulk polymer counterparts.

  10. Manipulating colloids with charges and electric fields

    NASA Astrophysics Data System (ADS)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various useful colloidal structures. Besides modifying the particle charge, we employed the sensitivity of colloids to ‘external fields’ to manipulate the structure and dynamics of our suspensions. In particular, we used an electric field, in which the particles acquired a dipole moment. The induced dipole-dipole interactions gave rise to uniquely different crystalline and non-crystalline structures, due to their anisotropic nature. We explored the phase behavior as a function of the particle concentration, the electric field strength and the field geometry, and showed how one can rapidly switch from one structure to another. The latter is particularly interesting for applications. Finally, we also studied much weaker, inhomogeneous electric fields. In this case, the dipole moment of the particles was too small to change the phase behavior, but large enough to induce dielectrophoretic motion, driving the particles to the areas with the lowest field strength. We demonstrated how this can be used to manipulate the local particle concentration inside a sealed sample, on a time scale of minutes-weeks. The combination with real-time confocal microscopy allowed us to follow all particle rearrangements during the densification. Such controlled compression is of interest to colloidal model studies and the fabrication of high-quality crystals for applications. After all, for all suspensions the particle concentration is one of the most important factors determining the behavior.

  11. ASHEE: a compressible, Equilibrium-Eulerian model for volcanic ash plumes

    NASA Astrophysics Data System (ADS)

    Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.

    2015-10-01

    A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10-3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However, coarse particles partially decouple from the gas phase within eddies (thus modifying the turbulent structure) and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the concurrent effect of gravity. By these mechanisms, gas-particle non-equilibrium processes are able to influence the large-scale behavior of volcanic plumes.

  12. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  13. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Berthier, Ludovic

    2014-06-01

    We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.

  14. Exact solution for the quench dynamics of a nested integrable system

    NASA Astrophysics Data System (ADS)

    Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2017-08-01

    Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.

  15. Stochastic analysis of surface roughness models in quantum wires

    NASA Astrophysics Data System (ADS)

    Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried

    2018-07-01

    We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.

  16. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    DOE PAGES

    Adalsteinsson, Helgi; Debusschere, Bert J.; Long, Kevin R.; ...

    2008-01-01

    Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-levelmore » dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.« less

  17. Statistical analysis of particle trajectories in living cells

    NASA Astrophysics Data System (ADS)

    Briane, Vincent; Kervrann, Charles; Vimond, Myriam

    2018-06-01

    Recent advances in molecular biology and fluorescence microscopy imaging have made possible the inference of the dynamics of molecules in living cells. Such inference allows us to understand and determine the organization and function of the cell. The trajectories of particles (e.g., biomolecules) in living cells, computed with the help of object tracking methods, can be modeled with diffusion processes. Three types of diffusion are considered: (i) free diffusion, (ii) subdiffusion, and (iii) superdiffusion. The mean-square displacement (MSD) is generally used to discriminate the three types of particle dynamics. We propose here a nonparametric three-decision test as an alternative to the MSD method. The rejection of the null hypothesis, i.e., free diffusion, is accompanied by claims of the direction of the alternative (subdiffusion or superdiffusion). We study the asymptotic behavior of the test statistic under the null hypothesis and under parametric alternatives which are currently considered in the biophysics literature. In addition, we adapt the multiple-testing procedure of Benjamini and Hochberg to fit with the three-decision-test setting, in order to apply the test procedure to a collection of independent trajectories. The performance of our procedure is much better than the MSD method as confirmed by Monte Carlo experiments. The method is demonstrated on real data sets corresponding to protein dynamics observed in fluorescence microscopy.

  18. Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2=νn-1, n∈Z: Ergodicity, isochrony and fractals

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.

    2007-08-01

    We study the complexification of the one-dimensional Newtonian particle in a monomial potential. We discuss two classes of motions on the associated Riemann surface: the rectilinear and the cyclic motions, corresponding to two different classes of real and autonomous Newtonian dynamics in the plane. The rectilinear motion has been studied in a number of papers, while the cyclic motion is much less understood. For small data, the cyclic time trajectories lead to isochronous dynamics. For bigger data the situation is quite complicated; computer experiments show that, for sufficiently small degree of the monomial, the motion is generically isochronous with integer period, which depends in a quite sensitive way on the initial data. If the degree of the monomial is sufficiently high, computer experiments show essentially chaotic behavior. We suggest a possible theoretical explanation of these different behaviors. We also introduce a two-parameter family of two-dimensional mappings, describing the motion of the center of the circle, as a convenient representation of the cyclic dynamics; we call such a mapping the center map. Computer experiments for the center map show a typical multifractal behavior with periodicity islands. Therefore the above complexification procedure generates dynamics amenable to analytic treatment and possessing a high degree of complexity.

  19. Meso-scopic Densification in Brittle Granular Materials

    NASA Astrophysics Data System (ADS)

    Neal, William; Appleby-Thomas, Gareth; Collins, Gareth

    2013-06-01

    Particulate materials are ideally suited to shock absorbing applications due to the large amounts of energy required to deform their inherently complex meso-structure. Significant effort is being made to improve macro-scale material models to represent these atypical materials. On the long road towards achieving this capability, an important milestone would be to understand how particle densification mechanisms are affected by loading rate. In brittle particulate materials, the majority of densification is caused by particle fracture. Macro-scale quasi-static and dynamic compaction curves have been measured that show good qualitative agreement. There are, however, some differences that appear to be dependent on the loading rate that require further investigation. This study aims to investigate the difference in grain-fracture behavior between the quasi-static and shock loading response of brittle glass microsphere beds using a combination of quasi-static and dynamic loading techniques. Results from pressure-density measurements, sample recovery, and meso-scale hydrocode models (iSALE, an in-house simulation package) are discussed to explain the differences in particle densification mechanisms between the two loading rate regimes. Gratefully funded by AWE.plc.

  20. Compression and release dynamics of an active matter system of Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Lam, Amy; Tsang, Alan C. H.; Ouellette, Nicholas; Riedel-Kruse, Ingmar

    Active matter, defined as ensembles of self-propelled particles, encompasses a large variety of systems at all scales, from nanoparticles to bird flocks. Though various models and simulations have been created to describe the dynamics of these systems, experimental verification has been difficult to obtain. This is frequently due to the complex interaction rules which govern the particle behavior, in turn making systematic varying of parameters impossible. Here, we propose a model for predicting the system evolution of compression and release of an active system based on experiments and simulations. In particular, we consider ensembles of the unicellular, photo-responsive algae, Euglena gracilis, under light stimulation. By varying the spatiotemporal light patterns, we are able to finely adjust cell densities and achieve arbitrary non-homogeneous distributions, including compression into high-density aggregates of varying geometries. We observe the formation of depletion zones after the release of the confining stimulus and investigate the effects of the density distribution and particle rotational noise on the depletion. These results provide implications for defining state parameters which determine system evolution.

