NASA Astrophysics Data System (ADS)
Liu, Kai; Balachandar, S.
2017-11-01
We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.
On a two-particle bound system on the half-line
NASA Astrophysics Data System (ADS)
Kerner, Joachim; Mühlenbruch, Tobias
2017-10-01
In this paper we provide an extension of the model discussed in [10] describing two singularly interacting particles on the half-line ℝ+. In this model, the particles are interacting only whenever at least one particle is situated at the origin. Stimulated by [11] we then provide a generalisation of this model in order to include additional interactions between the particles leading to a molecular-like state. We give a precise mathematical formulation of the Hamiltonian of the system and perform spectral analysis. In particular, we are interested in the effect of the singular two-particle interactions onto the molecule.
Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions
NASA Technical Reports Server (NTRS)
Hughes, David W. (Inventor)
2012-01-01
A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.
Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach
NASA Astrophysics Data System (ADS)
Taghavy, Amir; Pennell, Kurt D.; Abriola, Linda M.
2015-01-01
Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media.
Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M
2015-01-01
Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip
NASA Astrophysics Data System (ADS)
Alam, Manjurul; Golozar, Matin; Darabi, Jeff
2018-04-01
A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.
Effects of field interactions upon particle creation in Robertson-Walker universes
NASA Technical Reports Server (NTRS)
Birrell, N. D.; Davies, P. C. W.; Ford, L. H.
1980-01-01
Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length.
NASA Astrophysics Data System (ADS)
Priye, Aashish; Marlow, William H.
2013-10-01
The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
Del Bello, Elisabetta; Taddeucci, Jacopo; De' Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-03
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕ p ) ranging 10 -7 -10 -3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕ p ~ 10 -3 . Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕ p . Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕ p . These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Self assembly of anisotropic colloidal particles
NASA Astrophysics Data System (ADS)
Florea, Daniel; Wyss, Hans
2012-02-01
Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.
Lieb-Thirring inequality for a model of particles with point interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Rupert L.; Seiringer, Robert
2012-09-15
We consider a model of quantum-mechanical particles interacting via point interactions of infinite scattering length. In the case of fermions we prove a Lieb-Thirring inequality for the energy, i.e., we show that the energy is bounded from below by a constant times the integral of the particle density to the power (5/3).
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
NASA Astrophysics Data System (ADS)
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolte, Jens, E-mail: jens.bolte@rhul.ac.uk; Kerner, Joachim, E-mail: joachim.kerner@fernuni-hagen.de
In this paper we investigate Bose-Einstein condensation into the one-particle ground state in interacting quantum many-particle systems on graphs. We extend previous results obtained for particles on an interval and show that even arbitrarily small repulsive two-particle interactions destroy the condensate in the one-particle ground state present in the non-interacting Bose gas. Our results also cover singular two-particle interactions, such as the well-known Lieb-Liniger model, in the thermodynamic limit.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
SPH Numerical Modeling for the Wave-Thin Structure Interaction
NASA Astrophysics Data System (ADS)
Ren, Xi-feng; Sun, Zhao-chen; Wang, Xing-gang; Liang, Shu-xiu
2018-04-01
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics (WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle (CDP) technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.
Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.
Bürger, Vincent; Briesen, Heiko
2016-10-05
For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.
Surface charge accumulation of particles containing radionuclides in open air
Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less
Particle-based simulations of self-motile suspensions
NASA Astrophysics Data System (ADS)
Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot
2015-11-01
A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.
Evaluation of stochastic particle dispersion modeling in turbulent round jets
Sun, Guangyuan; Hewson, John C.; Lignell, David O.
2016-11-02
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less
Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles
NASA Astrophysics Data System (ADS)
Yin, H. M.; Sun, L. Z.; Chen, J. S.
2006-05-01
Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.
NASA Astrophysics Data System (ADS)
Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.
2018-06-01
We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.
Insights into DNA-mediated interparticle interactions from a coarse-grained model
NASA Astrophysics Data System (ADS)
Ding, Yajun; Mittal, Jeetain
2014-11-01
DNA-functionalized particles have great potential for the design of complex self-assembled materials. The major hurdle in realizing crystal structures from DNA-functionalized particles is expected to be kinetic barriers that trap the system in metastable amorphous states. Therefore, it is vital to explore the molecular details of particle assembly processes in order to understand the underlying mechanisms. Molecular simulations based on coarse-grained models can provide a convenient route to explore these details. Most of the currently available coarse-grained models of DNA-functionalized particles ignore key chemical and structural details of DNA behavior. These models therefore are limited in scope for studying experimental phenomena. In this paper, we present a new coarse-grained model of DNA-functionalized particles which incorporates some of the desired features of DNA behavior. The coarse-grained DNA model used here provides explicit DNA representation (at the nucleotide level) and complementary interactions between Watson-Crick base pairs, which lead to the formation of single-stranded hairpin and double-stranded DNA. Aggregation between multiple complementary strands is also prevented in our model. We study interactions between two DNA-functionalized particles as a function of DNA grafting density, lengths of the hybridizing and non-hybridizing parts of DNA, and temperature. The calculated free energies as a function of pair distance between particles qualitatively resemble experimental measurements of DNA-mediated pair interactions.
Simple potential model for interaction of dark particles with massive bodies
NASA Astrophysics Data System (ADS)
Takibayev, Nurgali
2018-01-01
A simple model for interaction of dark particles with matter based on resonance behavior in a three-body system is proposed. The model describes resonant amplification of effective interaction between two massive bodies at large distances between them. The phenomenon is explained by catalytic action of dark particles rescattering at a system of two heavy bodies which are understood here as the big stellar objects. Resonant amplification of the effective interaction between the two heavy bodies imitates the increase in their mass while their true gravitational mass remains unchanged. Such increased interaction leads to more pronounced gravitational lensing of bypassing light. It is shown that effective interaction between the heavy bodies is changed at larger distances and can transform into repulsive action.
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)
Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.
2016-01-01
Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).
Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith
2016-05-15
Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
NASA Astrophysics Data System (ADS)
Qin, Pin-pin; Chen, Chui-ce; Pei, Shi-kang; Li, Xin
2017-06-01
The stopping distance of a runaway vehicle is determined by the entry speed, the design of aggregate-filled arrester bed and the longitudinal grade of escape ramp. Although numerous previous studies have been carried out on the influence of speed and grade on stopping distance, taking into account aggregate properties is rare. Firstly, this paper analyzes the interactions between the tire and the aggregate. The tire and the aggregate are abstracted into a big particle unit and a particle combination unit consisting of lots of aggregates, respectively. Secondly this paper proposes an assumption that this interaction is a kind of particle flow. Later, this paper uses some particle properties to describe the tire-particle unit and aggregate-particle unit respectively, then puts forward several simplified steps of modeling by particle flow code in 2 dimensions (PFC2D). Therefore, a PFC2D micro-simulation model of the interactions between the tire and the aggregate is proposed. The parameters of particle properties are then calibrated by three groups of numerical tests. The calibrated model is verified by eight full-scale arrester bed testing data to demonstrate its feasibility and accuracy. This model provides escape ramp designers a feasible simulation method not only for predicting the stopping distance but also considering the aggregate properties.
Surface charge accumulation of particles containing radionuclides in open air.
Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Itai, K.
1987-02-01
Two models which describe one-dimensional hopping motion of a heavy particle interacting with phonons are discussed. Model A corresponds to hopping in 1D metals or to the polaron problem. In model B the momentum dependence of the particle-phonon coupling is proportional to k-1/2. The scaling equations show that only in model B does localization occur for a coupling larger than a critical value. In the localization region this model shows close analogy to the Caldeira-Leggett model for macroscopic quantum tunneling.
Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain
2017-06-13
The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.
NASA Astrophysics Data System (ADS)
Jia, L. Y.
2016-06-01
The particle-hole symmetry (equivalence) of the full shell-model Hilbert space is straightforward and routinely used in practical calculations. In this work I show that this symmetry is preserved in the subspace truncated up to a certain generalized seniority and give the explicit transformation between the states in the two types (particle and hole) of representations. Based on the results, I study particle-hole symmetry in popular theories that could be regarded as further truncations on top of the generalized seniority, including the microscopic interacting boson (fermion) model, the nucleon-pair approximation, and other models.
Fate and Transport of Nanoparticles in Porous Media: A Numerical Study
NASA Astrophysics Data System (ADS)
Taghavy, Amir
Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.
Dusty gas influences on transport in turbulent erosive propellant flow
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1980-01-01
A theoretical-numerical model is introduced which relates the influences of particles on erosive transport in a turbulent reactive boundary layer. Specifically, this discussion concerns additive particles used to suppress wall erosion in gun barrel turbulent propellant combustion. The turbulent-particle interactions are modeled with random particulate motion computations. These produce particulate trajectories, distributions and momenta. The interaction model includes effects of particle size, mass, and rotation as well as two-particle hard sphere collisions. The main purpose of this work is to evaluate the effects of the particles on the energy, mass, and momentum transport in the erosive wall boundary layer region. Neglecting thermal relaxation, the heat transfer rates are found to be substantially reduced when smaller diameter (0.2 micron) particles are introduced as compared to larger diameter particles (5 microns).
The effects of particle loading on turbulence structure and modelling
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Eaton, J. K.
1989-01-01
The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.
Two component Feebly Interacting Massive Particle (FIMP) dark matter
NASA Astrophysics Data System (ADS)
Pandey, Madhurima; Majumdar, Debasish; Prasad Modak, Kamakshya
2018-06-01
We explore the idea of an alternative candidate for particle dark matter namely Feebly Interacting Massive Particle (FIMP) in the framework of a two component singlet scalar model. Singlet scalar dark matter has already been demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive Particle) dark matter in literature. In the FIMP scenario, dark matter particles are slowly produced via "thermal freeze-in" mechanism in the early Universe and are never abundant enough to reach thermal equilibrium or to undergo pair annihilation inside the Universe's plasma due to their extremely small couplings. We demonstrate that for smaller couplings too, required for freeze-in process, a two component scalar dark matter model considered here could well be a viable candidate for FIMP . In this scenario, the Standard Model of particle physics is extended by two gauge singlet real scalars whose stability is protected by an unbroken Z2× Z'2 symmetry and they are assumed to acquire no VEV after Spontaneous Symmetry Breaking. We explore the viable mass regions in the present two scalar DM model that is in accordance with the FIMP scenario. We also explore the upper limits of masses of the two components from the consideration of their self interactions.
Non-additive simple potentials for pre-programmed self-assembly
NASA Astrophysics Data System (ADS)
Mendoza, Carlos
2015-03-01
A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.
Continuous time random walk with local particle-particle interaction
NASA Astrophysics Data System (ADS)
Xu, Jianping; Jiang, Guancheng
2018-05-01
The continuous time random walk (CTRW) is often applied to the study of particle motion in disordered media. Yet most such applications do not allow for particle-particle (walker-walker) interaction. In this paper, we consider a CTRW with particle-particle interaction; however, for simplicity, we restrain the interaction to be local. The generalized Chapman-Kolmogorov equation is modified by introducing a perturbation function that fluctuates around 1, which models the effect of interaction. Subsequently, a time-fractional nonlinear advection-diffusion equation is derived from this walking system. Under the initial condition of condensed particles at the origin and the free-boundary condition, we numerically solve this equation with both attractive and repulsive particle-particle interactions. Moreover, a Monte Carlo simulation is devised to verify the results of the above numerical work. The equation and the simulation unanimously predict that this walking system converges to the conventional one in the long-time limit. However, for systems where the free-boundary condition and long-time limit are not simultaneously satisfied, this convergence does not hold.
NASA Astrophysics Data System (ADS)
Son, Kwon Joong
2018-02-01
Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.
NASA Astrophysics Data System (ADS)
Su, Yu; Swan, James W.; Zia, Roseanna N.
2017-03-01
Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca
2016-01-15
Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less
Coupled multipolar interactions in small-particle metallic clusters.
Pustovit, Vitaly N; Sotelo, Juan A; Niklasson, Gunnar A
2002-03-01
We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole-dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N = 6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.
NASA Astrophysics Data System (ADS)
Kang, D.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2013-02-01
KASCADE-Grande is a large detector array for observations of the energy spectrum as well as the chemical composition of cosmic ray air showers up to primary energies of 1 EeV. The multi-detector arrangement allows to measure the electromagnetic and muonic components for individual air showers. In this analysis, the reconstruction of the all-particle energy spectrum is based on the size spectra of the charged particle component. The energy is calibrated by using Monte Carlo simulations performed with CORSIKA and high-energy interaction models QGSJet, EPOS and SIBYLL. In all cases FLUKA has been used as low-energy interaction model. In this contribution the resulting spectra by means of different hadronic interaction models will be compared and discussed.
Interaction of axions with relativistic spinning particles
NASA Astrophysics Data System (ADS)
Popov, V. A.; Balakin, A. B.
2016-05-01
We consider a covariant phenomenological model, which describes an interaction between a pseudoscalar (axion) field and massive spinning particles. The model extends the Bagrmann-Michel-Telegdy approach in application to the axion electrodynamics. We present some exact solutions and discuss them in the context of experimental tests of the model and axion detection.
NASA Astrophysics Data System (ADS)
Lopez-Yglesias, Xerxes
Part I: Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement. Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes. The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
The role of equiaxed particles on the yield stress of composites
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.; Christodoulou, L.
1991-01-01
Possible explanations are investigated for the yield strength enhancement of discontinuously reinforced Al alloy matrix MMCs, for the case of low temperature yield behavior where deformation occurs by dislocation slide. The Al alloys contain 0.1-10 micron diameter equiaxed particle discontinuous reinforcements of TiB2, Al2O3, and TiC. Attention is given to a single dislocation-particle interaction model, and both dislocation pile-up and forest-hardening multiple-dislocation particle interaction models.
Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak
2017-11-25
Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
Griffiths' inequalities for Ashkin-Teller model
NASA Technical Reports Server (NTRS)
Lee, C. T.
1973-01-01
The two Griffiths' (1967) inequalities for the correlation functions of Ising ferromagnets with two-body interactions, and two other inequalities obtained by Kelly and Sherman (1968) and by Sherman (1969) are shown to hold not only for the Ashkin-Teller (1943) model but also for a generalized Ashkin-Teller model (Kihara et al., 1954) with many-body interactions involving arbitrary clusters of particles. A cluster of particles is understood to mean a collection of pairs of particles rather than a group of particles. The four generalized inequalities under consideration are presented in the form of theorems, and a new inequality is obtained.
Aaltonen, T; Albin, E; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S
2013-07-19
We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at √[s]=1.96 TeV corresponding to an integrated luminosity of 6.6 fb(-1). We find the data to be consistent with nonresonant production. We report limits on σ(pp[over ¯]→jjjj) as a function of the masses of the hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.
Aaltonen, T.; Albin, E.; Amerio, S.; ...
2013-07-18
We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.6 fb⁻¹. We find the data to be consistent with nonresonant production. We report limits on σ(pp̄→jjjj) as a function of the masses of themore » hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.« less
NASA Astrophysics Data System (ADS)
Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em
2017-01-01
Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.
Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L
2011-01-21
We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may dramatically change depending on the interplay between characteristic Debye length, thickness of ion-permeable layers and their respective protolytic features (e.g. location, magnitude and sign of charge density). This formalism extends a recent model by Ohshima which is strictly limited to interaction between soft mono-shell particles within Deryagin and Debye-Hückel approximations under conditions where ionizable sites are completely dissociated.
Modified kinetic theory applied to the shear flows of granular materials
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.; ...
2017-04-11
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
Modified kinetic theory applied to the shear flows of granular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
Effective stochastic generator with site-dependent interactions
NASA Astrophysics Data System (ADS)
Khamehchi, Masoumeh; Jafarpour, Farhad H.
2017-11-01
It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.
Modeling the Radiation Belts During a Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Glocer, A.; Fok, M.; Toth, G.
2009-05-01
We utilize the Radiation Belt Environment (RBE) model to simulate the radiation belt electrons during a geomagnetic storm. Particularly, we focus on the relative contribution of whistler mode wave-particle interactions and radial diffusion associated with rapid changes in the magnetospheric magnetic field. In our study, the RBE model obtains a realistic magnetic field from the BATS-R-US magnetosphere model at a regular, but adjustable, cadence. We simulate the storm with and without wave particle interactions, and with different frequencies for updating the magnetic field. The impacts of the wave-particle interactions, and the rapid variations in the magnetospheric magnetic field, can then be studied. Simulation results are also extracted along various satellite trajectories for direct comparison where appropriate.
Flavour-changing neutral currents making and breaking the standard model.
Archilli, F; Bettler, M-O; Owen, P; Petridis, K A
2017-06-07
The standard model of particle physics is our best description yet of fundamental particles and their interactions, but it is known to be incomplete. As yet undiscovered particles and interactions might exist. One of the most powerful ways to search for new particles is by studying processes known as flavour-changing neutral current decays, whereby a quark changes its flavour without altering its electric charge. One example of such a transition is the decay of a beauty quark into a strange quark. Here we review some intriguing anomalies in these decays, which have revealed potential cracks in the standard model-hinting at the existence of new phenomena.
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
Search for the standard model Higgs boson in $$l\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dikai
2013-01-01
Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3) c ⓍSU(2) L Ⓧ U(1) Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of thesemore » three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.« less
Discreteness effects in a reacting system of particles with finite interaction radius.
Berti, S; López, C; Vergni, D; Vulpiani, A
2007-09-01
An autocatalytic reacting system with particles interacting at a finite distance is studied. We investigate the effects of the discrete-particle character of the model on properties like reaction rate, quenching phenomenon, and front propagation, focusing on differences with respect to the continuous case. We introduce a renormalized reaction rate depending both on the interaction radius and the particle density, and we relate it to macroscopic observables (e.g., front speed and front thickness) of the system.
Long-wavelength instabilities in a system of interacting active particles
NASA Astrophysics Data System (ADS)
Fazli, Zahra; Najafi, Ali
2018-02-01
Based on a microscopic model, we develop a continuum description for a suspension of microscopic self-propelled particles. With this continuum description we study the role of long-range interactions in destabilizing macroscopic ordered phases that are developed by short-range interactions. Long-wavelength fluctuations can destabilize both isotropic and symmetry-broken polar phases in a suspension of dipolar particles. The instabilities in a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such instabilities are not seen in a suspension of quadrupolar particles.
Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2017-04-01
Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.
SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T.; Murphy, J.
SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
Contagion Shocks in One Dimension
NASA Astrophysics Data System (ADS)
Bertozzi, Andrea L.; Rosado, Jesus; Short, Martin B.; Wang, Li
2015-02-01
We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a "fear" variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with "sticky" particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.
Observation of the doubly strange b-Baryon Ω b -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose de Jesus Hernandez Orduna
2011-02-01
This thesis reports the first experimental evidence of the doubly strange b-baryon Ω b - (ssb) following the decay channel Ω b - → J/Ψ(1S) μ +μ - Ω - Λ K - p π - in pmore » $$\\bar{p}$$ collisions at √s = 1.96 Tev. Using approximately 1.3 fb -1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) Ω b - signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c 2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10 -8. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, ττ, electron neutrino v e, muon neutrino v μ and, τ neutrino v τ. Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an antiquark and Baryons, made up three quarks. Leptons have no color charge and can not interact via the strong force. Only three of them have electric charge, hence interact electromagnetically. The motion of non-electrically charged leptons, the neutrinos, is influenced only by the weak nuclear interaction. Every fermion have an associated antiparticle. For quarks, the antiparticle carry opposite electric charge, color charge and baryon number. For leptons, the antiparticle carry opposite electric charge and lepton number. Fermions are suitably grouped together considering their properties and three generations of them are defined. A higher generation fermion have greater mass than those in lower generations. Charged members of the first generation do not decay and form the ultimate building blocks for all the baryonic matter we know about. Charged members of higher generations have very short half lives and are found normally in high-energy environments. Non-electrically charged fermions do not decay and rarely interact with baryonic matter. The way particles interact and influence each other in the Standard Model is result from matter particles exchanging other particles, known as Force Mediating Particles. They are believed to be the reason of the existence of the forces and interactions between particles observed in the laboratory and the universe. Force mediating particles have spin 1, i.e., they are Bosons, and do not follow the Pauli Exclusion Principle. The types of force mediating particles are: the photon γ, three gauge bosons W ± and Z and, eight gluons g. Photons have no mass, the theory of Quantum Electrodynamics describe them very well and are responsible for mediation of the electromagnetic force between electrically charged particles. Gauge bosons are massive, being Z heavier than W ±. They are responsible for the mediation of the weak interactions between particles of different flavors but W ± act only on left-handed particles and right-handed antiparticles while Z with both left-handed particles and antiparticles. Due to the electric charge of W ±, they couple also to electromagnetic interactions. Photons and the three gauge bosons are grouped together and collectively mediate the electroweak interactions. Finally, gluons have no mass, the theory of Quantum Chromodynamics describe them and are responsible for the mediation of the strong interactions between particles with color charge. Having an effective color charge, gluons can interact among themselves. The Higgs Boson is the only particle in the SM without direct experimental evidence. Its detection would help in the explanation of the difference between massive bosons mediating the weak force and the massless photon mediating the electromagnetism.« less
Creation and Evolution of Particle Number Asymmetry in an Expanding Universe
NASA Astrophysics Data System (ADS)
Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.