  1. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  2. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    PubMed

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.

    PubMed

    Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie

    2013-10-01

    The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Universal scaling in the aging of the strong glass former SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.

    We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less

  5. CELFE: Coupled Eulerian-Lagrangian Finite Element program for high velocity impact. Part 1: Theory and formulation. [hydroelasto-viscoplastic model

    NASA Technical Reports Server (NTRS)

    Lee, C. H.

    1978-01-01

    A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.

  6. Observation of the Topological Change Associated with the Dynamical Monodromy

    NASA Astrophysics Data System (ADS)

    Salmon, Daniel; Nerem, Matthew; Aubin, Seth; Delos, John

    2017-04-01

    Classical mechanics is an old theory and new phenomena do not often appear. A recently predicted phenomenon is called ``Dynamical Monodromy.'' Monodromy is the study of the behavior of a system as it evolves ``once around a closed circuit''. Systems that do not return to their original state after forming a closed circuit in some space are said to exhibit ``nontrivial monodromy.'' One such system is a collection of non-interacting particles moving in a ``champagne bottle'' potential. A loop of trajectories of this system exhibits a topological change when each of the particles traverse a monodromy circuit in Energy-Angular Momentum space (any closed path that encloses the singular point at the origin). This system has been realized using a rigid spherical pendulum, with a permanent magnet at its end. Magnetic fields generated by coils are used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.

  7. Dynamic response of sand particles impacted by a rigid spherical object

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  8. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  9. Dirac equation on a curved surface

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2016-09-01

    The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.

  10. The effect of side motion in the dynamics of interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Gupta, Arvind Kumar; Kolomeisky, Anatoly B.

    2017-07-01

    To mimic the collective motion of interacting molecular motors, we propose and discuss an open two-lane symmetrically coupled interactive TASEP model that incorporates interaction in the thermodynamically consistent fashion. We study the effect of both repulsive and attractive interaction on the system’s dynamical properties using various cluster mean field analysis and extensive Monte Carlo simulations. The interactions bring correlations into the system, which were found to be reduced due to the side motion of particles. We produce the steady-state phase diagrams for symmetrically split interaction strength. The behavior of the maximal particle current with respect to the interaction energy E is analyzed for different coupling rates and interaction splittings. The results suggest that for strong coupling and large splittings, the maximal flow of the motors occurs at a weak attractive interaction strength which matches with the known experimental results on kinesin motor protein.

  11. Activated Random Walkers: Facts, Conjectures and Challenges

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Rolla, Leonardo T.; Sidoravicius, Vladas

    2010-02-01

    We study a particle system with hopping (random walk) dynamics on the integer lattice ℤ d . The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ and the sleeping rate λ. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents ( β=1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density.

  12. Transport, diffusion, and energy studies in the Arnold-Beltrami-Childress map

    NASA Astrophysics Data System (ADS)

    Das, Swetamber; Gupte, Neelima

    2017-09-01

    We study the transport and diffusion properties of passive inertial particles described by a six-dimensional dissipative bailout embedding map. The base map chosen for the study is the three-dimensional incompressible Arnold-Beltrami-Childress (ABC) map chosen as a representation of volume preserving flows. There are two distinct cases: the two-action and the one-action cases, depending on whether two or one of the parameters (A ,B ,C ) exceed 1. The embedded map dynamics is governed by two parameters (α ,γ ), which quantify the mass density ratio and dissipation, respectively. There are important differences between the aerosol (α <1 ) and the bubble (α >1 ) regimes. We have studied the diffusive behavior of the system and constructed the phase diagram in the parameter space by computing the diffusion exponents η . Three classes have been broadly classified—subdiffusive transport (η <1 ), normal diffusion (η ≈1 ), and superdiffusion (η >1 ) with η ≈2 referred to as the ballistic regime. Correlating the diffusive phase diagram with the phase diagram for dynamical regimes seen earlier, we find that the hyperchaotic bubble regime is largely correlated with normal and superdiffusive behavior. In contrast, in the aerosol regime, ballistic superdiffusion is seen in regions that largely show periodic dynamical behaviors, whereas subdiffusive behavior is seen in both periodic and chaotic regimes. The probability distributions of the diffusion exponents show power-law scaling for both aerosol and bubbles in the superdiffusive regimes. We further study the Poincáre recurrence times statistics of the system. Here, we find that recurrence time distributions show power law regimes due to the existence of partial barriers to transport in the phase space. Moreover, the plot of average particle kinetic energies versus the mass density ratio for the two-action case exhibits a devil's staircase-like structure for higher dissipation values. We explain these results and discuss their implications for realistic systems.

  13. Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process

    NASA Astrophysics Data System (ADS)

    Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing

    2018-03-01

    The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.

  14. Engineering and evaluating drug delivery particles in microfluidic devices.

    PubMed

    Björnmalm, Mattias; Yan, Yan; Caruso, Frank

    2014-09-28

    The development of new and improved particle-based drug delivery is underpinned by an enhanced ability to engineer particles with high fidelity and integrity, as well as increased knowledge of their biological performance. Microfluidics can facilitate these processes through the engineering of spatiotemporally highly controlled environments using designed microstructures in combination with physical phenomena present at the microscale. In this review, we discuss microfluidics in the context of addressing key challenges in particle-based drug delivery. We provide an overview of how microfluidic devices can: (i) be employed to engineer particles, by providing highly controlled interfaces, and (ii) be used to establish dynamic in vitro models that mimic in vivo environments for studying the biological behavior of engineered particles. Finally, we discuss how the flexible and modular nature of microfluidic devices provides opportunities to create increasingly realistic models of the in vivo milieu (including multi-cell, multi-tissue and even multi-organ devices), and how ongoing developments toward commercialization of microfluidic tools are opening up new opportunities for the engineering and evaluation of drug delivery particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Adsorption, desorption, and removal of polymeric nanomedicine on and from cellulose surfaces: effect of size.