2017-03-01
We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.
A 3-D model of tumor progression based on complex automata driven by particle dynamics.
Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z
2009-12-01
The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.
FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model
NASA Astrophysics Data System (ADS)
Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco
2007-08-01
We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.
A stochastic model of particle dispersion in turbulent reacting gaseous environments
NASA Astrophysics Data System (ADS)
Sun, Guangyuan; Lignell, David; Hewson, John
2012-11-01
We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.
A collision scheme for hybrid fluid-particle simulation of plasmas
NASA Astrophysics Data System (ADS)
Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John
2006-10-01
Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).
The Lunar Regolith as a Remote Sensing Target for the Lunar Reconnaissance Orbiter (LRO)
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
2009-01-01
Of the 6 instruments and one technology demonstration aboard the LRO, only CRaTER does not measure some kind of interaction of particles with the lunar regolith. LEND detects neutron fluence that contains information about the number density of protons in the upper regolith. To infer the presence of protons, the PI must assume a model that characterizes the surface as a collection of atoms. Thus, LEND does not sense the regolith as a structure. LROC, LOLA, and LAMP sense reflected photons whose wavelength is much shorter than the median particle size in the regolith. The photons interact with electrons, either in atomic shells or in chemical bonds. These interactions occur within a nanometer or so of the surface of a particle. Thus, the particles are macroscopic objects and models of the reflection process invoke ray-tracing optics. DIVINER senses photons that have been emitted by surface particles through thermal phonon processes. The wavelengths detected by the instrument are of the same order as the median particle size, and the photons contain information on particle dimensions as well as the molecular bonds in the constituent compounds. The Mini-RF synthetic aperture radar generates and detects photons of a few centimeters wavelength that interact with the regolith as a dielectric, the dielectric properties of the particulate component being described through effective medium theory. However, the interaction with rocks (macroscopic objects of interest to geologists) can be characterized using Fresnel or Mie models of electromagnetic properties.
Particle Engulfment and Pushing By Solidifying Interfaces
NASA Technical Reports Server (NTRS)
2003-01-01
The study of particle behavior at solid/liquid interfaces (SLI s) is at the center of the Particle Engulfment and Pushing (PEP) research program. Interactions of particles with SLI s have been of interest since the 1960 s, starting with geological observations, i.e., frost heaving. Ever since, this field of research has become significant to such diverse areas as metal matrix composite materials, fabrication of superconductors, and inclusion control in steels. The PEP research effort is geared towards understanding the fundamental physics of the interaction between particles and a planar SLI. Experimental work including 1-g and mu-g experiments accompany the development of analytical and numerical models. The experimental work comprised of substantial groundwork with aluminum (Al) and zinc (Zn) matrices containing spherical zirconia particles, mu-g experiments with metallic Al matrices and the use of transparent organic metal-analogue materials. The modeling efforts have grown from the initial steady-state analytical model to dynamic models, accounting for the initial acceleration of a particle at rest by an advancing SLI. To gain a more comprehensive understanding, numerical models were developed to account for the influence of the thermal and solutal field. Current efforts are geared towards coupling the diffusive 2-D front tracking model with a fluid flow model to account for differences in the physics of interaction between 1-g and -g environments. A significant amount of this theoretical investigation has been and is being performed by co-investigators at NASA MSFC.
Modeling of Fine-Particle Formation in Turbulent Flames
NASA Astrophysics Data System (ADS)
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Emergence of Collective Motion in a Model of Interacting Brownian Particles.
Dossetti, Victor; Sevilla, Francisco J
2015-07-31
By studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered.
Kinetic Models for Topological Nearest-Neighbor Interactions
NASA Astrophysics Data System (ADS)
Blanchet, Adrien; Degond, Pierre
2017-12-01
We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.
NASA Astrophysics Data System (ADS)
Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.
2018-05-01
Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.
NASA Astrophysics Data System (ADS)
Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.
2018-02-01
Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers (M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.
Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel
2009-01-01
The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation. PMID:19893741
Turbulent particulate transportation during electrostatic precipitation
NASA Astrophysics Data System (ADS)
Choi, Bum Seog
The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.
Modeling of Complex Coupled Fluid-Structure Interaction Systems in Arbitrary Water Depth
2008-01-01
model in a particle finite element method ( PFEM ) based framework for the ALE-RANS solver and submitted a journal paper recently [1]. In the paper, we...developing a fluid-flexible structure interaction model without free surface using ALE-RANS and k-ε turbulence closure model implemented by PFEM . In...the ALE_RANS and k-ε turbulence closure model based on the particle finite element Method ( PFEM ) and obtained some satisfying results [1-2]. The
Electrohydrodynamic interactions in Quincke rotation: from pair dynamics to collective motion
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2013-11-01
Weakly conducting dielectric particles suspended in a dielectric liquid can undergo spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions whose effective viscosity can be reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between identical spheres using method of reflections. We also consider the case of spherical particles undergoing Quincke rotation next to a planar electrode, where hydrodynamic interactions with the no-slip boundary lead to a self-propelled velocity. The interactions between such Quincke rollers are analyzed, and a transition to collective motion is predicted in sufficiently dense collections of many rollers, in agreement with recent experiments.
Bipolarons in one-dimensional extended Peierls-Hubbard models
NASA Astrophysics Data System (ADS)
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
Aerosol Particle Shape and Radiative Coupling in a Three Dimensional Titan GCM
NASA Astrophysics Data System (ADS)
Larson, Erik J.; Toon, O. B.; Friedson, A. J.; West, R. A.
2010-10-01
Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, as well as heating and cooling rates which in turn affect the circulation on Titan leading to feedback with the aerosol distribution. Correctly representing the aerosols in atmospheric models is crucial to understanding this atmosphere. Friedson et al. (2009, A global climate model of Titan's atmosphere and surface. Planet. SpaceSci. 57, 1931-1949.) produced a three-dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. We compare simulations with radiatively interactive aerosols with those using a prescribed aerosol radiative effect. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lofted by winds more in the summer hemisphere than the non-radiatively interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo. We compare simulations using spherical particles to simulations using fractal aggregate particles, which are expected from laboratory and observational data. Fractal particles have higher absorption in the UV, slower fall velocities and faster coagulation rates than equivalent mass spherical particles. We compare model simulations with observational data from the Cassini and Huygens missions.
Simulating immersed particle collisions: the Devil's in the details
NASA Astrophysics Data System (ADS)
Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart
2015-11-01
Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.
Towards a bulk approach to local interactions of hydrometeors
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2018-02-01
The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.
A facility to search for hidden particles at the CERN SPS: the SHiP physics case.
Alekhin, Sergey; Altmannshofer, Wolfgang; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristóbal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvêa, André; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P S; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Björn; Gavela, Belen; Giudice, Gian F; Goodsell, Mark D; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N; Morrissey, David E; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W; Zurek, Kathryn M
2016-12-01
This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Multiscale modeling of interfacial flow in particle-solidification front dynamics
NASA Astrophysics Data System (ADS)
Garvin, Justin
2005-11-01
Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
Negative differential mobility in interacting particle systems
NASA Astrophysics Data System (ADS)
Chatterjee, Amit Kumar; Basu, Urna; Mohanty, P. K.
2018-05-01
Driven particles in the presence of crowded environment, obstacles, or kinetic constraints often exhibit negative differential mobility (NDM) due to their decreased dynamical activity. Based on the empirical studies of conserved lattice gas model, two species exclusion model and other interacting particle systems we propose a new mechanism for complex many-particle systems where slowing down of certain non-driven degrees of freedom by the external field can give rise to NDM. To prove that the slowing down of the non-driven degrees is indeed the underlying cause, we consider several driven diffusive systems including two species exclusion models, misanthrope process, and show from the exact steady state results that NDM indeed appears when some non-driven modes are slowed down deliberately. For clarity, we also provide a simple pedagogical example of two interacting random walkers on a ring which conforms to the proposed scenario.
Pauli structures arising from confined particles interacting via a statistical potential
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman
2017-09-01
There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.
Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J
2018-02-27
The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.
On aggregation in CA models in biology
NASA Astrophysics Data System (ADS)
Alber, Mark S.; Kiskowski, Audi
2001-12-01
Aggregation of randomly distributed particles into clusters of aligned particles is modeled using a cellular automata (CA) approach. The CA model accounts for interactions between more than one type of particle, in which pressures for angular alignment with neighbors compete with pressures for grouping by cell type. In the case of only one particle type clusters tend to unite into one big cluster. In the case of several types of particles the dynamics of clusters is more complicated and for specific choices of parameters particle sorting occurs simultaneously with the formation of clusters of aligned particles.
Time delay can facilitate coherence in self-driven interacting-particle systems
NASA Astrophysics Data System (ADS)
Sun, Yongzheng; Lin, Wei; Erban, Radek
2014-12-01
Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.
Microscopic motion of particles flowing through a porous medium
NASA Astrophysics Data System (ADS)
Lee, Jysoo; Koplik, Joel
1999-01-01
Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan
2014-03-01
Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
NASA Technical Reports Server (NTRS)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
Capillary trapping in thin-film flows of particles
NASA Astrophysics Data System (ADS)
Sauret, Alban; Gomez, Michael; Dressaire, Emilie
Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.
Random matrix ensembles for many-body quantum systems
NASA Astrophysics Data System (ADS)
Vyas, Manan; Seligman, Thomas H.
2018-04-01
Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.
NASA Astrophysics Data System (ADS)
Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu
2014-05-01
During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature
Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.
2011-01-01
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328
Numerical investigation of fluid-particle interactions for embolic stroke
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Padilla, Jose; Shadden, Shawn C.
2016-04-01
Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler-Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid-particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid-particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence of helical flow, and vessel curvature, inclusion of two-way momentum exchange was found to have a secondary effect for transporting small to moderate embolus particles—and one-way coupling could be used as a reasonable approximation, thereby causing substantial savings in computational resources.
Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.
Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian
2016-05-01
In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Glass transition of charged particles in two-dimensional confinement.
Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias
2015-05-01
The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems.
Heat conduction in a chain of colliding particles with a stiff repulsive potential
NASA Astrophysics Data System (ADS)
Gendelman, Oleg V.; Savin, Alexander V.
2016-11-01
One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example of a completely integrable system. Billiards with different particle masses is generically not integrable, but it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of the model leads to a profound physical consequence—the probability of multiple (in particular triple) -particle collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic description of heat transport. This approach allows us to predict both the temperature and density dependencies for the HCC limit values. The latter dependence is quite counterintuitive—the HCC is inversely proportional to the particle density in the chain. Both predictions are confirmed by direct numerical simulations.
Analytical theory of polymer-network-mediated interaction between colloidal particles
Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika
2012-01-01
Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289
Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane
2017-06-21
Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane
Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less
Shen, Zaiyi; Würger, Alois; Lintuvuori, Juho S
2018-03-27
Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].
Observational physics of mirror world
NASA Technical Reports Server (NTRS)
Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.
1989-01-01
The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.
Pryamitsyn, Victor; Ganesan, Venkat
2015-10-28
We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.
Growth of the interaction layer around fuel particles in dispersion fuel
NASA Astrophysics Data System (ADS)
Olander, D.
2009-01-01
Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x. The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel.
Collective motion of active Brownian particles with polar alignment.
Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio
2018-04-04
We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.
Test of high-energy hadronic interaction models with high-altitude cosmic-ray data
NASA Astrophysics Data System (ADS)
Haungs, A.; Kempa, J.
2003-09-01
Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.
Sign Reversal of Coulom Interaction Between Two Quasiparticles in Momentum Space
NASA Astrophysics Data System (ADS)
Fan, J. D.; Malozovsky, Yuriy M.
2013-06-01
The main misconception regarding the interaction between quasiparticles stems from the assertion that the interaction energy between two quasiparticles is exactly identical to that of the renormalized interaction between two particles due to interparticle interaction in the Fermi system. If the main concept regarding the definition of quasiparticle as a weakly excited state of the Fermi system with conservation of charge and spin is paramount (except for the charge and spin separation models), the concept of the interaction between quasiparticles is very different from the assumption in the common sense. In this paper, we will prove a general theorem that the interaction between two quasiparticles is very much different from the renormalized interaction between two particles. The major difference lies in two places: the interaction between two quasiparticles is just negative to the renormalized interaction between two particles, and the interaction energy between the two particles is proportional to the product of two Fermi liquid renormalization factors. The result shed light on the reinterpretation of Cooper's pairing without invoking electron-photon interaction.
Elementary particles in the early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N.A., E-mail: gromov@dm.komisc.ru
The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Oishik, E-mail: oishik-sen@uiowa.edu; Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com; Choi, K.K., E-mail: kyung-choi@uiowa.edu
Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the leastmore » number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.« less
PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.
Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold
2016-01-21
The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations
NASA Astrophysics Data System (ADS)
Akiki, Georges; Francois, Marianne; Zhang, Duan
2017-11-01
Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.
Optical depth in particle-laden turbulent flows
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2017-11-01
Turbulent clustering of particles causes an increase in the radiation transmission through gas-particle mixtures. Attempts to capture the ensemble-averaged transmission lead to a closure problem called the turbulence-radiation interaction. A simple closure model based on the particle radial distribution function is proposed to capture the effect of turbulent fluctuations in the concentration on radiation intensity. The model is validated against a set of particle-resolved ray tracing experiments through particle fields from direct numerical simulations of particle-laden turbulence. The form of the closure model is generalizable to arbitrary stochastic media with known two-point correlation functions.
NASA Astrophysics Data System (ADS)
Singh, M. K.; Soma, A. K.; Pathak, Ramji; Singh, V.
2014-03-01
This article focuses on multiplicity distributions of shower particles and target fragments for interaction of 84 Kr 36 with NIKFI BR-2 nuclear emulsion target at kinetic energy of 1 GeV per nucleon. Experimental multiplicity distributions of shower particles, grey particles, black particles and heavily ionization particles are well described by multi-component Erlang distribution of multi-source thermal model. We have observed a linear correlation in multiplicities for the above mentioned particles or fragments. Further experimental studies have shown a saturation phenomenon in shower particle multiplicity with the increase of target fragment multiplicity.
Microdesigning of Lightweight/High Strength Ceramic Materials
1989-07-31
Continue on reverse if necessary and identiy by block number) FIELD GROUP SUB- GROUP Ceramics, Composite Materials, Colloidal Processing Iii 19. ABSTRACT...to identify key processing parameters that affect the microstructure of the composite material. The second section describes experimental results in...results of the significant theoretical effort made in our group . Theoretical models of particle-particle interaction, particle-polymer interaction
Mathematical Analysis of a Coarsening Model with Local Interactions
NASA Astrophysics Data System (ADS)
Helmers, Michael; Niethammer, Barbara; Velázquez, Juan J. L.
2016-10-01
We consider particles on a one-dimensional lattice whose evolution is governed by nearest-neighbor interactions where particles that have reached size zero are removed from the system. Concentrating on configurations with infinitely many particles, we prove existence of solutions under a reasonable density assumption on the initial data and show that the vanishing of particles and the localized interactions can lead to non-uniqueness. Moreover, we provide a rigorous upper coarsening estimate and discuss generic statistical properties as well as some non-generic behavior of the evolution by means of heuristic arguments and numerical observations.
Microscopy of the interacting Harper-Hofstadter model in the few-body limit
NASA Astrophysics Data System (ADS)
Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus
2017-04-01
The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Hesam; Zbib, Hussein M.; Sun, Xin
In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD methodmore » is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.« less
PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less
Sensitivity of atmospheric muon flux calculation to low energy hadronic interaction models
NASA Astrophysics Data System (ADS)
Djemil, T.; Attallah, R.; Capdevielle, J. N.
2007-10-01
We investigate in this paper the impact of some up-to-date hadronic interaction models on the calculation of the atmospheric muon flux. Calculations are carried out with the air shower simulation code CORSIKA in combination with the hadronic interaction models FLUKA and UrQMD below 80 GeV/nucleon and NEXUS elsewhere. We also examine the atmospheric effects using two different parametrizations of the US standard atmosphere. The cosmic ray spectra of protons and α particles, the only primary particles considered here, are taken according to the force field model which describes properly solar modulation. Numerical results are compared with the BESS-2001 experimental data.
Deng, Jian-Liao; Wei, Qing; Wang, Yu-Zhu; Li, Yong-Qing
2005-05-16
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave(cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.
Kinetic model for the mechanical response of suspensions of sponge-like particles.
Hütter, Markus; Faber, Timo J; Wyss, Hans M
2012-01-01
A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.
Particle-based membrane model for mesoscopic simulation of cellular dynamics
NASA Astrophysics Data System (ADS)
Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank
2018-01-01
We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.
Novel foamy origin for singlet fermion masses
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2017-10-01
We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.
Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example
NASA Astrophysics Data System (ADS)
Devi, Y. D.; Kota, V. K. B.
1993-07-01
A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.
Systematic Uncertainties in High-Energy Hadronic Interaction Models
NASA Astrophysics Data System (ADS)
Zha, M.; Knapp, J.; Ostapchenko, S.
2003-07-01
Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.
Phenomenology of ultrahigh energy neutrino interactions and fluxes
NASA Astrophysics Data System (ADS)
Hussain, Shahid
There are several models that predict the existence of high and ultrahigh energy (UHE) neutrinos; neutrinos that have amazingly high energies---energies above 10 15 eV. No man-made machines, existing or planned, can produce any particles of this high energies. It is the energies of these neutrinos that make them very interesting for the particle physics and astrophysics community; these neutrinos can be a unique tool to study the unknown regimes of energy, space, and time. Consequently, there is intense experimental activity focused on the detection of these neutrinos; no UHE neutrinos have been detected by these experiments so far. However, most of the UHE neutrino flux models predict that the fluxes of these neutrinos might be too small to be detected by the current detectors. Therefore, more powerful detectors are being built and we are at the beginning of a new and exciting era in neutrino astronomy. The interactions and fluxes of UHE neutrinos both are unknown experimentally. Our focus here is to explore, by numerically calculating observable signals from these neutrinos, different scenarios that can arise by the inter play of UHE neutrino interaction and flux models. Given several AGN and cosmogenic neutrino flux models, we look at two possibilities for neutrino interactions: (i) Neutrinos have standard model weak interactions at ultrahigh energies. (ii) neutrino interactions are enhanced around a TeV mass-scale, as implied by low scale gravity models with extra dimensions. The standard model weak and low scale gravity enhanced neutrino-nucleon interactions of UHE neutrinos both produce observable signals. In standard model, the charged current neutrino-nucleon interactions give muons, taus, and particle showers, and the neutral current interactions give particle showers. In low scale gravity, the micro black hole formation (and its subsequent decay) and the graviton exchange both give particle showers. Muons, taus, and the showers can be detected by the optical Cherenkov radiation they produce; showers can also be detected by the coherent radio Cherenkov signal they produce which is much powerful than their optical Cherenkov signal. We give the formalism for calculating muon, tau, and shower rates for the optical (ICECUBE- like) and the shower rates for the radio (RICE-like) Cherenkov detectors. Our focus is on simulation of the radio signal from neutrino-initiated showers and calculation of the expected neutrino-initiated shower rates for RICE. Finally, given the calculated rates for muons, taus, and showers, we discuss what we can say about the models for UHE neutrino fluxes and interactions.
Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.
Yang, Tao; Martin, Ralph R; Lin, Ming C; Chang, Jian; Hu, Shi-Min
2017-10-01
In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach.
Inception of self-interacting dark matter with dark charge conjugation symmetry
Ma, Ernest
2017-07-04
A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest spontaneously broken Abelian gauge model with one complex scalar and one Dirac fermion. The key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former's self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints recently obtained for all such models where the light mediator decays into standard-model particles.
Towards a self-consistent dynamical nuclear model
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.
2017-04-01
Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.
Surprising features of particle dynamics in channel-facilitated transport
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Bezrukov, Sergey M.
2007-06-01
We analyze the consequences of interactions between the pore and the translocating molecule within the framework of a continuous diffusion model using the Smoluchowski equation with the radiation boundary conditions. We describe the solute-pore interaction in terms of the potential of mean force. Several of our analytical findings are quite counterintuitive. Three of the examples to be discussed here are: (i) "Sticking" to the channel slows down translocation (a particle spends more time in the channel) but increases the flux; (ii) If the potential well modeling the particle-channel interaction occupies only a part of the channel length, the average translocation time is non-monotonic in the width of the potential well, first increasing and then decreasing; (iii) At a finite potential bias applied to the channel, the mean "up-hill" and "downhill" particle translocation times (and their distributions) are identical.
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less
Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction
NASA Astrophysics Data System (ADS)
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.
2017-11-01
Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
Simulation of inclined air showers
NASA Astrophysics Data System (ADS)
Dorofeev, Alexei V.
The purpose of this research is simulation of Horizontal Air Showers (HAS) - Extensive Air Showers (EAS), where the cascade of particles is initiated by a primary particle with Ultra High Energy, entering the atmosphere of the Earth at zenith angles more than 70°. Particles from these HAS are detected at the ground level by the Surface Detector part of the Auger Observatory. Existing simulation models (most of them are Monte-Carlo) have limitations which come from the fact that one can't follow each and every particle and interaction in the EAS. The proposed model is a semi-analytic solution to the cascade equations, which incorporates probability functions for the most advanced hadronic interaction models available today--UrQMD for the low-energy region and NEXUS for the high energy region.
High energy interactions of cosmic ray particles
NASA Technical Reports Server (NTRS)
Jones, L. W.
1986-01-01
The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.
NASA Astrophysics Data System (ADS)
Li, W.
2017-12-01
In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.
Dark-matter particles without weak-scale masses or weak interactions.
Feng, Jonathan L; Kumar, Jason
2008-12-05
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.
Modeling the Stability of Topological Matter in Optical Lattices
2013-05-18
that vortex attachment to each particle helps screen the otherwise strong inter- particle repulsion by tuning the size of correlation holes. Figure 3...electric and ferromagnetic order in complex multiferroic materi - als presents a set of compelling fundamental condensed matter physics problems with... particle interactions and heating. I will examine interacting atoms in square optical lattices with spin orbit coupling, and more generally, gauge fields
A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling
NASA Astrophysics Data System (ADS)
Moore, Chandler; Akiki, Georges; Balachandar, S.
2017-11-01
This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.
Baryogenesis via particle-antiparticle oscillations
Ipek, Seyda; March-Russell, John
2016-06-29
CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Hence, taking bino to be the lightest U(1) R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we showmore » that bino-antibino oscillations can produce the baryon asymmetry of the Universe.« less
Fully kinetic particle simulations of high pressure streamer propagation
NASA Astrophysics Data System (ADS)
Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert
2012-10-01
Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].
Let's Have a Coffee with the Standard Model of Particle Physics!
ERIC Educational Resources Information Center
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-01-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called "Lagrangian," which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only…
Modeling the impact of sea-spray on particle concentrations in a coastal city.
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R
2008-02-25
With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.
Hydrodynamic interactions for complex-shaped nanocarriers in targeted drug delivery
NASA Astrophysics Data System (ADS)
Wang, Yaohong; Eckmann, David; Radhakrishnan, Ravi; Ayyaswamy, Portonovo
2014-11-01
Nanocarrier motion in a blood vessel involves hydrodynamic and Brownian interactions, which collectively dictate the efficacy in targeted drug delivery. The shape of nanocarriers plays a crucial role in drug delivery. In order to quantify the flow and association properties of elliptical nanoparticles, we have developed an arbitrary Lagrangian-Eulerian framework with capabilities to simulate the hydrodynamic motion of nanoparticles of arbitrary shapes. We introduce the quaternions for rotational motion, and two collision models, namely, (a) an impulse-based model for wall-particle collision, and (b) the short-range repulsive Gay-Berne potential for particle-particle collision. We also study the red blood cell and nanocarrier (such as ellipsoid) interactions. We compare our results with those obtained for a hard sphere model for both RBCs and nanocarriers. Supported by NIH through grant U01-EB016027.
Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom
Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.
Investigating phonon-mediated interactions with polar molecules
NASA Astrophysics Data System (ADS)
Sous, John; Madison, Kirk; Berciu, Mona; Krems, Roman
2017-04-01
We show that an ensemble of polar molecules in an optical lattice realizes the Peierls polaron model for hard-core particles/ pseudospins. We analyze the quasiparticle spectrum in the one-particle subspace, the two-particle subspace and at finite concentrations. We derive an effective model that describes the low-energy behavior of the system. We show that the Hamiltonian includes phonon-mediated repulsions and phonon-mediated ``pair-hopping'' terms which move the particle pair as a whole. We show that microwave excitations of the system exhibit signatures of these interactions. These results pave the way for the experimental observation of phonon-mediated repulsion. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
Discrete element modelling of bedload transport
NASA Astrophysics Data System (ADS)
Loyer, A.; Frey, P.
2011-12-01
Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth profiles were compared in the case of the one-size mixture. The turbulent fluid velocity profile was prescribed and attached to the variable upper bedline. Provided the upper bedline was calculated with a refined space and time resolution, a fair agreement between DEM and experiments was reached. Experiments with two-size mixtures were designed to study vertical grain size sorting or segregation patterns. Sorting is arguably the reason why the predictive capacity of bedload formulations remains so poor. Modelling of the two-size mixture was also performed and gave promising qualitative results.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
NASA Astrophysics Data System (ADS)
Faroughi, S. A.; Huber, C.
2015-12-01
Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with the results obtained with direct measurement methods such as laser diffraction.
Rapid Frequency Chirps of TAE mode due to Finite Orbit Energetic Particles
NASA Astrophysics Data System (ADS)
Berk, Herb; Wang, Ge
2013-10-01
The tip model for the TAE mode in the large aspect ratio limit, conceived by Rosenbluth et al. in the frequency domain, together with an interaction term in the frequency domain based on a map model, has been extended into the time domain. We present the formal basis for the model, starting with the Lagrangian for the particle wave interaction. We shall discuss the formal nonlinear time domain problem and the procedure that needs to obtain solutions in the adiabatic limit.
Modeling the interaction of biological cells with a solidifying interface
NASA Astrophysics Data System (ADS)
Chang, Anthony; Dantzig, Jonathan A.; Darr, Brian T.; Hubel, Allison
2007-10-01
In this article, we develop a modified level set method for modeling the interaction of particles with a solidifying interface. The dynamic computation of the van der Waals and drag forces between the particles and the solidification front leads to a problem of multiple length scales, which we resolve using adaptive grid techniques. We present a variety of example problems to demonstrate the accuracy and utility of the method. We also use the model to interpret experimental results obtained using directional solidification in a cryomicroscope.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter; Van Zante, Judith
2017-01-01
This presentation describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Tsao, Jen-Ching; Struk, Peter M.; Van Zante, Judith F.
2017-01-01
This paper describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.
Signatures of Indistinguishability in Bosonic Many-Body Dynamics
NASA Astrophysics Data System (ADS)
Brünner, Tobias; Dufour, Gabriel; Rodríguez, Alberto; Buchleitner, Andreas
2018-05-01
The dynamics of bosons in generic multimode systems, such as Bose-Hubbard models, are not only determined by interactions among the particles, but also by their mutual indistinguishability manifested in many-particle interference. We introduce a measure of indistinguishability for Fock states of bosons whose mutual distinguishability is controlled by an internal degree of freedom. We demonstrate how this measure emerges both in the noninteracting and interacting evolution of observables. In particular, we find an unambiguous relationship between our measure and the variance of single-particle observables in the noninteracting limit. A nonvanishing interaction leads to a hierarchy of interaction-induced interference processes, such that even the expectation value of single-particle observables is influenced by the degree of indistinguishability.
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
Localisation in a Growth Model with Interaction
NASA Astrophysics Data System (ADS)
Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.
2018-05-01
This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.
Localisation in a Growth Model with Interaction
NASA Astrophysics Data System (ADS)
Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.
2018-06-01
This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.
Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles
2015-04-01
Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.
NASA Astrophysics Data System (ADS)
Aponte-Rivera, Christian; Zia, Roseanna N.
2017-11-01
We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.
Hydrodynamic capture of microswimmers into sphere-bound orbits.
Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun
2014-03-21
Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.
NASA Astrophysics Data System (ADS)
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods
NASA Astrophysics Data System (ADS)
Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.
Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.
A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture
NASA Astrophysics Data System (ADS)
Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De
2016-02-01
Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
Cold spray nozzle mach number limitation
NASA Astrophysics Data System (ADS)
Jodoin, B.
2002-12-01
The classic one-dimensional isentropic flow approach is used along with a two-dimensional axisymmetric numerical model to show that the exit Mach number of a cold spray nozzle should be limited due to two factors. To show this, the two-dimensional model is validated with experimental data. Although both models show that the stagnation temperature is an important limiting factor, the one-dimensional approach fails to show how important the shock-particle interactions are at limiting the nozzle Mach number. It is concluded that for an air nozzle spraying solid powder particles, the nozzle Mach number should be set between 1.5 and 3 to limit the negative effects of the high stagnation temperature and of the shock-particle interactions.
NASA Astrophysics Data System (ADS)
Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao
2018-06-01
Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
2008-05-01
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Tranpsort phenomena in solidification processing of functionally graded materials
NASA Astrophysics Data System (ADS)
Gao, Juwen
A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.
NASA Astrophysics Data System (ADS)
Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel
2016-10-01
A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).
First-order reversal curves of single domain particles: diluted random assemblages and chains
NASA Astrophysics Data System (ADS)
Egli, R.
2009-04-01
Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first principles. In this case, the irreversible component of the FORC diagram, which is described by a Dirac delta function in the non-interacting case, converts into a continuous function that directly reflects the distribution of interaction fields. Such models provide a way to identify and characterize authigenic SD particles in sediments, and in some case allow one to isolate their magnetic contribution from that of other magnetic components. Newell, A.J. (2005), A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Gechem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC00877.
Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle
2016-01-01
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935
NASA Technical Reports Server (NTRS)
Perkins, Hugh Douglas
2010-01-01
In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.
Controlling silk fibroin particle features for drug delivery
Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas
2010-01-01
Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241
Modeling the C. elegans nematode and its environment using a particle system.
Rönkkö, Mauno; Wong, Garry
2008-07-21
A particle system, as understood in computer science, is a novel technique for modeling living organisms in their environment. Such particle systems have traditionally been used for modeling the complex dynamics of fluids and gases. In the present study, a particle system was devised to model the movement and feeding behavior of the nematode Caenorhabditis elegans in three different virtual environments: gel, liquid, and soil. The results demonstrate that distinct movements of the nematode can be attributed to its mechanical interactions with the virtual environment. These results also revealed emergent properties associated with modeling organisms within environment-based systems.
Natsume, Yuno; Toyota, Taro
2016-01-01
Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of “crowding effect” which is the entropic interaction in the cell. PMID:26752650
Natsume, Yuno; Toyota, Taro
2016-01-01
Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of "crowding effect" which is the entropic interaction in the cell.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
Sherman, H; Nguyen, A V; Bruckard, W
2016-11-22
Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2011-09-30
Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...particle detection--To study free surface flows and analyze their complex deformations, we need to know which particles are located on the free surface ...Hydrodynamics is proving to be a competent modeling scheme for free surface flows in two and three dimensions. As the GPU hardware improves, it is
SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, A.; Ellero, M.
2017-12-01
In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vázquez-Quesada and Ellero ["Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics," J. Non-Newtonian Fluid Mech. 233, 37-47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vázquez-Quesada, Ellero, and Español ["Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations," Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells, this delivers a specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model by studying the dynamics of single and mutually interacting "noncolloidal" rigid spheres under shear flow and in the presence of confinement. Numerical results agree well with available numerical and experimental data. It is straightforward to extend the particulate model to Brownian conditions and to more complex viscoelastic solvents.
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny
2014-01-01
We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818
A study on the distribution of adsorbed nanoparticles
NASA Astrophysics Data System (ADS)
Li, Ding
2008-02-01
We use Monte Carlo simulation to calculate the distributions of particles under adsorption force near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials. The difference between the MC simulation results and the analytical results of ideal gas model shows that the interaction between particles plays an important role in the density distribution under external fields. Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of the interaction between particles. These results may indicate us how to improve the methods of building nanoparticle coatings and nano-scale patterns. Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109, 10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)
Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields
NASA Astrophysics Data System (ADS)
Kohlfürst, Christian
2018-05-01
Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.
Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state.
Radu, Iuliana P; Miller, J B; Marcus, C M; Kastner, M A; Pfeiffer, L N; West, K W
2008-05-16
Quasi-particles with fractional charge and statistics, as well as modified Coulomb interactions, exist in a two-dimensional electron system in the fractional quantum Hall (FQH) regime. Theoretical models of the FQH state at filling fraction v = 5/2 make the further prediction that the wave function can encode the interchange of two quasi-particles, making this state relevant for topological quantum computing. We show that bias-dependent tunneling across a narrow constriction at v = 5/2 exhibits temperature scaling and, from fits to the theoretical scaling form, extract values for the effective charge and the interaction parameter of the quasi-particles. Ranges of values obtained are consistent with those predicted by certain models of the 5/2 state.
Dark matter self-interactions and small scale structure
NASA Astrophysics Data System (ADS)
Tulin, Sean; Yu, Hai-Bo
2018-02-01
We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.
Ratchet Effects in Active Matter Systems
NASA Astrophysics Data System (ADS)
Reichhardt, C. J. Olson; Reichhardt, C.
2017-03-01
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.
Structure of the two-neutrino double-β decay matrix elements within perturbation theory
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand
2015-06-01
The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.
NASA Technical Reports Server (NTRS)
Bernard, L. C.
1973-01-01
Whistler mode waves that propagate through the magnetosphere exchange energy with energetic electrons by wave-particle interaction mechanisms. Using linear theory, a detailed investigation is presented of the resulting amplitude variations of the wave as it propagates. Arbitrary wave frequency and direction of propagation are considered. A general class of electron distributions that are nonseparable in particle energy and pitch-angle is proposed. It is found that the proposed distribution model is consistent with available whistler and particle observations. This model yields insignificant amplitude variation over a large frequency band, a feature commonly observed in whistler data. This feature implies a certain equilibrium between waves and particles in the magnetosphere over a wide spread of particle energy, and is relevant to plasma injection experiments and to monitoring the distribution of energetic electrons in the magnetosphere.
Interactions of non-spherical particles in simple flows
NASA Astrophysics Data System (ADS)
Niazi, Mehdi; Brandt, Luca; Costa, Pedro; Breugem, Wim-Paul
2015-11-01
The behavior of particles in a flow affects the global transport and rheological properties of the mixture. In recent years much effort has been therefore devoted to the development of an efficient method for the direct numerical simulation (DNS) of the motion of spherical rigid particles immersed in an incompressible fluid. However, the literature on non-spherical particle suspensions is quite scarce despite the fact that these are more frequent. We develop a numerical algorithm to simulate finite-size spheroid particles in shear flows to gain new understanding of the flow of particle suspensions. In particular, we wish to understand the role of inertia and its effect on the flow behavior. For this purpose, DNS simulations with a direct-forcing immersed boundary method are used, with collision and lubrication models for particle-particle and particle-wall interactions. We will discuss pair interactions, relative motion and rotation, of two sedimenting spheroids and show that the interaction time increases significantly for non-spherical particles. More interestingly, we show that the particles are attracted to each other from larger lateral displacements. This has important implications for collision kernels. This work was supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS, and by the Swedish Research Council (VR).
Boosted dark matter signals uplifted with self-interaction
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less
Boosted dark matter signals uplifted with self-interaction
NASA Astrophysics Data System (ADS)
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.
Propulsion and trapping of microparticles by active cilia arrays.
Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C
2012-02-14
We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles.
Chen, Xu-di; Wang, Zhi; Liu, Dan-Yang; Xiao, Kang; Guan, Jing; Xie, Yuefeng F; Wang, Xiao-Mao; Waite, T David
2018-01-01
This study was conducted in order to obtain a better understanding of the combined fouling by biopolymers coexisting with inorganic particles from the aspects of fouling index, fouling layer structure and biopolymer-particle interactions. Calcium alginate was used as the model biopolymer and Fe 2 O 3 , Al 2 O 3 , kaolin, and SiO 2 were used as model inorganic particles. Results showed that the combined fouling differed greatly among the four types of inorganic particles. The differences were attributed particularly to the different adsorption capacities for calcium alginate by the particles with this capacity decreasing in the order of Fe 2 O 3 , Al 2 O 3 , kaolin and SiO 2 . Particle size measurement and electron microscopic observation indicated the formation of agglomerates between calcium alginate and those inorganic particles exhibiting strong adsorption capacity. A structure was proposed for the combined fouling layer comprised of a backbone cake layer of alginate-inorganic particle agglomerates with the pores partially filled with discontinuous calcium alginate gels. The filterability of the fouling layer was primarily determined by the abundance of the gels. The strength of physical interaction between calcium alginate and each type of inorganic particle was calculated from the respective surface energies and zeta potentials. Calculation results showed that the extent of physical interaction increased in the order of Al 2 O 3 , Fe 2 O 3 , kaolin and SiO 2 , with this order differing from that of adsorption capacity. Chemical interactions may also play an important role in the adsorption of alginate and the consequent combined fouling. High-resolution XPS scans revealed a slight shift of electron binding energies when alginate was adsorbed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interaction measurement of particles bound to a lipid membrane
NASA Astrophysics Data System (ADS)
Sarfati, Raphael; Dufresne, Eric
2015-03-01
The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.
The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...
Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.
2015-01-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000
Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W
2015-10-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogolyubskii-breve, M.Y.; Vinitskii-breve, A.A.; Ermolov, P.F.
1986-05-01
Inclusive and semi-inclusive ..lambda..-hyperon spectra in p-barp interactions at 32 GeV/c are presented. The processes whereby ..lambda.. hyperons are produced in various channels are analyzed by comparison with the predictions of the Lund model and with dual-topological-unitarization (DTU)-based models. The ..lambda..-hyperon characteristics differ from those predicted in the Lund model. The main cause of the differences is that multiple production of particles is represented in this model in terms of breaking of one string, thereby excluding correlation effects between the vertices.
Convergence of the Bouguer-Beer law for radiation extinction in particulate media
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2016-10-01
Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer-Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
NASA Astrophysics Data System (ADS)
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
Shock Interaction of Metal Particles in Condensed Explosive Detonation
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2005-07-01
For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.
Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
NASA Astrophysics Data System (ADS)
Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
2014-11-01
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
NASA Astrophysics Data System (ADS)
Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.
2016-02-01
Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaglioni, S.; Beck, B. R.
The Monte Carlo All Particle Method generator and collision physics library features two models for allowing a particle to either up- or down-scatter due to collisions with material at finite temperature. The two models are presented and compared. Neutron interaction with matter through elastic collisions is used as testing case.
REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies
NASA Astrophysics Data System (ADS)
Larson, Jennifer; Sarid, Gal
2017-10-01
Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test (DART) impact (Cheng et al. 2016, Schwartz et al. 2016). We will present some preliminary results of our applied model and possible applications to other asteroid impact events and Centaur ring formation mechanisms.
Simulation tools for particle-based reaction-diffusion dynamics in continuous space
2014-01-01
Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics. PMID:25737778
The Classical Theory of Light Colors: a Paradigm for Description of Particle Interactions
NASA Astrophysics Data System (ADS)
Mazilu, Nicolae; Agop, Maricel; Gatu, Irina; Iacob, Dan Dezideriu; Butuc, Irina; Ghizdovat, Vlad
2016-06-01
The color is an interaction property: of the interaction of light with matter. Classically speaking it is therefore akin to the forces. But while forces engendered the mechanical view of the world, the colors generated the optical view. One of the modern concepts of interaction between the fundamental particles of matter - the quantum chromodynamics - aims to fill the gap between mechanics and optics, in a specific description of strong interactions. We show here that this modern description of the particle interactions has ties with both the classical and quantum theories of light, regardless of the connection between forces and colors. In a word, the light is a universal model in the description of matter. The description involves classical Yang-Mills fields related to color.