    PubMed

    Zhang, Ming; Akbulut, Mustafa

    2011-10-18

    The increased production and commercial use of nanoparticulate drug delivery systems combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. To better understand how such particles interact with environmentally significant interfaces, we study the adsorption, desorption, and removal behavior of poly(ethylene glycol)-based nanoparticulate drug delivery systems on and from cellulose, which is the most common organic compound on Earth. It is shown that such an adsorption process is only partially reversible, and most of the adsorbate particles do not desorb from the cellulose surface even upon rinsing with a large amount of water. The rate constant of adsorption decreases with increasing particle size. Furthermore, hydrodynamic forces acting parallel to the surfaces are found to be of great importance in the context of particle dynamics near the cellulose surface, and ultimately responsible for the removal of some fraction of particles via rolling or sliding. As the particle size increases, the removal rates of the particles increase for a given hydrodynamical condition. © 2011 American Chemical Society

  16. High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, I.W.; Guden, M.

    The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less

  17. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  18. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow onmore » rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.« less

  19. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    PubMed

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  20. Emergent dynamic structures and statistical law in spherical lattice gas automata

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  1. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories for polymers on attractive particle surfaces. The shown thermally-induced stiffening behavior is reversible and makes this interfacial mechanism highly attractive in developing new active, remotely controllable engineered materials from non-responsive components.

  2. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    NASA Astrophysics Data System (ADS)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  3. Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows.

    PubMed

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2016-09-23

    The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as a function of the particle size and volume fraction.

  4. Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems

    PubMed Central

    Hummer, Gerhard

    2015-01-01

    We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592

  5. FCC-HCP coexistence in dense thermo-responsive microgel crystals

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.

    2017-06-01

    Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ < 0.74 and sub-diffusive at short times in PNIPAM crystals with ϕ > 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.

  6. The robustness in dynamics of out of equilibrium bidirectional transport systems with constrained entrances

    NASA Astrophysics Data System (ADS)

    Sharma, Natasha; Verma, Atul Kumar; Gupta, Arvind Kumar

    2018-05-01

    Macroscopic and microscopic long-distance bidirectional transfer depends on connections between entrances and exits of various transport mediums. Persuaded by the associations, we introduce a small system module of Totally Asymmetric Simple Exclusion Process including oppositely directed species of particles moving on two parallel channels with constrained entrances. The dynamical rules which characterize the system obey symmetry between the two species and are identical for both the channels. The model displays a rich steady-state behavior, including symmetry breaking phenomenon. The phase diagram is analyzed theoretically within the mean-field approximation and substantiated with Monte Carlo simulations. Relevant mean-field calculations are also presented. We further compared the phase segregation with those observed in previous works, and it is examined that the structure of phase separation in proposed model is distinguished from earlier ones. Interestingly, for phases with broken symmetry, symmetry with respect to channels has been observed as the distinct particles behave differently while the similar type of particles exhibits the same conduct in the system. For symmetric phases, significant properties including currents and densities in the channels are identical for both types of particles. The effect of symmetry breaking occurrence on the Monte Carlo simulation results has also been examined based on particle density histograms. Finally, phase properties of the system having strong size dependency have been explored based on simulations findings.

  7. Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields

    DOE PAGES

    Martin, James E.; Snezhko, Alexey

    2013-11-05

    In this review we discuss recent research on driving self assembly of magnetic particle suspensions subjected to alternating magnetic fields. The variety of structures and effects that can be induced in such systems is remarkably broad due to the large number of variables involved. The alternating field can be uniaxial, biaxial or triaxial, the particles can be spherical or anisometric, and the suspension can be dispersed throughout a volume or confined to a soft interface. In the simplest case the field drives the static or quasi-static assembly of unusual particle structures, such as sheets, networks and open-cell foams. More complex,more » emergent collective behaviors evolve in systems that can follow the time-dependent field vector. In these cases energy is continuously injected into the system and striking °ow patterns and structures can arise. In fluid volumes these include the formation of advection and vortex lattices. At air-liquid and liquid-liquid interfaces striking dynamic particle assemblies emerge due to the particle-mediated coupling of the applied field to surface excitations. These out-of-equilibrium interface assemblies exhibit a number of remarkable phenomena, including self-propulsion and surface mixing. In addition to discussing various methods of driven self assembly in magnetic suspensions, some of the remarkable properties of these novel materials are described.« less

  8. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  9. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianbo, E-mail: lijianbo1205@163.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Wang, Yan, E-mail: wangyan@csu.edu.cn

    2014-11-15

    High temperature compressive deformation behaviors of as-cast Ti–43Al–4Nb–1.4W–0.6B alloy were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s{sup −1} to 1 s{sup −1}. Electron back scattered diffraction technique, scanning electron microscopy and transmission electron microscopy were employed to investigate the microstructural evolutions and nucleation mechanisms of the dynamic recrystallization. The results indicated that the true stress–true strain curves show a dynamic flow softening behavior. The dependence of the peak stress on the deformation temperature and the strain rate can well be expressed by a hyperbolic-sine type equation. The activation energy decreases withmore » increasing the strain. The size of the dynamically recrystallized β grains decreases with increasing the value of the Zener–Hollomon parameter (Z). When the flow stress reaches a steady state, the size of β grains almost remains constant with increasing the deformation strain. The continuous dynamic recrystallization plays a dominant role in the deformation. In order to characterize the evolution of dynamic recrystallization volume fraction, the dynamic recrystallization kinetics was studied by Avrami-type equation. Besides, the role of β phase and the softening mechanism during the hot deformation was also discussed in details. - Highlights: • The size of DRXed β grains decreases with increasing the value of the Z. • The CDRX plays a dominant role in the deformation. • The broken TiB{sub 2} particles can promote the nucleation of DRX.« less

  10. Topics in Diffusion Limited Reaction Processes

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Cheng

    We study, both theoretically and numerically, the macroscopic particle concentration in a class of simple diffusion-limited reactions: one species coagulation A + A to A, reversible coagulation A + A rightleftharpoons A, A + A to A with particle input, A + A rightleftharpoons A with particle input, single species annihilation A + A to inert, and two species annihilation A + B to inert. The main interest is in the asymptotic behavior of the particle concentration. We review the standard mean-field theory, mass-reaction kinetics and the associated nonlinear rate and diffusion-reaction equations. Theoretically we study the concentration using several closure schemes for truncating the infinite hierarchy of the kinetic equations for the joint density functions. Our goal is to evaluate the quality of some nonsystematic approximations by comparison with exact solutions. It is found that these approximations are very good at capturing the asymptotic behavior of the particle concentrations in the irreversible reactions, while they fail to predict the far-from-equilibrium dynamic phase transition in the one dimensional reversible coagulation reaction predicted by exact results. Numerically we use Monte Carlo simulation to study concentrations in the single species reversible coagulation process. In one dimension the numerical results are in excellent agreement with the exact analytic results. In two dimensions, our simulation data in the transient states suggest an interesting scaling for the deviation of the concentration from its equilibrium value, delta C(t) ~ exp( -beta(C_0)t^{alpha(C_0) }), where alpha(C_0) and beta(C_0) are functions of the initial concentration C_0. However, it seems unlikely to be able to answer the question of the existence of a dynamic phase transition in two dimensions by Monte Carlo simulation within a reasonable CPU time due to the long persistence of the transient states. In an appendix we solve exactly an annihilation-related percolation problem.