Coarse-Grained Model for Water Involving a Virtual Site.
Deng, Mingsen; Shen, Hujun
2016-02-04
In this work, we propose a new coarse-grained (CG) model for water by combining the features of two popular CG water models (BMW and MARTINI models) as well as by adopting a topology similar to that of the TIP4P water model. In this CG model, a CG unit, representing four real water molecules, consists of a virtual site, two positively charged particles, and a van der Waals (vdW) interaction center. Distance constraint is applied to the bonds formed between the vdW interaction center and the positively charged particles. The virtual site, which carries a negative charge, is determined by the locations of the two positively charged particles and the vdW interaction center. For the new CG model of water, we coined the name "CAVS" (charge is attached to a virtual site) due to the involvment of the virtual site. After being tested in molecular dynamic (MD) simulations of bulk water at various time steps, under different temperatures and in different salt (NaCl) concentrations, the CAVS model offers encouraging predictions for some bulk properties of water (such as density, dielectric constant, etc.) when compared to experimental ones.
Numerical modeling of a nonmonotonic separation hydrocyclone curve
NASA Astrophysics Data System (ADS)
Min'kov, L. L.; Dueck, J. H.
2012-11-01
In the context of the mechanics of interpenetrating continua, numerical modeling of separation of a polydisperse suspension in a hydrocyclone is carried out. The so-called "mixture model" valid for a low volume fraction of particles and low Stokes numbers is used for description of the suspension and particle motion. It is shown that account taken of the interaction between large and small particles can explain the nonmonotonic behavior of the separation curve.
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Interaction-induced effects on Bose-Hubbard parameters
NASA Astrophysics Data System (ADS)
Kremer, Mark; Sachdeva, Rashi; Benseny, Albert; Busch, Thomas
2017-12-01
We study the effects of repulsive on-site interactions on the broadening of the localized Wannier functions used for calculating the parameters to describe ultracold atoms in optical lattices. For this, we replace the common single-particle Wannier functions, which do not contain any information about the interactions, by two-particle Wannier functions obtained from an exact solution which takes the interactions into account. We then use these interaction-dependent basis functions to calculate the Bose-Hubbard model parameters, showing that they are substantially different both at low and high lattice depths from the ones calculated using single-particle Wannier functions. Our results suggest that density effects are not negligible for many parameter ranges and need to be taken into account in metrology experiments.
Micromechanics of Ultrafine Particle Adhesion—Contact Models
NASA Astrophysics Data System (ADS)
Tomas, Jürgen
2009-06-01
Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less
NASA Astrophysics Data System (ADS)
Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.
2017-06-01
Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.
Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric
2014-01-01
The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Mechanical Model of Brownian Motion for One Massive Particle Including Slow Light Particles
NASA Astrophysics Data System (ADS)
Liang, Song
2018-01-01
We provide a connection between Brownian motion and a classical mechanical system. Precisely, we consider a system of one massive particle interacting with an ideal gas, evolved according to non-random mechanical principles, via interaction potentials, without any assumption requiring that the initial velocities of the environmental particles should be restricted to be "fast enough". We prove the convergence of the (position, velocity)-process of the massive particle under a certain scaling limit, such that the mass of the environmental particles converges to 0 while the density and the velocities of them go to infinity, and give the precise expression of the limiting process, a diffusion process.
1982-02-01
function of both E, and an auto- correlation time :. We choose to replace E, by an expression containing v, the velocity spread of the beam...f’K or eEL ArGC - ’ (5) where E,_ is now the perpendicular component of the turbulent E field and , is the time int-erval for a coherent interaction...the auto-correlation time ). Equation (5) is the basis for our random walk model for wave particle interactions. It can also be derived using the tX
NASA Astrophysics Data System (ADS)
Glazunov, Anatoly; Ishchenko, Aleksandr; Afanas'eva, Svetlana; Belov, Nikolai; Burkin, Viktor; Rogaev, Konstantin; Yugov, Nikolai
2016-01-01
The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids.
Two interacting Hofstadter butterflies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barelli, A.; Bellissard, J.; Jacquod, P.
1997-04-01
The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}
New Predictions of the Jovian Aurora: Location, Latitudinal Width, and Intensity
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Arballo, J. K.; Ho, C. M.; Lin, N. G.; Kellogg, P. J.; Cornileau-Wehrlin, N.; Krupp, N.
1995-01-01
A model/theory for the Jovian aurora is formed based on a similar model for the dayside aurora at Earth and recent Ulysses field and particle measurements at Jupiter. Items discussed are plasma boundary layer, wave-particle resonant interactions, and the model's prediction of the aurora's location, latitudinal width, and intensity.
Removal of bio-aerosols by water flow on surfaces in health-care settings
NASA Astrophysics Data System (ADS)
Yu, Han; Li, Yuguo
2016-11-01
Hand hygiene is one of the most important and efficient measures to prevent infections, however the compliance with hand hygiene remains poor especially for health-care workers. To improve this situation, the mechanisms of hand cleansing need to be explored and a detailed study on the adhesion interactions for bio-aerosols on hand surfaces and the process during particles removal by flow is significant for more efficient methods to decrease infections. The first part of presentation will focus on modelling adhesion interactions between particles, like bacteria and virus, and hand surfaces with roughness in water environment. The model presented is based on the DLVO and its extended theories. The removal process comes next, which will put forward a new model to describe the removal of particles by water flow. In this model, molecular dynamics is combined with particle motion and the results by the model will be compared with experiment results and existed models (RnR, Rock & Roll). Finally, possible improvement of the study and future design of experiments will be discussed.
NASA Astrophysics Data System (ADS)
Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren
2017-08-01
Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.
Diffusion of multiple species with excluded-volume effects.
Bruna, Maria; Chapman, S Jonathan
2012-11-28
Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.
NASA Astrophysics Data System (ADS)
Wozniak, M. C.
2016-12-01
Our current understanding of biological particles and their role in the climate system is uncertain. Pollen, a primary biological aerosol particle, has been understudied in the context of climate and atmospheric science because of its coarse size (10-100 µm). Local coarse grain pollen concentrations can reach up to 10,000 grains m-3, and when ruptured by wet or turbulent atmospheric conditions, can produce fine particles (sub-pollen particles, 10-1000 nm) that may increase pollen's lifetime in the atmosphere. Therefore, pollen contributes to both coarse and fine particle loads in the atmosphere that may have climatic impacts. During peak pollen emissions season, what impacts does pollen have on aerosol concentrations in the atmosphere and their indirect forcing? Here we use a model of accurately timed and scaled pollen and sub-pollen particle emissions with climate-dependent phenological dates for four plant functional types (deciduous broadleaf, evergreen needleleaf, grass and ragweed) that dominate emissions across the continental United States. Terrestrial pollen emissions are coupled with the land component of a regional climate model (RegCM4-CLM), and are transported as atmospheric tracers that are allowed interact with radiation and clouds, accounting for the direct and indirect effects of pollen. A ten-year climatology of pollen emissions and climate interactions is calculated for both pollen grains and sub-pollen particles. Its implications for the local and overall radiation budget, aerosol-cloud-precipitation interactions and regional climate are discussed.
Influence of dipolar interactions on the superparamagnetic relaxation time of γ-Fe2O3
NASA Astrophysics Data System (ADS)
Labzour, A.; Housni, A.; Limame, K.; Essahlaoui, A.; Sayouri, S.
2017-03-01
Influence of dipolar interactions on the Néel superparamagnetic relaxation time, τ , of an assembly of ultrafine ferromagnetic particles (γ-Fe2O3 ) with uniaxial anisotropy and of different sizes has been widely studied using Mössbauer technique. These studies, based on different analytical approaches, have shown that τ decreases with increasing interactions between particles. To interpret these results, we propose a model where interaction effects are considered as being due to a constant and external randomly oriented magnetic field B(Ψ, ϕ). The model is based on the resolution of the Fokker-Planck equation (FPE), generalizes previous calculations and gives satisfactory interpretation of the relaxation phenomenon in such systems.
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
Physics with e{sup +}e{sup -} Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Timothy L
2003-05-05
We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less
The influence of particle shape on dielectric enhancement in metal-insulator composites
NASA Astrophysics Data System (ADS)
Doyle, W. T.; Jacobs, I. S.
1992-04-01
Disordered suspensions of conducting particles exhibit substantial permittivity enhancements beyond the predictions of the Clausius-Mossotti equation and other purely dipolar approximations. The magnitude of the enhancement depends upon the shape of the particles. A recently developed effective cluster model for spherical particles [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension as a mixture, or mesosuspension, of isolated spheres and close-packed spherical clusters of arbitrary size is in excellent agreement with experiments on well-stirred suspensions of spheres over the entire accessible range of volume loading. In this paper, the effective cluster model is extended to be applicable to disordered suspensions of arbitrarily shaped conducting particles. Two physical parameters are used to characterize a general suspension: the angular average polarizability of an isolated particle, and the volume loading at closest packing of the suspension. Multipole interactions within the clusters are treated exactly. External particle-shape-dependent interactions between clusters and isolated particles are treated in the dipole approximation in two ways: explicitly, using the Clausius-Mossotti equation, and implicitly, using the Wiener equation. Both versions of the model are used to find the permittivity of a monodisperse suspension of conducting spheroids, for which the model parameters can be determined independently. The two versions are in good agreement when the axial ratio of the particles is not extreme. The Clausius-Mossotti version of the model yields a mesoscopic analogue of the dielectric virial expansion. It is limited to small volume loadings when the particles have an extremely nonspherical shape. The Wiener equation version of the model holds at all volume loadings for particles of arbitrary shape. Comparison of the two versions of the model leads to a simple physical interpretation of Wiener's equation. The models are compared with experiments of Kelly, Stenoien, and Isbell [J. Appl. Phys. 24, 258 (1953)] on aluminum and zinc particles in paraffin, with Nasuhoglu's experiments on iron particles in oil [Commun. Fac. Sci. Univ. Ankara 4, 108 (1952)], and with new X-band and Kα-band permittivity measurements on Ni-Cr alloy particles in a polyurethane binder.
Modelling particles moving in a potential field with pairwise interactions and an application
D. R. Brillinger; Haiganoush Preisler; M. J. Wisdom
2011-01-01
Motions of particles in fields characterized by real-valued potential functions, are considered. Three particular expressions for potential functions are studied. One, U, depends on the ith particleâs location, ri(t) at times t
A kinetic approach to magnetospheric modeling
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1979-01-01
The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.
Solar wind interaction with Venus and Mars in a parallel hybrid code
NASA Astrophysics Data System (ADS)
Jarvinen, Riku; Sandroos, Arto
2013-04-01
We discuss the development and applications of a new parallel hybrid simulation, where ions are treated as particles and electrons as a charge-neutralizing fluid, for the interaction between the solar wind and Venus and Mars. The new simulation code under construction is based on the algorithm of the sequential global planetary hybrid model developed at the Finnish Meteorological Institute (FMI) and on the Corsair parallel simulation platform also developed at the FMI. The FMI's sequential hybrid model has been used for studies of plasma interactions of several unmagnetized and weakly magnetized celestial bodies for more than a decade. Especially, the model has been used to interpret in situ particle and magnetic field observations from plasma environments of Mars, Venus and Titan. Further, Corsair is an open source MPI (Message Passing Interface) particle and mesh simulation platform, mainly aimed for simulations of diffusive shock acceleration in solar corona and interplanetary space, but which is now also being extended for global planetary hybrid simulations. In this presentation we discuss challenges and strategies of parallelizing a legacy simulation code as well as possible applications and prospects of a scalable parallel hybrid model for the solar wind interactions of Venus and Mars.
Molecular modelling study of changes induced by netropsin binding to nucleosome core particles.
Pérez, J J; Portugal, J
1990-01-01
It is well known that certain sequence-dependent modulators in structure appear to determine the rotational positioning of DNA on the nucleosome core particle. That preference is rather weak and could be modified by some ligands as netropsin, a minor-groove binding antibiotic. We have undertaken a molecular modelling approach to calculate the relative energy of interaction between a DNA molecule and the protein core particle. The histones particle is considered as a distribution of positive charges on the protein surface that interacts with the DNA molecule. The molecular electrostatic potentials for the DNA, simulated as a discontinuous cylinder, were calculated using the values for all the base pairs. Computing these parameters, we calculated the relative energy of interaction and the more stable rotational setting of DNA. The binding of four molecules of netropsin to this model showed that a new minimum of energy is obtained when the DNA turns toward the protein surface by about 180 degrees, so a new energetically favoured structure appears where netropsin binding sites are located facing toward the histones surface. The effect of netropsin could be explained in terms of an induced change in the phasing of DNA on the core particle. The induced rotation is considered to optimize non-bonded contacts between the netropsin molecules and the DNA backbone. PMID:2165249
NASA Astrophysics Data System (ADS)
Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.
2016-03-01
We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.
The phenomenology of maverick dark matter
NASA Astrophysics Data System (ADS)
Krusberg, Zosia Anna Celina
Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.
Bond rupture between colloidal particles with a depletion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu
The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measuredmore » force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.« less
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
Lattice Gauge Theories Within and Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelzer, Zechariah John
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \
Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars
NASA Technical Reports Server (NTRS)
Wambach, J.; Anisworth, T. L.; Pines, D.
1993-01-01
A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which results in two-dimensional diffusion with cross terms. A diffusion scheme is proposed and validated to resolve this dynamics in (Pφ,E) phase-space.
Chen, Jie; Kline, Steven R; Liu, Yun
2015-02-28
Depletion attraction induced by non-adsorbing polymers or small particles in colloidal solutions has been widely used as a model colloidal interaction to understand aggregation behavior and phase diagrams, such as glass transitions and gelation. However, much less attention has been paid to study the effective colloidal interaction when small particles/molecules can be reversibly attracted to large colloidal particles. At the strong attraction limit, small particles can introduce bridging attraction as it can simultaneously attach to neighbouring large colloidal particles. We use Baxter's multi-component method for sticky hard sphere systems with the Percus-Yevick approximation to study the bridging attraction and its consequence to phase diagrams, which are controlled by the concentration of small particles and their interaction with large particles. When the concentration of small particles is very low, the bridging attraction strength increases very fast with the increase of small particle concentration. The attraction strength eventually reaches a maximum bridging attraction (MBA). Adding more small particles after the MBA concentration keeps decreasing the attraction strength until reaching a concentration above which the net effect of small particles only introduces an effective repulsion between large colloidal particles. These behaviors are qualitatively different from the concentration dependence of the depletion attraction on small particles and make phase diagrams very rich for bridging attraction systems. We calculate the spinodal and binodal regions, the percolation lines, the MBA lines, and the equivalent hard sphere interaction line for bridging attraction systems and have proposed a simple analytic solution to calculate the effective attraction strength using the concentrations of large and small particles. Our theoretical results are found to be consistent with experimental results reported recently.
Pairwise-interaction extended point-particle model for particle-laden flows
NASA Astrophysics Data System (ADS)
Akiki, G.; Moore, W. C.; Balachandar, S.
2017-12-01
In this work we consider the pairwise interaction extended point-particle (PIEP) model for Euler-Lagrange simulations of particle-laden flows. By accounting for the precise location of neighbors the PIEP model goes beyond local particle volume fraction, and distinguishes the influence of upstream, downstream and laterally located neighbors. The two main ingredients of the PIEP model are (i) the undisturbed flow at any particle is evaluated as a superposition of the macroscale flow and a microscale flow that is approximated as a pairwise superposition of perturbation fields induced by each of the neighboring particles, and (ii) the forces and torque on the particle are then calculated from the undisturbed flow using the Faxén form of the force relation. The computational efficiency of the standard Euler-Lagrange approach is retained, since the microscale perturbation fields induced by a neighbor are pre-computed and stored as PIEP maps. Here we extend the PIEP force model of Akiki et al. [3] with a corresponding torque model to systematically include the effect of perturbation fields induced by the neighbors in evaluating the net torque. Also, we use DNS results from a uniform flow over two stationary spheres to further improve the PIEP force and torque models. We then test the PIEP model in three different sedimentation problems and compare the results against corresponding DNS to assess the accuracy of the PIEP model and improvement over the standard point-particle approach. In the case of two sedimenting spheres in a quiescent ambient the PIEP model is shown to capture the drafting-kissing-tumbling process. In cases of 5 and 80 sedimenting spheres a good agreement is obtained between the PIEP simulation and the DNS. For all three simulations, the DEM-PIEP was able to recreate, to a good extent, the results from the DNS, while requiring only a negligible fraction of the numerical resources required by the fully-resolved DNS.
Interactive Visual Analysis within Dynamic Ocean Models
NASA Astrophysics Data System (ADS)
Butkiewicz, T.
2012-12-01
The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.
Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows
NASA Astrophysics Data System (ADS)
Njobuenwu, Derrick O.; Fairweather, Michael
2017-08-01
An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating
NASA Astrophysics Data System (ADS)
Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.
2011-04-01
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.
Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems
NASA Astrophysics Data System (ADS)
Qin, Xizhou; Mei, Feng; Ke, Yongguan; Zhang, Li; Lee, Chaohong
2018-01-01
It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms (Aidelsburger et al 2013 Phys. Rev. Lett. 111, 185301; Miyake et al 2013 Phys. Rev. Lett. 111, 185302). Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.
Thermal spraying of polyethylene-based polymers: Processing and characterization
NASA Astrophysics Data System (ADS)
Otterson, David Mark
This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational processing map with the collected splats and microstructures. Finally, a strong interaction was observed between standoff distance and flame length, which is determined by the air:fuel ratio. When flame length exceeds the standoff distance, polymer degradation results from excessive heating of the substrate. A descriptive model of the process is then provided to highlight the importance of these interactions. (Abstract shortened by UMI.)
Singlet particles as cold dark matter in a noncommutative space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.
2009-03-15
We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.
NASA Technical Reports Server (NTRS)
Bulzan, Daniel L.
1988-01-01
A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also performed quite poorly for predictions of particle mass flux because turbulent dispersion of the particles was neglected. The SSF model, which accounts for both particle inertia and turbulent dispersion of the particles, yielded reasonably good predictions throughout the flow field for the particle-laden jets.
The impact of anisotropy and interaction range on the self-assembly of Janus ellipsoids
NASA Astrophysics Data System (ADS)
Ruth, D. P.; Gunton, J. D.; Rickman, J. M.; Li, Wei
2014-12-01
We assess the roles of anisotropy and interaction range on the self-assembly of Janus colloidal particles. In particular, Monte Carlo simulation is employed to investigate the propensity for the formation of aggregates in a spheroidal model of a colloid having a relatively short-ranged interaction that is consistent with experimentally realizable systems. By monitoring the equilibrium distribution of aggregates as a function of temperature and density, we identify a "micelle" transition temperature and discuss its dependence on particle shape. We find that, unlike systems with longer ranged interactions, this system does not form micelles below a transition temperature at low density. Rather, larger clusters comprising 20-40 particles characterize the transition. We then examine the dependence of the second virial coefficient on particle shape and well width to determine how these important system parameters affect aggregation. Finally, we discuss possible strategies suggested by this work to promote self-assembly for the encapsulation of particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, Cynthia Jane; Reichhardt, Charles
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less
Strong field QED in lepton colliders and electron/laser interactions
NASA Astrophysics Data System (ADS)
Hartin, Anthony
2018-05-01
The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.
Glass transition temperature of polymer nano-composites with polymer and filler interactions
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi
2012-02-01
We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-12-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.
NASA Astrophysics Data System (ADS)
Abramov, G. V.; Gavrilov, A. N.
2018-03-01
The article deals with the numerical solution of the mathematical model of the particles motion and interaction in multicomponent plasma by the example of electric arc synthesis of carbon nanostructures. The high order of the particles and the number of their interactions requires a significant input of machine resources and time for calculations. Application of the large particles method makes it possible to reduce the amount of computation and the requirements for hardware resources without affecting the accuracy of numerical calculations. The use of technology of GPGPU parallel computing using the Nvidia CUDA technology allows organizing all General purpose computation on the basis of the graphical processor graphics card. The comparative analysis of different approaches to parallelization of computations to speed up calculations with the choice of the algorithm in which to calculate the accuracy of the solution shared memory is used. Numerical study of the influence of particles density in the macro particle on the motion parameters and the total number of particle collisions in the plasma for different modes of synthesis has been carried out. The rational range of the coherence coefficient of particle in the macro particle is computed.
Selective encapsulation by Janus particles
NASA Astrophysics Data System (ADS)
Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.
2015-06-01
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.
Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.
Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng
2018-03-01
Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating more vivid thin turbulent features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
ERIC Educational Resources Information Center
Lincoln, Don; Miceli, Tia
2015-01-01
Through a century of work, physicists have refined a model to describe all fundamental particles, the forces they share, and their interactions on a microscopic scale. This masterpiece of science is called the Standard Model. While this theory is incredibly powerful, we know of at least one particle that exhibits behaviors that are outside of its…
Reconciling phase diffusion and Hartree-Fock approximation in condensate systems
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; de Pasquale, Ferdinando
2012-01-01
Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.
Particle simulation of Coulomb collisions: Comparing the methods of Takizuka and Abe and Nanbu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Chiaming; Lin, Tungyou; Caflisch, Russel
2008-04-20
The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.
Precise colloids with tunable interactions for confocal microscopy
Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris
2015-01-01
Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044
Electromagnetic sunscreen model: design of experiments on particle specifications.
Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle
2015-10-01
We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.
Frydel, Derek; Levin, Yan
2018-01-14
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
NASA Astrophysics Data System (ADS)
Frydel, Derek; Levin, Yan
2018-01-01
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
Studies of HZE particle interactions and transport for space radiation protection purposes
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn
1987-01-01
The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.
Micromechanics-based magneto-elastic constitutive modeling of particulate composites
NASA Astrophysics Data System (ADS)
Yin, Huiming
Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.
Solute-mediated interactions between active droplets
NASA Astrophysics Data System (ADS)
Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna
2017-09-01
Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.
Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors
NASA Astrophysics Data System (ADS)
Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2017-12-01
Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.
Modeling the effect of nano-sized polymer particles on the properties of lipid membranes
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Monticelli, Luca
2014-12-01
The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.
Measurement of surface effects on the rotational diffusion of a colloidal particle.
Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo
2011-03-15
A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.
Interrelation of soft and hard X-ray emissions during solar flares. II - Simulation model
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.; Bornmann, P. L.; Brown, J. C.
1991-01-01
Two-dimensional electrostatic particle simulations are presented which incorporate the effect of quasi-static electric fields on particle dynamics as well as effects associated with wave-particle interactions induced by the accelerated particles. The properties of the soft and hard X-ray and microwave emissions from such systems are examined. In particular, it is shown that acceleration by quasi-static electric fields and heating via wave-particle interactions produces electron distributions with a broken-power law, similar to those inferred from hard X-ray spectra. Also, heating of the ambient plasma gives rise to a region of hot plasma propagating down to the chromosphere at about the ion sound speed.
Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS
NASA Astrophysics Data System (ADS)
Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan
2016-11-01
Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiencies have been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume. This work is funded by NSF under Grant DMS-1222550.
Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS
NASA Astrophysics Data System (ADS)
Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan
Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiency has been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume.
Capillary trapping of particles in thin-film flows
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Gomez, Michael; Colnet, Benedicte; Sauret, Alban
2017-11-01
When a thin layer of suspension flows over a substrate, some particles remain trapped on the solid surface. When the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and the dynamics of the liquid films. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films and the resulting loss of transported material. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the drainage dynamics exhibits behavior that cannot be captured with a continuum model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 & CNRS-PICS-07242 & ACS-PRF 55845-ND9.
Interaction mechanisms between ceramic particles and atomized metallic droplets
NASA Astrophysics Data System (ADS)
Wu, Yue; Lavernia, Enrique J.
1992-10-01
The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernov et al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescu et a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and electric field effects requires calculation of the forces due to these effects.
NASA Astrophysics Data System (ADS)
Ahuja, V. R.; van der Gucht, J.; Briels, W. J.
2018-01-01
We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.
Ahuja, V R; van der Gucht, J; Briels, W J
2018-01-21
We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.
Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo
2015-08-28
Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.
Bajd, Franci; Serša, Igor
2018-06-05
Mucus scaffolds represent one of the most common barriers in targeted drug delivery and can remarkably reduce the outcome of pharmacological therapies. An efficient transport of drug particles through a mucus barrier is a precondition for an efficient drug delivery. Understanding the transport mechanism is particularly important for treatment of disorders such as cystic fibrosis. These are characterized by an onset of high-density mucus scaffolds imposing an increased steric filtering. In this study, we employed the bond-fluctuation model to analyze the effect of steric interactions on slowing the translational dynamics of compound chain-like particles traversing through scaffolds of different configurations (regular isotropic and anisotropic versus irregular random). The model, which accounts for both the geometry-imposed steric interaction as well as the intrachain steric interaction between the chain subunits, yields a transient subdiffusive motional pattern persists between the short-time and long-time Gaussian diffusion limits. The motion is analyzed in terms of a mean-squared displacement, diffusion coefficient, and radius of gyration. With higher levels of restriction or larger particles, the subdiffusive motional regime persists longer. The study also demonstrates that an important feature of the motion is also geometry-induced chain accommodation. The presented model is generic and could also be applied to studying the translational dynamics of other particles with more complex architecture such as dendrites or chain-decorated nanoparticles. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Hummer, Gerhard
2015-01-01
We present a new algorithm for simulating reaction-diffusion equations at single-particle resolution. Our algorithm is designed to be both accurate and simple to implement, and to be applicable to large and heterogeneous systems, including those arising in systems biology applications. We combine the use of the exact Green's function for a pair of reacting particles with the approximate free-diffusion propagator for position updates to particles. Trajectory reweighting in our free-propagator reweighting (FPR) method recovers the exact association rates for a pair of interacting particles at all times. FPR simulations of many-body systems accurately reproduce the theoretically known dynamic behavior for a variety of different reaction types. FPR does not suffer from the loss of efficiency common to other path-reweighting schemes, first, because corrections apply only in the immediate vicinity of reacting particles and, second, because by construction the average weight factor equals one upon leaving this reaction zone. FPR applications include the modeling of pathways and networks of protein-driven processes where reaction rates can vary widely and thousands of proteins may participate in the formation of large assemblies. With a limited amount of bookkeeping necessary to ensure proper association rates for each reactant pair, FPR can account for changes to reaction rates or diffusion constants as a result of reaction events. Importantly, FPR can also be extended to physical descriptions of protein interactions with long-range forces, as we demonstrate here for Coulombic interactions. PMID:26005592
NASA Astrophysics Data System (ADS)
Klaiman, S.; Streltsov, A. I.; Alon, O. E.
2018-04-01
A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.
Overview of results from PHOBOS experiment at RHIC
NASA Astrophysics Data System (ADS)
Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.
2002-07-01
An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.
Current Fragmentation and Particle Acceleration in Solar Flares
NASA Astrophysics Data System (ADS)
Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.
2012-11-01
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.
Particle acceleration very near an x-line in a collisionless plasma
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Pridmore-Brown, D. C.
1995-01-01
In a previous paper, we applied a simplified model for particle motion in the vicinity of a magnetic X-line that had been introduced by Dungey. We used the model to quantitatively show that an electric force along an X-line can be balanced by the gyroviscous force associated with the off-diagonal elements of the pressure tensor. Distribution functions near the X-line were shown to be skewed in azimuth about the magnetic field and to include particles accelerated to very high energies. In the present paper, we apply the previous model and use the distribution functions to evaluate the energization that results from particle interactions with the X-line. We find that, in general, this interaction gives a spectrum of energized particles that can be represented by a Maxwellian distribution. A power-law, high-energy tail does not develop. The thermal energy, K, of the Maxwellian can be expressed simply in terms of the field parameters and particle mass and charge. It is independent of the thermal energy, K(sub i), of the particle distribution incident upon the region of the X-line, provided that K(sub i) is less than K. Significant energization is not found for K(sub i) is greater than K.
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
NASA Astrophysics Data System (ADS)
Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.
2017-11-01
Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2017-09-01
In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.
Quench field sensitivity of two-particle correlation in a Hubbard model
Zhang, X. Z.; Lin, S.; Song, Z.
2016-01-01
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080
Superheavy dark matter through Higgs portal operators
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Long, Andrew J.
2017-11-01
The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.
Effect of work of adhesion on deep bed filtration process
NASA Astrophysics Data System (ADS)
Przekop, Rafał; Jackiewicz, Anna; WoŻniak, Michał; Gradoń, Leon
2016-06-01
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.
Effect of work of adhesion on deep bed filtration process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przekop, Rafał; Jackiewicz, Anna; Gradoń, Leon
2016-06-08
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics,more » while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.« less
Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Lynn, Jacob William
We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
NASA Astrophysics Data System (ADS)
Cassidy, T. A.
2016-12-01
Understanding Europa's interaction with Jupiter's magnetosphere is a critical part of the ocean sounding objective of the upcoming Clipper mission and interpretation of these observations will require modeling efforts that build upon studies done over the last four decades. Unfortunately, these studies are often confusing and contradictory. There is, as yet, no community consensus on the assumptions and parameters that go into such models. There is enough uncertainty in this problem that I cannot tell anyone, with certainty, what they should and should not do, but in this presentation I will outline what modelers should at least consider before starting. The most important consideration that is often missing in the literature is plasma flow diversion. Many papers assume that Europa's interaction is lunar-like; a completely absorbing barrier. Data and plasma models show that there is likely significant diversion, and such diversion could prevent the bulk of magnetospheric plasa particles from reaching the surface. On the other hand, some models likely overestimate the amount of diversion: we do know that a significant amount of plasma must reach the surface in order to produce the atmosphere via sputtering and radiolysis, but most plasma models usually treat the atmosphere as a fixed boundary condition. A second consideration is energy range of particles responsible for radiolysis and sputtering. The particles bombarding the surface range from thermal plasma (eV-keV) to non-thermal (keV-MeV), but to many modelers, it seems, these are indistinguishable despite drastic differences in how these populations interact with the moon. To illustrate this confusion, the attached figure shows the O2 source rate (O2 is likely the dominant atmospheric component) from published Europa atmosphere/plasma models. There is little agreement on either the source rate or the particle population responsible for its production. Finally, I will discuss how experiences with other planetary bodies can inform Europa science.
Micromagnetic Modeling: a Tool for Studying Remanence in Magnetite
NASA Astrophysics Data System (ADS)
ter Maat, G. W.; Fabian, K.; Church, N. S.; McEnroe, S. A.
2017-12-01
Micromagnetic modeling is a useful tool in understanding magnetic particle behavior. The domain state of, and interaction between, particles is influenced by their shape, size and spacing. Rocks contain a collection of grains with varying geometries. This study presents models of true geometries obtained by dual-beam focused ion beam scanning electron microscopy (FIB-SEM). Using focused ion beam nanotomography (FIB-nT) the shape and size of individual grains and their spacing are accurately determined. The particle assemblages discussed here are basalts from the Stardalur volcano in Iceland. The main carrier of the magnetization is oxy-exsolved magnetite which contains extensive microstructures from the micron to nanometer scale. The complex morphologies vary in shape from spherical to elongated to sheet-like shapes with SD to PSD domain states. We investigate large oxy-exsolved magnetite grains as well as smaller oxy-exsolved dendritic grains. The obtained 3D volumes are modeled using finite element micromagnetics software MERRILL, to calculate magnetization structures. By modeling a full hysteresis loop we can observe the complete switching process and visualize the mechanism of the reversal of the magnetization. Micromagnetic simulation of hysteresis loops of grains with varying geometry and spacing shows the magnetization state of, and magnetostatic interaction between, different grains. From the simulations the remanence state of the modeled reconstructed geometry is obtained. Modeling the behavior of separate individual grains is compared with modeling assemblages of grains with varying spacing to study the effect of interaction. The use of realistic geometries of oxy-exsolved magnetite in micromagnetic models allows the examination of the influence of shape, size and spacing on the magnetic properties of single particles, and magnetostatic interactions between them.These parameters are varied and tested to find if there is an increase in remanence-carrying capacity. The use of modeling of the realistic representation of the widespread microstructures allow us to test proposed enhancement of remanence, and more stable paleomagnetic recorders.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-16
Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less
Hsieh, Paul A.
2001-01-01
This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
Resonance controlled transport in phase space
NASA Astrophysics Data System (ADS)
Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton
2018-02-01
We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.
Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco
2014-08-01
The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.
Transitions induced by speed in self-propelled particles system with attractive interactions
NASA Astrophysics Data System (ADS)
Cambui, Dorilson. S.; Rosas, Alexandre
2018-05-01
In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.
Simple Common Plane contact detection algorithm for FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-07-19
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.
Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser
NASA Astrophysics Data System (ADS)
Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.
Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.
The Model of Complex Structure of Quark
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Multiparticle systems in κ -Poincaré inspired by (2 +1 )D gravity
NASA Astrophysics Data System (ADS)
Kowalski-Glikman, Jerzy; Rosati, Giacomo
2015-04-01
Inspired by a Chern-Simons description of 2 +1 -dimensional gravity coupled to point particles we propose a new Lagrangian of a multiparticle system living in κ -Minkowski/κ -Poincaré spacetime. We derive the dynamics of interacting particles with κ -momentum space, alternative to the one proposed in the "principle of relative locality" literature. The model that we obtain takes account of the nonlocal topological interactions between the particles, so that the effective multiparticle action is not a sum of their free actions. In this construction the locality of particle processes is naturally implemented, even for distant observers. In particular a particle process is characterized by a local deformed energy-momentum conservation law. The spacetime transformations are generated by total charges/generators for the composite particle system, and leave unaffected the locality of individual particle processes.
Traffic Flow of Interacting Self-Driven Particles: Rails and Trails, Vehicles and Vesicles
NASA Astrophysics Data System (ADS)
Chowdhury, Debashish
One common feature of a vehicle, an ant and a kinesin motor is that they all convert chemical energy, derived from fuel or food, into mechanical energy required for their forward movement; such objects have been modelled in recent years as self-driven particles. Cytoskeletal filaments, e.g., microtubules, form a rail network for intra-cellular transport of vesicular cargo by molecular motors like, for example, kinesins. Similarly, ants move along trails while vehicles move along lanes. Therefore, the traffic of vehicles and organisms as well as that of molecular motors can be modelled as systems of interacting self-driven particles; these are of current interest in non-equilibrium statistical mechanics. In this paper we point out the common features of these model systems and emphasize the crucial differences in their physical properties.
Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1993-01-01
Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.
Simulations of Shock Wave Interaction with a Particle Cloud
NASA Astrophysics Data System (ADS)
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Selective encapsulation by Janus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.
2015-06-28
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less
Gravitational instantons as models for charged particle systems
NASA Astrophysics Data System (ADS)
Franchetti, Guido; Manton, Nicholas S.
2013-03-01
In this paper we propose ALF gravitational instantons of types A k and D k as models for charged particle systems. We calculate the charges of the two families. These are -( k + 1) for A k , which is proposed as a model for k + 1 electrons, and 2 - k for D k , which is proposed as a model for either a particle of charge +2 and k electrons or a proton and k - 1 electrons. Making use of preferred topological and metrical structures of the manifolds, namely metrically preferred representatives of middle dimension homology classes, we construct two different energy functionals which reproduce the Coulomb interaction energy for a system of charged particles.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Key-lock colloids in a nematic liquid crystal.
Silvestre, Nuno M; Tasinkevych, M
2017-01-01
The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.
Cross-stream migration of active particles
NASA Astrophysics Data System (ADS)
Uspal, William; Katuri, Jaideep; Simmchen, Juliane; Miguel-Lopez, Albert; Sanchez, Samuel
For natural microswimmers, the interplay of swimming activity and external flow can promote robust directed motion, e.g. propulsion against (upstream rheotaxis) or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model system, we report on a strong directional response that naturally emerges for spherical active particles in a channel flow. The particles align their propulsion axis to be perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model that captures this spontaneous transverse orientational order. We show how the directional response emerges from the interplay of external shear flow and swimmer/surface interactions (e.g., hydrodynamic interactions) that originate in swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that show good agreement with the experimental probability distributions. Our findings show that the qualitative response of microswimmers to flow is sensitive to the detailed interaction between individual microswimmers and bounding surfaces.
Collective dynamics of soft active particles
NASA Astrophysics Data System (ADS)
van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon
2015-03-01
We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.
Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions
NASA Astrophysics Data System (ADS)
Wang, Huiqi; Ni, Feixiang; Lin, Lifeng; Lv, Wangyong; Zhu, Hongqiang
2018-09-01
In some complex viscoelastic mediums, it is ubiquitous that absorbing and desorbing surrounding Brownian particles randomly occur in coupled systems. The conventional method is to model a variable-mass system driven by both multiplicative and additive noises. In this paper, an improved mathematical model is created based on generalized Langevin equations (GLE) to characterize the random interaction with locally fluctuating number of coupled particles in the elastically coupled factional Brownian motors (FBM). By the numerical simulations, the effect of fluctuating interactions on collective transport behaviors is investigated, and some abnormal phenomena, such as cooperative behaviors, stochastic resonance (SR) and anomalous transport, are observed in the regime of sub-diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacroix, Florent
The standard model of particle physics describes the matter as elementary particles interacting via strong and electroweak interactions. The top quark is the heaviest quark described by this model and has been discovered in 1995 by CDF and D collaborations in proton-antiproton collisions at the Tevatron. This thesis is devoted to the measurement of the top pair production cross-section via the strong interaction, in a final state composed of one lepton, one hadronic tau, two b-jets and missing transverse energy. This analysis uses the 1,2 fb
Structural transitions in vortex systems with anisotropic interactions
Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...
2017-12-29
We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less
Coarse-grained molecular dynamics simulations for giant protein-DNA complexes
NASA Astrophysics Data System (ADS)
Takada, Shoji
Biomolecules are highly hierarchic and intrinsically flexible. Thus, computational modeling calls for multi-scale methodologies. We have been developing a coarse-grained biomolecular model where on-average 10-20 atoms are grouped into one coarse-grained (CG) particle. Interactions among CG particles are tuned based on atomistic interactions and the fluctuation matching algorithm. CG molecular dynamics methods enable us to simulate much longer time scale motions of much larger molecular systems than fully atomistic models. After broad sampling of structures with CG models, we can easily reconstruct atomistic models, from which one can continue conventional molecular dynamics simulations if desired. Here, we describe our CG modeling methodology for protein-DNA complexes, together with various biological applications, such as the DNA duplication initiation complex, model chromatins, and transcription factor dynamics on chromatin-like environment.
Long-term evolution of a planetesimal swarm in the vicinity of a protoplanet
NASA Technical Reports Server (NTRS)
Kary, David M.; Lissauer, Jack J.
1991-01-01
Many models of planet formation involve scenarios in which one or a few large protoplanets interact with a swarm of much smaller planetesimals. In such scenarios, three-body perturbations by the protoplanet as well as mutual collisions and gravitational interactions between the swarm bodies are important in determining the velocity distribution of the swarm. We are developing a model to examine the effects of these processes on the evolution of a planetesimal swarm. The model consists of a combination of numerical integrations of the gravitational influence of one (or a few) massive protoplanets on swarm bodies together with a statistical treatment of the interactions between the planetesimals. Integrating the planetesimal orbits allows us to take into account effects that are difficult to model analytically or statistically, such as three-body collision cross-sections and resonant perturbations by the protoplanet, while using a statistical treatment for the particle-particle interactions allows us to use a large enough sample to obtain meaningful results.
SIMP model at NNLO in chiral perturbation theory
NASA Astrophysics Data System (ADS)
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2015-10-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.
Quasilinear Line Broadened Model for Energetic Particle Transport
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2011-10-01
We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roldin, P.; Eriksson, A. C.; Nordin, E. Z.
2014-08-11
We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less
Wavelet analysis of particle density functions in nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Manna, S. K.; Haldar, P. K.; Mali, P.; Mukhopadhyay, A.; Singh, G.