  11. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  12. The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2014-08-01

    The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.

  13. A New Model for Self-organized Dynamics and Its Flocking Behavior

    NASA Astrophysics Data System (ADS)

    Motsch, Sebastien; Tadmor, Eitan

    2011-09-01

    We introduce a model for self-organized dynamics which, we argue, addresses several drawbacks of the celebrated Cucker-Smale (C-S) model. The proposed model does not only take into account the distance between agents, but instead, the influence between agents is scaled in term of their relative distance. Consequently, our model does not involve any explicit dependence on the number of agents; only their geometry in phase space is taken into account. The use of relative distances destroys the symmetry property of the original C-S model, which was the key for the various recent studies of C-S flocking behavior. To this end, we introduce here a new framework to analyze the phenomenon of flocking for a rather general class of dynamical systems, which covers systems with non-symmetric influence matrices. In particular, we analyze the flocking behavior of the proposed model as well as other strongly asymmetric models with "leaders". The methodology presented in this paper, based on the notion of active sets, carries over from the particle to kinetic and hydrodynamic descriptions. In particular, we discuss the hydrodynamic formulation of our proposed model, and prove its unconditional flocking for slowly decaying influence functions.

  14. Experimental investigation of bubbling in particle beds with high solid holdup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Songbai; Hirahara, Daisuke; Tanaka, Youhei

    2011-02-15

    A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injectingmore » nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes. (author)« less

  15. Diffusing wave spectroscopy studies of gelling systems

    NASA Astrophysics Data System (ADS)

    Horne, David S.

    1991-06-01

    The recognition that the transmission of light through a concentrated, opaque system can be treated as a diffusion process has extended the application of photon correlation techniques to the study of particle size, mobility and interactions in such systems. Solutions of the photon diffusion equation are sensitive to the boundary conditions imposed by the geometry of the scattering apparatus. The apparatus, incorporating a bifurcated fiber optic bundle for light transmission between source, sample and detector, takes advantage of the particularly simple solution for a back-scattering configuration. Its ability to measure particle size using monodisperse polystyrene latices and to respond to concentration dependent particle interactions in a study of casein micelle mobility in skim and concentrated milks is demonstrated. Finally, the changes in dynamic light scattering behavior occurring during colloidal gel formation are described and discussed.

  16. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  17. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    NASA Astrophysics Data System (ADS)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  18. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.

  19. Earth Sciences Push Radiative Transfer Theory

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Mishchenko, Michael

    2009-12-01

    2009 International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics; Saratoga Springs, New York, 4-7 May 2009; The theories of radiative transfer and particle—particularly neutron—transport are grounded in distinctive microscale physics that deals with either optics or particle dynamics. However, it is not practical to track every wave or particle in macroscopic systems, nor do all of these details matter. That is why Newton's laws, which describe individual particles, are replaced by those of Euler, Navier-Stokes, Maxwell, Boltzmann, Gibbs, and others, which describe the collective behavior of vast numbers of particles. And that is why the radiative transfer (RT) equation is used to describe the flow of radiation through geophysical-scale systems, leaving to Maxwell's wave equations only the task of providing the optical properties of the medium, be it air, water, snow, ice, or biomass. Interestingly, particle transport is determined by the linear transport equation, which is mathematically identical to the RT equation, so geophysicists and nuclear scientists are interested in the same mathematics and computational techniques.

  20. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  1. Dynamics of zonal flows in helical systems.

    PubMed

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  2. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev

    2018-05-01

    The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.

  3. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  4. Microrheology: Structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.

    2003-08-01

    An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.

  5. Temperature dependence in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  6. Molecular dynamics simulations on discoidal HDL particles suggest a mechanism for rotation in the apo A-I belt model.

    PubMed

    Klon, Anthony E; Segrest, Jere P; Harvey, Stephen C

    2002-12-06

    Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.

  7. The shape and dynamics of local attraction

    NASA Astrophysics Data System (ADS)

    Strömbom, D.; Siljestam, M.; Park, J.; Sumpter, D. J. T.

    2015-11-01

    Moving animal groups, such as flocks of birds or schools of fish, exhibit a varity of self-organized complex dynamical behaviors and shapes. This kind of flocking behavior has been studied using self-propelled particle models, in which the "particles" interact with their nearest neighbors through repulsion, attraction and alignment responses. In particular, it has been shown that models based on attraction alone can generate a range of dynamic groups in 2D, with periodic boundary conditions, and in the absence of repulsion. Here we investigate the effects of changing these conditions on the type of groups observed in the model. We show that replacing the periodic boundary conditions with a weak global attaction term in 2D, and extending the model to 3D does not significantly change the type of groups observed. We also provide a description of how attraction strength and blind angle determine the groups generated in the 3D version of the model. Finally, we show that adding repulsion do change the type of groups oberved, making them appear and behave more like real moving animal groups. Our results suggest that many biological instances of collective motion may be explained without assuming that animals explicitly align with each other. Instead, complex collective motion is explained by the interplay of attraction and repulsion forces. Supplementary material in the form of four mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjst/e2015-50093-5

  8. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    USGS Publications Warehouse

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  9. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits.

    PubMed

    Madan, Ivan; Buh, Jože; Baranov, Vladimir V; Kabanov, Viktor V; Mrzel, Aleš; Mihailovic, Dragan

    2018-03-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ 3 -MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.

  10. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: Wave-vector space analysis

    NASA Astrophysics Data System (ADS)

    Separdar, L.; Davatolhagh, S.

    2016-12-01

    Molecular dynamics simulations at constant (N , V , T) are used to study the mutual effects of gold nanoparticles on the structure and dynamics of Kob-Andersen binary Lennard-Jones (BLJ) liquid within the framework of mode coupling theory of dynamic glass transition in the reciprocal space. The results show the 'softening' effect of the gold nanoparticles on the liquid dynamics in terms of (i) reducing the mode coupling crossover temperature Tc with respect to that of the bulk BLJ (i.e. BLJ without nanoparticles), (ii) decreasing the time interval of β-relaxation, and (iii) decreasing the exponent γ characterizing the power-law behavior of the α-relaxation time. This softening effect is explained in terms of the van der Waals attraction between the gold atoms comprising the nanoparticle and the BLJ host atoms, such that adsorption of host atoms onto the nanoparticle surface creates more space or free-volume for the other atoms to diffuse. By the same token interactions of purely excluded-volume-type are expected to result in the opposite effect. It is also noted that, much unlike BLJ host particles, the dynamics of gold nanoparticles is much less dependent on the wave-vector and that it exhibits a nearly exponential behavior in the α-relaxation regime.