A continuous wavelet analysis is performed for pattern recognition of the pseudorapidity density profile of singly charged particles produced in 16O+Ag/Br and 32S+Ag/Br interactions, each at an incident energy of 200 GeV per nucleon in the laboratory system. The experiments are compared with a model prediction based on the ultra-relativistic quantum molecular dynamics (UrQMD). To eliminate the contribution coming from known source(s) of particle cluster formation like Bose-Einstein correlation (BEC), the UrQMD output is modified by “an algorithm that mimics the BEC as an after burner.” We observe that for both interactions particle clusters are found at same pseudorapidity locations at all scales. However, the cluster locations in the 16O+Ag/Br interaction are different from those found in the 32S+Ag/Br interaction. Significant differences between experiments and simulations are revealed in the wavelet pseudorapidity spectra that can be interpreted as the preferred pseudorapidity values and/or scales of the pseudorapidity interval at which clusters of particles are formed. The observed discrepancy between experiment and corresponding simulation should therefore be interpreted in terms of some kind of nontrivial dynamics of multiparticle production.
NASA Astrophysics Data System (ADS)
Sali, D.; Fritz, B.; Clément, C.; Michau, N.
2003-04-01
Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.
Revising the hygroscopicity of inorganic sea salt particles
Zieger, P.; Väisänen, O.; Corbin, J. C.; Partridge, D. G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U. K.; Leck, C.; Nenes, A.; Riipinen, I.; Virtanen, A.; Salter, M. E.
2017-01-01
Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth’s radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8–15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models. PMID:28671188
Supersymmetric integrable theories without particle production
NASA Astrophysics Data System (ADS)
Bercini, Carlos; Trancanelli, Diego
2018-05-01
We consider a theory of scalar superfields in two dimensions with arbitrary superpotential. By imposing no particle production in tree-level scattering, we constrain the form of the admissible interactions, recovering a supersymmetric extension of the sinh-Gordon model.
Particles, Feynman Diagrams and All That
ERIC Educational Resources Information Center
Daniel, Michael
2006-01-01
Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.
Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A.; Chen, C. P.
1990-01-01
Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.
Single-particle dynamics of the Anderson model: a local moment approach
NASA Astrophysics Data System (ADS)
Glossop, Matthew T.; Logan, David E.
2002-07-01
A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.
Particle Simulation of Coulomb Collisions: Comparing the Methods of Takizuka & Abe and Nanbu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Lin, T; Caflisch, R
2007-05-22
The interactions of charged particles in a plasma are in a plasma is governed by the long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and stochastic error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.
Mechanism underlying the diverse collective behavior in the swarm oscillator model
NASA Astrophysics Data System (ADS)
Iwasa, Masatomo; Tanaka, Dan
2017-09-01
The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
NASA Astrophysics Data System (ADS)
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
Ratchet Effects in Active Matter Systems
Reichhardt, Cynthia Jane; Reichhardt, Charles
2016-12-21
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less
Relativistic quantum optics: The relativistic invariance of the light-matter interaction models
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; Rodriguez-Lopez, Pablo
2018-05-01
In this article we discuss the invariance under general changes of reference frame of all the physical predictions of particle detector models in quantum field theory in general and, in particular, of those used in quantum optics to model atoms interacting with light. We find explicitly how the light-matter interaction Hamiltonians change under general coordinate transformations, and analyze the subtleties of the Hamiltonians commonly used to describe the light-matter interaction when relativistic motion is taken into account.
Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G
2017-02-22
We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.
DREAM3D simulations of inner-belt dynamics
NASA Astrophysics Data System (ADS)
Cunningham, G.
2015-12-01
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.
Explicit Two-Phase Modeling of the Initiation of Saltation over Heterogeneous Sand Beds
NASA Astrophysics Data System (ADS)
Turney, F. A.; Kok, J. F.; Martin, R. L.; Burr, D. M.; Bridges, N.; Ortiz, C. P.; Smith, J. K.; Emery, J. P.; Van Lew, J. T.
2016-12-01
The initiation of aeolian sediment transport is key in understanding the geomorphology of arid landscapes and emission of mineral dust into the atmosphere. Despite its importance, the process of saltation initiation remains poorly understood, and current models are highly simplified. Previous models of the initiation of aeolian saltation have assumed the particle bed to be monodisperse and homogeneous in arrangement, ignoring the distribution of particle thresholds created by different bed geometries and particle sizes. In addition, mean wind speeds are often used in place of a turbulent wind field, ignoring the distribution of wind velocities at the particle level. Furthermore, the transition from static bed to steady state saltation is often modeled as resulting directly from fluid lifting, while in reality particles need to hop and roll along the surface before attaining enough height and momentum to initiate the cascade of particle splashes that characterizes saltation. We simulate the initiation of saltation with a coupled two-phase CFD-DEM model that overcomes the shortcomings of previous models by explicitly modeling particle-particle and particle-fluid interactions at the particle scale. We constrain our model against particle trajectories taken from high speed video of initiation at the Titan Wind Tunnel at NASA Ames. Results give us insight into the probability that saltation will be initiated, given stochastic variations in bed properties and wind velocity.
Towards a natural theory of electroweak interactions
NASA Astrophysics Data System (ADS)
Dobrescu, Bogdan A.
1998-01-01
I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is transmitted to the superpartners by nonstandard gauge interactions, leading to distinctive predictions for the superpartner masses. Finally, I propose a model that combines a mechanism of dynamical electroweak symmetry breaking with supersymmetry, which explains some features of the quark and lepton mass spectrum.
Precision measurement of the weak charge of the proton.
2018-05-01
Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5 ± 9.3 parts per billion (the uncertainty is one standard deviation). Our value for the proton's weak charge is in excellent agreement with the standard model 2 and sets multi-teraelectronvolt-scale constraints on any semi-leptonic parity-violating physics not described within the standard model. Our results show that precision parity-violating measurements enable searches for physics beyond the standard model that can compete with direct searches at high-energy accelerators and, together with astronomical observations, can provide fertile approaches to probing higher mass scales.
NASA Astrophysics Data System (ADS)
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
Particle transport through hydrogels is charge asymmetric.
Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E
2015-02-03
Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
NASA Astrophysics Data System (ADS)
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
Particle Model for Work, Heat, and the Energy of a Thermodynamic System
ERIC Educational Resources Information Center
DeVoe, Howard
2007-01-01
A model of a thermodynamic system is described in which particles (representing atoms) interact with one another, the surroundings, and the earth's gravitational field according to the principles of classical mechanics. The system's energy "E" and internal energy "U" are defined. The importance is emphasized of the dependence of energy and work on…
ERIC Educational Resources Information Center
Kottonau, Johannes
2011-01-01
Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…
NASA Astrophysics Data System (ADS)
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We develop a method to compute the Green's function for two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. The method is based on a variational approximation to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and is shown to agree with exact digaonalization calculations. We show that the properties of bipolarons arising in such models is qualitatively different from those of the well-studied Holstein bipolarons. In particular, we show that depending on the particle statistics, strongly bound bipolarons may or may not form. In the case of hard-core bosons, we demonstrate novel effects for dimers such as sharp transitions and self-trapping. In the case of soft-core particles/ spinfull fermions, we show that the mediated interactions lead to overscreeing of the bare Hubbard U repulsion resulting in the formation of strongly bound bipolarons. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
Path-integral Monte Carlo method for Rényi entanglement entropies.
Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A
2014-07-01
We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.
Consistency of multi-time Dirac equations with general interaction potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deckert, Dirk-André, E-mail: deckert@math.lmu.de; Nickel, Lukas, E-mail: nickel@math.lmu.de
In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills themore » physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.« less
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment
NASA Astrophysics Data System (ADS)
De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur
2018-06-01
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakabe, Motohiko; Kawasaki, Masahiro; Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan and Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582
An observed plateau abundance of {sup 7}Li in metal-poor halo stars indicates its primordial origin. The {sup 7}Li abundances are about a factor of three smaller than that predicted in standard big bang nucleosynthesis (BBN) model. In addition, some of the stars possibly contain {sup 6}Li in abundances larger than standard BBN prediction. Particle models sometimes include heavy longlived colored particles which are confined in exotic strongly interacting massive particles (SIMPs). We have found reactions which destroy {sup 7}Be and {sup 7}Li during BBN in the scenario of BBN affected by a long-lived sub-strongly interactingmassive particle (sub-SIMP, X). The reactionsmore » are non radiative X captures of {sup 7}Be and {sup 7}Li which can operate if the X particle interacts with nuclei strongly enough to drive {sup 7}Be destruction but not strongly enough to form a bound state with {sup 4}He of relative angular momentum L = 1. The processes can be a cause of the {sup 7}Li problem. In this paper we suggest new possible reactions for {sup 6}Li production. Especially, a {sup 6}Li production through the deuteron capture of {sup 4}He bound to X can operate in the parameter region solving the {sup 7}Li problem.« less
Pensini, Erica; Sleep, Brent E; Yip, Christopher M; O'Carroll, Denis
2012-12-18
The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl₂) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl₂ at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data.
NASA Astrophysics Data System (ADS)
Lyutyy, T. V.; Reva, V. V.
2018-05-01
Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
Entrainment and scattering in microswimmer-colloid interactions
NASA Astrophysics Data System (ADS)
Shum, Henry; Yeomans, Julia M.
2017-11-01
We use boundary element simulations to study the interaction of model microswimmers with a neutrally buoyant spherical particle. The ratio of the size of the particle to that of the swimmer is varied from RP/RS≪1 , corresponding to swimmer-tracer scattering, to RP/RS≫1 , approximately equivalent to the swimmer interacting with a fixed, flat surface. We find that details of the swimmer and particle trajectories vary for different swimmers. However, the overall characteristics of the scattering event fall into two regimes, depending on the relative magnitudes of the impact parameter, ρ , and the collision radius, Rcoll=RP+RS . The range of particle motion, defined as the maximum distance between two points on the trajectory, has only a weak dependence on the impact parameter when ρ
A patient-specific CFD-based study of embolic particle transport for stroke
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Shadden, Shawn C.
2014-11-01
Roughly 1/3 of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. A detailed understanding of the dynamics of embolic particles within arteries is the basis for this study. Blood flow velocities and emboli trajectories are resolved using a coupled Euler-Lagrange approach. Computer model of the major arteries is extracted from patient image data. Blood is modeled as a Newtonian fluid, discretized using the Finite Volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one and two way fluid-particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. The study determines individual embolus path up to arteries supplying the brain, and compares the size-dependent distribution of emboli amongst vessels superior to the aortic-arch, and the role of fully coupled blood-embolus interactions in modifying both trajectory and distribution when compared with one-way coupling. Specifically for intermediate particle sizes the model developed will better characterize the risks for embolic stroke. American Heart Association (AHA) Grant: Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, C.
1960-01-01
The secondaries produced by the interaction of highenergy cosmic radiation with aluminum were studied with Wilson chambers placed in a magnetic field. From 9600 photographs made, 117 interactions of charged particles with energy higher than 10 Bev in aluminum were selected. These photographs were obtained with the apparatus installed at the Observatory of the Pic du Midi de Bigorre. This apparatus is described. The quantities of motion and the emission direction of charged secondaries of each interaction were determined. The measurements and the methods of calculation are described. The results obtained on charged secondaries and unstable particles are reported. Themore » selection of the interactions which occurred with only one nucleon of the aluminum nucleus is discussed. These interactions were studied in the center-of-mass system of the interacting particles. The results obtained are compared with the predictions of the principal theoreticat models of nucleon-nucleon interactions. (trauth)« less
Aerosol Complexity and Implications for Predictability and Short-Term Forecasting
NASA Technical Reports Server (NTRS)
Colarco, Peter
2016-01-01
There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Cassak, P.; Jia, X.; Gombosi, T. I.; Slavin, J. A.; Welling, D. T.; Markidis, S.; Peng, I. B.; Jordanova, V. K.; Henderson, M. G.
2017-12-01
We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertania, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2017-06-01
The charged particle densities obtained from CORSIKA simulated EAS, using the QGSJet-II.04 hadronic interaction model are used for primary energy reconstruction. Simulated data are reconstructed by using Lateral Energy Correction Functions computed with a new realistic model of the Grande stations implemented in Geant4.10.
Collision broadened resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-08-01
Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-06-01
Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Scaling theory of tunneling diffusion of a heavy particle interacting with phonons
NASA Astrophysics Data System (ADS)
Itai, K.
1988-05-01
The author discusses motion of a heavy particle in a d-dimensional lattice interacting with phonons by different couplings. The models discussed are characterized by the dimension (d) and the set of two indices (λ,ν) which specify the momentum dependence of the dispersion of phonon energy (ω~kν) and of the particle-phonon coupling (~kλ). Scaling equations are derived by eliminating the short-time behavior in a renormalization-group scheme using Feynman's path-integral method, and the technique developed by Anderson, Yuval, and Hamann for the Kondo problem. The scaling equations show that the particle is localized in the strict sense when (2λ+d+2)/ν<2 and is not localized when (2λ+d+2)/ν>2. In the marginal case, i.e., (2λ+d+2)/ν=2, localization occurs for couplings larger than a critical value. This marginal case shows Ohmic dissipation and is a close analogy to the Caldeira-Leggett model for macroscopic quantum tunneling and the hopping models of Schmid's type. For large-enough (2λ+d+2)/ν, the particle is considered practically localized, but the origin of the localization is quite different from that for (2λ+d+2)/ν<=2. .AE
Self-diffusion in a system of interacting Langevin particles
NASA Astrophysics Data System (ADS)
Dean, D. S.; Lefèvre, A.
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Aleena
2017-09-25
Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction andmore » uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.« less
DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses
NASA Astrophysics Data System (ADS)
Lavrikov, S. V.; Revuzhenko, A. F.
2015-10-01
Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.
Single fiber model of particle retention in an acoustically driven porous mesh.
Grossner, Michael T; Penrod, Alan E; Belovich, Joanne M; Feke, Donald L
2003-03-01
A method for the capture of small particles (tens of microns in diameter) from a continuously flowing suspension has recently been reported. This technique relies on a standing acoustic wave resonating in a rectangular chamber filled with a high-porosity mesh. Particles are retained in this chamber via a complex interaction between the acoustic field and the porous mesh. Although the mesh has a pore size two orders of magnitude larger than the particle diameter, collection efficiencies of 90% have been measured. A mathematical model has been developed to understand the experimentally observed phenomena and to be able to predict filtration performance. By examining a small region (a single fiber) of the porous mesh, the model has duplicated several experimental events such as the focusing of particles near an element of the mesh and the levitation of particles within pores. The single-fiber analysis forms the basis of modeling the overall performance of the particle filtration system. Copyright 2002 Elsevier Science B.V.
Shears, Tara
2012-02-28
The Standard Model is the theory used to describe the interactions between fundamental particles and fundamental forces. It is remarkably successful at predicting the outcome of particle physics experiments. However, the theory has not yet been completely verified. In particular, one of the most vital constituents, the Higgs boson, has not yet been observed. This paper describes the Standard Model, the experimental tests of the theory that have led to its acceptance and its shortcomings.
Simple Common Plane contact algorithm for explicit FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-12-18
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.
Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.
Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa
2016-02-25
Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.
Reactive Radial Diffusion Model for the Aging/Sequestration Process
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.
2001-12-01
A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.
Complex molecular assemblies at hand via interactive simulations.
Delalande, Olivier; Férey, Nicolas; Grasseau, Gilles; Baaden, Marc
2009-11-30
Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example. Copyright 2009 Wiley Periodicals, Inc.
Plasma Interaction and Energetic Particle Dynamics near Callisto
NASA Astrophysics Data System (ADS)
Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.
2017-12-01
Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
NASA Technical Reports Server (NTRS)
Tam, S. W. Y.; Chang, T.
2002-01-01
Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2017-10-01
Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.
Let’s have a coffee with the Standard Model of particle physics!
NASA Astrophysics Data System (ADS)
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-05-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.
Model-independent analyses of dark-matter particle interactions
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2015-03-24
A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions withmore » cross sections proportional to v 2 T ~ 10⁻⁶, where v T is the WIMP velocity relative to the center of mass of the nuclear target.« less
NASA Astrophysics Data System (ADS)
Romenskyy, Maksym; Herbert-Read, James E.; Ward, Ashley J. W.; Sumpter, David J. T.
2017-04-01
While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.
Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides
NASA Astrophysics Data System (ADS)
Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina
Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.
A Hamiltonian Model of Dissipative Wave-particle Interactions and the Negative-mass Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Zhmoginov
2011-02-07
The effect of radiation friction is included in the Hamiltonian treatment of wave-particle interactions with autoresonant phase-locking, yielding a generalized canonical approach to the problem of dissipative dynamics near a nonlinear resonance. As an example, the negativemass eff ect exhibited by a charged particle in a pump wave and a static magnetic field is studied in the presence of the friction force due to cyclotron radiation. Particles with negative parallel masses m! are shown to transfer their kinetic energy to the pump wave, thus amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing their transverse energy monotonically due tomore » cyclotron cooling, whereas some of those with positive m! undergo cyclotron heating instead, extracting energy from the pump wave.« less
Predictions of spray combustion interactions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1984-01-01
Mean and fluctuating phase velocities; mean particle mass flux; particle size; and mean gas-phase Reynolds stress, composition and temperature were measured in stationary, turbulent, axisymmetric, and flows which conform to the boundary layer approximations while having well-defined initial and boundary conditions in dilute particle-laden jets, nonevaporating sprays, and evaporating sprays injected into a still air environment. Three models of the processes, typical of current practice, were evaluated. The local homogeneous flow and deterministic separated flow models did not provide very satisfactory predictions over the present data base. In contrast, the stochastic separated flow model generally provided good predictions and appears to be an attractive approach for treating nonlinear interphase transport processes in turbulent flows containing particles (drops).
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.
Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars
NASA Technical Reports Server (NTRS)
Wambach, J; Ainsworth, T. L.; Pines, D.
1993-01-01
A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.
A challenge to lepton universality in B-meson decays
Ciezarek, Gregory; Franco Sevilla, Manuel; Hamilton, Brian; ...
2017-06-07
One of the key assumptions of the standard model of particle physics is that the interactions of the charged leptons, namely electrons, muons and taus, differ only because of their different masses. Whereas precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, recent studies of B-meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. Here, a confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.
Pion-decay radiation and two-phase acceleration in the June 3, 1982 solar flare
NASA Technical Reports Server (NTRS)
Ramaty, R.; Dermer, C. D.; Murphy, R. J.
1986-01-01
The June 3, 1982 flare is unique in the wealth of observed neutron, gamma-ray and energetic-particle emission that it produced. Using calculations of high-energy emissions to fit the various time-dependent gamma-ray fluxes, a self-consistent interaction model for the June 3 flare is constructed in which the observed fluxes are produced by two distinct particle populations with different acceleration and interaction time histories as well as different but time-independent energy spectra. The two populations are associated with first- and second-phase particle acceleration, respectively.
Adsorption-desorption kinetics of soft particles onto surfaces
NASA Astrophysics Data System (ADS)
Osberg, Brendan; Gerland, Ulrich
A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.
Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows
NASA Astrophysics Data System (ADS)
Murphy, Eric
Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the first time. Next, kinetic theory was used to predict the cooling of a gas of such particles. DEM was then used to validate this approach. A study on the rheology of dry cohesive granules with and without friction was then carried out, where the physics of different flow phenomenology was exhaustively explored. Lastly, homogeneous cement slurry simulations were carried out, and compared with vane-rheometer experiments. Qualitative agreement between simulation and experiment were observed. Lastly, the physics of clustering in homogeneous gas-solid flows is explored in the hopes of gaining a mechanistic explanation of how particle-fluid interactions lead to clustering. Exact equations are derived, detailing the evolution of the two particle density, which may be closed using high-fidelity particle-resolved direct numerical simulation. Two canonical gas-solid flows are then addressed, the homogeneously cooling gas-solid flow (HCGSF) and sedimenting gas-solid flow (SGSF). A mechanism responsible for clustering in the HCGSF is identified. Clustering of plane-wave like structures is observed in the SGSF, and the exact terms are quantified. A method for modeling the dynamics of clustering in these systems is proposed, which may aid in the prediction of clustering and other correlation length-scales useful for less expensive computations.
The dusty ballerina skirt of Jupiter
NASA Astrophysics Data System (ADS)
Horanyi, M.; Morfill, G.; Gruen, E.
1993-12-01
We suggest a model to explain the unexpected recurrent dust events that were observed during the Jupiter encounter by the dust detector on board the Ulysses spacecraft. This model is based dust-magnetosphere interactions. Dust particles inside the Jovian magnetosphere collect electrostatic charges and their interaction with the magnetic and electric fields can lead to energization and subsequent ejection. We discuss the dusty regions (ring/halo, `gossamer' ring) and also Io as potential sources for the Ulysses events. This model favors Io as a source. The mass and velocity range of the escaping particles are compatible with the observations, and we also suggest internal periodicities to explain the recurrent nature of the Ulysses dust events.
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Harry Keo
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accountedmore » for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.« less
Identifying and quantifying interactions in a laboratory swarm
NASA Astrophysics Data System (ADS)
Puckett, James; Kelley, Douglas; Ouellette, Nicholas
2013-03-01
Emergent collective behavior, such as in flocks of birds or swarms of bees, is exhibited throughout the animal kingdom. Many models have been developed to describe swarming and flocking behavior using systems of self-propelled particles obeying simple rules or interacting via various potentials. However, due to experimental difficulties and constraints, little empirical data exists for characterizing the exact form of the biological interactions. We study laboratory swarms of flying Chironomus riparius midges, using stereoimaging and particle tracking techniques to record three-dimensional trajectories for all the individuals in the swarm. We describe methods to identify and quantify interactions by examining these trajectories, and report results on interaction magnitude, frequency, and mutuality.
Phase-factor-dependent symmetries and quantum phases in a three-level cavity QED system.
Fan, Jingtao; Yu, Lixian; Chen, Gang; Jia, Suotang
2016-05-03
Unlike conventional two-level particles, three-level particles may support some unitary-invariant phase factors when they interact coherently with a single-mode quantized light field. To gain a better understanding of light-matter interaction, it is thus necessary to explore the phase-factor-dependent physics in such a system. In this report, we consider the collective interaction between degenerate V-type three-level particles and a single-mode quantized light field, whose different components are labeled by different phase factors. We mainly establish an important relation between the phase factors and the symmetry or symmetry-broken physics. Specifically, we find that the phase factors affect dramatically the system symmetry. When these symmetries are breaking separately, rich quantum phases emerge. Finally, we propose a possible scheme to experimentally probe the predicted physics of our model. Our work provides a way to explore phase-factor-induced nontrivial physics by introducing additional particle levels.
Chiral liquid crystal colloids
NASA Astrophysics Data System (ADS)
Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.
2018-01-01
Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.
The dawn of FIMP Dark Matter: A review of models and constraints
NASA Astrophysics Data System (ADS)
Bernal, Nicolás; Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville
2017-09-01
We present an overview of scenarios where the observed Dark Matter (DM) abundance consists of Feebly Interacting Massive Particles (FIMPs), produced nonthermally by the so-called freeze-in mechanism. In contrast to the usual freeze-out scenario, frozen-in FIMP DM interacts very weakly with the particles in the visible sector and never attained thermal equilibrium with the baryon-photon fluid in the early Universe. Instead of being determined by its annihilation strength, the DM abundance depends on the decay and annihilation strengths of particles in equilibrium with the baryon-photon fluid, as well as couplings in the DM sector. This makes frozen-in DM very difficult but not impossible to test. In this review, we present the freeze-in mechanism and its variations considered in the literature (dark freeze-out and reannihilation), compare them to the standard DM freeze-out scenario, discuss several aspects of model building, and pay particular attention to observational properties and general testability of such feebly interacting DM.
Energy exchange and transition to localization in the asymmetric Fermi-Pasta-Ulam oscillatory chain
NASA Astrophysics Data System (ADS)
Smirnov, Valeri V.; Shepelev, Denis S.; Manevitch, Leonid I.
2013-01-01
A finite (periodic) FPU chain is chosen as a convenient model for investigating the energy exchange phenomenon in nonlinear oscillatory systems. As we have recently shown, this phenomenon may occur as a consequence of the resonant interaction between high-frequency nonlinear normal modes. This interaction determines both the complete energy exchange between different parts of the chain and the transition to energy localization in an excited group of particles. In the paper, we demonstrate that this mechanism can exist in realistic (asymmetric) models of atomic or molecular oscillatory chains. Also, we study the resonant interaction of conjugated nonlinear normal modes and prove a possibility of linearization of the equations of motion. The theoretical constructions developed in this paper are based on the concepts of "effective particles" and Limiting Phase Trajectories. In particular, an analytical description of energy exchange between the "effective particles" in the terms of non-smooth functions is presented. The analytical results are confirmed with numerical simulations.
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge.
Li, Xiaopeng; Ganeshan, Sriram; Pixley, J H; Das Sarma, S
2015-10-30
We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Kinetic modeling of streamer penetration into de-ionized water
NASA Astrophysics Data System (ADS)
Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.
2018-03-01
Interest in plasma-liquid interaction phenomena has grown in recent years due to applications in plasma medicine, water purification, and plasma-hydrocarbon reforming. The plasma in contact with liquid is generated, for example, using the plasma jets or streamer discharges. The interaction between the streamer and water can cause both physical and chemical modifications of the liquid. In this paper, the interaction between an anode-directed streamer and the de-ionized water is studied using one-dimensional particle-in-cell Monte Carlo collisions model. In this model, plasma species in both gas and liquid phase are considered as the macro-particles. We find that the penetration of the streamer head into the liquid causes ionization of water molecules by electron impact, a process which is usually ignored in the fluid models. The main charge carriers in the liquid phase are negative water ions which agree with earlier experimental and computational modeling studies. Additionally, we observe an ion-rich sheath in the vicinity of the water surface on the gas side.
Strongly-Interacting Fermi Gases in Reduced Dimensions
2015-11-16
one spin state is surrounded by a particle- hole cloud of the other 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12...explained in part by a polaron model, in which an atom of one spin state is surrounded by a particle- hole cloud of the other spin state. However, a...superconductivity), nuclear physics (nuclear matter), high-energy physics (effective theories of the strong interactions), astrophysics (compact stellar objects
NASA Technical Reports Server (NTRS)
Tsomaya, P. V.
1985-01-01
The behavior of the few-particles generation channels in interaction of hadrons with nuclei of CH2, Al, Cu and Pb at mean energy 400 GeV was investigated. The values of coherent production cross-sections beta coh at the investigated nuclei are given. A dependence of coherent and noncoherent events is investigated. The results are compared with the simulations on additive quark model (AQM).
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.
Diffusiophoretic self-propulsion for partially catalytic spherical colloids.
de Graaf, Joost; Rempfer, Georg; Holm, Christian
2015-04-01
Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.
Dynamic self-organization of confined autophoretic particles
NASA Astrophysics Data System (ADS)
Medrano, Anthony; Michelin, Sébastien; Kanso, Eva
2016-11-01
We study the behavior of chemically-active Janus particles in microfluidic Hele-Shaw-type confinement. These micron-scale chemical motors, when immersed in a fuel-laden fluid, produce an ionic chemical field which leads to motility and consequently a local fluid flow. In unconfined settings, experimental and computational studies have shown these particles to spontaneously self-organize into crystal structures, and form into asters of two or more particles. Here, we show that geometric confinement alters both the chemical and hydrodynamic signature of the particles in such a way that their far-field effects can be modeled as source dipoles. Each particle moves according to its own self-propelled motion and in response to the chemical and hydrodynamic field created by other particles. Two interaction modes are observed: self-assembly into quasi-static crystals and into dynamically-evolving chains. We discuss the conditions that lead to these modes of interactions and the phase transitions between them for various Janus particle concentrations. The National GEM Consortium.
Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling
Kraan, Aafke Christine
2015-01-01
Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586
Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
Milenkovic, J; Alexopoulos, A H; Kiparissides, C
2014-01-30
In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws ofmore » nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of these below. Relativity is founded on a symmetry property of nature called "Lorentz Invariance". Like all symmetry properties, it is essential to determine precisely how symmetric nature actually is; that is, do the laws of nature fully respect the symmetry or is there room for tiny symmetry violating effects? An important consequence of Lorentz invariance is the existence of a universal limiting velocity for all physical particles. Light travels at this limiting velocity so it is frequently referred to as simply "the speed of light", but relativity requires that ALL particles travel more slowly than this speed. Once the Higgs particle was discovered in 2012 a natural question was whether or not this particle's speed was consistent with relativity. Although the speed of the Higgs particle is not measurable directly, Cohen has shown that, if the maximal speed of the Higgs particle was not precisely the same as the speed of light, then the Higgs would have some unusual properties. In some cases the Higgs would be unstable to some unusual decay modes; in other cases the interactions of the Higgs with other particles would change the properties of these other particles in ways that could be observed in so-called cosmic rays, very energetic particles (such as photons, protons and other atomic nuclei) coming from space. Once these particles hit the upper atmosphere they produce a "shower" of particles that can be seen by ground-based instruments. If the Higgs has a maximal speed that differs even a tiny bit from the speed of light these showers would look quite different from what is observed. In this way Cohen was able to establish that the Higgs travels with a maximal speed that cannot differ from the speed of light by more than one part in a thousand-trillion. This is by far the most precisely determined property of the Higgs particle. Cohen and Schmaltz reviewed evidence from the Large Hadron Collider (LHC), a particle physics experiment operating at the CERN laboratory near Geneva, for a new particle sometimes called a W'. This evidence included certain unexpected by-products in collisions of protons at very high energy. While the evidence was not significant enough to claim a discovery, it was sufficiently intriguing that many particle theorists worked to construct explanations for this signal. Cohen and Schmaltz were able to determine that such explanations are highly constrained by previous experiments involving collisions of very energetic particles. Nevertheless they were able to construct a theory that adequately explains the LHC data and remain consistent with prior experiments. Their explanation predicts the existence of yet another new particle, called a Z', with a mass slightly greater than that of the W'. This additional particle, if it exists, should be seen as more data is collected from the LHC. Amusingly, there is one collision by-product that has already been seen by the CMS experiment at the LHC that supports the existence of this new particle; however, it is not unlikely that this single event is a so-called "background" event, that is a somewhat atypical by-product of a conventional Standard Model process. This theory for the anomalous LHC data will either be confirmed or excluded with further data-taking at the LHC. The ratio of the number of electrons produced in bottom quark decays over the number of muons produced has been measured at the LHC. This ratio is interesting because it can be predicted very precisely from a basic property of the Standard Model: lepton universality. If lepton universality is correct, the ratio of electrons to muons is predicted to be equal to 1. The first measurements of this ratio find a value different from 1 with a statistical significance of about 3 standard deviations. Schmaltz and collaborator proposed a new extension of the Standard Model which can explain the new data. In addition, Schmaltz and collaborators proposed several new measurements of ratios of decay rates which can confirm or rule out the surprising results from the earlier LHC data. The most recent and precise measurements of the cosmic microwave background from the Planck satellite, from a combination of measurements of the dark matter distribution in the universe, and from a measurement of the expansion rate of the universe today show some disagreement when interpreted in terms of the so-called LambdaCDM model. Schmaltz and collaborators proposed an alternative model to LambdaCDM in which the usual cold dark matter is replaced by a new ``dark sector". This sector consists of a cold dark matter particle which interacts with a newly postulated dark radiation component of the universe. The dark radiation can help explain the discrepancy in measurements of the expansion rate, and the dark matter interactions subtly modify the clumping of dark matter at large scales, thus potentially explaining both kinds of tensions in the data. In two publications Schmaltz described the new model and then performed a precision comparison of the predictions of the model with all currently available cosmological data. The results favor the new model at the level of three standard deviations with current data. Quantum Field Theory (QFT) is the language we use to describe quantum systems which are consistent with Einstein’s theory of Special Relativity. In particular, the requirement of Einstein’s theory that signals not travel faster than the speed of light constrains the types of interactions which particles can engage in. One consequence of relativity is that these interactions cannot preserve particle number. The stronger the interactions, the more severe the particle number violation in a given Relativistic QFT. When particle number violation is strong, it becomes very difficult to adequately parameterize the quantum wave function (which characterizes the state of a quantum system). For example, though we can formulate the QFT which describes the strong force as a set of interactions between quark and gluon particles, we have no clear idea how to express the proton state in terms of these quarks and gluons. This is because the proton, though a bound state of quarks and gluons, is not a state of a fixed number of particles due to strong interactions. Yet, understanding the proton state is very important in order to theoretically predict the reaction rates observed at the LHC in Geneva, which is a proton-proton collider. Katz has formulated a new approach to QFT, which among other things offers a way to adequately approximate the quantum wave function of a bound state at strong coupling. The approximation scheme is related to the fact that any sensible QFT (including that of the strong interactions) is at short distances approximately self-similar upon rescaling of space and time. It turns out that keeping track of the response upon this rescaling is important in efficiently parameterizing the state. Katz and collaborators have used this observation to approximate the state of the proton in toy versions of the strong force. In the late 60s Sheldon Glashow, Abdus Salam and Steven Weinberg (1979 Nobel Prize awardees) proposed a theory unifying weak and electromagnetic interaction which assumed the existence of new particles, the W and Z bosons. The W and Z bosons were eventually detected in high-energy collision in a particle accelerator at CERN, and the recent discovery of the Higgs meson at the Large Hadron Collider (LHC), always at CERN, completed the picture. However, deep theoretical considerations indicate that the theory by Glashow, Weinberg and Salam, often referred to as "the standard model" cannot be the whole story: the existence of new particles and new interactions at yet higher energies is widely anticipated. The experiments at the LHC are looking for these, while theorists, like Brower, Rebbi and collaborators, are investigating models for these new interactions. Working in a large national collaboration with access to the most powerful DOE computers Brower, Rebbi and colleagues have been using calculational techniques, similar to those successfully employed for many years to investigate the interactions among quarks in nucleons, to study theories that can describe the expected "beyond the standard model" (BSM) interactions. Their results, which include also a model for dark matter, have been published in several refereed papers in prestigious journals. Various ideas in topologically interesting field theories predict hypothetical objects such as fractional charges and Majorana excitations. However, such fascinating objects have not been seen in particle physics. Nevertheless, these objects demonstrate possible phenomena that quantum field theory can support. Pi used condensed matter physics as a laboratory to study possible realizations and observable effects of these objects predicted by quantum field theory. In recent times there has developed considerable interest among condensed matter field theorists in precisely the same geometrical and topological structures, which were first discovered in particle physics field theories. From particle physicists' point of view, this is an interesting development, since condensed matter provides an arena in which one can concretely realize particle physics ideas. Moreover, particle physicists can learn new ideas from condensed matter physics. Higgs phenomenon is precisely an important particle physics realization of condensed matter ideas. In contrast to the small distance characterizing condensed matter systems, field theory also describes large distance physics characterizing cosmology. Pi worked on various geometrical effects in the standard theory of cosmology, viz general relativity.« less
A density functional approach to ferrogels
NASA Astrophysics Data System (ADS)
Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.
2017-07-01
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
Signatures of Earth-scattering in the direct detection of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris, E-mail: bkavanagh@lpthe.jussieu.fr, E-mail: catena@chalmers.se, E-mail: kouvaris@cp3.sdu.dk
Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth andmore » allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.« less
Time-varying q-deformed dark energy interacts with dark matter
NASA Astrophysics Data System (ADS)
Dil, Emre; Kolay, Erdinç
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
Bostrom, Mathias; O'Keefe, Regis
2009-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately. PMID:18612016
Bostrom, Mathias; O'Keefe, Regis
2008-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately.
Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost
NASA Astrophysics Data System (ADS)
Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.
2017-11-01
A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-01-01
Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A class of ejecta transport test problems
NASA Astrophysics Data System (ADS)
Oro, David M.; Hammerberg, J. E.; Buttler, William T.; Mariam, Fesseha G.; Morris, Christopher L.; Rousculp, Chris; Stone, Joseph B.
2012-03-01
Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function of particulate masses and velocities, f0(m,u;t). Some properties of this source distribution function have been determined from Taylor- and supported-shockwave experiments. Such experiments measure the mass moment of f0 under vacuum conditions assuming weak particle-particle interactions and, usually, fully inelastic scattering (capture) of ejecta particles from piezoelectric diagnostic probes. Recently, planar ejection of W particles into vacuum, Ar, and Xe gas atmospheres have been carried out to provide benchmark transport data for transport model development and validation. We present those experimental results and compare them with modeled transport of the W-ejecta particles in Ar and Xe.
Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events
NASA Astrophysics Data System (ADS)
Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.
2001-12-01
Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).
Electrohydrodynamic interaction of spherical particles under Quincke rotation.
Das, Debasish; Saintillan, David
2013-04-01
Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions up to order O(R(-5)), where R is the separation distance between the spheres. A linear stability analysis of this system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity magnitude depends on the configuration of the spheres and electric field strength and agrees very well with an asymptotic estimate derived for corotating spheres. In the case of freely-suspended spheres, dipolar interactions are observed to lead to a number of distinct behaviors depending on the initial relative configuration of the spheres and on any infinitesimal initial perturbation introduced in the system: in some cases the spheres slowly separate in space while steadily rotating, while in other cases they pair up and either corotate or counterrotate depending on their orientation relative to the field.
Electrohydrodynamic interaction of spherical particles under Quincke rotation
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2013-04-01
Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions up to order O(R-5), where R is the separation distance between the spheres. A linear stability analysis of this system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity magnitude depends on the configuration of the spheres and electric field strength and agrees very well with an asymptotic estimate derived for corotating spheres. In the case of freely-suspended spheres, dipolar interactions are observed to lead to a number of distinct behaviors depending on the initial relative configuration of the spheres and on any infinitesimal initial perturbation introduced in the system: in some cases the spheres slowly separate in space while steadily rotating, while in other cases they pair up and either corotate or counterrotate depending on their orientation relative to the field.
Entrainment of solid particles over irregular wavy walls
NASA Astrophysics Data System (ADS)
Milici, Barbara
2017-11-01
The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the dynamics of turbulent structures of the underlying carrier flow field which, in turn, is affected by the presence of a loading of dispersed particles. The issue is discussed here focusing on the coupling between near-bed coherent structures and suspended solid particles dynamics, in wall-bounded turbulent multiphase flows, bounded by rough boundaries. The friction Reynolds number of the unladen flow is Reτ=180 and the dispersed phase spans one order of magnitude of particle diameter. The analysis takes into account fluid-particle interaction (two-way coupling) in the frame of the Particle-Source-In-Cell (PSIC) method, using Direct Numerical Simulations (DNS) for the carrier phase coupled with Lagrangian Particle Tracking (LPT) for the dispersed phase. The effect of the wall's roughness is taken into account modelling the elastic rebound of particles onto it, instead of using a virtual rebound model.
NASA Astrophysics Data System (ADS)
Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.
1993-06-01
We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.
Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.
Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J
2017-11-10
The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.
Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering
Ho, Tuan Anh; Greathouse, Jeffery A.; Wang, Yifeng; ...
2017-11-10
The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of themore » aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.« less
ERIC Educational Resources Information Center
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2015-01-01
This study introduces a teaching concept based on the Standard Model of particle physics. It comprises two consecutive chapters--elementary particles and fundamental interactions. The rationale of this concept is that the fundamental principles of particle physics can run as the golden thread through the whole physics curriculum. The design…
NASA Astrophysics Data System (ADS)
Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel
2016-05-01
We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).
Contact processes with competitive dynamics in bipartite lattices: effects of distinct interactions
NASA Astrophysics Data System (ADS)
Pianegonda, Salete; Fiore, Carlos E.
2014-05-01
The two-dimensional contact process (CP) with a competitive dynamics proposed by Martins et al (2011 Phys. Rev. E 84 011125) leads to the appearance of an unusual active-asymmetric phase, in which the system sublattices are unequally populated. It differs from the usual CP only by the fact that particles also interact with their next-nearest neighbor sites via a distinct strength creation rate, and for the inclusion of an inhibition effect, proportional to the local density. Aimed at investigating the robustness of such an asymmetric phase, in this paper we study the influence of distinct interactions for two bidimensional CPs. In the first model, the interaction between first neighbors requires a minimal neighborhood of adjacent particles for creating new offspring, whereas second neighbors interact as usual (e.g. at least one neighboring particle is required). The second model takes the opposite situation, in which the restrictive dynamics is in the interaction between next-nearest neighbor sites. Both models are investigated under mean field theory (MFT) and Monte Carlo simulations. In similarity with results by Martins et al, the inclusion of distinct sublattice interactions maintains the occurrence of an asymmetric active phase and re-entrant transition lines. In contrast, remarkable differences are presented, such as discontinuous phase transitions (even between the active phases), the appearance of tricritical points and the stabilization of active phases under larger values of control parameters. Finally, we have shown that the critical behaviors are not altered due to the change of interactions, in which the absorbing transitions belong to the directed percolation (DP) universality class, whereas second-order active phase transitions belong to the Ising universality class.