  11. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits

    PubMed Central

    Madan, Ivan; Baranov, Vladimir V.

    2018-01-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system’s properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing. PMID:29670935

  12. Cooperative standing-horizontal-standing reentrant transition for numerous solid particles under external vibration.

    PubMed

    Takatori, Satoshi; Baba, Hikari; Ichino, Takatoshi; Shew, Chwen-Yang; Yoshikawa, Kenichi

    2018-01-11

    We report the collective behavior of numerous plastic bolt-like particles exhibiting one of two distinct states, either standing stationary or horizontal accompanied by tumbling motion, when placed on a horizontal plate undergoing sinusoidal vertical vibration. Experimentally, we prepared an initial state in which all of the particles were standing except for a single particle that was placed at the center of the plate. Under continuous vertical vibration, the initially horizontal particle triggers neighboring particles to fall over into a horizontal state through tumbling-induced collision, and this effect gradually spreads to all of the particles, i.e., the number of horizontal particles is increased. Interestingly, within a certain range of vibration intensity, almost all of the horizontal particles revert back to standing in association with the formation of apparent 2D hexagonal dense-packing. Thus, phase segregation between high and low densities, or crystalline and disperse domains, of standing particles is generated as a result of the reentrant transition. The essential features of such cooperative dynamics through the reentrant transition are elucidated with a simple kinetic model. We also demonstrate that an excitable wave with the reentrant transition is observed when particles are situated in a quasi-one-dimensional confinement on a vibrating plate.

  13. Mechanical and thermal behavior of ionic polymer metal composites: effects of electroded metals

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Kwang J.

    2007-08-01

    In this study, we investigated the mechanical properties of various types of ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5-7 µm-doped layer and nanosized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in dried conditions. With regards to thermal behavior, Au IPMC had the highest Tg (153 °C) and Tm (263 °C) in both the DMA and DSC results. The fracture behavior of various types of IPMCs followed the behavior of the base material, Nafion™, which is represented as the semicrystalline polymer characteristic.

  14. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  15. Diverse assembly behavior in colloidal Platonic polyhedral sphere clusters

    NASA Astrophysics Data System (ADS)

    Marson, Ryan; Teich, Erin; Dshemuchadse, Julia; Glotzer, Sharon; Larson, Ronald

    We simulate the self-assembly of colloidal ``polyhedral sphere clusters (PSCs)'', which consist of equal-sized spheres placed at the vertices of a polyhedron such that they just touch along each edge. These colloidal building blocks have recently been experimentally fabricated; here we predict crystal structures that would appear in the phase diagram of resulting particle assemblies. We use Brownian dynamics (BD) simulations of rigid body clusters performed in the open-source GPU-based HOOMD-Blue particle simulation package to show the assembly behavior of the 5 Platonic PSCs. The simulations contain as many as 4096 individual polyhedra, across over 30 different densities per cluster geometry, with some ordered phases possessing unit cells with 20 or more particles. We observe the formation of not only traditional cubic structures such as BCC and FCC, but also more complex phases having structure symmetries with Pearson symbols - hP7, cP20, cI2, mP6, and hR3. The observations reported here will serve as a guide for future colloidal assembly experiments using an expanded library of PSCs, consisting of other regular and irregular polyhedra, allowing researchers to target specific arrangements of ``halo'' and ``core'' particles for technologically relevant applications including photonics and structural color.

  16. Reverse Mössbauer effect as a possible source of “hot” molecules absorbed in crystalline solids at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demontis, Pierfranco; Suffritti, Giuseppe B., E-mail: pino@uniss.it

    2016-09-07

    As an attempt to explain some of the many anomalies and unresolved problems which have been reported about the dynamic behavior of particles and molecules absorbed in crystalline solids, the “reverse Mössbauer effect” (RME) is proposed. RME theory posits that a particle in non-equilibrium state with respect to a crystal (colliding with the crystal or absorbed in it, but set out of thermal equilibrium by some external cause) is scattered by the whole crystal with a momentum proportional to a vector representing a reciprocal lattice point. The scattering is expected to occur with a well-defined probability and the momentum transferablemore » to the particle is expected to follow a predictable distribution. The RME theory, in practice, is an extension of the Bragg–von Laue scattering law to high-energy colliding particles, in general, and can be applied to any particle or molecule colliding with the surface of a crystalline solid or absorbed in it, but not in thermal equilibrium with the crystal lattice. We verified the RME theory by considering a well-defined unresolved problem. In an experimental study about methane adsorbed in the zeolite Na-ZSM-5 [H. Jobic, Chem. Phys. Lett. 170, 217 (1990)] reporting neutron inelastic-scattering spectra (recoiled bands) at 10 K, the translational kinetic energy of methane resulted to be much higher than equilibrium expected value, namely, about 85 K (or 7.3 meV). The author concluded that “the interpretation of this unusual behavior has yet to be found.” In the present study, on the basis of the RME, an explanation of this behavior is put forward.« less

  17. Monte Carlo simulation of dynamic phase transitions and frequency dispersions of hysteresis curves in core/shell ferrimagnetic cubic nanoparticle

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol

    2017-05-01

    By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.

  18. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    NASA Astrophysics Data System (ADS)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122(5):3689-3700, 2017.[2] James R Rice. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2006.[3] Jean Sulem, Ioannis Stefanou, and Emmanuil Veveakis. Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter, 13(3):261-268,2011.

  19. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Ruth, A. A.; Gash, E. W.; Mansfield, M. W. D.

    2013-08-01

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.

  20. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.

  1. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    NASA Astrophysics Data System (ADS)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation length corresponds to the size of amorphous domains bounded by excitations that remain frozen on the observation time scale, thus forming stripes when viewed in space and time. We elucidate properties of the striped phase and show that glasses of this type, traditionally prepared through cooling, can be considered a finite-size realization of the inactive phase formed by the s-ensemble in the space-time thermodynamic limit.

  2. The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Valiev, R. R.

    2018-04-01

    In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material's behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples' surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.

  3. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  4. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    NASA Technical Reports Server (NTRS)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  5. The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Graham, Lee; John, Kristen

    2016-01-01

    The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.

  6. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    NASA Astrophysics Data System (ADS)

    Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.

    2018-04-01

    Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  8. Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions

    DOE PAGES

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    2016-07-28

    Dynamic arrest transitions of colloidal suspensions containing non-spherical particles are of interest for the design and processing of various particle technologies. To better understand the effects of particle shape anisotropy and attraction strength on gel and glass formation, we present a colloidal model system of octadecyl-coated silica rods, termed as adhesive hard rods (AHR), which enables control of rod aspect ratio and temperature-dependent interactions. The aspect ratios of silica rods were controlled by varying the initial TEOS concentration following the work of Kuijk et al. (J. Am. Chem. Soc., 2011, 133, 2346–2349) and temperature-dependent attractions were introduced by coating themore » calcined silica rods with an octadecyl-brush and suspending in tetradecane. The rod length and aspect ratio were found to increase with TEOS concentration as expected, while other properties such as the rod diameter, coating coverage, density, and surface roughness were nearly independent of the aspect ratio. Ultra-small angle X-ray scattering measurements revealed temperature-dependent attractions between octadecyl-coated silica rods in tetradecane, as characterized by a low-q upturn in the scattered intensity upon thermal quenching. Lastly, the rheology of a concentrated AHR suspension in tetradecane demonstrated thermoreversible gelation behavior, displaying a nearly 5 orders of magnitude change in the dynamic moduli as the temperature was cycled between 15 and 40 °C. We find the adhesive hard rod model system serves as a tunable platform to explore the combined influence of particle shape anisotropy and attraction strength on the dynamic arrest transitions in colloidal suspensions with thermoreversible, short-range attractions.« less

  9. Dynamics in dense hard-sphere colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Fluerasu, Andrei; Moussaïd, Abdellatif; Zontone, Federico; Cristofolini, Luigi; Madsen, Anders

    2012-01-01

    The dynamic behavior of a hard-sphere colloidal suspension was studied by x-ray photon correlation spectroscopy and small-angle x-ray scattering over a wide range of particle volume fractions. The short-time mobility of the particles was found to be smaller than that of free particles even at relatively low concentrations, showing the importance of indirect hydrodynamic interactions. Hydrodynamic functions were derived from the data, and for moderate particle volume fractions (Φ≤ 0.40) there is good agreement with earlier many-body theory calculations by Beenakker and Mazur [Physica A0378-437110.1016/0378-4371(84)90206-1 120, 349 (1984)]. Important discrepancies appear at higher concentrations, above Φ≈ 0.40, where the hydrodynamic effects are overestimated by the Beenakker-Mazur theory, but predicted accurately by an accelerated Stokesian dynamics algorithm developed by Banchio and Brady [J. Chem. Phys.0021-960610.1063/1.1571819 118, 10323 (2003)]. For the relaxation rates, good agreement was also found between the experimental data and a scaling form predicted by the mode coupling theory. In the high concentration range, with the fluid suspensions approaching the glass transition, the long-time diffusion coefficient was compared with the short-time collective diffusion coefficient to verify a scaling relation previously proposed by Segrè and Pusey [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.77.771 77, 771 (1996)]. We discuss our results in view of previous experimental attempts to validate this scaling law [L. Lurio , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.785 84, 785 (2000)].

  10. Dynamics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.

    1996-01-01

    Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.

  11. Artificial intelligence: Collective behaviors of synthetic micromachines

    NASA Astrophysics Data System (ADS)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical oscillation initiates, and triggers periodic change of the associated self-diffusiophoretic effects as well as interactions between particles. As a result, dispersion and clustering of particles take place alternatively, and sizes of colloidal clusters vary periodically together with local colloid concentration, formulating a namely "colloidal clock". In the system, oscillation can propagate from individual clusters to nearby clusters, and there can exist more than one oscillation frequencies in one system, possibly due to different local particle concentrations or cluster size. Chapter 4 quantitatively investigates the influence of pairwise interaction between motors on their diffusional behaviors by analyzing motion of light-powered silver chloride particles. Powered by UV light, nano/micrometer-sized silver chloride (AgCl) particles exhibit autonomous movement and form "schools" in aqueous solution. Motion of these AgCl particles are tracked and analyzed. AgCl particles exhibit ballistic motion at short time intervals that transition to enhanced diffusive motion as the time interval is increased. The onset of this transition was found to occur more quickly for particles with more neighbors. If the active particles became "trapped" in a formed "school", the diffusive behavior further changes to subdiffusion. The correlation between these transitions and the number of neighboring particles was verified by simulation, and confirms the influence of pairwise interaction between motors. Chapter 5 aims at quantitative understanding on the self-diffusiophoresis propulsion mechanism through numerical simulation with COMSOL Multiphysics. A self-powered micropump based on ion-exchange is chosen as the experimental model system. Weakly acidicform ion-exchange resin can function as self-powered micropumps in aqueous solution, manipulating fluid flow at vicinity and transporting inert tracer colloids. Pumping direction in the system can be dynamically altered in response to pH change: lower pH leads to outward pumping, and higer pH results in inward particle motion. A COMSOL Multiphysics model is built with different boundary conditions and parameters, in accordance with the experimental system. The reasonable agreement between experimental and simulation results confirms self-diffusiophoresis as the powering mechanism. By varing parameters, the model also suggests possible routes to tune the performance of the micropump. COMSOL simulations on micropumps that are based on density-driven mechanism are also included.

  12. Origins of the elastic behavior of nanoparticle chain aggregates: Measurements using nanostructure manipulation device

    NASA Astrophysics Data System (ADS)

    Suh, Yong J.; Friedlander, Sheldon K.

    2003-03-01

    Nanoscale studies were conducted on the dynamic behavior of individual nanoparticle chain aggregates (NCAs) and their networks. For this purpose, device was fabricated to apply tension to NCA under controlled conditions. The device is composed of a specimen support and a cartridge. The specimen support is a deformable alloy disk with a narrow slit across which the NCAs are deposited; the cartridge is used to connect the specimen support to a specimen elongation support holder. The aggregates were stretched using the specimen holder to widen or narrow the slit gap at speeds from 0.5 to 300 nm/s and the motion was observed with a transmission electron microscope. Most of the studies were made with carbon NCA (primary particle size between 11 and 16 nm) generated by laser ablation of a graphite target. The aggregates were deposited on the specimen support (disk) to form bridges across the slit. When tension was applied, the NCA chains remained attached at the slit edges; the chains stretched as kinks on the scale of a few particle diameters were straightened by rotation and/or grain boundary sliding at particle-particle interfaces. After the chain became taut, increasing tension produced little additional extension. Eventually, the chain broke, the tension relaxed, and the elastically strained portions along the NCA recovered. This led to fast contraction of the two broken ends. In one of the cases studied in detail, a small primary particle in the chain doubled in length before the chain broke at this site. This probably occurred because of the high tensile stress in the small particle. In separate experiments, a network of carbon NCA was produced by increased deposition around the slit of a specimen support. Chains in the network broke successively as the network stretched. Some of the chains broke midway and not at the junctures with each other. They contracted fast showing behavior similar to that of the individual aggregates. Possible applications to the behavior of nanocomposite materials composed of blends of NCAs and molecular polymers (e.g., rubber) are described.