Optimal recruitment strategies for groups of interacting walkers with leaders
NASA Astrophysics Data System (ADS)
Martínez-García, Ricardo; López, Cristóbal; Vazquez, Federico
2015-02-01
We introduce a model of interacting random walkers on a finite one-dimensional chain with absorbing boundaries or targets at the ends. Walkers are of two types: informed particles that move ballistically towards a given target and diffusing uninformed particles that are biased towards close informed individuals. This model mimics the dynamics of hierarchical groups of animals, where an informed individual tries to persuade and lead the movement of its conspecifics. We characterize the success of this persuasion by the first-passage probability of the uninformed particle to the target, and we interpret the speed of the informed particle as a strategic parameter that the particle can tune to maximize its success. We find that the success probability is nonmonotonic, reaching its maximum at an intermediate speed whose value increases with the diffusing rate of the uninformed particle. When two different groups of informed leaders traveling in opposite directions compete, usually the largest group is the most successful. However, the minority can reverse this situation and become the most probable winner by following two different strategies: increasing its attraction strength or adjusting its speed to an optimal value relative to the majority's speed.
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2016-11-01
The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.
Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces
NASA Astrophysics Data System (ADS)
Qin, Shiyi; Yong, Xin
We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).
Monte Carlo calculations of positron emitter yields in proton radiotherapy.
Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F
2012-03-21
Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. © 2012 Institute of Physics and Engineering in Medicine
Particle momentum effects from the detonation of heterogeneous explosives
NASA Astrophysics Data System (ADS)
Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.
2007-06-01
Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.
Organic condensation - a vital link connecting aerosol formation to climate forcing
NASA Astrophysics Data System (ADS)
Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.
2011-01-01
Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.
Particle-in-a-box model of one-dimensional excitons in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.; Johansen, Per M.; Pedersen, Henrik C.
2000-04-01
A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls. Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation length, respectively. From a linear combination of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry
2011-02-01
The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle interactions depending on laser intensity and wavelength. In particular, implantation of ions departing from the nanoparticles towards the substrate is predicted.
NASA Astrophysics Data System (ADS)
Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.
2017-08-01
Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.
Hod, M; Dobroserdova, A; Samin, S; Dobbrow, C; Schmidt, A M; Gottlieb, M; Kantorovich, S
2017-08-28
Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.
Local random configuration-tree theory for string repetition and facilitated dynamics of glass
NASA Astrophysics Data System (ADS)
Lam, Chi-Hang
2018-02-01
We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samios, Nicholas
2009-05-06
The 450th Brookhaven Lecture, to be held today, Wednesday, May 6, will be given by BNL Distinguished Senior Physicist Nicholas Samios, director of the RIKEN BNL Research Center and former Lab Director. Samios will discuss "Personal Reflections on the Interaction of Science and Government and Possible Lessons for the Present Crisis" at 4 p.m. in Berkner Hall. As many members of his prospective audience know, Samios's distinguished achievements in science and administration qualify him more than most to take on this topic. Having received his B.A. and Ph.D. degrees in physics from Columbia University in 1953 and 1957, respectively, hemore » joined the Lab in 1959. In addition to his work in experimental physics, he served as Physics Department Chair from 1975 to 81 and Deputy Director for High-Energy & Nuclear Physics from 1981 to 82. As a researcher, Samios made many of the particle discoveries that have helped define and lead to the acceptance of the "Standard Model" of particle physics, the accepted theory that explains known particle interactions. In particular, he is noted for the discovery of the phi meson and the omega minus hyperon, crucial elements delineating the symmetry of hadrons, which ultimately led to the quark model of elementary particles, a pillar of the Standard Model.« less
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal systems. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. A key-lock model is proposed to describe the results of in-vitro experiments, and the situation in-vivo is discussed. The cooperative binding, and hence the specificity to cancerous cells, is kinetically limited. The implications for optimizing the design of nanoparticle based drug delivery platforms is discussed. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusler, A., E-mail: A.Heusler@mpi-hd.mpg.de; Jolos, R. V., E-mail: Jolos@theor.jinr.ru; Brentano, P. von, E-mail: Brentano@ikp.uni-koeln.de
2013-07-15
The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configurationmore » and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.« less
NASA Astrophysics Data System (ADS)
Gadioli, E.; Cavinato, M.; Fabrici, E.; Gadioli Erba, E.; Birattari, C.; Mica, I.; Solia, S.; Steyn, G. F.; Förtsch, S. V.; Lawrie, J. J.; Nortier, F. M.; Stevens, T. G.; Connell, S. H.; Sellschop, J. P. F.; Cowley, A. A.
1999-08-01
The results of measured inclusive double differential cross section of α particles emitted in the interaction of 12C ions with 59Co and 93Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation function, forward recoil ranges and angular distributions of residues produced in the interaction of 12C with a target nucleus in the same mass range. In particular, the probabilities associated with α-particle reemission following incomplete fussion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of 12C with nuclei are presented.
Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2009-06-01
Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.
Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles
NASA Astrophysics Data System (ADS)
Ripley, R. C.; Zhang, F.; Lien, F.-S.
2009-12-01
Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.
Acceleration of Particles Near Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Sandroos, A.
2012-12-01
Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).
The effect of side motion in the dynamics of interacting molecular motors
NASA Astrophysics Data System (ADS)
Midha, Tripti; Gupta, Arvind Kumar; Kolomeisky, Anatoly B.
2017-07-01
To mimic the collective motion of interacting molecular motors, we propose and discuss an open two-lane symmetrically coupled interactive TASEP model that incorporates interaction in the thermodynamically consistent fashion. We study the effect of both repulsive and attractive interaction on the system’s dynamical properties using various cluster mean field analysis and extensive Monte Carlo simulations. The interactions bring correlations into the system, which were found to be reduced due to the side motion of particles. We produce the steady-state phase diagrams for symmetrically split interaction strength. The behavior of the maximal particle current with respect to the interaction energy E is analyzed for different coupling rates and interaction splittings. The results suggest that for strong coupling and large splittings, the maximal flow of the motors occurs at a weak attractive interaction strength which matches with the known experimental results on kinesin motor protein.
A Process-Based Transport-Distance Model of Aeolian Transport
NASA Astrophysics Data System (ADS)
Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.
2017-12-01
We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
Cosmological constraints on interacting light particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brust, Christopher; Cui, Yanou; Sigurdson, Kris, E-mail: cbrust@perimeterinstitute.ca, E-mail: yanou.cui@ucr.edu, E-mail: krs@phas.ubc.ca
2017-08-01
Cosmological observations are becoming increasingly sensitive to the effects of light particles in the form of dark radiation (DR) at the time of recombination. The conventional observable of effective neutrino number, N {sub eff}, is insufficient for probing generic, interacting models of DR. In this work, we perform likelihood analyses which allow both free-streaming effective neutrinos (parametrized by N {sub eff}) and interacting effective neutrinos (parametrized by N {sub fld}). We motivate an alternative parametrization of DR in terms of N {sub tot} (total effective number of neutrinos) and f {sub fs} (the fraction of effective neutrinos which are free-streaming),more » which is less degenerate than using N {sub eff} and N {sub fld}. Using the Planck 2015 likelihoods in conjunction with measurements of baryon acoustic oscillations (BAO), we find constraints on the total amount of beyond the Standard Model effective neutrinos (both free-streaming and interacting) of Δ N {sub tot} < 0.39 at 2σ. In addition, we consider the possibility that this scenario alleviates the tensions between early-time and late-time cosmological observations, in particular the measurements of σ{sub 8} (the amplitude of matter power fluctuations at 8 h {sup −1} Mpc), finding a mild preference for interactions among light species. We further forecast the sensitivities of a variety of future experiments, including Advanced ACTPol (a representative CMB Stage-III experiment), CMB Stage-IV, and the Euclid satellite. This study is relevant for probing non-standard neutrino physics as well as a wide variety of new particle physics models beyond the Standard Model that involve dark radiation.« less
Normal modes of weak colloidal gels
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.
Vortex with fourfold defect lines in a simple model of self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Ejtehadi, Mohammad Reza
2016-03-01
We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. We derive hydrodynamical equations with an introduction of the "small deviation" technique to describe the vortex phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.
The attachment of α -synuclein to a fiber: A coarse-grain approach
NASA Astrophysics Data System (ADS)
Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.
2017-03-01
We present simulations of the amyloidogenic core of α-synuclein, the protein causing Parkinson's disease, as a short chain of coarse-grain patchy particles. Each particle represents a sequence of about a dozen amino acids. The fluctuating secondary structure of this intrinsically disordered protein is modelled by dynamic variations of the shape and interaction characteristics of the patchy particles, ranging from spherical with weak isotropic attractions for the disordered state to spherocylindrical with strong directional interactions for a β-sheet. Flexible linkers between the particles enable sampling of the tertiary structure. This novel model is applied here to study the growth of an amyloid fibril, by calculating the free energy profile of a protein attaching to the end of a fibril. The simulation results suggest that the attaching protein readily becomes trapped in a mis-folded state, thereby inhibiting further growth of the fibril until the protein has readjusted to conform to the fibril structure, in line with experimental findings and previous simulations on small fragments of other proteins.
NASA Astrophysics Data System (ADS)
Couvidat, F.; Sartelet, K.
2014-01-01
The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).
A femtoscopic correlation analysis tool using the Schrödinger equation (CATS)
NASA Astrophysics Data System (ADS)
Mihaylov, D. L.; Mantovani Sarti, V.; Arnold, O. W.; Fabbietti, L.; Hohlweger, B.; Mathis, A. M.
2018-05-01
We present a new analysis framework called "Correlation Analysis Tool using the Schrödinger equation" (CATS) which computes the two-particle femtoscopy correlation function C( k), with k being the relative momentum for the particle pair. Any local interaction potential and emission source function can be used as an input and the wave function is evaluated exactly. In this paper we present a study on the sensitivity of C( k) to the interaction potential for different particle pairs: p-p, p-Λ, K^-p, K^+-p, p-Ξ ^- and Λ- Λ. For the p-p Argonne v_{18} and Reid Soft-Core potentials have been tested. For the other pair systems we present results based on strong potentials obtained from effective Lagrangians such as χ EFT for p-Λ, Jülich models for K(\\bar{K})-N and Nijmegen models for Λ-Λ. For the p-Ξ^- pairs we employ the latest lattice results from the HAL QCD collaboration. Our detailed study of different interacting particle pairs as a function of the source size and different potentials shows that femtoscopic measurements can be exploited in order to constrain the final state interactions among hadrons. In particular, small collision systems of the order of 1 fm, as produced in pp collisions at the LHC, seem to provide a suitable environment for quantitative studies of this kind.
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
NASA Astrophysics Data System (ADS)
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
Dynamic simulations of the inhomogeneous sedimentation of rigid fibres
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Shaqfeh, Eric S. G.
2002-10-01
We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.
Exact solution of two interacting run-and-tumble random walkers with finite tumble duration
NASA Astrophysics Data System (ADS)
Slowman, A. B.; Evans, M. R.; Blythe, R. A.
2017-09-01
We study a model of interacting run-and-tumble random walkers operating under mutual hardcore exclusion on a one-dimensional lattice with periodic boundary conditions. We incorporate a finite, poisson-distributed, tumble duration so that a particle remains stationary whilst tumbling, thus generalising the persistent random walker model. We present the exact solution for the nonequilibrium stationary state of this system in the case of two random walkers. We find this to be characterised by two lengthscales, one arising from the jamming of approaching particles, and the other from one particle moving when the other is tumbling. The first of these lengthscales vanishes in a scaling limit where the continuous-space dynamics is recovered whilst the second remains finite. Thus the nonequilibrium stationary state reveals a rich structure of attractive, jammed and extended pieces.
Interaction between blood and solid particles propagating through a capillary with slip effects.
Zeeshan, A; Fatima, A; Khalid, F; Bhatti, M M
2018-04-18
This article describes the interaction between solid particles and blood propagating through a capillary. A slip condition is considered on the walls of the capillary. The rheological features of the blood are discussed by considering as a two-phase Newtonian fluid model, i.e., the suspension of cells in plasma. A perturbation method is successfully applied to obtain the series solution of the governing coupled differential equations. The series solution for both fluid and particle phase are presented up to second order approximation. The expressions for the velocity and pressure distributions under slip effects are determined within a tube. Furthermore, the current results are beneficial to understand the rheological features of blood which will be helpful to interpret and analyze more complex blood flow models. Copyright © 2018 Elsevier Inc. All rights reserved.
Dispersive approaches for three-particle final state interaction
Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.
2015-10-30
In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
Planckian Interacting Massive Particles as Dark Matter.
Garny, Mathias; Sandora, McCullen; Sloth, Martin S
2016-03-11
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Born-Oppenheimer approximation for a singular system
NASA Astrophysics Data System (ADS)
Akbas, Haci; Turgut, O. Teoman
2018-01-01
We discuss a simple singular system in one dimension, two heavy particles interacting with a light particle via an attractive contact interaction and not interacting among themselves. It is natural to apply the Born-Oppenheimer approximation to this problem. We present a detailed discussion of this approach; the advantage of this simple model is that one can estimate the error terms self-consistently. Moreover, a Fock space approach to this problem is presented where an expansion can be proposed to get higher order corrections. A slight modification of the same problem in which the light particle is relativistic is discussed in a later section by neglecting pair creation processes. Here, the second quantized description is more challenging, but with some care, one can recover the first order expression exactly.
Dark Matter and Color Octets Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krnjaic, Gordan Zdenko
2012-07-01
Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that addressmore » each of these issues.« less
NASA Astrophysics Data System (ADS)
Thiruvengadam, V.; Vitta, Satish
2016-06-01
The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.
Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma
NASA Astrophysics Data System (ADS)
Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl
2016-10-01
Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.
Mean field dynamics of some open quantum systems
NASA Astrophysics Data System (ADS)
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Design of Particulate-Reinforced Composite Materials
Muc, Aleksander; Barski, Marek
2018-01-01
A microstructure-based model is developed to study the effective anisotropic properties (magnetic, dielectric or thermal) of two-phase particle-filled composites. The Green’s function technique and the effective field method are used to theoretically derive the homogenized (averaged) properties for a representative volume element containing isolated inclusion and infinite, chain-structured particles. Those results are compared with the finite element approximations conducted for the assumed representative volume element. In addition, the Maxwell–Garnett model is retrieved as a special case when particle interactions are not considered. We also give some information on the optimal design of the effective anisotropic properties taking into account the shape of magnetic particles. PMID:29401678
Mean field dynamics of some open quantum systems.
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Design of Polymer-Grafted Particles for Biocompatability
NASA Astrophysics Data System (ADS)
Trombly, David; Ganesan, Venkat
2009-03-01
Drug designers often coat drug particles with grafted polymers in order to introduce a net repulsion between the particles and blood proteins. This net repulsion results from the energy cost of compressing grafted chains on approach of proteins. It thus overcomes the Van Der Waals attraction between drug and protein which would otherwise cause particle-protein agglomeration and ultimately thrombosis. This study proposes to develop a fundamental understanding of the role of different features in controlling the efficacy of the grafted layers. We address this issue by developing a framework to predict the interactions between a polymer-coated spherical particle and a bare spherical particle. In order to fully capture the two-sphere system, a numerical solution of polymer mean field theory is used in a bispherical coordinate system. Results for protein-particle interaction energies for different design parameters will be presented. For biological applications, polyethylene glycol is often used as the grafted polymer. The unique properties of this molecule will be accounted for using the n-cluster model.
Simulating Coupling Complexity in Space Plasmas: First Results from a new code
NASA Astrophysics Data System (ADS)
Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.
2005-12-01
The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.
Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids.
Wang, Yong-Lei; Zhu, You-Liang; Lu, Zhong-Yuan; Laaksonen, Aatto
2018-05-21
Computer simulations provide a unique insight into the microscopic details, molecular interactions and dynamic behavior responsible for many distinct physicochemical properties of ionic liquids. Due to the sluggish and heterogeneous dynamics and the long-ranged nanostructured nature of ionic liquids, coarse-grained meso-scale simulations provide an indispensable complement to detailed first-principles calculations and atomistic simulations allowing studies over extended length and time scales with a modest computational cost. Here, we present extensive coarse-grained simulations on a series of ionic liquids of the 1-alkyl-3-methylimidazolium (alkyl = butyl, heptyl-, and decyl-) family with Cl, [BF4], and [PF6] counterions. Liquid densities, microstructures, translational diffusion coefficients, and re-orientational motion of these model ionic liquid systems have been systematically studied over a wide temperature range. The addition of neutral beads in cationic models leads to a transition of liquid morphologies from dispersed apolar beads in a polar framework to that characterized by bi-continuous sponge-like interpenetrating networks in liquid matrices. Translational diffusion coefficients of both cations and anions decrease upon lengthening of the neutral chains in the cationic models and by enlarging molecular sizes of the anionic groups. Similar features are observed in re-orientational motion and time scales of different cationic models within the studied temperature range. The comparison of the liquid properties of the ionic systems with their neutral counterparts indicates that the distinctive microstructures and dynamical quantities of the model ionic liquid systems are intrinsically related to Coulombic interactions. Finally, we compared the computational efficiencies of three linearly scaling O(N log N) Ewald summation methods, the particle-particle particle-mesh method, the particle-mesh Ewald summation method, and the Ewald summation method based on a non-uniform fast Fourier transform technique, to calculate electrostatic interactions. Coarse-grained simulations were performed using the GALAMOST and the GROMACS packages and hardware efficiently utilizing graphics processing units on a set of extended [1-decyl-3-methylimidazolium][BF4] ionic liquid systems of up to 131 072 ion pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaby, Christoph; Könies, Axel; Kleiber, Ralf
2016-09-15
The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem usingmore » a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.« less
Compaction of granular materials composed of deformable particles
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.
Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng
2017-02-01
Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.
Radiation doses and neutron irridation effects on human cells based on calculations
NASA Astrophysics Data System (ADS)
Radojevic, B. B.; Cukavac, M.; Jovanovic, D.
In general, main aim of our paper is to follow influence of neutron's radiation on materials, but one of possible applications of fast neutrons in therapeutical reasons i.e. their influence on carcinom cells of difficuilt geometries in human bodies too. Interactions between neutrons and human cells of tissue are analysed here. We know that the light nuclei of hydrogen, nitrogen, carbon, and oxygen are main constituents of human cells, and that different nuclear models are usually used to present interactions of nuclear particles with mentioned elements. Some of most widely used pre-equilibrium nuclear models are: intranuclear cascade model (ICN), Harp-Miller-Berne (HMB), geometry-dependent hybrid (GDH) and exciton models (EM). In this paper is studied and calculated the primary energetic spectra of the secundary particles (neutrons, protons, and gamas) emitted from this interactions, and followed by corresponding integral cross sections, based on exciton model (EM). The total emission cross-section is the sum of emissions in all stages of energies. Obtained spectra for interactions type of (n, n'), (n, p), and (n, ?), for various incident neutron energies in the interval from 3 MeV up to 30 MeV are analysed too. Some results of calculations are presented here.
Conditioning of MVM '73 radio-tracking data
NASA Technical Reports Server (NTRS)
Koch, R. E.; Chao, C. C.; Winn, F. B.; Yip, K. W.
1974-01-01
An extensive effort was undertaken to edit Mariner 10 radiometric tracking data. Interactive computer graphics were used for the first time by an interplanetary mission to detect blunder points and spurious signatures in the data. Interactive graphics improved the former process time by a factor of 10 to 20, while increasing reliability. S/X dual Doppler data was used for the first time to calibrate charged particles in the tracking medium. Application of the charged particle calibrations decreased the orbit determination error for a short data arc following the 16 March 1974 maneuver by about 80%. A new model was developed to calibrate the earth's troposphere with seasonal adjustments. The new model has a 2% accuracy and is 5 times better than the old model.