  13. A Long-Lived Oscillatory Space-Time Correlation Function of Two Dimensional Colloids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Sung, Bong June

    2014-03-01

    Diffusion of a colloid in solution has drawn significant attention for a century. A well-known behavior of the colloid is called Brownian motion : the particle displacement probability distribution (PDPD) is Gaussian and the mean-square displacement (MSD) is linear with time. However, recent simulation and experimental studies revealed the heterogeneous dynamics of colloids near glass transitions or in complex environments such as entangled actin, PDPD exhibited the exponential tail at a large length instead of being Gaussian at all length scales. More interestingly, PDPD is still exponential even when MSD was still linear with time. It requires a refreshing insight on the colloidal diffusion in the complex environments. In this work, we study heterogeneous dynamics of two dimensional (2D) colloids using molecular dynamics simulations. Unlike in three dimensions, 2D solids do not follow the Lindemann melting criterion. The Kosterlitz-Thouless-Halperin-Nelson-Young theory predicts two-step phase transitions with an intermediate phase, the hexatic phase between isotropic liquids and solids. Near solid-hexatic transition, PDPD shows interesting oscillatory behavior between a central Gaussian part and an exponential tail. Until 12 times longer than translational relaxation time, the oscillatory behavior still persists even after entering the Fickian regime. We also show that multi-layered kinetic clusters account for heterogeneous dynamics of 2D colloids with the long-lived anomalous oscillatory PDPD.

  14. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.« less

  15. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  16. A small-angle neutron scattering study of the kinetics of phase separation in a supersaturated Ni-12.5 at. pct Si alloy

    NASA Astrophysics Data System (ADS)

    Polat, S.; Chen, Haydn; Epperson, J. E.

    1989-04-01

    The kinetic behavior of precipitation in a supersaturated Ni-12.5 at. pct Si alloy single crystal has been studied by the small-angle neutron scattering (SANS) technique to supplement earlier transmission electron microscopy (TEM) and wide-angle X-ray diffraction (XRD) work. The SANS measurements performed at room temperature on quenched specimens subjected to isothermal anneals at 400, 450, 505, and 550 °C for various amounts of time have revealed the presence of an interference peak in the scattering function. The particle size, determined according to the Guinier approximation, is found to grow in accordance with the diffusion controlled model put forth by Lifshitz and Slyozov, and independently by Wagner. The activation energy for solute diffusion is determined using the rate constants governing the growth of particle size and the variation of the mean interparticle distance. Results are in agreement with the values given in the literature. Transition from an earlier growth stage has been observed, and enhanced diffusion is noted at temperatures below 505 °C; both observations are consistent with the previous X-ray results. The dynamical scaling law appears to be followed by the data obtained in the coarsening stage. A disruption of scaling occurs at the point when the particle growth changes from a parabolic rate behavior to a cubic coarsening rate. Dynamical scaling offers the potential for projecting the service lifetimes for components from experimental measurements carried out over a much shorter time interval. Discrepancies in the size parameters determined by different techniques are discussed.

  17. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  18. Transient carrier dynamics in a Mott insulator with antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Ishihara, Sumio

    2014-03-01

    We study transient dynamics of hole carriers injected into a Mott insulator with antiferromagnetic long-range order. This "dynamical hole doping" contrasts with chemical hole doping. The theoretical framework for the transient carrier dynamics is presented based on the two-dimensional t-J model. The time dependencies of the optical conductivity spectra, as well as the one-particle excitation spectra, are calculated based on the Keldysh Green's function formalism at zero temperature combined with the self-consistent Born approximation. In the early stage after dynamical hole doping, the Drude component appears, and then incoherent components originating from hole-magnon scattering start to grow. Fast oscillatory behavior owing to coherent magnon and slow relaxation dynamics are confirmed in the spectra. The time profiles are interpreted as doped bare holes being dressed by magnon clouds and relaxed into spin polaron quasiparticle states. The characteristic relaxation times for Drude and incoherent peaks strongly depend on the momentum of the dynamically doped hole and the exchange constant. Implications for recent pump-probe experiments are discussed.

  19. The effects of particle shape, size, and interaction on colloidal glasses and gels

    NASA Astrophysics Data System (ADS)

    Kramb, Ryan C.

    Using multiple step seeded emulsion polymerization reactions, colloid particles of tunable shape are synthesized from polystyrene. In all, four particle shapes are studied referred to as spheres (S), heteronuclear dicolloids (hDC), symmetric homonuclear dicolloids (sDC), and tricolloids (TC). Two size ranges of particles are studied with approximate diameters in the range of 200-300nm and 1.1-1.3mum. The solvent ionic strength is varied from 10 -3M to 1M resulting in particle interaction potentials that range from repulsive to attractive. The effect of anisotropic shape is found to increase the glass transition volume fraction (φg) in good agreement with activated naive Mode Coupling Theory (nMCT) calculations. Differences in φg and the linear elastic modulus (G0') due to particle shape can be understood in terms of the Random Close Packed volume fraction (φRCP ) for each shape; φRCP- φg is a constant. In addition, a reentrant phase diagram is found for S and sDC particles with a maximum in the fluid state volume fraction found at weakly attractive interaction potential, in agreement well with theoretical calculations. Nonlinear rheology and yielding behavior of repulsive and attractive spheres and anisotropic particles are examined and understood in terms of barriers constraining motion. The barriers are due to interparticle bonds or cages constraining translational or rotational motion. Yield stress has similar volume fraction dependence as G 0' and a similar framework is used to understand differences due to particle shape and interaction. For larger particles, the effects of shape and interaction are studied with respect to dynamic yielding and shear thickening. The dynamic yield stress is found to increase with volume fraction while the stress at thickening is constant. The intersection of these indicates a possible jamming point below φRCP.

  20. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.

    PubMed

    Beun, Sébastien; Bailly, Christian; Dabin, Anne; Vreven, José; Devaux, Jacques; Leloup, Gaëtane

    2009-02-01

    The purpose of this study was to investigate the rheological behavior of resin composites and to evaluate the influence of each component, organic as well as inorganic, on their viscoelastic properties by testing model experimental formulations. Several unfilled mixtures of 2,2-bis-[4-(methacryloxy-2-hydroxy-propoxy)-phenyl]-propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) were prepared as well as experimental flowable resin composites using a Bis-GMA/TEGDMA 50/50 wt% mixture as organic fraction filled at 60% in weight with varying ratios of silanated barium glass (1 microm) and partially hydrophobic fumed silica (0.1 microm). Their rheological properties were investigated using dynamic oscillatory rheometers. Transmission electron microscopy (TEM) was also performed to investigate the spatial organization of the filler particles. Unfilled Bis-GMA/TEGDMA mixtures all showed a Newtonian behavior. The experimental flowable resin composites were non-Newtonian, shear-thinning fluids. As the quantity of microfiller increased, the viscosity increased and the shear-thinning behavior increased as well. In addition, the experimental composites showed thixotropy, i.e. their viscosity is a function of time after deformation. All these properties were not specifically linked to the creation and destruction of a visible network between inorganic particles, as no difference could be seen between particles' spatial organization at the equilibrium rest state or immediately after deformation. The complex viscoelastic properties of resin composites are due to interactions between microfiller and monomer molecules. Modifying the chemical and physical properties of the particles' surface could possibly improve their flow properties and thus their clinical handling performances.

  1. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-06-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  2. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  3. Enhanced hyperuniformity from random reorganization.

    PubMed

    Hexner, Daniel; Chaikin, Paul M; Levine, Dov

    2017-04-25

    Diffusion relaxes density fluctuations toward a uniform random state whose variance in regions of volume [Formula: see text] scales as [Formula: see text] Systems whose fluctuations decay faster, [Formula: see text] with [Formula: see text], are called hyperuniform. The larger [Formula: see text], the more uniform, with systems like crystals achieving the maximum value: [Formula: see text] Although finite temperature equilibrium dynamics will not yield hyperuniform states, driven, nonequilibrium dynamics may. Such is the case, for example, in a simple model where overlapping particles are each given a small random displacement. Above a critical particle density [Formula: see text], the system evolves forever, never finding a configuration where no particles overlap. Below [Formula: see text], however, it eventually finds such a state, and stops evolving. This "absorbing state" is hyperuniform up to a length scale [Formula: see text], which diverges at [Formula: see text] An important question is whether hyperuniformity survives noise and thermal fluctuations. We find that hyperuniformity of the absorbing state is not only robust against noise, diffusion, or activity, but that such perturbations reduce fluctuations toward their limiting behavior, [Formula: see text], a uniformity similar to random close packing and early universe fluctuations, but with arbitrary controllable density.

  4. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    DOE PAGES

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less

  5. The mechanical properties of ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Doyeon; Kim, Kwang J.

    2007-04-01

    In this study, we investigated the mechanical properties of various type ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5~7 μm doped layer and nano-sized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in a dried condition. In a thermal behavior, Au IPMC has the highest T g (153°C) and T m (263°C) in both the DMA and DSC results. The fracture behavior of various types IPMCs followed base material's behavior, Nafion TM, which is represented as the semicrystalline polymer characteristic.

  6. APM_GUI: analyzing particle movement on the cell membrane and determining confinement.

    PubMed

    Menchón, Silvia A; Martín, Mauricio G; Dotti, Carlos G

    2012-02-20

    Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,. Here, we present APM_GUI (Analyzing Particle Movement), which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with. APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.

  7. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D.

    2017-01-01

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

  8. Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director.

    PubMed

    Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D

    2017-01-11

    Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

  9. A distributed, dynamic, parallel computational model: the role of noise in velocity storage

    PubMed Central

    Merfeld, Daniel M.

    2012-01-01

    Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288

  10. Long time response of soft magnetorheological gels.

    PubMed

    An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo

    2012-04-19

    Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.

  11. Simulation of granular and gas-solid flows using discrete element method

    NASA Astrophysics Data System (ADS)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)

  12. LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)

    DTIC Science & Technology

    2014-03-01

    LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E) by James P. Larentzos, John K. Brennan, Joshua D. Moore, and...MD 21005-5069 ARL-TR-6863 March 2014 LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E) James P...13 September 2013 4. TITLE AND SUBTITLE LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E) 5a. CONTRACT NUMBER 5b

  13. Far-from-equilibrium magnetic granular layers: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2010-03-01

    Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.

  14. Fractals and foods.

    PubMed

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  15. Light generated bubble for microparticle propulsion.

    PubMed

    Frenkel, Ido; Niv, Avi

    2017-06-06

    Light activated motion of micron-sized particles with effective forces in the range of micro-Newtons is hereby proposed and demonstrated. Our investigation shows that this exceptional amount of force results from accumulation of light-generated heat by a micron-sized particle that translates into motion due to a phase transition in the nearby water. High-speed imagery indicates the role of bubble expansion and later collapse in this event. Comparing observations with known models reveals a dynamic behavior controlled by polytropic trapped vapor and the inertia of the surrounding liquid. The potential of the proposed approach is demonstrated by realization of disordered optical media with binary light-activated switching from opacity to high transparency.

  16. Unpredictable convection in a small box: Molecular-dynamics experiments

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    1992-08-01

    The Rayleigh-Bénard problem has been studied using discrete-particle simulation of a two-dimensional fluid in a square box. The presence of temporal periodicity in the convective roll structure was observed, but, more significantly, different simulation runs under identical conditions but with initial states that differed in ways that are seemingly irrelevant at the macroscopic level exhibited very different forms of pattern evolution. The final state always consisted of a horizontally adjacent pair of rolls, but not all initial states evolved to produce well-established periodic behavior, despite the fact that very long runs were undertaken. Results for both hard- and soft-disk fluids are described; the simulations included systems with over 105 particles.

  17. Dynamics of entanglement entropy of interacting fermions in a 1D driven harmonic trap

    NASA Astrophysics Data System (ADS)

    McKenney, Joshua R.; Porter, William J.; Drut, Joaquín E.

    2018-03-01

    Following up on a recent analysis of two cold atoms in a time-dependent harmonic trap in one dimension, we explore the entanglement entropy of two and three fermions in the same situation when driven through a parametric resonance. We find that the presence of such a resonance in the two-particle system leaves a clear imprint on the entanglement entropy. We show how the signal is modified by attractive and repulsive contact interactions, and how it remains present for the three-particle system. Additionaly, we extend the work of recent experiments to demonstrate how restricting observation to a limited subsystem gives rise to locally thermal behavior.

  18. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  19. Antiswarming: Structure and dynamics of repulsive chemically active particles

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2017-12-01

    Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a "chemical" coupling parameter Γc that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic one component plasma (OCP) system. When confined to a constant-volume domain, body-centered cubic (bcc) crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-centered cubic (fcc) crystals may also be stable. The "melting point" of the "liquid-to-crystal transition" occurs at Γc≈140 for both bcc and fcc lattices.

  20. A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing

    2010-08-01

    The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.

Top